target/mips: Make the results of MOD_<U|S>.<B|H|W|D> the same as on hardware
[qemu/ar7.git] / target / mips / msa_helper.c
blob274c6ca058278019f2c3640e7dc5eade0a9f7ed8
1 /*
2 * MIPS SIMD Architecture Module Instruction emulation helpers for QEMU.
4 * Copyright (c) 2014 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
26 /* Data format min and max values */
27 #define DF_BITS(df) (1 << ((df) + 3))
29 #define DF_MAX_INT(df) (int64_t)((1LL << (DF_BITS(df) - 1)) - 1)
30 #define M_MAX_INT(m) (int64_t)((1LL << ((m) - 1)) - 1)
32 #define DF_MIN_INT(df) (int64_t)(-(1LL << (DF_BITS(df) - 1)))
33 #define M_MIN_INT(m) (int64_t)(-(1LL << ((m) - 1)))
35 #define DF_MAX_UINT(df) (uint64_t)(-1ULL >> (64 - DF_BITS(df)))
36 #define M_MAX_UINT(m) (uint64_t)(-1ULL >> (64 - (m)))
38 #define UNSIGNED(x, df) ((x) & DF_MAX_UINT(df))
39 #define SIGNED(x, df) \
40 ((((int64_t)x) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)))
42 /* Element-by-element access macros */
43 #define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
45 static inline void msa_move_v(wr_t *pwd, wr_t *pws)
47 uint32_t i;
49 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
50 pwd->d[i] = pws->d[i];
54 #define MSA_FN_IMM8(FUNC, DEST, OPERATION) \
55 void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
56 uint32_t i8) \
57 { \
58 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
59 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
60 uint32_t i; \
61 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
62 DEST = OPERATION; \
63 } \
66 MSA_FN_IMM8(andi_b, pwd->b[i], pws->b[i] & i8)
67 MSA_FN_IMM8(ori_b, pwd->b[i], pws->b[i] | i8)
68 MSA_FN_IMM8(nori_b, pwd->b[i], ~(pws->b[i] | i8))
69 MSA_FN_IMM8(xori_b, pwd->b[i], pws->b[i] ^ i8)
71 #define BIT_MOVE_IF_NOT_ZERO(dest, arg1, arg2, df) \
72 UNSIGNED(((dest & (~arg2)) | (arg1 & arg2)), df)
73 MSA_FN_IMM8(bmnzi_b, pwd->b[i],
74 BIT_MOVE_IF_NOT_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
76 #define BIT_MOVE_IF_ZERO(dest, arg1, arg2, df) \
77 UNSIGNED((dest & arg2) | (arg1 & (~arg2)), df)
78 MSA_FN_IMM8(bmzi_b, pwd->b[i],
79 BIT_MOVE_IF_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
81 #define BIT_SELECT(dest, arg1, arg2, df) \
82 UNSIGNED((arg1 & (~dest)) | (arg2 & dest), df)
83 MSA_FN_IMM8(bseli_b, pwd->b[i],
84 BIT_SELECT(pwd->b[i], pws->b[i], i8, DF_BYTE))
86 #undef MSA_FN_IMM8
88 #define SHF_POS(i, imm) (((i) & 0xfc) + (((imm) >> (2 * ((i) & 0x03))) & 0x03))
90 void helper_msa_shf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
91 uint32_t ws, uint32_t imm)
93 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
94 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
95 wr_t wx, *pwx = &wx;
96 uint32_t i;
98 switch (df) {
99 case DF_BYTE:
100 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
101 pwx->b[i] = pws->b[SHF_POS(i, imm)];
103 break;
104 case DF_HALF:
105 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
106 pwx->h[i] = pws->h[SHF_POS(i, imm)];
108 break;
109 case DF_WORD:
110 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
111 pwx->w[i] = pws->w[SHF_POS(i, imm)];
113 break;
114 default:
115 assert(0);
117 msa_move_v(pwd, pwx);
120 #define MSA_FN_VECTOR(FUNC, DEST, OPERATION) \
121 void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
122 uint32_t wt) \
124 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
125 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
126 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
127 uint32_t i; \
128 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
129 DEST = OPERATION; \
133 MSA_FN_VECTOR(and_v, pwd->d[i], pws->d[i] & pwt->d[i])
134 MSA_FN_VECTOR(or_v, pwd->d[i], pws->d[i] | pwt->d[i])
135 MSA_FN_VECTOR(nor_v, pwd->d[i], ~(pws->d[i] | pwt->d[i]))
136 MSA_FN_VECTOR(xor_v, pwd->d[i], pws->d[i] ^ pwt->d[i])
137 MSA_FN_VECTOR(bmnz_v, pwd->d[i],
138 BIT_MOVE_IF_NOT_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
139 MSA_FN_VECTOR(bmz_v, pwd->d[i],
140 BIT_MOVE_IF_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
141 MSA_FN_VECTOR(bsel_v, pwd->d[i],
142 BIT_SELECT(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
143 #undef BIT_MOVE_IF_NOT_ZERO
144 #undef BIT_MOVE_IF_ZERO
145 #undef BIT_SELECT
146 #undef MSA_FN_VECTOR
148 static inline int64_t msa_addv_df(uint32_t df, int64_t arg1, int64_t arg2)
150 return arg1 + arg2;
153 static inline int64_t msa_subv_df(uint32_t df, int64_t arg1, int64_t arg2)
155 return arg1 - arg2;
158 static inline int64_t msa_ceq_df(uint32_t df, int64_t arg1, int64_t arg2)
160 return arg1 == arg2 ? -1 : 0;
163 static inline int64_t msa_cle_s_df(uint32_t df, int64_t arg1, int64_t arg2)
165 return arg1 <= arg2 ? -1 : 0;
168 static inline int64_t msa_cle_u_df(uint32_t df, int64_t arg1, int64_t arg2)
170 uint64_t u_arg1 = UNSIGNED(arg1, df);
171 uint64_t u_arg2 = UNSIGNED(arg2, df);
172 return u_arg1 <= u_arg2 ? -1 : 0;
175 static inline int64_t msa_clt_s_df(uint32_t df, int64_t arg1, int64_t arg2)
177 return arg1 < arg2 ? -1 : 0;
180 static inline int64_t msa_clt_u_df(uint32_t df, int64_t arg1, int64_t arg2)
182 uint64_t u_arg1 = UNSIGNED(arg1, df);
183 uint64_t u_arg2 = UNSIGNED(arg2, df);
184 return u_arg1 < u_arg2 ? -1 : 0;
187 static inline int64_t msa_max_s_df(uint32_t df, int64_t arg1, int64_t arg2)
189 return arg1 > arg2 ? arg1 : arg2;
192 static inline int64_t msa_max_u_df(uint32_t df, int64_t arg1, int64_t arg2)
194 uint64_t u_arg1 = UNSIGNED(arg1, df);
195 uint64_t u_arg2 = UNSIGNED(arg2, df);
196 return u_arg1 > u_arg2 ? arg1 : arg2;
199 static inline int64_t msa_min_s_df(uint32_t df, int64_t arg1, int64_t arg2)
201 return arg1 < arg2 ? arg1 : arg2;
204 static inline int64_t msa_min_u_df(uint32_t df, int64_t arg1, int64_t arg2)
206 uint64_t u_arg1 = UNSIGNED(arg1, df);
207 uint64_t u_arg2 = UNSIGNED(arg2, df);
208 return u_arg1 < u_arg2 ? arg1 : arg2;
211 #define MSA_BINOP_IMM_DF(helper, func) \
212 void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
213 uint32_t wd, uint32_t ws, int32_t u5) \
215 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
216 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
217 uint32_t i; \
219 switch (df) { \
220 case DF_BYTE: \
221 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
222 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
224 break; \
225 case DF_HALF: \
226 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
227 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
229 break; \
230 case DF_WORD: \
231 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
232 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
234 break; \
235 case DF_DOUBLE: \
236 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
237 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
239 break; \
240 default: \
241 assert(0); \
245 MSA_BINOP_IMM_DF(addvi, addv)
246 MSA_BINOP_IMM_DF(subvi, subv)
247 MSA_BINOP_IMM_DF(ceqi, ceq)
248 MSA_BINOP_IMM_DF(clei_s, cle_s)
249 MSA_BINOP_IMM_DF(clei_u, cle_u)
250 MSA_BINOP_IMM_DF(clti_s, clt_s)
251 MSA_BINOP_IMM_DF(clti_u, clt_u)
252 MSA_BINOP_IMM_DF(maxi_s, max_s)
253 MSA_BINOP_IMM_DF(maxi_u, max_u)
254 MSA_BINOP_IMM_DF(mini_s, min_s)
255 MSA_BINOP_IMM_DF(mini_u, min_u)
256 #undef MSA_BINOP_IMM_DF
258 void helper_msa_ldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
259 int32_t s10)
261 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
262 uint32_t i;
264 switch (df) {
265 case DF_BYTE:
266 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
267 pwd->b[i] = (int8_t)s10;
269 break;
270 case DF_HALF:
271 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
272 pwd->h[i] = (int16_t)s10;
274 break;
275 case DF_WORD:
276 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
277 pwd->w[i] = (int32_t)s10;
279 break;
280 case DF_DOUBLE:
281 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
282 pwd->d[i] = (int64_t)s10;
284 break;
285 default:
286 assert(0);
290 /* Data format bit position and unsigned values */
291 #define BIT_POSITION(x, df) ((uint64_t)(x) % DF_BITS(df))
293 static inline int64_t msa_sll_df(uint32_t df, int64_t arg1, int64_t arg2)
295 int32_t b_arg2 = BIT_POSITION(arg2, df);
296 return arg1 << b_arg2;
299 static inline int64_t msa_sra_df(uint32_t df, int64_t arg1, int64_t arg2)
301 int32_t b_arg2 = BIT_POSITION(arg2, df);
302 return arg1 >> b_arg2;
305 static inline int64_t msa_srl_df(uint32_t df, int64_t arg1, int64_t arg2)
307 uint64_t u_arg1 = UNSIGNED(arg1, df);
308 int32_t b_arg2 = BIT_POSITION(arg2, df);
309 return u_arg1 >> b_arg2;
312 static inline int64_t msa_bclr_df(uint32_t df, int64_t arg1, int64_t arg2)
314 int32_t b_arg2 = BIT_POSITION(arg2, df);
315 return UNSIGNED(arg1 & (~(1LL << b_arg2)), df);
318 static inline int64_t msa_bset_df(uint32_t df, int64_t arg1,
319 int64_t arg2)
321 int32_t b_arg2 = BIT_POSITION(arg2, df);
322 return UNSIGNED(arg1 | (1LL << b_arg2), df);
325 static inline int64_t msa_bneg_df(uint32_t df, int64_t arg1, int64_t arg2)
327 int32_t b_arg2 = BIT_POSITION(arg2, df);
328 return UNSIGNED(arg1 ^ (1LL << b_arg2), df);
331 static inline int64_t msa_binsl_df(uint32_t df, int64_t dest, int64_t arg1,
332 int64_t arg2)
334 uint64_t u_arg1 = UNSIGNED(arg1, df);
335 uint64_t u_dest = UNSIGNED(dest, df);
336 int32_t sh_d = BIT_POSITION(arg2, df) + 1;
337 int32_t sh_a = DF_BITS(df) - sh_d;
338 if (sh_d == DF_BITS(df)) {
339 return u_arg1;
340 } else {
341 return UNSIGNED(UNSIGNED(u_dest << sh_d, df) >> sh_d, df) |
342 UNSIGNED(UNSIGNED(u_arg1 >> sh_a, df) << sh_a, df);
346 static inline int64_t msa_binsr_df(uint32_t df, int64_t dest, int64_t arg1,
347 int64_t arg2)
349 uint64_t u_arg1 = UNSIGNED(arg1, df);
350 uint64_t u_dest = UNSIGNED(dest, df);
351 int32_t sh_d = BIT_POSITION(arg2, df) + 1;
352 int32_t sh_a = DF_BITS(df) - sh_d;
353 if (sh_d == DF_BITS(df)) {
354 return u_arg1;
355 } else {
356 return UNSIGNED(UNSIGNED(u_dest >> sh_d, df) << sh_d, df) |
357 UNSIGNED(UNSIGNED(u_arg1 << sh_a, df) >> sh_a, df);
361 static inline int64_t msa_sat_s_df(uint32_t df, int64_t arg, uint32_t m)
363 return arg < M_MIN_INT(m+1) ? M_MIN_INT(m+1) :
364 arg > M_MAX_INT(m+1) ? M_MAX_INT(m+1) :
365 arg;
368 static inline int64_t msa_sat_u_df(uint32_t df, int64_t arg, uint32_t m)
370 uint64_t u_arg = UNSIGNED(arg, df);
371 return u_arg < M_MAX_UINT(m+1) ? u_arg :
372 M_MAX_UINT(m+1);
375 static inline int64_t msa_srar_df(uint32_t df, int64_t arg1, int64_t arg2)
377 int32_t b_arg2 = BIT_POSITION(arg2, df);
378 if (b_arg2 == 0) {
379 return arg1;
380 } else {
381 int64_t r_bit = (arg1 >> (b_arg2 - 1)) & 1;
382 return (arg1 >> b_arg2) + r_bit;
386 static inline int64_t msa_srlr_df(uint32_t df, int64_t arg1, int64_t arg2)
388 uint64_t u_arg1 = UNSIGNED(arg1, df);
389 int32_t b_arg2 = BIT_POSITION(arg2, df);
390 if (b_arg2 == 0) {
391 return u_arg1;
392 } else {
393 uint64_t r_bit = (u_arg1 >> (b_arg2 - 1)) & 1;
394 return (u_arg1 >> b_arg2) + r_bit;
398 #define MSA_BINOP_IMMU_DF(helper, func) \
399 void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
400 uint32_t ws, uint32_t u5) \
402 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
403 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
404 uint32_t i; \
406 switch (df) { \
407 case DF_BYTE: \
408 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
409 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
411 break; \
412 case DF_HALF: \
413 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
414 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
416 break; \
417 case DF_WORD: \
418 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
419 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
421 break; \
422 case DF_DOUBLE: \
423 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
424 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
426 break; \
427 default: \
428 assert(0); \
432 MSA_BINOP_IMMU_DF(slli, sll)
433 MSA_BINOP_IMMU_DF(srai, sra)
434 MSA_BINOP_IMMU_DF(srli, srl)
435 MSA_BINOP_IMMU_DF(bclri, bclr)
436 MSA_BINOP_IMMU_DF(bseti, bset)
437 MSA_BINOP_IMMU_DF(bnegi, bneg)
438 MSA_BINOP_IMMU_DF(sat_s, sat_s)
439 MSA_BINOP_IMMU_DF(sat_u, sat_u)
440 MSA_BINOP_IMMU_DF(srari, srar)
441 MSA_BINOP_IMMU_DF(srlri, srlr)
442 #undef MSA_BINOP_IMMU_DF
444 #define MSA_TEROP_IMMU_DF(helper, func) \
445 void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
446 uint32_t wd, uint32_t ws, uint32_t u5) \
448 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
449 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
450 uint32_t i; \
452 switch (df) { \
453 case DF_BYTE: \
454 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
455 pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
456 u5); \
458 break; \
459 case DF_HALF: \
460 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
461 pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
462 u5); \
464 break; \
465 case DF_WORD: \
466 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
467 pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
468 u5); \
470 break; \
471 case DF_DOUBLE: \
472 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
473 pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
474 u5); \
476 break; \
477 default: \
478 assert(0); \
482 MSA_TEROP_IMMU_DF(binsli, binsl)
483 MSA_TEROP_IMMU_DF(binsri, binsr)
484 #undef MSA_TEROP_IMMU_DF
486 static inline int64_t msa_max_a_df(uint32_t df, int64_t arg1, int64_t arg2)
488 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
489 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
490 return abs_arg1 > abs_arg2 ? arg1 : arg2;
493 static inline int64_t msa_min_a_df(uint32_t df, int64_t arg1, int64_t arg2)
495 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
496 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
497 return abs_arg1 < abs_arg2 ? arg1 : arg2;
500 static inline int64_t msa_add_a_df(uint32_t df, int64_t arg1, int64_t arg2)
502 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
503 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
504 return abs_arg1 + abs_arg2;
507 static inline int64_t msa_adds_a_df(uint32_t df, int64_t arg1, int64_t arg2)
509 uint64_t max_int = (uint64_t)DF_MAX_INT(df);
510 uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
511 uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
512 if (abs_arg1 > max_int || abs_arg2 > max_int) {
513 return (int64_t)max_int;
514 } else {
515 return (abs_arg1 < max_int - abs_arg2) ? abs_arg1 + abs_arg2 : max_int;
519 static inline int64_t msa_adds_s_df(uint32_t df, int64_t arg1, int64_t arg2)
521 int64_t max_int = DF_MAX_INT(df);
522 int64_t min_int = DF_MIN_INT(df);
523 if (arg1 < 0) {
524 return (min_int - arg1 < arg2) ? arg1 + arg2 : min_int;
525 } else {
526 return (arg2 < max_int - arg1) ? arg1 + arg2 : max_int;
530 static inline uint64_t msa_adds_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
532 uint64_t max_uint = DF_MAX_UINT(df);
533 uint64_t u_arg1 = UNSIGNED(arg1, df);
534 uint64_t u_arg2 = UNSIGNED(arg2, df);
535 return (u_arg1 < max_uint - u_arg2) ? u_arg1 + u_arg2 : max_uint;
538 static inline int64_t msa_ave_s_df(uint32_t df, int64_t arg1, int64_t arg2)
540 /* signed shift */
541 return (arg1 >> 1) + (arg2 >> 1) + (arg1 & arg2 & 1);
544 static inline uint64_t msa_ave_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
546 uint64_t u_arg1 = UNSIGNED(arg1, df);
547 uint64_t u_arg2 = UNSIGNED(arg2, df);
548 /* unsigned shift */
549 return (u_arg1 >> 1) + (u_arg2 >> 1) + (u_arg1 & u_arg2 & 1);
552 static inline int64_t msa_aver_s_df(uint32_t df, int64_t arg1, int64_t arg2)
554 /* signed shift */
555 return (arg1 >> 1) + (arg2 >> 1) + ((arg1 | arg2) & 1);
558 static inline uint64_t msa_aver_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
560 uint64_t u_arg1 = UNSIGNED(arg1, df);
561 uint64_t u_arg2 = UNSIGNED(arg2, df);
562 /* unsigned shift */
563 return (u_arg1 >> 1) + (u_arg2 >> 1) + ((u_arg1 | u_arg2) & 1);
566 static inline int64_t msa_subs_s_df(uint32_t df, int64_t arg1, int64_t arg2)
568 int64_t max_int = DF_MAX_INT(df);
569 int64_t min_int = DF_MIN_INT(df);
570 if (arg2 > 0) {
571 return (min_int + arg2 < arg1) ? arg1 - arg2 : min_int;
572 } else {
573 return (arg1 < max_int + arg2) ? arg1 - arg2 : max_int;
577 static inline int64_t msa_subs_u_df(uint32_t df, int64_t arg1, int64_t arg2)
579 uint64_t u_arg1 = UNSIGNED(arg1, df);
580 uint64_t u_arg2 = UNSIGNED(arg2, df);
581 return (u_arg1 > u_arg2) ? u_arg1 - u_arg2 : 0;
584 static inline int64_t msa_subsus_u_df(uint32_t df, int64_t arg1, int64_t arg2)
586 uint64_t u_arg1 = UNSIGNED(arg1, df);
587 uint64_t max_uint = DF_MAX_UINT(df);
588 if (arg2 >= 0) {
589 uint64_t u_arg2 = (uint64_t)arg2;
590 return (u_arg1 > u_arg2) ?
591 (int64_t)(u_arg1 - u_arg2) :
593 } else {
594 uint64_t u_arg2 = (uint64_t)(-arg2);
595 return (u_arg1 < max_uint - u_arg2) ?
596 (int64_t)(u_arg1 + u_arg2) :
597 (int64_t)max_uint;
601 static inline int64_t msa_subsuu_s_df(uint32_t df, int64_t arg1, int64_t arg2)
603 uint64_t u_arg1 = UNSIGNED(arg1, df);
604 uint64_t u_arg2 = UNSIGNED(arg2, df);
605 int64_t max_int = DF_MAX_INT(df);
606 int64_t min_int = DF_MIN_INT(df);
607 if (u_arg1 > u_arg2) {
608 return u_arg1 - u_arg2 < (uint64_t)max_int ?
609 (int64_t)(u_arg1 - u_arg2) :
610 max_int;
611 } else {
612 return u_arg2 - u_arg1 < (uint64_t)(-min_int) ?
613 (int64_t)(u_arg1 - u_arg2) :
614 min_int;
618 static inline int64_t msa_asub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
620 /* signed compare */
621 return (arg1 < arg2) ?
622 (uint64_t)(arg2 - arg1) : (uint64_t)(arg1 - arg2);
625 static inline uint64_t msa_asub_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
627 uint64_t u_arg1 = UNSIGNED(arg1, df);
628 uint64_t u_arg2 = UNSIGNED(arg2, df);
629 /* unsigned compare */
630 return (u_arg1 < u_arg2) ?
631 (uint64_t)(u_arg2 - u_arg1) : (uint64_t)(u_arg1 - u_arg2);
634 static inline int64_t msa_mulv_df(uint32_t df, int64_t arg1, int64_t arg2)
636 return arg1 * arg2;
639 static inline int64_t msa_div_s_df(uint32_t df, int64_t arg1, int64_t arg2)
641 if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
642 return DF_MIN_INT(df);
644 return arg2 ? arg1 / arg2
645 : arg1 >= 0 ? -1 : 1;
648 static inline int64_t msa_div_u_df(uint32_t df, int64_t arg1, int64_t arg2)
650 uint64_t u_arg1 = UNSIGNED(arg1, df);
651 uint64_t u_arg2 = UNSIGNED(arg2, df);
652 return arg2 ? u_arg1 / u_arg2 : -1;
655 static inline int64_t msa_mod_s_df(uint32_t df, int64_t arg1, int64_t arg2)
657 if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
658 return 0;
660 return arg2 ? arg1 % arg2 : arg1;
663 static inline int64_t msa_mod_u_df(uint32_t df, int64_t arg1, int64_t arg2)
665 uint64_t u_arg1 = UNSIGNED(arg1, df);
666 uint64_t u_arg2 = UNSIGNED(arg2, df);
667 return u_arg2 ? u_arg1 % u_arg2 : u_arg1;
670 #define SIGNED_EVEN(a, df) \
671 ((((int64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
673 #define UNSIGNED_EVEN(a, df) \
674 ((((uint64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
676 #define SIGNED_ODD(a, df) \
677 ((((int64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
679 #define UNSIGNED_ODD(a, df) \
680 ((((uint64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
682 #define SIGNED_EXTRACT(e, o, a, df) \
683 do { \
684 e = SIGNED_EVEN(a, df); \
685 o = SIGNED_ODD(a, df); \
686 } while (0)
688 #define UNSIGNED_EXTRACT(e, o, a, df) \
689 do { \
690 e = UNSIGNED_EVEN(a, df); \
691 o = UNSIGNED_ODD(a, df); \
692 } while (0)
694 static inline int64_t msa_dotp_s_df(uint32_t df, int64_t arg1, int64_t arg2)
696 int64_t even_arg1;
697 int64_t even_arg2;
698 int64_t odd_arg1;
699 int64_t odd_arg2;
700 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
701 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
702 return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
705 static inline int64_t msa_dotp_u_df(uint32_t df, int64_t arg1, int64_t arg2)
707 int64_t even_arg1;
708 int64_t even_arg2;
709 int64_t odd_arg1;
710 int64_t odd_arg2;
711 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
712 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
713 return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
716 #define CONCATENATE_AND_SLIDE(s, k) \
717 do { \
718 for (i = 0; i < s; i++) { \
719 v[i] = pws->b[s * k + i]; \
720 v[i + s] = pwd->b[s * k + i]; \
722 for (i = 0; i < s; i++) { \
723 pwd->b[s * k + i] = v[i + n]; \
725 } while (0)
727 static inline void msa_sld_df(uint32_t df, wr_t *pwd,
728 wr_t *pws, target_ulong rt)
730 uint32_t n = rt % DF_ELEMENTS(df);
731 uint8_t v[64];
732 uint32_t i, k;
734 switch (df) {
735 case DF_BYTE:
736 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_BYTE), 0);
737 break;
738 case DF_HALF:
739 for (k = 0; k < 2; k++) {
740 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_HALF), k);
742 break;
743 case DF_WORD:
744 for (k = 0; k < 4; k++) {
745 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_WORD), k);
747 break;
748 case DF_DOUBLE:
749 for (k = 0; k < 8; k++) {
750 CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_DOUBLE), k);
752 break;
753 default:
754 assert(0);
758 static inline int64_t msa_hadd_s_df(uint32_t df, int64_t arg1, int64_t arg2)
760 return SIGNED_ODD(arg1, df) + SIGNED_EVEN(arg2, df);
763 static inline int64_t msa_hadd_u_df(uint32_t df, int64_t arg1, int64_t arg2)
765 return UNSIGNED_ODD(arg1, df) + UNSIGNED_EVEN(arg2, df);
768 static inline int64_t msa_hsub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
770 return SIGNED_ODD(arg1, df) - SIGNED_EVEN(arg2, df);
773 static inline int64_t msa_hsub_u_df(uint32_t df, int64_t arg1, int64_t arg2)
775 return UNSIGNED_ODD(arg1, df) - UNSIGNED_EVEN(arg2, df);
778 static inline int64_t msa_mul_q_df(uint32_t df, int64_t arg1, int64_t arg2)
780 int64_t q_min = DF_MIN_INT(df);
781 int64_t q_max = DF_MAX_INT(df);
783 if (arg1 == q_min && arg2 == q_min) {
784 return q_max;
786 return (arg1 * arg2) >> (DF_BITS(df) - 1);
789 static inline int64_t msa_mulr_q_df(uint32_t df, int64_t arg1, int64_t arg2)
791 int64_t q_min = DF_MIN_INT(df);
792 int64_t q_max = DF_MAX_INT(df);
793 int64_t r_bit = 1 << (DF_BITS(df) - 2);
795 if (arg1 == q_min && arg2 == q_min) {
796 return q_max;
798 return (arg1 * arg2 + r_bit) >> (DF_BITS(df) - 1);
801 #define MSA_BINOP_DF(func) \
802 void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
803 uint32_t wd, uint32_t ws, uint32_t wt) \
805 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
806 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
807 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
808 uint32_t i; \
810 switch (df) { \
811 case DF_BYTE: \
812 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
813 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], pwt->b[i]); \
815 break; \
816 case DF_HALF: \
817 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
818 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], pwt->h[i]); \
820 break; \
821 case DF_WORD: \
822 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
823 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], pwt->w[i]); \
825 break; \
826 case DF_DOUBLE: \
827 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
828 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], pwt->d[i]); \
830 break; \
831 default: \
832 assert(0); \
836 MSA_BINOP_DF(sll)
837 MSA_BINOP_DF(sra)
838 MSA_BINOP_DF(srl)
839 MSA_BINOP_DF(bclr)
840 MSA_BINOP_DF(bset)
841 MSA_BINOP_DF(bneg)
842 MSA_BINOP_DF(addv)
843 MSA_BINOP_DF(subv)
844 MSA_BINOP_DF(max_s)
845 MSA_BINOP_DF(max_u)
846 MSA_BINOP_DF(min_s)
847 MSA_BINOP_DF(min_u)
848 MSA_BINOP_DF(max_a)
849 MSA_BINOP_DF(min_a)
850 MSA_BINOP_DF(ceq)
851 MSA_BINOP_DF(clt_s)
852 MSA_BINOP_DF(clt_u)
853 MSA_BINOP_DF(cle_s)
854 MSA_BINOP_DF(cle_u)
855 MSA_BINOP_DF(add_a)
856 MSA_BINOP_DF(adds_a)
857 MSA_BINOP_DF(adds_s)
858 MSA_BINOP_DF(adds_u)
859 MSA_BINOP_DF(ave_s)
860 MSA_BINOP_DF(ave_u)
861 MSA_BINOP_DF(aver_s)
862 MSA_BINOP_DF(aver_u)
863 MSA_BINOP_DF(subs_s)
864 MSA_BINOP_DF(subs_u)
865 MSA_BINOP_DF(subsus_u)
866 MSA_BINOP_DF(subsuu_s)
867 MSA_BINOP_DF(asub_s)
868 MSA_BINOP_DF(asub_u)
869 MSA_BINOP_DF(mulv)
870 MSA_BINOP_DF(div_s)
871 MSA_BINOP_DF(div_u)
872 MSA_BINOP_DF(mod_s)
873 MSA_BINOP_DF(mod_u)
874 MSA_BINOP_DF(dotp_s)
875 MSA_BINOP_DF(dotp_u)
876 MSA_BINOP_DF(srar)
877 MSA_BINOP_DF(srlr)
878 MSA_BINOP_DF(hadd_s)
879 MSA_BINOP_DF(hadd_u)
880 MSA_BINOP_DF(hsub_s)
881 MSA_BINOP_DF(hsub_u)
883 MSA_BINOP_DF(mul_q)
884 MSA_BINOP_DF(mulr_q)
885 #undef MSA_BINOP_DF
887 void helper_msa_sld_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
888 uint32_t ws, uint32_t rt)
890 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
891 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
893 msa_sld_df(df, pwd, pws, env->active_tc.gpr[rt]);
896 static inline int64_t msa_maddv_df(uint32_t df, int64_t dest, int64_t arg1,
897 int64_t arg2)
899 return dest + arg1 * arg2;
902 static inline int64_t msa_msubv_df(uint32_t df, int64_t dest, int64_t arg1,
903 int64_t arg2)
905 return dest - arg1 * arg2;
908 static inline int64_t msa_dpadd_s_df(uint32_t df, int64_t dest, int64_t arg1,
909 int64_t arg2)
911 int64_t even_arg1;
912 int64_t even_arg2;
913 int64_t odd_arg1;
914 int64_t odd_arg2;
915 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
916 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
917 return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
920 static inline int64_t msa_dpadd_u_df(uint32_t df, int64_t dest, int64_t arg1,
921 int64_t arg2)
923 int64_t even_arg1;
924 int64_t even_arg2;
925 int64_t odd_arg1;
926 int64_t odd_arg2;
927 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
928 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
929 return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
932 static inline int64_t msa_dpsub_s_df(uint32_t df, int64_t dest, int64_t arg1,
933 int64_t arg2)
935 int64_t even_arg1;
936 int64_t even_arg2;
937 int64_t odd_arg1;
938 int64_t odd_arg2;
939 SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
940 SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
941 return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
944 static inline int64_t msa_dpsub_u_df(uint32_t df, int64_t dest, int64_t arg1,
945 int64_t arg2)
947 int64_t even_arg1;
948 int64_t even_arg2;
949 int64_t odd_arg1;
950 int64_t odd_arg2;
951 UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
952 UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
953 return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
956 static inline int64_t msa_madd_q_df(uint32_t df, int64_t dest, int64_t arg1,
957 int64_t arg2)
959 int64_t q_prod, q_ret;
961 int64_t q_max = DF_MAX_INT(df);
962 int64_t q_min = DF_MIN_INT(df);
964 q_prod = arg1 * arg2;
965 q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod) >> (DF_BITS(df) - 1);
967 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
970 static inline int64_t msa_msub_q_df(uint32_t df, int64_t dest, int64_t arg1,
971 int64_t arg2)
973 int64_t q_prod, q_ret;
975 int64_t q_max = DF_MAX_INT(df);
976 int64_t q_min = DF_MIN_INT(df);
978 q_prod = arg1 * arg2;
979 q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod) >> (DF_BITS(df) - 1);
981 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
984 static inline int64_t msa_maddr_q_df(uint32_t df, int64_t dest, int64_t arg1,
985 int64_t arg2)
987 int64_t q_prod, q_ret;
989 int64_t q_max = DF_MAX_INT(df);
990 int64_t q_min = DF_MIN_INT(df);
991 int64_t r_bit = 1 << (DF_BITS(df) - 2);
993 q_prod = arg1 * arg2;
994 q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod + r_bit) >> (DF_BITS(df) - 1);
996 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
999 static inline int64_t msa_msubr_q_df(uint32_t df, int64_t dest, int64_t arg1,
1000 int64_t arg2)
1002 int64_t q_prod, q_ret;
1004 int64_t q_max = DF_MAX_INT(df);
1005 int64_t q_min = DF_MIN_INT(df);
1006 int64_t r_bit = 1 << (DF_BITS(df) - 2);
1008 q_prod = arg1 * arg2;
1009 q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod + r_bit) >> (DF_BITS(df) - 1);
1011 return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
1014 #define MSA_TEROP_DF(func) \
1015 void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
1016 uint32_t ws, uint32_t wt) \
1018 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1019 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1020 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
1021 uint32_t i; \
1023 switch (df) { \
1024 case DF_BYTE: \
1025 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
1026 pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
1027 pwt->b[i]); \
1029 break; \
1030 case DF_HALF: \
1031 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
1032 pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
1033 pwt->h[i]); \
1035 break; \
1036 case DF_WORD: \
1037 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
1038 pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
1039 pwt->w[i]); \
1041 break; \
1042 case DF_DOUBLE: \
1043 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
1044 pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
1045 pwt->d[i]); \
1047 break; \
1048 default: \
1049 assert(0); \
1053 MSA_TEROP_DF(maddv)
1054 MSA_TEROP_DF(msubv)
1055 MSA_TEROP_DF(dpadd_s)
1056 MSA_TEROP_DF(dpadd_u)
1057 MSA_TEROP_DF(dpsub_s)
1058 MSA_TEROP_DF(dpsub_u)
1059 MSA_TEROP_DF(binsl)
1060 MSA_TEROP_DF(binsr)
1061 MSA_TEROP_DF(madd_q)
1062 MSA_TEROP_DF(msub_q)
1063 MSA_TEROP_DF(maddr_q)
1064 MSA_TEROP_DF(msubr_q)
1065 #undef MSA_TEROP_DF
1067 static inline void msa_splat_df(uint32_t df, wr_t *pwd,
1068 wr_t *pws, target_ulong rt)
1070 uint32_t n = rt % DF_ELEMENTS(df);
1071 uint32_t i;
1073 switch (df) {
1074 case DF_BYTE:
1075 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
1076 pwd->b[i] = pws->b[n];
1078 break;
1079 case DF_HALF:
1080 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
1081 pwd->h[i] = pws->h[n];
1083 break;
1084 case DF_WORD:
1085 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1086 pwd->w[i] = pws->w[n];
1088 break;
1089 case DF_DOUBLE:
1090 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1091 pwd->d[i] = pws->d[n];
1093 break;
1094 default:
1095 assert(0);
1099 void helper_msa_splat_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1100 uint32_t ws, uint32_t rt)
1102 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1103 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1105 msa_splat_df(df, pwd, pws, env->active_tc.gpr[rt]);
1108 #define MSA_DO_B MSA_DO(b)
1109 #define MSA_DO_H MSA_DO(h)
1110 #define MSA_DO_W MSA_DO(w)
1111 #define MSA_DO_D MSA_DO(d)
1113 #define MSA_LOOP_B MSA_LOOP(B)
1114 #define MSA_LOOP_H MSA_LOOP(H)
1115 #define MSA_LOOP_W MSA_LOOP(W)
1116 #define MSA_LOOP_D MSA_LOOP(D)
1118 #define MSA_LOOP_COND_B MSA_LOOP_COND(DF_BYTE)
1119 #define MSA_LOOP_COND_H MSA_LOOP_COND(DF_HALF)
1120 #define MSA_LOOP_COND_W MSA_LOOP_COND(DF_WORD)
1121 #define MSA_LOOP_COND_D MSA_LOOP_COND(DF_DOUBLE)
1123 #define MSA_LOOP(DF) \
1124 do { \
1125 for (i = 0; i < (MSA_LOOP_COND_ ## DF) ; i++) { \
1126 MSA_DO_ ## DF; \
1128 } while (0)
1130 #define MSA_FN_DF(FUNC) \
1131 void helper_msa_##FUNC(CPUMIPSState *env, uint32_t df, uint32_t wd, \
1132 uint32_t ws, uint32_t wt) \
1134 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1135 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1136 wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
1137 wr_t wx, *pwx = &wx; \
1138 uint32_t i; \
1139 switch (df) { \
1140 case DF_BYTE: \
1141 MSA_LOOP_B; \
1142 break; \
1143 case DF_HALF: \
1144 MSA_LOOP_H; \
1145 break; \
1146 case DF_WORD: \
1147 MSA_LOOP_W; \
1148 break; \
1149 case DF_DOUBLE: \
1150 MSA_LOOP_D; \
1151 break; \
1152 default: \
1153 assert(0); \
1155 msa_move_v(pwd, pwx); \
1158 #define MSA_LOOP_COND(DF) \
1159 (DF_ELEMENTS(DF) / 2)
1161 #define Rb(pwr, i) (pwr->b[i])
1162 #define Lb(pwr, i) (pwr->b[i + DF_ELEMENTS(DF_BYTE)/2])
1163 #define Rh(pwr, i) (pwr->h[i])
1164 #define Lh(pwr, i) (pwr->h[i + DF_ELEMENTS(DF_HALF)/2])
1165 #define Rw(pwr, i) (pwr->w[i])
1166 #define Lw(pwr, i) (pwr->w[i + DF_ELEMENTS(DF_WORD)/2])
1167 #define Rd(pwr, i) (pwr->d[i])
1168 #define Ld(pwr, i) (pwr->d[i + DF_ELEMENTS(DF_DOUBLE)/2])
1170 #define MSA_DO(DF) \
1171 do { \
1172 R##DF(pwx, i) = pwt->DF[2*i]; \
1173 L##DF(pwx, i) = pws->DF[2*i]; \
1174 } while (0)
1175 MSA_FN_DF(pckev_df)
1176 #undef MSA_DO
1178 #define MSA_DO(DF) \
1179 do { \
1180 R##DF(pwx, i) = pwt->DF[2*i+1]; \
1181 L##DF(pwx, i) = pws->DF[2*i+1]; \
1182 } while (0)
1183 MSA_FN_DF(pckod_df)
1184 #undef MSA_DO
1186 #define MSA_DO(DF) \
1187 do { \
1188 pwx->DF[2*i] = L##DF(pwt, i); \
1189 pwx->DF[2*i+1] = L##DF(pws, i); \
1190 } while (0)
1191 MSA_FN_DF(ilvl_df)
1192 #undef MSA_DO
1194 #define MSA_DO(DF) \
1195 do { \
1196 pwx->DF[2*i] = R##DF(pwt, i); \
1197 pwx->DF[2*i+1] = R##DF(pws, i); \
1198 } while (0)
1199 MSA_FN_DF(ilvr_df)
1200 #undef MSA_DO
1202 #define MSA_DO(DF) \
1203 do { \
1204 pwx->DF[2*i] = pwt->DF[2*i]; \
1205 pwx->DF[2*i+1] = pws->DF[2*i]; \
1206 } while (0)
1207 MSA_FN_DF(ilvev_df)
1208 #undef MSA_DO
1210 #define MSA_DO(DF) \
1211 do { \
1212 pwx->DF[2*i] = pwt->DF[2*i+1]; \
1213 pwx->DF[2*i+1] = pws->DF[2*i+1]; \
1214 } while (0)
1215 MSA_FN_DF(ilvod_df)
1216 #undef MSA_DO
1217 #undef MSA_LOOP_COND
1219 #define MSA_LOOP_COND(DF) \
1220 (DF_ELEMENTS(DF))
1222 #define MSA_DO(DF) \
1223 do { \
1224 uint32_t n = DF_ELEMENTS(df); \
1225 uint32_t k = (pwd->DF[i] & 0x3f) % (2 * n); \
1226 pwx->DF[i] = \
1227 (pwd->DF[i] & 0xc0) ? 0 : k < n ? pwt->DF[k] : pws->DF[k - n]; \
1228 } while (0)
1229 MSA_FN_DF(vshf_df)
1230 #undef MSA_DO
1231 #undef MSA_LOOP_COND
1232 #undef MSA_FN_DF
1234 void helper_msa_sldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1235 uint32_t ws, uint32_t n)
1237 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1238 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1240 msa_sld_df(df, pwd, pws, n);
1243 void helper_msa_splati_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1244 uint32_t ws, uint32_t n)
1246 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1247 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1249 msa_splat_df(df, pwd, pws, n);
1252 void helper_msa_copy_s_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
1253 uint32_t ws, uint32_t n)
1255 n %= DF_ELEMENTS(df);
1257 switch (df) {
1258 case DF_BYTE:
1259 env->active_tc.gpr[rd] = (int8_t)env->active_fpu.fpr[ws].wr.b[n];
1260 break;
1261 case DF_HALF:
1262 env->active_tc.gpr[rd] = (int16_t)env->active_fpu.fpr[ws].wr.h[n];
1263 break;
1264 case DF_WORD:
1265 env->active_tc.gpr[rd] = (int32_t)env->active_fpu.fpr[ws].wr.w[n];
1266 break;
1267 #ifdef TARGET_MIPS64
1268 case DF_DOUBLE:
1269 env->active_tc.gpr[rd] = (int64_t)env->active_fpu.fpr[ws].wr.d[n];
1270 break;
1271 #endif
1272 default:
1273 assert(0);
1277 void helper_msa_copy_u_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
1278 uint32_t ws, uint32_t n)
1280 n %= DF_ELEMENTS(df);
1282 switch (df) {
1283 case DF_BYTE:
1284 env->active_tc.gpr[rd] = (uint8_t)env->active_fpu.fpr[ws].wr.b[n];
1285 break;
1286 case DF_HALF:
1287 env->active_tc.gpr[rd] = (uint16_t)env->active_fpu.fpr[ws].wr.h[n];
1288 break;
1289 case DF_WORD:
1290 env->active_tc.gpr[rd] = (uint32_t)env->active_fpu.fpr[ws].wr.w[n];
1291 break;
1292 #ifdef TARGET_MIPS64
1293 case DF_DOUBLE:
1294 env->active_tc.gpr[rd] = (uint64_t)env->active_fpu.fpr[ws].wr.d[n];
1295 break;
1296 #endif
1297 default:
1298 assert(0);
1302 void helper_msa_insert_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1303 uint32_t rs_num, uint32_t n)
1305 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1306 target_ulong rs = env->active_tc.gpr[rs_num];
1308 switch (df) {
1309 case DF_BYTE:
1310 pwd->b[n] = (int8_t)rs;
1311 break;
1312 case DF_HALF:
1313 pwd->h[n] = (int16_t)rs;
1314 break;
1315 case DF_WORD:
1316 pwd->w[n] = (int32_t)rs;
1317 break;
1318 case DF_DOUBLE:
1319 pwd->d[n] = (int64_t)rs;
1320 break;
1321 default:
1322 assert(0);
1326 void helper_msa_insve_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1327 uint32_t ws, uint32_t n)
1329 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1330 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1332 switch (df) {
1333 case DF_BYTE:
1334 pwd->b[n] = (int8_t)pws->b[0];
1335 break;
1336 case DF_HALF:
1337 pwd->h[n] = (int16_t)pws->h[0];
1338 break;
1339 case DF_WORD:
1340 pwd->w[n] = (int32_t)pws->w[0];
1341 break;
1342 case DF_DOUBLE:
1343 pwd->d[n] = (int64_t)pws->d[0];
1344 break;
1345 default:
1346 assert(0);
1350 void helper_msa_ctcmsa(CPUMIPSState *env, target_ulong elm, uint32_t cd)
1352 switch (cd) {
1353 case 0:
1354 break;
1355 case 1:
1356 env->active_tc.msacsr = (int32_t)elm & MSACSR_MASK;
1357 restore_msa_fp_status(env);
1358 /* check exception */
1359 if ((GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)
1360 & GET_FP_CAUSE(env->active_tc.msacsr)) {
1361 do_raise_exception(env, EXCP_MSAFPE, GETPC());
1363 break;
1367 target_ulong helper_msa_cfcmsa(CPUMIPSState *env, uint32_t cs)
1369 switch (cs) {
1370 case 0:
1371 return env->msair;
1372 case 1:
1373 return env->active_tc.msacsr & MSACSR_MASK;
1375 return 0;
1378 void helper_msa_move_v(CPUMIPSState *env, uint32_t wd, uint32_t ws)
1380 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1381 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
1383 msa_move_v(pwd, pws);
1386 static inline int64_t msa_pcnt_df(uint32_t df, int64_t arg)
1388 uint64_t x;
1390 x = UNSIGNED(arg, df);
1392 x = (x & 0x5555555555555555ULL) + ((x >> 1) & 0x5555555555555555ULL);
1393 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
1394 x = (x & 0x0F0F0F0F0F0F0F0FULL) + ((x >> 4) & 0x0F0F0F0F0F0F0F0FULL);
1395 x = (x & 0x00FF00FF00FF00FFULL) + ((x >> 8) & 0x00FF00FF00FF00FFULL);
1396 x = (x & 0x0000FFFF0000FFFFULL) + ((x >> 16) & 0x0000FFFF0000FFFFULL);
1397 x = (x & 0x00000000FFFFFFFFULL) + ((x >> 32));
1399 return x;
1402 static inline int64_t msa_nlzc_df(uint32_t df, int64_t arg)
1404 uint64_t x, y;
1405 int n, c;
1407 x = UNSIGNED(arg, df);
1408 n = DF_BITS(df);
1409 c = DF_BITS(df) / 2;
1411 do {
1412 y = x >> c;
1413 if (y != 0) {
1414 n = n - c;
1415 x = y;
1417 c = c >> 1;
1418 } while (c != 0);
1420 return n - x;
1423 static inline int64_t msa_nloc_df(uint32_t df, int64_t arg)
1425 return msa_nlzc_df(df, UNSIGNED((~arg), df));
1428 void helper_msa_fill_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
1429 uint32_t rs)
1431 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
1432 uint32_t i;
1434 switch (df) {
1435 case DF_BYTE:
1436 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
1437 pwd->b[i] = (int8_t)env->active_tc.gpr[rs];
1439 break;
1440 case DF_HALF:
1441 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
1442 pwd->h[i] = (int16_t)env->active_tc.gpr[rs];
1444 break;
1445 case DF_WORD:
1446 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1447 pwd->w[i] = (int32_t)env->active_tc.gpr[rs];
1449 break;
1450 case DF_DOUBLE:
1451 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1452 pwd->d[i] = (int64_t)env->active_tc.gpr[rs];
1454 break;
1455 default:
1456 assert(0);
1460 #define MSA_UNOP_DF(func) \
1461 void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
1462 uint32_t wd, uint32_t ws) \
1464 wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
1465 wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
1466 uint32_t i; \
1468 switch (df) { \
1469 case DF_BYTE: \
1470 for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
1471 pwd->b[i] = msa_ ## func ## _df(df, pws->b[i]); \
1473 break; \
1474 case DF_HALF: \
1475 for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
1476 pwd->h[i] = msa_ ## func ## _df(df, pws->h[i]); \
1478 break; \
1479 case DF_WORD: \
1480 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
1481 pwd->w[i] = msa_ ## func ## _df(df, pws->w[i]); \
1483 break; \
1484 case DF_DOUBLE: \
1485 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
1486 pwd->d[i] = msa_ ## func ## _df(df, pws->d[i]); \
1488 break; \
1489 default: \
1490 assert(0); \
1494 MSA_UNOP_DF(nlzc)
1495 MSA_UNOP_DF(nloc)
1496 MSA_UNOP_DF(pcnt)
1497 #undef MSA_UNOP_DF
1499 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1500 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1502 #define FLOAT_SNAN16(s) (float16_default_nan(s) ^ 0x0220)
1503 /* 0x7c20 */
1504 #define FLOAT_SNAN32(s) (float32_default_nan(s) ^ 0x00400020)
1505 /* 0x7f800020 */
1506 #define FLOAT_SNAN64(s) (float64_default_nan(s) ^ 0x0008000000000020ULL)
1507 /* 0x7ff0000000000020 */
1509 static inline void clear_msacsr_cause(CPUMIPSState *env)
1511 SET_FP_CAUSE(env->active_tc.msacsr, 0);
1514 static inline void check_msacsr_cause(CPUMIPSState *env, uintptr_t retaddr)
1516 if ((GET_FP_CAUSE(env->active_tc.msacsr) &
1517 (GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)) == 0) {
1518 UPDATE_FP_FLAGS(env->active_tc.msacsr,
1519 GET_FP_CAUSE(env->active_tc.msacsr));
1520 } else {
1521 do_raise_exception(env, EXCP_MSAFPE, retaddr);
1525 /* Flush-to-zero use cases for update_msacsr() */
1526 #define CLEAR_FS_UNDERFLOW 1
1527 #define CLEAR_IS_INEXACT 2
1528 #define RECIPROCAL_INEXACT 4
1530 static inline int update_msacsr(CPUMIPSState *env, int action, int denormal)
1532 int ieee_ex;
1534 int c;
1535 int cause;
1536 int enable;
1538 ieee_ex = get_float_exception_flags(&env->active_tc.msa_fp_status);
1540 /* QEMU softfloat does not signal all underflow cases */
1541 if (denormal) {
1542 ieee_ex |= float_flag_underflow;
1545 c = ieee_ex_to_mips(ieee_ex);
1546 enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
1548 /* Set Inexact (I) when flushing inputs to zero */
1549 if ((ieee_ex & float_flag_input_denormal) &&
1550 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
1551 if (action & CLEAR_IS_INEXACT) {
1552 c &= ~FP_INEXACT;
1553 } else {
1554 c |= FP_INEXACT;
1558 /* Set Inexact (I) and Underflow (U) when flushing outputs to zero */
1559 if ((ieee_ex & float_flag_output_denormal) &&
1560 (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
1561 c |= FP_INEXACT;
1562 if (action & CLEAR_FS_UNDERFLOW) {
1563 c &= ~FP_UNDERFLOW;
1564 } else {
1565 c |= FP_UNDERFLOW;
1569 /* Set Inexact (I) when Overflow (O) is not enabled */
1570 if ((c & FP_OVERFLOW) != 0 && (enable & FP_OVERFLOW) == 0) {
1571 c |= FP_INEXACT;
1574 /* Clear Exact Underflow when Underflow (U) is not enabled */
1575 if ((c & FP_UNDERFLOW) != 0 && (enable & FP_UNDERFLOW) == 0 &&
1576 (c & FP_INEXACT) == 0) {
1577 c &= ~FP_UNDERFLOW;
1580 /* Reciprocal operations set only Inexact when valid and not
1581 divide by zero */
1582 if ((action & RECIPROCAL_INEXACT) &&
1583 (c & (FP_INVALID | FP_DIV0)) == 0) {
1584 c = FP_INEXACT;
1587 cause = c & enable; /* all current enabled exceptions */
1589 if (cause == 0) {
1590 /* No enabled exception, update the MSACSR Cause
1591 with all current exceptions */
1592 SET_FP_CAUSE(env->active_tc.msacsr,
1593 (GET_FP_CAUSE(env->active_tc.msacsr) | c));
1594 } else {
1595 /* Current exceptions are enabled */
1596 if ((env->active_tc.msacsr & MSACSR_NX_MASK) == 0) {
1597 /* Exception(s) will trap, update MSACSR Cause
1598 with all enabled exceptions */
1599 SET_FP_CAUSE(env->active_tc.msacsr,
1600 (GET_FP_CAUSE(env->active_tc.msacsr) | c));
1604 return c;
1607 static inline int get_enabled_exceptions(const CPUMIPSState *env, int c)
1609 int enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
1610 return c & enable;
1613 static inline float16 float16_from_float32(int32_t a, flag ieee,
1614 float_status *status)
1616 float16 f_val;
1618 f_val = float32_to_float16((float32)a, ieee, status);
1620 return a < 0 ? (f_val | (1 << 15)) : f_val;
1623 static inline float32 float32_from_float64(int64_t a, float_status *status)
1625 float32 f_val;
1627 f_val = float64_to_float32((float64)a, status);
1629 return a < 0 ? (f_val | (1 << 31)) : f_val;
1632 static inline float32 float32_from_float16(int16_t a, flag ieee,
1633 float_status *status)
1635 float32 f_val;
1637 f_val = float16_to_float32((float16)a, ieee, status);
1639 return a < 0 ? (f_val | (1 << 31)) : f_val;
1642 static inline float64 float64_from_float32(int32_t a, float_status *status)
1644 float64 f_val;
1646 f_val = float32_to_float64((float64)a, status);
1648 return a < 0 ? (f_val | (1ULL << 63)) : f_val;
1651 static inline float32 float32_from_q16(int16_t a, float_status *status)
1653 float32 f_val;
1655 /* conversion as integer and scaling */
1656 f_val = int32_to_float32(a, status);
1657 f_val = float32_scalbn(f_val, -15, status);
1659 return f_val;
1662 static inline float64 float64_from_q32(int32_t a, float_status *status)
1664 float64 f_val;
1666 /* conversion as integer and scaling */
1667 f_val = int32_to_float64(a, status);
1668 f_val = float64_scalbn(f_val, -31, status);
1670 return f_val;
1673 static inline int16_t float32_to_q16(float32 a, float_status *status)
1675 int32_t q_val;
1676 int32_t q_min = 0xffff8000;
1677 int32_t q_max = 0x00007fff;
1679 int ieee_ex;
1681 if (float32_is_any_nan(a)) {
1682 float_raise(float_flag_invalid, status);
1683 return 0;
1686 /* scaling */
1687 a = float32_scalbn(a, 15, status);
1689 ieee_ex = get_float_exception_flags(status);
1690 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1691 , status);
1693 if (ieee_ex & float_flag_overflow) {
1694 float_raise(float_flag_inexact, status);
1695 return (int32_t)a < 0 ? q_min : q_max;
1698 /* conversion to int */
1699 q_val = float32_to_int32(a, status);
1701 ieee_ex = get_float_exception_flags(status);
1702 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1703 , status);
1705 if (ieee_ex & float_flag_invalid) {
1706 set_float_exception_flags(ieee_ex & (~float_flag_invalid)
1707 , status);
1708 float_raise(float_flag_overflow | float_flag_inexact, status);
1709 return (int32_t)a < 0 ? q_min : q_max;
1712 if (q_val < q_min) {
1713 float_raise(float_flag_overflow | float_flag_inexact, status);
1714 return (int16_t)q_min;
1717 if (q_max < q_val) {
1718 float_raise(float_flag_overflow | float_flag_inexact, status);
1719 return (int16_t)q_max;
1722 return (int16_t)q_val;
1725 static inline int32_t float64_to_q32(float64 a, float_status *status)
1727 int64_t q_val;
1728 int64_t q_min = 0xffffffff80000000LL;
1729 int64_t q_max = 0x000000007fffffffLL;
1731 int ieee_ex;
1733 if (float64_is_any_nan(a)) {
1734 float_raise(float_flag_invalid, status);
1735 return 0;
1738 /* scaling */
1739 a = float64_scalbn(a, 31, status);
1741 ieee_ex = get_float_exception_flags(status);
1742 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1743 , status);
1745 if (ieee_ex & float_flag_overflow) {
1746 float_raise(float_flag_inexact, status);
1747 return (int64_t)a < 0 ? q_min : q_max;
1750 /* conversion to integer */
1751 q_val = float64_to_int64(a, status);
1753 ieee_ex = get_float_exception_flags(status);
1754 set_float_exception_flags(ieee_ex & (~float_flag_underflow)
1755 , status);
1757 if (ieee_ex & float_flag_invalid) {
1758 set_float_exception_flags(ieee_ex & (~float_flag_invalid)
1759 , status);
1760 float_raise(float_flag_overflow | float_flag_inexact, status);
1761 return (int64_t)a < 0 ? q_min : q_max;
1764 if (q_val < q_min) {
1765 float_raise(float_flag_overflow | float_flag_inexact, status);
1766 return (int32_t)q_min;
1769 if (q_max < q_val) {
1770 float_raise(float_flag_overflow | float_flag_inexact, status);
1771 return (int32_t)q_max;
1774 return (int32_t)q_val;
1777 #define MSA_FLOAT_COND(DEST, OP, ARG1, ARG2, BITS, QUIET) \
1778 do { \
1779 float_status *status = &env->active_tc.msa_fp_status; \
1780 int c; \
1781 int64_t cond; \
1782 set_float_exception_flags(0, status); \
1783 if (!QUIET) { \
1784 cond = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
1785 } else { \
1786 cond = float ## BITS ## _ ## OP ## _quiet(ARG1, ARG2, status); \
1788 DEST = cond ? M_MAX_UINT(BITS) : 0; \
1789 c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \
1791 if (get_enabled_exceptions(env, c)) { \
1792 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
1794 } while (0)
1796 #define MSA_FLOAT_AF(DEST, ARG1, ARG2, BITS, QUIET) \
1797 do { \
1798 MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
1799 if ((DEST & M_MAX_UINT(BITS)) == M_MAX_UINT(BITS)) { \
1800 DEST = 0; \
1802 } while (0)
1804 #define MSA_FLOAT_UEQ(DEST, ARG1, ARG2, BITS, QUIET) \
1805 do { \
1806 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1807 if (DEST == 0) { \
1808 MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
1810 } while (0)
1812 #define MSA_FLOAT_NE(DEST, ARG1, ARG2, BITS, QUIET) \
1813 do { \
1814 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1815 if (DEST == 0) { \
1816 MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
1818 } while (0)
1820 #define MSA_FLOAT_UNE(DEST, ARG1, ARG2, BITS, QUIET) \
1821 do { \
1822 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1823 if (DEST == 0) { \
1824 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1825 if (DEST == 0) { \
1826 MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
1829 } while (0)
1831 #define MSA_FLOAT_ULE(DEST, ARG1, ARG2, BITS, QUIET) \
1832 do { \
1833 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1834 if (DEST == 0) { \
1835 MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
1837 } while (0)
1839 #define MSA_FLOAT_ULT(DEST, ARG1, ARG2, BITS, QUIET) \
1840 do { \
1841 MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
1842 if (DEST == 0) { \
1843 MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
1845 } while (0)
1847 #define MSA_FLOAT_OR(DEST, ARG1, ARG2, BITS, QUIET) \
1848 do { \
1849 MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
1850 if (DEST == 0) { \
1851 MSA_FLOAT_COND(DEST, le, ARG2, ARG1, BITS, QUIET); \
1853 } while (0)
1855 static inline void compare_af(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1856 wr_t *pwt, uint32_t df, int quiet,
1857 uintptr_t retaddr)
1859 wr_t wx, *pwx = &wx;
1860 uint32_t i;
1862 clear_msacsr_cause(env);
1864 switch (df) {
1865 case DF_WORD:
1866 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1867 MSA_FLOAT_AF(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
1869 break;
1870 case DF_DOUBLE:
1871 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1872 MSA_FLOAT_AF(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
1874 break;
1875 default:
1876 assert(0);
1879 check_msacsr_cause(env, retaddr);
1881 msa_move_v(pwd, pwx);
1884 static inline void compare_un(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1885 wr_t *pwt, uint32_t df, int quiet,
1886 uintptr_t retaddr)
1888 wr_t wx, *pwx = &wx;
1889 uint32_t i;
1891 clear_msacsr_cause(env);
1893 switch (df) {
1894 case DF_WORD:
1895 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1896 MSA_FLOAT_COND(pwx->w[i], unordered, pws->w[i], pwt->w[i], 32,
1897 quiet);
1899 break;
1900 case DF_DOUBLE:
1901 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1902 MSA_FLOAT_COND(pwx->d[i], unordered, pws->d[i], pwt->d[i], 64,
1903 quiet);
1905 break;
1906 default:
1907 assert(0);
1910 check_msacsr_cause(env, retaddr);
1912 msa_move_v(pwd, pwx);
1915 static inline void compare_eq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1916 wr_t *pwt, uint32_t df, int quiet,
1917 uintptr_t retaddr)
1919 wr_t wx, *pwx = &wx;
1920 uint32_t i;
1922 clear_msacsr_cause(env);
1924 switch (df) {
1925 case DF_WORD:
1926 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1927 MSA_FLOAT_COND(pwx->w[i], eq, pws->w[i], pwt->w[i], 32, quiet);
1929 break;
1930 case DF_DOUBLE:
1931 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1932 MSA_FLOAT_COND(pwx->d[i], eq, pws->d[i], pwt->d[i], 64, quiet);
1934 break;
1935 default:
1936 assert(0);
1939 check_msacsr_cause(env, retaddr);
1941 msa_move_v(pwd, pwx);
1944 static inline void compare_ueq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1945 wr_t *pwt, uint32_t df, int quiet,
1946 uintptr_t retaddr)
1948 wr_t wx, *pwx = &wx;
1949 uint32_t i;
1951 clear_msacsr_cause(env);
1953 switch (df) {
1954 case DF_WORD:
1955 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1956 MSA_FLOAT_UEQ(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
1958 break;
1959 case DF_DOUBLE:
1960 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1961 MSA_FLOAT_UEQ(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
1963 break;
1964 default:
1965 assert(0);
1968 check_msacsr_cause(env, retaddr);
1970 msa_move_v(pwd, pwx);
1973 static inline void compare_lt(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
1974 wr_t *pwt, uint32_t df, int quiet,
1975 uintptr_t retaddr)
1977 wr_t wx, *pwx = &wx;
1978 uint32_t i;
1980 clear_msacsr_cause(env);
1982 switch (df) {
1983 case DF_WORD:
1984 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
1985 MSA_FLOAT_COND(pwx->w[i], lt, pws->w[i], pwt->w[i], 32, quiet);
1987 break;
1988 case DF_DOUBLE:
1989 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
1990 MSA_FLOAT_COND(pwx->d[i], lt, pws->d[i], pwt->d[i], 64, quiet);
1992 break;
1993 default:
1994 assert(0);
1997 check_msacsr_cause(env, retaddr);
1999 msa_move_v(pwd, pwx);
2002 static inline void compare_ult(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2003 wr_t *pwt, uint32_t df, int quiet,
2004 uintptr_t retaddr)
2006 wr_t wx, *pwx = &wx;
2007 uint32_t i;
2009 clear_msacsr_cause(env);
2011 switch (df) {
2012 case DF_WORD:
2013 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2014 MSA_FLOAT_ULT(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2016 break;
2017 case DF_DOUBLE:
2018 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2019 MSA_FLOAT_ULT(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2021 break;
2022 default:
2023 assert(0);
2026 check_msacsr_cause(env, retaddr);
2028 msa_move_v(pwd, pwx);
2031 static inline void compare_le(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2032 wr_t *pwt, uint32_t df, int quiet,
2033 uintptr_t retaddr)
2035 wr_t wx, *pwx = &wx;
2036 uint32_t i;
2038 clear_msacsr_cause(env);
2040 switch (df) {
2041 case DF_WORD:
2042 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2043 MSA_FLOAT_COND(pwx->w[i], le, pws->w[i], pwt->w[i], 32, quiet);
2045 break;
2046 case DF_DOUBLE:
2047 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2048 MSA_FLOAT_COND(pwx->d[i], le, pws->d[i], pwt->d[i], 64, quiet);
2050 break;
2051 default:
2052 assert(0);
2055 check_msacsr_cause(env, retaddr);
2057 msa_move_v(pwd, pwx);
2060 static inline void compare_ule(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2061 wr_t *pwt, uint32_t df, int quiet,
2062 uintptr_t retaddr)
2064 wr_t wx, *pwx = &wx;
2065 uint32_t i;
2067 clear_msacsr_cause(env);
2069 switch (df) {
2070 case DF_WORD:
2071 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2072 MSA_FLOAT_ULE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2074 break;
2075 case DF_DOUBLE:
2076 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2077 MSA_FLOAT_ULE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2079 break;
2080 default:
2081 assert(0);
2084 check_msacsr_cause(env, retaddr);
2086 msa_move_v(pwd, pwx);
2089 static inline void compare_or(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2090 wr_t *pwt, uint32_t df, int quiet,
2091 uintptr_t retaddr)
2093 wr_t wx, *pwx = &wx;
2094 uint32_t i;
2096 clear_msacsr_cause(env);
2098 switch (df) {
2099 case DF_WORD:
2100 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2101 MSA_FLOAT_OR(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2103 break;
2104 case DF_DOUBLE:
2105 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2106 MSA_FLOAT_OR(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2108 break;
2109 default:
2110 assert(0);
2113 check_msacsr_cause(env, retaddr);
2115 msa_move_v(pwd, pwx);
2118 static inline void compare_une(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2119 wr_t *pwt, uint32_t df, int quiet,
2120 uintptr_t retaddr)
2122 wr_t wx, *pwx = &wx;
2123 uint32_t i;
2125 clear_msacsr_cause(env);
2127 switch (df) {
2128 case DF_WORD:
2129 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2130 MSA_FLOAT_UNE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2132 break;
2133 case DF_DOUBLE:
2134 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2135 MSA_FLOAT_UNE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2137 break;
2138 default:
2139 assert(0);
2142 check_msacsr_cause(env, retaddr);
2144 msa_move_v(pwd, pwx);
2147 static inline void compare_ne(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
2148 wr_t *pwt, uint32_t df, int quiet,
2149 uintptr_t retaddr)
2151 wr_t wx, *pwx = &wx;
2152 uint32_t i;
2154 clear_msacsr_cause(env);
2156 switch (df) {
2157 case DF_WORD:
2158 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2159 MSA_FLOAT_NE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
2161 break;
2162 case DF_DOUBLE:
2163 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2164 MSA_FLOAT_NE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
2166 break;
2167 default:
2168 assert(0);
2171 check_msacsr_cause(env, retaddr);
2173 msa_move_v(pwd, pwx);
2176 void helper_msa_fcaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2177 uint32_t ws, uint32_t wt)
2179 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2180 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2181 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2182 compare_af(env, pwd, pws, pwt, df, 1, GETPC());
2185 void helper_msa_fcun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2186 uint32_t ws, uint32_t wt)
2188 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2189 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2190 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2191 compare_un(env, pwd, pws, pwt, df, 1, GETPC());
2194 void helper_msa_fceq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2195 uint32_t ws, uint32_t wt)
2197 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2198 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2199 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2200 compare_eq(env, pwd, pws, pwt, df, 1, GETPC());
2203 void helper_msa_fcueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2204 uint32_t ws, uint32_t wt)
2206 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2207 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2208 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2209 compare_ueq(env, pwd, pws, pwt, df, 1, GETPC());
2212 void helper_msa_fclt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2213 uint32_t ws, uint32_t wt)
2215 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2216 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2217 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2218 compare_lt(env, pwd, pws, pwt, df, 1, GETPC());
2221 void helper_msa_fcult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2222 uint32_t ws, uint32_t wt)
2224 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2225 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2226 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2227 compare_ult(env, pwd, pws, pwt, df, 1, GETPC());
2230 void helper_msa_fcle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2231 uint32_t ws, uint32_t wt)
2233 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2234 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2235 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2236 compare_le(env, pwd, pws, pwt, df, 1, GETPC());
2239 void helper_msa_fcule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2240 uint32_t ws, uint32_t wt)
2242 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2243 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2244 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2245 compare_ule(env, pwd, pws, pwt, df, 1, GETPC());
2248 void helper_msa_fsaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2249 uint32_t ws, uint32_t wt)
2251 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2252 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2253 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2254 compare_af(env, pwd, pws, pwt, df, 0, GETPC());
2257 void helper_msa_fsun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2258 uint32_t ws, uint32_t wt)
2260 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2261 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2262 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2263 compare_un(env, pwd, pws, pwt, df, 0, GETPC());
2266 void helper_msa_fseq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2267 uint32_t ws, uint32_t wt)
2269 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2270 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2271 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2272 compare_eq(env, pwd, pws, pwt, df, 0, GETPC());
2275 void helper_msa_fsueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2276 uint32_t ws, uint32_t wt)
2278 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2279 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2280 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2281 compare_ueq(env, pwd, pws, pwt, df, 0, GETPC());
2284 void helper_msa_fslt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2285 uint32_t ws, uint32_t wt)
2287 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2288 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2289 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2290 compare_lt(env, pwd, pws, pwt, df, 0, GETPC());
2293 void helper_msa_fsult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2294 uint32_t ws, uint32_t wt)
2296 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2297 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2298 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2299 compare_ult(env, pwd, pws, pwt, df, 0, GETPC());
2302 void helper_msa_fsle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2303 uint32_t ws, uint32_t wt)
2305 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2306 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2307 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2308 compare_le(env, pwd, pws, pwt, df, 0, GETPC());
2311 void helper_msa_fsule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2312 uint32_t ws, uint32_t wt)
2314 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2315 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2316 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2317 compare_ule(env, pwd, pws, pwt, df, 0, GETPC());
2320 void helper_msa_fcor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2321 uint32_t ws, uint32_t wt)
2323 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2324 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2325 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2326 compare_or(env, pwd, pws, pwt, df, 1, GETPC());
2329 void helper_msa_fcune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2330 uint32_t ws, uint32_t wt)
2332 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2333 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2334 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2335 compare_une(env, pwd, pws, pwt, df, 1, GETPC());
2338 void helper_msa_fcne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2339 uint32_t ws, uint32_t wt)
2341 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2342 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2343 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2344 compare_ne(env, pwd, pws, pwt, df, 1, GETPC());
2347 void helper_msa_fsor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2348 uint32_t ws, uint32_t wt)
2350 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2351 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2352 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2353 compare_or(env, pwd, pws, pwt, df, 0, GETPC());
2356 void helper_msa_fsune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2357 uint32_t ws, uint32_t wt)
2359 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2360 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2361 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2362 compare_une(env, pwd, pws, pwt, df, 0, GETPC());
2365 void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2366 uint32_t ws, uint32_t wt)
2368 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2369 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2370 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2371 compare_ne(env, pwd, pws, pwt, df, 0, GETPC());
2374 #define float16_is_zero(ARG) 0
2375 #define float16_is_zero_or_denormal(ARG) 0
2377 #define IS_DENORMAL(ARG, BITS) \
2378 (!float ## BITS ## _is_zero(ARG) \
2379 && float ## BITS ## _is_zero_or_denormal(ARG))
2381 #define MSA_FLOAT_BINOP(DEST, OP, ARG1, ARG2, BITS) \
2382 do { \
2383 float_status *status = &env->active_tc.msa_fp_status; \
2384 int c; \
2386 set_float_exception_flags(0, status); \
2387 DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
2388 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2390 if (get_enabled_exceptions(env, c)) { \
2391 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
2393 } while (0)
2395 void helper_msa_fadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2396 uint32_t ws, uint32_t wt)
2398 wr_t wx, *pwx = &wx;
2399 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2400 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2401 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2402 uint32_t i;
2404 clear_msacsr_cause(env);
2406 switch (df) {
2407 case DF_WORD:
2408 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2409 MSA_FLOAT_BINOP(pwx->w[i], add, pws->w[i], pwt->w[i], 32);
2411 break;
2412 case DF_DOUBLE:
2413 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2414 MSA_FLOAT_BINOP(pwx->d[i], add, pws->d[i], pwt->d[i], 64);
2416 break;
2417 default:
2418 assert(0);
2421 check_msacsr_cause(env, GETPC());
2422 msa_move_v(pwd, pwx);
2425 void helper_msa_fsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2426 uint32_t ws, uint32_t wt)
2428 wr_t wx, *pwx = &wx;
2429 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2430 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2431 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2432 uint32_t i;
2434 clear_msacsr_cause(env);
2436 switch (df) {
2437 case DF_WORD:
2438 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2439 MSA_FLOAT_BINOP(pwx->w[i], sub, pws->w[i], pwt->w[i], 32);
2441 break;
2442 case DF_DOUBLE:
2443 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2444 MSA_FLOAT_BINOP(pwx->d[i], sub, pws->d[i], pwt->d[i], 64);
2446 break;
2447 default:
2448 assert(0);
2451 check_msacsr_cause(env, GETPC());
2452 msa_move_v(pwd, pwx);
2455 void helper_msa_fmul_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2456 uint32_t ws, uint32_t wt)
2458 wr_t wx, *pwx = &wx;
2459 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2460 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2461 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2462 uint32_t i;
2464 clear_msacsr_cause(env);
2466 switch (df) {
2467 case DF_WORD:
2468 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2469 MSA_FLOAT_BINOP(pwx->w[i], mul, pws->w[i], pwt->w[i], 32);
2471 break;
2472 case DF_DOUBLE:
2473 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2474 MSA_FLOAT_BINOP(pwx->d[i], mul, pws->d[i], pwt->d[i], 64);
2476 break;
2477 default:
2478 assert(0);
2481 check_msacsr_cause(env, GETPC());
2483 msa_move_v(pwd, pwx);
2486 void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2487 uint32_t ws, uint32_t wt)
2489 wr_t wx, *pwx = &wx;
2490 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2491 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2492 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2493 uint32_t i;
2495 clear_msacsr_cause(env);
2497 switch (df) {
2498 case DF_WORD:
2499 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2500 MSA_FLOAT_BINOP(pwx->w[i], div, pws->w[i], pwt->w[i], 32);
2502 break;
2503 case DF_DOUBLE:
2504 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2505 MSA_FLOAT_BINOP(pwx->d[i], div, pws->d[i], pwt->d[i], 64);
2507 break;
2508 default:
2509 assert(0);
2512 check_msacsr_cause(env, GETPC());
2514 msa_move_v(pwd, pwx);
2517 #define MSA_FLOAT_MULADD(DEST, ARG1, ARG2, ARG3, NEGATE, BITS) \
2518 do { \
2519 float_status *status = &env->active_tc.msa_fp_status; \
2520 int c; \
2522 set_float_exception_flags(0, status); \
2523 DEST = float ## BITS ## _muladd(ARG2, ARG3, ARG1, NEGATE, status); \
2524 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2526 if (get_enabled_exceptions(env, c)) { \
2527 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
2529 } while (0)
2531 void helper_msa_fmadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2532 uint32_t ws, uint32_t wt)
2534 wr_t wx, *pwx = &wx;
2535 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2536 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2537 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2538 uint32_t i;
2540 clear_msacsr_cause(env);
2542 switch (df) {
2543 case DF_WORD:
2544 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2545 MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
2546 pws->w[i], pwt->w[i], 0, 32);
2548 break;
2549 case DF_DOUBLE:
2550 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2551 MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
2552 pws->d[i], pwt->d[i], 0, 64);
2554 break;
2555 default:
2556 assert(0);
2559 check_msacsr_cause(env, GETPC());
2561 msa_move_v(pwd, pwx);
2564 void helper_msa_fmsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2565 uint32_t ws, uint32_t wt)
2567 wr_t wx, *pwx = &wx;
2568 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2569 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2570 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2571 uint32_t i;
2573 clear_msacsr_cause(env);
2575 switch (df) {
2576 case DF_WORD:
2577 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2578 MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
2579 pws->w[i], pwt->w[i],
2580 float_muladd_negate_product, 32);
2582 break;
2583 case DF_DOUBLE:
2584 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2585 MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
2586 pws->d[i], pwt->d[i],
2587 float_muladd_negate_product, 64);
2589 break;
2590 default:
2591 assert(0);
2594 check_msacsr_cause(env, GETPC());
2596 msa_move_v(pwd, pwx);
2599 void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2600 uint32_t ws, uint32_t wt)
2602 wr_t wx, *pwx = &wx;
2603 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2604 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2605 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2606 uint32_t i;
2608 clear_msacsr_cause(env);
2610 switch (df) {
2611 case DF_WORD:
2612 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2613 MSA_FLOAT_BINOP(pwx->w[i], scalbn, pws->w[i],
2614 pwt->w[i] > 0x200 ? 0x200 :
2615 pwt->w[i] < -0x200 ? -0x200 : pwt->w[i],
2616 32);
2618 break;
2619 case DF_DOUBLE:
2620 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2621 MSA_FLOAT_BINOP(pwx->d[i], scalbn, pws->d[i],
2622 pwt->d[i] > 0x1000 ? 0x1000 :
2623 pwt->d[i] < -0x1000 ? -0x1000 : pwt->d[i],
2624 64);
2626 break;
2627 default:
2628 assert(0);
2631 check_msacsr_cause(env, GETPC());
2633 msa_move_v(pwd, pwx);
2636 #define MSA_FLOAT_UNOP(DEST, OP, ARG, BITS) \
2637 do { \
2638 float_status *status = &env->active_tc.msa_fp_status; \
2639 int c; \
2641 set_float_exception_flags(0, status); \
2642 DEST = float ## BITS ## _ ## OP(ARG, status); \
2643 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
2645 if (get_enabled_exceptions(env, c)) { \
2646 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
2648 } while (0)
2650 void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2651 uint32_t ws, uint32_t wt)
2653 wr_t wx, *pwx = &wx;
2654 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2655 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2656 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2657 uint32_t i;
2659 clear_msacsr_cause(env);
2661 switch (df) {
2662 case DF_WORD:
2663 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2664 /* Half precision floats come in two formats: standard
2665 IEEE and "ARM" format. The latter gains extra exponent
2666 range by omitting the NaN/Inf encodings. */
2667 flag ieee = 1;
2669 MSA_FLOAT_BINOP(Lh(pwx, i), from_float32, pws->w[i], ieee, 16);
2670 MSA_FLOAT_BINOP(Rh(pwx, i), from_float32, pwt->w[i], ieee, 16);
2672 break;
2673 case DF_DOUBLE:
2674 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2675 MSA_FLOAT_UNOP(Lw(pwx, i), from_float64, pws->d[i], 32);
2676 MSA_FLOAT_UNOP(Rw(pwx, i), from_float64, pwt->d[i], 32);
2678 break;
2679 default:
2680 assert(0);
2683 check_msacsr_cause(env, GETPC());
2684 msa_move_v(pwd, pwx);
2687 #define MSA_FLOAT_UNOP_XD(DEST, OP, ARG, BITS, XBITS) \
2688 do { \
2689 float_status *status = &env->active_tc.msa_fp_status; \
2690 int c; \
2692 set_float_exception_flags(0, status); \
2693 DEST = float ## BITS ## _ ## OP(ARG, status); \
2694 c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
2696 if (get_enabled_exceptions(env, c)) { \
2697 DEST = ((FLOAT_SNAN ## XBITS(status) >> 6) << 6) | c; \
2699 } while (0)
2701 void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2702 uint32_t ws, uint32_t wt)
2704 wr_t wx, *pwx = &wx;
2705 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2706 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2707 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2708 uint32_t i;
2710 clear_msacsr_cause(env);
2712 switch (df) {
2713 case DF_WORD:
2714 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2715 MSA_FLOAT_UNOP_XD(Lh(pwx, i), to_q16, pws->w[i], 32, 16);
2716 MSA_FLOAT_UNOP_XD(Rh(pwx, i), to_q16, pwt->w[i], 32, 16);
2718 break;
2719 case DF_DOUBLE:
2720 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2721 MSA_FLOAT_UNOP_XD(Lw(pwx, i), to_q32, pws->d[i], 64, 32);
2722 MSA_FLOAT_UNOP_XD(Rw(pwx, i), to_q32, pwt->d[i], 64, 32);
2724 break;
2725 default:
2726 assert(0);
2729 check_msacsr_cause(env, GETPC());
2731 msa_move_v(pwd, pwx);
2734 #define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS, STATUS) \
2735 !float ## BITS ## _is_any_nan(ARG1) \
2736 && float ## BITS ## _is_quiet_nan(ARG2, STATUS)
2738 #define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \
2739 do { \
2740 float_status *status = &env->active_tc.msa_fp_status; \
2741 int c; \
2743 set_float_exception_flags(0, status); \
2744 DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
2745 c = update_msacsr(env, 0, 0); \
2747 if (get_enabled_exceptions(env, c)) { \
2748 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
2750 } while (0)
2752 #define FMAXMIN_A(F, G, X, _S, _T, BITS, STATUS) \
2753 do { \
2754 uint## BITS ##_t S = _S, T = _T; \
2755 uint## BITS ##_t as, at, xs, xt, xd; \
2756 if (NUMBER_QNAN_PAIR(S, T, BITS, STATUS)) { \
2757 T = S; \
2759 else if (NUMBER_QNAN_PAIR(T, S, BITS, STATUS)) { \
2760 S = T; \
2762 as = float## BITS ##_abs(S); \
2763 at = float## BITS ##_abs(T); \
2764 MSA_FLOAT_MAXOP(xs, F, S, T, BITS); \
2765 MSA_FLOAT_MAXOP(xt, G, S, T, BITS); \
2766 MSA_FLOAT_MAXOP(xd, F, as, at, BITS); \
2767 X = (as == at || xd == float## BITS ##_abs(xs)) ? xs : xt; \
2768 } while (0)
2770 void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2771 uint32_t ws, uint32_t wt)
2773 float_status *status = &env->active_tc.msa_fp_status;
2774 wr_t wx, *pwx = &wx;
2775 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2776 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2777 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2778 uint32_t i;
2780 clear_msacsr_cause(env);
2782 switch (df) {
2783 case DF_WORD:
2784 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2785 if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
2786 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32);
2787 } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
2788 MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32);
2789 } else {
2790 MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32);
2793 break;
2794 case DF_DOUBLE:
2795 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2796 if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
2797 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64);
2798 } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
2799 MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64);
2800 } else {
2801 MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64);
2804 break;
2805 default:
2806 assert(0);
2809 check_msacsr_cause(env, GETPC());
2811 msa_move_v(pwd, pwx);
2814 void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2815 uint32_t ws, uint32_t wt)
2817 float_status *status = &env->active_tc.msa_fp_status;
2818 wr_t wx, *pwx = &wx;
2819 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2820 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2821 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2822 uint32_t i;
2824 clear_msacsr_cause(env);
2826 switch (df) {
2827 case DF_WORD:
2828 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2829 FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
2831 break;
2832 case DF_DOUBLE:
2833 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2834 FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
2836 break;
2837 default:
2838 assert(0);
2841 check_msacsr_cause(env, GETPC());
2843 msa_move_v(pwd, pwx);
2846 void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2847 uint32_t ws, uint32_t wt)
2849 float_status *status = &env->active_tc.msa_fp_status;
2850 wr_t wx, *pwx = &wx;
2851 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2852 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2853 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2854 uint32_t i;
2856 clear_msacsr_cause(env);
2858 switch (df) {
2859 case DF_WORD:
2860 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2861 if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
2862 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32);
2863 } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
2864 MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32);
2865 } else {
2866 MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32);
2869 break;
2870 case DF_DOUBLE:
2871 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2872 if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
2873 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64);
2874 } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
2875 MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64);
2876 } else {
2877 MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64);
2880 break;
2881 default:
2882 assert(0);
2885 check_msacsr_cause(env, GETPC());
2887 msa_move_v(pwd, pwx);
2890 void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2891 uint32_t ws, uint32_t wt)
2893 float_status *status = &env->active_tc.msa_fp_status;
2894 wr_t wx, *pwx = &wx;
2895 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2896 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2897 wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
2898 uint32_t i;
2900 clear_msacsr_cause(env);
2902 switch (df) {
2903 case DF_WORD:
2904 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2905 FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
2907 break;
2908 case DF_DOUBLE:
2909 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2910 FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
2912 break;
2913 default:
2914 assert(0);
2917 check_msacsr_cause(env, GETPC());
2919 msa_move_v(pwd, pwx);
2922 void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
2923 uint32_t wd, uint32_t ws)
2925 float_status* status = &env->active_tc.msa_fp_status;
2927 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2928 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2929 if (df == DF_WORD) {
2930 pwd->w[0] = float_class_s(pws->w[0], status);
2931 pwd->w[1] = float_class_s(pws->w[1], status);
2932 pwd->w[2] = float_class_s(pws->w[2], status);
2933 pwd->w[3] = float_class_s(pws->w[3], status);
2934 } else {
2935 pwd->d[0] = float_class_d(pws->d[0], status);
2936 pwd->d[1] = float_class_d(pws->d[1], status);
2940 #define MSA_FLOAT_UNOP0(DEST, OP, ARG, BITS) \
2941 do { \
2942 float_status *status = &env->active_tc.msa_fp_status; \
2943 int c; \
2945 set_float_exception_flags(0, status); \
2946 DEST = float ## BITS ## _ ## OP(ARG, status); \
2947 c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
2949 if (get_enabled_exceptions(env, c)) { \
2950 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
2951 } else if (float ## BITS ## _is_any_nan(ARG)) { \
2952 DEST = 0; \
2954 } while (0)
2956 void helper_msa_ftrunc_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2957 uint32_t ws)
2959 wr_t wx, *pwx = &wx;
2960 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2961 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2962 uint32_t i;
2964 clear_msacsr_cause(env);
2966 switch (df) {
2967 case DF_WORD:
2968 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2969 MSA_FLOAT_UNOP0(pwx->w[i], to_int32_round_to_zero, pws->w[i], 32);
2971 break;
2972 case DF_DOUBLE:
2973 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
2974 MSA_FLOAT_UNOP0(pwx->d[i], to_int64_round_to_zero, pws->d[i], 64);
2976 break;
2977 default:
2978 assert(0);
2981 check_msacsr_cause(env, GETPC());
2983 msa_move_v(pwd, pwx);
2986 void helper_msa_ftrunc_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
2987 uint32_t ws)
2989 wr_t wx, *pwx = &wx;
2990 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
2991 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
2992 uint32_t i;
2994 clear_msacsr_cause(env);
2996 switch (df) {
2997 case DF_WORD:
2998 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
2999 MSA_FLOAT_UNOP0(pwx->w[i], to_uint32_round_to_zero, pws->w[i], 32);
3001 break;
3002 case DF_DOUBLE:
3003 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3004 MSA_FLOAT_UNOP0(pwx->d[i], to_uint64_round_to_zero, pws->d[i], 64);
3006 break;
3007 default:
3008 assert(0);
3011 check_msacsr_cause(env, GETPC());
3013 msa_move_v(pwd, pwx);
3016 void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3017 uint32_t ws)
3019 wr_t wx, *pwx = &wx;
3020 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3021 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3022 uint32_t i;
3024 clear_msacsr_cause(env);
3026 switch (df) {
3027 case DF_WORD:
3028 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3029 MSA_FLOAT_UNOP(pwx->w[i], sqrt, pws->w[i], 32);
3031 break;
3032 case DF_DOUBLE:
3033 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3034 MSA_FLOAT_UNOP(pwx->d[i], sqrt, pws->d[i], 64);
3036 break;
3037 default:
3038 assert(0);
3041 check_msacsr_cause(env, GETPC());
3043 msa_move_v(pwd, pwx);
3046 #define MSA_FLOAT_RECIPROCAL(DEST, ARG, BITS) \
3047 do { \
3048 float_status *status = &env->active_tc.msa_fp_status; \
3049 int c; \
3051 set_float_exception_flags(0, status); \
3052 DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \
3053 c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \
3054 float ## BITS ## _is_quiet_nan(DEST, status) ? \
3055 0 : RECIPROCAL_INEXACT, \
3056 IS_DENORMAL(DEST, BITS)); \
3058 if (get_enabled_exceptions(env, c)) { \
3059 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
3061 } while (0)
3063 void helper_msa_frsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3064 uint32_t ws)
3066 wr_t wx, *pwx = &wx;
3067 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3068 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3069 uint32_t i;
3071 clear_msacsr_cause(env);
3073 switch (df) {
3074 case DF_WORD:
3075 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3076 MSA_FLOAT_RECIPROCAL(pwx->w[i], float32_sqrt(pws->w[i],
3077 &env->active_tc.msa_fp_status), 32);
3079 break;
3080 case DF_DOUBLE:
3081 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3082 MSA_FLOAT_RECIPROCAL(pwx->d[i], float64_sqrt(pws->d[i],
3083 &env->active_tc.msa_fp_status), 64);
3085 break;
3086 default:
3087 assert(0);
3090 check_msacsr_cause(env, GETPC());
3092 msa_move_v(pwd, pwx);
3095 void helper_msa_frcp_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3096 uint32_t ws)
3098 wr_t wx, *pwx = &wx;
3099 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3100 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3101 uint32_t i;
3103 clear_msacsr_cause(env);
3105 switch (df) {
3106 case DF_WORD:
3107 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3108 MSA_FLOAT_RECIPROCAL(pwx->w[i], pws->w[i], 32);
3110 break;
3111 case DF_DOUBLE:
3112 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3113 MSA_FLOAT_RECIPROCAL(pwx->d[i], pws->d[i], 64);
3115 break;
3116 default:
3117 assert(0);
3120 check_msacsr_cause(env, GETPC());
3122 msa_move_v(pwd, pwx);
3125 void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3126 uint32_t ws)
3128 wr_t wx, *pwx = &wx;
3129 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3130 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3131 uint32_t i;
3133 clear_msacsr_cause(env);
3135 switch (df) {
3136 case DF_WORD:
3137 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3138 MSA_FLOAT_UNOP(pwx->w[i], round_to_int, pws->w[i], 32);
3140 break;
3141 case DF_DOUBLE:
3142 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3143 MSA_FLOAT_UNOP(pwx->d[i], round_to_int, pws->d[i], 64);
3145 break;
3146 default:
3147 assert(0);
3150 check_msacsr_cause(env, GETPC());
3152 msa_move_v(pwd, pwx);
3155 #define MSA_FLOAT_LOGB(DEST, ARG, BITS) \
3156 do { \
3157 float_status *status = &env->active_tc.msa_fp_status; \
3158 int c; \
3160 set_float_exception_flags(0, status); \
3161 set_float_rounding_mode(float_round_down, status); \
3162 DEST = float ## BITS ## _ ## log2(ARG, status); \
3163 DEST = float ## BITS ## _ ## round_to_int(DEST, status); \
3164 set_float_rounding_mode(ieee_rm[(env->active_tc.msacsr & \
3165 MSACSR_RM_MASK) >> MSACSR_RM], \
3166 status); \
3168 set_float_exception_flags(get_float_exception_flags(status) & \
3169 (~float_flag_inexact), \
3170 status); \
3172 c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
3174 if (get_enabled_exceptions(env, c)) { \
3175 DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
3177 } while (0)
3179 void helper_msa_flog2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3180 uint32_t ws)
3182 wr_t wx, *pwx = &wx;
3183 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3184 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3185 uint32_t i;
3187 clear_msacsr_cause(env);
3189 switch (df) {
3190 case DF_WORD:
3191 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3192 MSA_FLOAT_LOGB(pwx->w[i], pws->w[i], 32);
3194 break;
3195 case DF_DOUBLE:
3196 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3197 MSA_FLOAT_LOGB(pwx->d[i], pws->d[i], 64);
3199 break;
3200 default:
3201 assert(0);
3204 check_msacsr_cause(env, GETPC());
3206 msa_move_v(pwd, pwx);
3209 void helper_msa_fexupl_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3210 uint32_t ws)
3212 wr_t wx, *pwx = &wx;
3213 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3214 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3215 uint32_t i;
3217 clear_msacsr_cause(env);
3219 switch (df) {
3220 case DF_WORD:
3221 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3222 /* Half precision floats come in two formats: standard
3223 IEEE and "ARM" format. The latter gains extra exponent
3224 range by omitting the NaN/Inf encodings. */
3225 flag ieee = 1;
3227 MSA_FLOAT_BINOP(pwx->w[i], from_float16, Lh(pws, i), ieee, 32);
3229 break;
3230 case DF_DOUBLE:
3231 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3232 MSA_FLOAT_UNOP(pwx->d[i], from_float32, Lw(pws, i), 64);
3234 break;
3235 default:
3236 assert(0);
3239 check_msacsr_cause(env, GETPC());
3240 msa_move_v(pwd, pwx);
3243 void helper_msa_fexupr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3244 uint32_t ws)
3246 wr_t wx, *pwx = &wx;
3247 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3248 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3249 uint32_t i;
3251 clear_msacsr_cause(env);
3253 switch (df) {
3254 case DF_WORD:
3255 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3256 /* Half precision floats come in two formats: standard
3257 IEEE and "ARM" format. The latter gains extra exponent
3258 range by omitting the NaN/Inf encodings. */
3259 flag ieee = 1;
3261 MSA_FLOAT_BINOP(pwx->w[i], from_float16, Rh(pws, i), ieee, 32);
3263 break;
3264 case DF_DOUBLE:
3265 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3266 MSA_FLOAT_UNOP(pwx->d[i], from_float32, Rw(pws, i), 64);
3268 break;
3269 default:
3270 assert(0);
3273 check_msacsr_cause(env, GETPC());
3274 msa_move_v(pwd, pwx);
3277 void helper_msa_ffql_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3278 uint32_t ws)
3280 wr_t wx, *pwx = &wx;
3281 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3282 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3283 uint32_t i;
3285 switch (df) {
3286 case DF_WORD:
3287 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3288 MSA_FLOAT_UNOP(pwx->w[i], from_q16, Lh(pws, i), 32);
3290 break;
3291 case DF_DOUBLE:
3292 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3293 MSA_FLOAT_UNOP(pwx->d[i], from_q32, Lw(pws, i), 64);
3295 break;
3296 default:
3297 assert(0);
3300 msa_move_v(pwd, pwx);
3303 void helper_msa_ffqr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3304 uint32_t ws)
3306 wr_t wx, *pwx = &wx;
3307 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3308 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3309 uint32_t i;
3311 switch (df) {
3312 case DF_WORD:
3313 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3314 MSA_FLOAT_UNOP(pwx->w[i], from_q16, Rh(pws, i), 32);
3316 break;
3317 case DF_DOUBLE:
3318 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3319 MSA_FLOAT_UNOP(pwx->d[i], from_q32, Rw(pws, i), 64);
3321 break;
3322 default:
3323 assert(0);
3326 msa_move_v(pwd, pwx);
3329 void helper_msa_ftint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3330 uint32_t ws)
3332 wr_t wx, *pwx = &wx;
3333 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3334 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3335 uint32_t i;
3337 clear_msacsr_cause(env);
3339 switch (df) {
3340 case DF_WORD:
3341 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3342 MSA_FLOAT_UNOP0(pwx->w[i], to_int32, pws->w[i], 32);
3344 break;
3345 case DF_DOUBLE:
3346 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3347 MSA_FLOAT_UNOP0(pwx->d[i], to_int64, pws->d[i], 64);
3349 break;
3350 default:
3351 assert(0);
3354 check_msacsr_cause(env, GETPC());
3356 msa_move_v(pwd, pwx);
3359 void helper_msa_ftint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3360 uint32_t ws)
3362 wr_t wx, *pwx = &wx;
3363 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3364 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3365 uint32_t i;
3367 clear_msacsr_cause(env);
3369 switch (df) {
3370 case DF_WORD:
3371 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3372 MSA_FLOAT_UNOP0(pwx->w[i], to_uint32, pws->w[i], 32);
3374 break;
3375 case DF_DOUBLE:
3376 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3377 MSA_FLOAT_UNOP0(pwx->d[i], to_uint64, pws->d[i], 64);
3379 break;
3380 default:
3381 assert(0);
3384 check_msacsr_cause(env, GETPC());
3386 msa_move_v(pwd, pwx);
3389 #define float32_from_int32 int32_to_float32
3390 #define float32_from_uint32 uint32_to_float32
3392 #define float64_from_int64 int64_to_float64
3393 #define float64_from_uint64 uint64_to_float64
3395 void helper_msa_ffint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3396 uint32_t ws)
3398 wr_t wx, *pwx = &wx;
3399 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3400 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3401 uint32_t i;
3403 clear_msacsr_cause(env);
3405 switch (df) {
3406 case DF_WORD:
3407 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3408 MSA_FLOAT_UNOP(pwx->w[i], from_int32, pws->w[i], 32);
3410 break;
3411 case DF_DOUBLE:
3412 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3413 MSA_FLOAT_UNOP(pwx->d[i], from_int64, pws->d[i], 64);
3415 break;
3416 default:
3417 assert(0);
3420 check_msacsr_cause(env, GETPC());
3422 msa_move_v(pwd, pwx);
3425 void helper_msa_ffint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
3426 uint32_t ws)
3428 wr_t wx, *pwx = &wx;
3429 wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
3430 wr_t *pws = &(env->active_fpu.fpr[ws].wr);
3431 uint32_t i;
3433 clear_msacsr_cause(env);
3435 switch (df) {
3436 case DF_WORD:
3437 for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
3438 MSA_FLOAT_UNOP(pwx->w[i], from_uint32, pws->w[i], 32);
3440 break;
3441 case DF_DOUBLE:
3442 for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
3443 MSA_FLOAT_UNOP(pwx->d[i], from_uint64, pws->d[i], 64);
3445 break;
3446 default:
3447 assert(0);
3450 check_msacsr_cause(env, GETPC());
3452 msa_move_v(pwd, pwx);