util: Add UUID API
[qemu/ar7.git] / target-ppc / int_helper.c
blob552b2e041b185506af5dbb5abe43a20a754916b0
1 /*
2 * PowerPC integer and vector emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/host-utils.h"
23 #include "exec/helper-proto.h"
24 #include "crypto/aes.h"
26 #include "helper_regs.h"
27 /*****************************************************************************/
28 /* Fixed point operations helpers */
30 target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
31 uint32_t oe)
33 uint64_t rt = 0;
34 int overflow = 0;
36 uint64_t dividend = (uint64_t)ra << 32;
37 uint64_t divisor = (uint32_t)rb;
39 if (unlikely(divisor == 0)) {
40 overflow = 1;
41 } else {
42 rt = dividend / divisor;
43 overflow = rt > UINT32_MAX;
46 if (unlikely(overflow)) {
47 rt = 0; /* Undefined */
50 if (oe) {
51 if (unlikely(overflow)) {
52 env->so = env->ov = 1;
53 } else {
54 env->ov = 0;
58 return (target_ulong)rt;
61 target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
62 uint32_t oe)
64 int64_t rt = 0;
65 int overflow = 0;
67 int64_t dividend = (int64_t)ra << 32;
68 int64_t divisor = (int64_t)((int32_t)rb);
70 if (unlikely((divisor == 0) ||
71 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
72 overflow = 1;
73 } else {
74 rt = dividend / divisor;
75 overflow = rt != (int32_t)rt;
78 if (unlikely(overflow)) {
79 rt = 0; /* Undefined */
82 if (oe) {
83 if (unlikely(overflow)) {
84 env->so = env->ov = 1;
85 } else {
86 env->ov = 0;
90 return (target_ulong)rt;
93 #if defined(TARGET_PPC64)
95 uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
97 uint64_t rt = 0;
98 int overflow = 0;
100 overflow = divu128(&rt, &ra, rb);
102 if (unlikely(overflow)) {
103 rt = 0; /* Undefined */
106 if (oe) {
107 if (unlikely(overflow)) {
108 env->so = env->ov = 1;
109 } else {
110 env->ov = 0;
114 return rt;
117 uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
119 int64_t rt = 0;
120 int64_t ra = (int64_t)rau;
121 int64_t rb = (int64_t)rbu;
122 int overflow = divs128(&rt, &ra, rb);
124 if (unlikely(overflow)) {
125 rt = 0; /* Undefined */
128 if (oe) {
130 if (unlikely(overflow)) {
131 env->so = env->ov = 1;
132 } else {
133 env->ov = 0;
137 return rt;
140 #endif
143 target_ulong helper_cntlzw(target_ulong t)
145 return clz32(t);
148 target_ulong helper_cnttzw(target_ulong t)
150 return ctz32(t);
153 #if defined(TARGET_PPC64)
154 /* if x = 0xab, returns 0xababababababababa */
155 #define pattern(x) (((x) & 0xff) * (~(target_ulong)0 / 0xff))
157 /* substract 1 from each byte, and with inverse, check if MSB is set at each
158 * byte.
159 * i.e. ((0x00 - 0x01) & ~(0x00)) & 0x80
160 * (0xFF & 0xFF) & 0x80 = 0x80 (zero found)
162 #define haszero(v) (((v) - pattern(0x01)) & ~(v) & pattern(0x80))
164 /* When you XOR the pattern and there is a match, that byte will be zero */
165 #define hasvalue(x, n) (haszero((x) ^ pattern(n)))
167 uint32_t helper_cmpeqb(target_ulong ra, target_ulong rb)
169 return hasvalue(rb, ra) ? 1 << CRF_GT : 0;
172 #undef pattern
173 #undef haszero
174 #undef hasvalue
176 target_ulong helper_cntlzd(target_ulong t)
178 return clz64(t);
181 target_ulong helper_cnttzd(target_ulong t)
183 return ctz64(t);
185 #endif
187 #if defined(TARGET_PPC64)
189 uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
191 int i;
192 uint64_t ra = 0;
194 for (i = 0; i < 8; i++) {
195 int index = (rs >> (i*8)) & 0xFF;
196 if (index < 64) {
197 if (rb & (1ull << (63-index))) {
198 ra |= 1 << i;
202 return ra;
205 #endif
207 target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
209 target_ulong mask = 0xff;
210 target_ulong ra = 0;
211 int i;
213 for (i = 0; i < sizeof(target_ulong); i++) {
214 if ((rs & mask) == (rb & mask)) {
215 ra |= mask;
217 mask <<= 8;
219 return ra;
222 /* shift right arithmetic helper */
223 target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
224 target_ulong shift)
226 int32_t ret;
228 if (likely(!(shift & 0x20))) {
229 if (likely((uint32_t)shift != 0)) {
230 shift &= 0x1f;
231 ret = (int32_t)value >> shift;
232 if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
233 env->ca = 0;
234 } else {
235 env->ca = 1;
237 } else {
238 ret = (int32_t)value;
239 env->ca = 0;
241 } else {
242 ret = (int32_t)value >> 31;
243 env->ca = (ret != 0);
245 return (target_long)ret;
248 #if defined(TARGET_PPC64)
249 target_ulong helper_srad(CPUPPCState *env, target_ulong value,
250 target_ulong shift)
252 int64_t ret;
254 if (likely(!(shift & 0x40))) {
255 if (likely((uint64_t)shift != 0)) {
256 shift &= 0x3f;
257 ret = (int64_t)value >> shift;
258 if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
259 env->ca = 0;
260 } else {
261 env->ca = 1;
263 } else {
264 ret = (int64_t)value;
265 env->ca = 0;
267 } else {
268 ret = (int64_t)value >> 63;
269 env->ca = (ret != 0);
271 return ret;
273 #endif
275 #if defined(TARGET_PPC64)
276 target_ulong helper_popcntb(target_ulong val)
278 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
279 0x5555555555555555ULL);
280 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
281 0x3333333333333333ULL);
282 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
283 0x0f0f0f0f0f0f0f0fULL);
284 return val;
287 target_ulong helper_popcntw(target_ulong val)
289 val = (val & 0x5555555555555555ULL) + ((val >> 1) &
290 0x5555555555555555ULL);
291 val = (val & 0x3333333333333333ULL) + ((val >> 2) &
292 0x3333333333333333ULL);
293 val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
294 0x0f0f0f0f0f0f0f0fULL);
295 val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
296 0x00ff00ff00ff00ffULL);
297 val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
298 0x0000ffff0000ffffULL);
299 return val;
302 target_ulong helper_popcntd(target_ulong val)
304 return ctpop64(val);
306 #else
307 target_ulong helper_popcntb(target_ulong val)
309 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
310 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
311 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
312 return val;
315 target_ulong helper_popcntw(target_ulong val)
317 val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
318 val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
319 val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
320 val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
321 val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
322 return val;
324 #endif
326 /*****************************************************************************/
327 /* PowerPC 601 specific instructions (POWER bridge) */
328 target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
330 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
332 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
333 (int32_t)arg2 == 0) {
334 env->spr[SPR_MQ] = 0;
335 return INT32_MIN;
336 } else {
337 env->spr[SPR_MQ] = tmp % arg2;
338 return tmp / (int32_t)arg2;
342 target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
343 target_ulong arg2)
345 uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
347 if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
348 (int32_t)arg2 == 0) {
349 env->so = env->ov = 1;
350 env->spr[SPR_MQ] = 0;
351 return INT32_MIN;
352 } else {
353 env->spr[SPR_MQ] = tmp % arg2;
354 tmp /= (int32_t)arg2;
355 if ((int32_t)tmp != tmp) {
356 env->so = env->ov = 1;
357 } else {
358 env->ov = 0;
360 return tmp;
364 target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
365 target_ulong arg2)
367 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
368 (int32_t)arg2 == 0) {
369 env->spr[SPR_MQ] = 0;
370 return INT32_MIN;
371 } else {
372 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
373 return (int32_t)arg1 / (int32_t)arg2;
377 target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
378 target_ulong arg2)
380 if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
381 (int32_t)arg2 == 0) {
382 env->so = env->ov = 1;
383 env->spr[SPR_MQ] = 0;
384 return INT32_MIN;
385 } else {
386 env->ov = 0;
387 env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
388 return (int32_t)arg1 / (int32_t)arg2;
392 /*****************************************************************************/
393 /* 602 specific instructions */
394 /* mfrom is the most crazy instruction ever seen, imho ! */
395 /* Real implementation uses a ROM table. Do the same */
396 /* Extremely decomposed:
397 * -arg / 256
398 * return 256 * log10(10 + 1.0) + 0.5
400 #if !defined(CONFIG_USER_ONLY)
401 target_ulong helper_602_mfrom(target_ulong arg)
403 if (likely(arg < 602)) {
404 #include "mfrom_table.c"
405 return mfrom_ROM_table[arg];
406 } else {
407 return 0;
410 #endif
412 /*****************************************************************************/
413 /* Altivec extension helpers */
414 #if defined(HOST_WORDS_BIGENDIAN)
415 #define HI_IDX 0
416 #define LO_IDX 1
417 #define AVRB(i) u8[i]
418 #define AVRW(i) u32[i]
419 #else
420 #define HI_IDX 1
421 #define LO_IDX 0
422 #define AVRB(i) u8[15-(i)]
423 #define AVRW(i) u32[3-(i)]
424 #endif
426 #if defined(HOST_WORDS_BIGENDIAN)
427 #define VECTOR_FOR_INORDER_I(index, element) \
428 for (index = 0; index < ARRAY_SIZE(r->element); index++)
429 #else
430 #define VECTOR_FOR_INORDER_I(index, element) \
431 for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
432 #endif
434 /* Saturating arithmetic helpers. */
435 #define SATCVT(from, to, from_type, to_type, min, max) \
436 static inline to_type cvt##from##to(from_type x, int *sat) \
438 to_type r; \
440 if (x < (from_type)min) { \
441 r = min; \
442 *sat = 1; \
443 } else if (x > (from_type)max) { \
444 r = max; \
445 *sat = 1; \
446 } else { \
447 r = x; \
449 return r; \
451 #define SATCVTU(from, to, from_type, to_type, min, max) \
452 static inline to_type cvt##from##to(from_type x, int *sat) \
454 to_type r; \
456 if (x > (from_type)max) { \
457 r = max; \
458 *sat = 1; \
459 } else { \
460 r = x; \
462 return r; \
464 SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
465 SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
466 SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
468 SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
469 SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
470 SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
471 SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
472 SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
473 SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
474 #undef SATCVT
475 #undef SATCVTU
477 void helper_lvsl(ppc_avr_t *r, target_ulong sh)
479 int i, j = (sh & 0xf);
481 VECTOR_FOR_INORDER_I(i, u8) {
482 r->u8[i] = j++;
486 void helper_lvsr(ppc_avr_t *r, target_ulong sh)
488 int i, j = 0x10 - (sh & 0xf);
490 VECTOR_FOR_INORDER_I(i, u8) {
491 r->u8[i] = j++;
495 void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r)
497 #if defined(HOST_WORDS_BIGENDIAN)
498 env->vscr = r->u32[3];
499 #else
500 env->vscr = r->u32[0];
501 #endif
502 set_flush_to_zero(vscr_nj, &env->vec_status);
505 void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
507 int i;
509 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
510 r->u32[i] = ~a->u32[i] < b->u32[i];
514 #define VARITH_DO(name, op, element) \
515 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
517 int i; \
519 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
520 r->element[i] = a->element[i] op b->element[i]; \
523 #define VARITH(suffix, element) \
524 VARITH_DO(add##suffix, +, element) \
525 VARITH_DO(sub##suffix, -, element)
526 VARITH(ubm, u8)
527 VARITH(uhm, u16)
528 VARITH(uwm, u32)
529 VARITH(udm, u64)
530 VARITH_DO(muluwm, *, u32)
531 #undef VARITH_DO
532 #undef VARITH
534 #define VARITHFP(suffix, func) \
535 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
536 ppc_avr_t *b) \
538 int i; \
540 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
541 r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
544 VARITHFP(addfp, float32_add)
545 VARITHFP(subfp, float32_sub)
546 VARITHFP(minfp, float32_min)
547 VARITHFP(maxfp, float32_max)
548 #undef VARITHFP
550 #define VARITHFPFMA(suffix, type) \
551 void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
552 ppc_avr_t *b, ppc_avr_t *c) \
554 int i; \
555 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
556 r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i], \
557 type, &env->vec_status); \
560 VARITHFPFMA(maddfp, 0);
561 VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
562 #undef VARITHFPFMA
564 #define VARITHSAT_CASE(type, op, cvt, element) \
566 type result = (type)a->element[i] op (type)b->element[i]; \
567 r->element[i] = cvt(result, &sat); \
570 #define VARITHSAT_DO(name, op, optype, cvt, element) \
571 void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
572 ppc_avr_t *b) \
574 int sat = 0; \
575 int i; \
577 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
578 switch (sizeof(r->element[0])) { \
579 case 1: \
580 VARITHSAT_CASE(optype, op, cvt, element); \
581 break; \
582 case 2: \
583 VARITHSAT_CASE(optype, op, cvt, element); \
584 break; \
585 case 4: \
586 VARITHSAT_CASE(optype, op, cvt, element); \
587 break; \
590 if (sat) { \
591 env->vscr |= (1 << VSCR_SAT); \
594 #define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
595 VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
596 VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
597 #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
598 VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
599 VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
600 VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
601 VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
602 VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
603 VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
604 VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
605 VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
606 #undef VARITHSAT_CASE
607 #undef VARITHSAT_DO
608 #undef VARITHSAT_SIGNED
609 #undef VARITHSAT_UNSIGNED
611 #define VAVG_DO(name, element, etype) \
612 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
614 int i; \
616 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
617 etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
618 r->element[i] = x >> 1; \
622 #define VAVG(type, signed_element, signed_type, unsigned_element, \
623 unsigned_type) \
624 VAVG_DO(avgs##type, signed_element, signed_type) \
625 VAVG_DO(avgu##type, unsigned_element, unsigned_type)
626 VAVG(b, s8, int16_t, u8, uint16_t)
627 VAVG(h, s16, int32_t, u16, uint32_t)
628 VAVG(w, s32, int64_t, u32, uint64_t)
629 #undef VAVG_DO
630 #undef VAVG
632 #define VABSDU_DO(name, element) \
633 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
635 int i; \
637 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
638 r->element[i] = (a->element[i] > b->element[i]) ? \
639 (a->element[i] - b->element[i]) : \
640 (b->element[i] - a->element[i]); \
644 /* VABSDU - Vector absolute difference unsigned
645 * name - instruction mnemonic suffix (b: byte, h: halfword, w: word)
646 * element - element type to access from vector
648 #define VABSDU(type, element) \
649 VABSDU_DO(absdu##type, element)
650 VABSDU(b, u8)
651 VABSDU(h, u16)
652 VABSDU(w, u32)
653 #undef VABSDU_DO
654 #undef VABSDU
656 #define VCF(suffix, cvt, element) \
657 void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r, \
658 ppc_avr_t *b, uint32_t uim) \
660 int i; \
662 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
663 float32 t = cvt(b->element[i], &env->vec_status); \
664 r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
667 VCF(ux, uint32_to_float32, u32)
668 VCF(sx, int32_to_float32, s32)
669 #undef VCF
671 #define VCMP_DO(suffix, compare, element, record) \
672 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
673 ppc_avr_t *a, ppc_avr_t *b) \
675 uint64_t ones = (uint64_t)-1; \
676 uint64_t all = ones; \
677 uint64_t none = 0; \
678 int i; \
680 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
681 uint64_t result = (a->element[i] compare b->element[i] ? \
682 ones : 0x0); \
683 switch (sizeof(a->element[0])) { \
684 case 8: \
685 r->u64[i] = result; \
686 break; \
687 case 4: \
688 r->u32[i] = result; \
689 break; \
690 case 2: \
691 r->u16[i] = result; \
692 break; \
693 case 1: \
694 r->u8[i] = result; \
695 break; \
697 all &= result; \
698 none |= result; \
700 if (record) { \
701 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
704 #define VCMP(suffix, compare, element) \
705 VCMP_DO(suffix, compare, element, 0) \
706 VCMP_DO(suffix##_dot, compare, element, 1)
707 VCMP(equb, ==, u8)
708 VCMP(equh, ==, u16)
709 VCMP(equw, ==, u32)
710 VCMP(equd, ==, u64)
711 VCMP(gtub, >, u8)
712 VCMP(gtuh, >, u16)
713 VCMP(gtuw, >, u32)
714 VCMP(gtud, >, u64)
715 VCMP(gtsb, >, s8)
716 VCMP(gtsh, >, s16)
717 VCMP(gtsw, >, s32)
718 VCMP(gtsd, >, s64)
719 #undef VCMP_DO
720 #undef VCMP
722 #define VCMPNEZ_DO(suffix, element, etype, record) \
723 void helper_vcmpnez##suffix(CPUPPCState *env, ppc_avr_t *r, \
724 ppc_avr_t *a, ppc_avr_t *b) \
726 etype ones = (etype)-1; \
727 etype all = ones; \
728 etype none = 0; \
729 int i; \
731 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
732 etype result = ((a->element[i] == 0) \
733 || (b->element[i] == 0) \
734 || (a->element[i] != b->element[i]) ? \
735 ones : 0x0); \
736 r->element[i] = result; \
737 all &= result; \
738 none |= result; \
740 if (record) { \
741 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
745 /* VCMPNEZ - Vector compare not equal to zero
746 * suffix - instruction mnemonic suffix (b: byte, h: halfword, w: word)
747 * element - element type to access from vector
749 #define VCMPNEZ(suffix, element, etype) \
750 VCMPNEZ_DO(suffix, element, etype, 0) \
751 VCMPNEZ_DO(suffix##_dot, element, etype, 1)
752 VCMPNEZ(b, u8, uint8_t)
753 VCMPNEZ(h, u16, uint16_t)
754 VCMPNEZ(w, u32, uint32_t)
755 #undef VCMPNEZ_DO
756 #undef VCMPNEZ
758 #define VCMPFP_DO(suffix, compare, order, record) \
759 void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r, \
760 ppc_avr_t *a, ppc_avr_t *b) \
762 uint32_t ones = (uint32_t)-1; \
763 uint32_t all = ones; \
764 uint32_t none = 0; \
765 int i; \
767 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
768 uint32_t result; \
769 int rel = float32_compare_quiet(a->f[i], b->f[i], \
770 &env->vec_status); \
771 if (rel == float_relation_unordered) { \
772 result = 0; \
773 } else if (rel compare order) { \
774 result = ones; \
775 } else { \
776 result = 0; \
778 r->u32[i] = result; \
779 all &= result; \
780 none |= result; \
782 if (record) { \
783 env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
786 #define VCMPFP(suffix, compare, order) \
787 VCMPFP_DO(suffix, compare, order, 0) \
788 VCMPFP_DO(suffix##_dot, compare, order, 1)
789 VCMPFP(eqfp, ==, float_relation_equal)
790 VCMPFP(gefp, !=, float_relation_less)
791 VCMPFP(gtfp, ==, float_relation_greater)
792 #undef VCMPFP_DO
793 #undef VCMPFP
795 static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
796 ppc_avr_t *a, ppc_avr_t *b, int record)
798 int i;
799 int all_in = 0;
801 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
802 int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
803 if (le_rel == float_relation_unordered) {
804 r->u32[i] = 0xc0000000;
805 all_in = 1;
806 } else {
807 float32 bneg = float32_chs(b->f[i]);
808 int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
809 int le = le_rel != float_relation_greater;
810 int ge = ge_rel != float_relation_less;
812 r->u32[i] = ((!le) << 31) | ((!ge) << 30);
813 all_in |= (!le | !ge);
816 if (record) {
817 env->crf[6] = (all_in == 0) << 1;
821 void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
823 vcmpbfp_internal(env, r, a, b, 0);
826 void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
827 ppc_avr_t *b)
829 vcmpbfp_internal(env, r, a, b, 1);
832 #define VCT(suffix, satcvt, element) \
833 void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r, \
834 ppc_avr_t *b, uint32_t uim) \
836 int i; \
837 int sat = 0; \
838 float_status s = env->vec_status; \
840 set_float_rounding_mode(float_round_to_zero, &s); \
841 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
842 if (float32_is_any_nan(b->f[i])) { \
843 r->element[i] = 0; \
844 } else { \
845 float64 t = float32_to_float64(b->f[i], &s); \
846 int64_t j; \
848 t = float64_scalbn(t, uim, &s); \
849 j = float64_to_int64(t, &s); \
850 r->element[i] = satcvt(j, &sat); \
853 if (sat) { \
854 env->vscr |= (1 << VSCR_SAT); \
857 VCT(uxs, cvtsduw, u32)
858 VCT(sxs, cvtsdsw, s32)
859 #undef VCT
861 void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
862 ppc_avr_t *b, ppc_avr_t *c)
864 int sat = 0;
865 int i;
867 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
868 int32_t prod = a->s16[i] * b->s16[i];
869 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
871 r->s16[i] = cvtswsh(t, &sat);
874 if (sat) {
875 env->vscr |= (1 << VSCR_SAT);
879 void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
880 ppc_avr_t *b, ppc_avr_t *c)
882 int sat = 0;
883 int i;
885 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
886 int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
887 int32_t t = (int32_t)c->s16[i] + (prod >> 15);
888 r->s16[i] = cvtswsh(t, &sat);
891 if (sat) {
892 env->vscr |= (1 << VSCR_SAT);
896 #define VMINMAX_DO(name, compare, element) \
897 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
899 int i; \
901 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
902 if (a->element[i] compare b->element[i]) { \
903 r->element[i] = b->element[i]; \
904 } else { \
905 r->element[i] = a->element[i]; \
909 #define VMINMAX(suffix, element) \
910 VMINMAX_DO(min##suffix, >, element) \
911 VMINMAX_DO(max##suffix, <, element)
912 VMINMAX(sb, s8)
913 VMINMAX(sh, s16)
914 VMINMAX(sw, s32)
915 VMINMAX(sd, s64)
916 VMINMAX(ub, u8)
917 VMINMAX(uh, u16)
918 VMINMAX(uw, u32)
919 VMINMAX(ud, u64)
920 #undef VMINMAX_DO
921 #undef VMINMAX
923 void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
925 int i;
927 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
928 int32_t prod = a->s16[i] * b->s16[i];
929 r->s16[i] = (int16_t) (prod + c->s16[i]);
933 #define VMRG_DO(name, element, highp) \
934 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
936 ppc_avr_t result; \
937 int i; \
938 size_t n_elems = ARRAY_SIZE(r->element); \
940 for (i = 0; i < n_elems / 2; i++) { \
941 if (highp) { \
942 result.element[i*2+HI_IDX] = a->element[i]; \
943 result.element[i*2+LO_IDX] = b->element[i]; \
944 } else { \
945 result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
946 b->element[n_elems - i - 1]; \
947 result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
948 a->element[n_elems - i - 1]; \
951 *r = result; \
953 #if defined(HOST_WORDS_BIGENDIAN)
954 #define MRGHI 0
955 #define MRGLO 1
956 #else
957 #define MRGHI 1
958 #define MRGLO 0
959 #endif
960 #define VMRG(suffix, element) \
961 VMRG_DO(mrgl##suffix, element, MRGHI) \
962 VMRG_DO(mrgh##suffix, element, MRGLO)
963 VMRG(b, u8)
964 VMRG(h, u16)
965 VMRG(w, u32)
966 #undef VMRG_DO
967 #undef VMRG
968 #undef MRGHI
969 #undef MRGLO
971 void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
972 ppc_avr_t *b, ppc_avr_t *c)
974 int32_t prod[16];
975 int i;
977 for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
978 prod[i] = (int32_t)a->s8[i] * b->u8[i];
981 VECTOR_FOR_INORDER_I(i, s32) {
982 r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
983 prod[4 * i + 2] + prod[4 * i + 3];
987 void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
988 ppc_avr_t *b, ppc_avr_t *c)
990 int32_t prod[8];
991 int i;
993 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
994 prod[i] = a->s16[i] * b->s16[i];
997 VECTOR_FOR_INORDER_I(i, s32) {
998 r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1002 void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1003 ppc_avr_t *b, ppc_avr_t *c)
1005 int32_t prod[8];
1006 int i;
1007 int sat = 0;
1009 for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
1010 prod[i] = (int32_t)a->s16[i] * b->s16[i];
1013 VECTOR_FOR_INORDER_I(i, s32) {
1014 int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
1016 r->u32[i] = cvtsdsw(t, &sat);
1019 if (sat) {
1020 env->vscr |= (1 << VSCR_SAT);
1024 void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1025 ppc_avr_t *b, ppc_avr_t *c)
1027 uint16_t prod[16];
1028 int i;
1030 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1031 prod[i] = a->u8[i] * b->u8[i];
1034 VECTOR_FOR_INORDER_I(i, u32) {
1035 r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
1036 prod[4 * i + 2] + prod[4 * i + 3];
1040 void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1041 ppc_avr_t *b, ppc_avr_t *c)
1043 uint32_t prod[8];
1044 int i;
1046 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1047 prod[i] = a->u16[i] * b->u16[i];
1050 VECTOR_FOR_INORDER_I(i, u32) {
1051 r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1055 void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
1056 ppc_avr_t *b, ppc_avr_t *c)
1058 uint32_t prod[8];
1059 int i;
1060 int sat = 0;
1062 for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
1063 prod[i] = a->u16[i] * b->u16[i];
1066 VECTOR_FOR_INORDER_I(i, s32) {
1067 uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
1069 r->u32[i] = cvtuduw(t, &sat);
1072 if (sat) {
1073 env->vscr |= (1 << VSCR_SAT);
1077 #define VMUL_DO(name, mul_element, prod_element, cast, evenp) \
1078 void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1080 int i; \
1082 VECTOR_FOR_INORDER_I(i, prod_element) { \
1083 if (evenp) { \
1084 r->prod_element[i] = \
1085 (cast)a->mul_element[i * 2 + HI_IDX] * \
1086 (cast)b->mul_element[i * 2 + HI_IDX]; \
1087 } else { \
1088 r->prod_element[i] = \
1089 (cast)a->mul_element[i * 2 + LO_IDX] * \
1090 (cast)b->mul_element[i * 2 + LO_IDX]; \
1094 #define VMUL(suffix, mul_element, prod_element, cast) \
1095 VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1) \
1096 VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
1097 VMUL(sb, s8, s16, int16_t)
1098 VMUL(sh, s16, s32, int32_t)
1099 VMUL(sw, s32, s64, int64_t)
1100 VMUL(ub, u8, u16, uint16_t)
1101 VMUL(uh, u16, u32, uint32_t)
1102 VMUL(uw, u32, u64, uint64_t)
1103 #undef VMUL_DO
1104 #undef VMUL
1106 void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1107 ppc_avr_t *c)
1109 ppc_avr_t result;
1110 int i;
1112 VECTOR_FOR_INORDER_I(i, u8) {
1113 int s = c->u8[i] & 0x1f;
1114 #if defined(HOST_WORDS_BIGENDIAN)
1115 int index = s & 0xf;
1116 #else
1117 int index = 15 - (s & 0xf);
1118 #endif
1120 if (s & 0x10) {
1121 result.u8[i] = b->u8[index];
1122 } else {
1123 result.u8[i] = a->u8[index];
1126 *r = result;
1129 #if defined(HOST_WORDS_BIGENDIAN)
1130 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
1131 #define VBPERMQ_DW(index) (((index) & 0x40) != 0)
1132 #else
1133 #define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
1134 #define VBPERMQ_DW(index) (((index) & 0x40) == 0)
1135 #endif
1137 void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1139 int i;
1140 uint64_t perm = 0;
1142 VECTOR_FOR_INORDER_I(i, u8) {
1143 int index = VBPERMQ_INDEX(b, i);
1145 if (index < 128) {
1146 uint64_t mask = (1ull << (63-(index & 0x3F)));
1147 if (a->u64[VBPERMQ_DW(index)] & mask) {
1148 perm |= (0x8000 >> i);
1153 r->u64[HI_IDX] = perm;
1154 r->u64[LO_IDX] = 0;
1157 #undef VBPERMQ_INDEX
1158 #undef VBPERMQ_DW
1160 static const uint64_t VGBBD_MASKS[256] = {
1161 0x0000000000000000ull, /* 00 */
1162 0x0000000000000080ull, /* 01 */
1163 0x0000000000008000ull, /* 02 */
1164 0x0000000000008080ull, /* 03 */
1165 0x0000000000800000ull, /* 04 */
1166 0x0000000000800080ull, /* 05 */
1167 0x0000000000808000ull, /* 06 */
1168 0x0000000000808080ull, /* 07 */
1169 0x0000000080000000ull, /* 08 */
1170 0x0000000080000080ull, /* 09 */
1171 0x0000000080008000ull, /* 0A */
1172 0x0000000080008080ull, /* 0B */
1173 0x0000000080800000ull, /* 0C */
1174 0x0000000080800080ull, /* 0D */
1175 0x0000000080808000ull, /* 0E */
1176 0x0000000080808080ull, /* 0F */
1177 0x0000008000000000ull, /* 10 */
1178 0x0000008000000080ull, /* 11 */
1179 0x0000008000008000ull, /* 12 */
1180 0x0000008000008080ull, /* 13 */
1181 0x0000008000800000ull, /* 14 */
1182 0x0000008000800080ull, /* 15 */
1183 0x0000008000808000ull, /* 16 */
1184 0x0000008000808080ull, /* 17 */
1185 0x0000008080000000ull, /* 18 */
1186 0x0000008080000080ull, /* 19 */
1187 0x0000008080008000ull, /* 1A */
1188 0x0000008080008080ull, /* 1B */
1189 0x0000008080800000ull, /* 1C */
1190 0x0000008080800080ull, /* 1D */
1191 0x0000008080808000ull, /* 1E */
1192 0x0000008080808080ull, /* 1F */
1193 0x0000800000000000ull, /* 20 */
1194 0x0000800000000080ull, /* 21 */
1195 0x0000800000008000ull, /* 22 */
1196 0x0000800000008080ull, /* 23 */
1197 0x0000800000800000ull, /* 24 */
1198 0x0000800000800080ull, /* 25 */
1199 0x0000800000808000ull, /* 26 */
1200 0x0000800000808080ull, /* 27 */
1201 0x0000800080000000ull, /* 28 */
1202 0x0000800080000080ull, /* 29 */
1203 0x0000800080008000ull, /* 2A */
1204 0x0000800080008080ull, /* 2B */
1205 0x0000800080800000ull, /* 2C */
1206 0x0000800080800080ull, /* 2D */
1207 0x0000800080808000ull, /* 2E */
1208 0x0000800080808080ull, /* 2F */
1209 0x0000808000000000ull, /* 30 */
1210 0x0000808000000080ull, /* 31 */
1211 0x0000808000008000ull, /* 32 */
1212 0x0000808000008080ull, /* 33 */
1213 0x0000808000800000ull, /* 34 */
1214 0x0000808000800080ull, /* 35 */
1215 0x0000808000808000ull, /* 36 */
1216 0x0000808000808080ull, /* 37 */
1217 0x0000808080000000ull, /* 38 */
1218 0x0000808080000080ull, /* 39 */
1219 0x0000808080008000ull, /* 3A */
1220 0x0000808080008080ull, /* 3B */
1221 0x0000808080800000ull, /* 3C */
1222 0x0000808080800080ull, /* 3D */
1223 0x0000808080808000ull, /* 3E */
1224 0x0000808080808080ull, /* 3F */
1225 0x0080000000000000ull, /* 40 */
1226 0x0080000000000080ull, /* 41 */
1227 0x0080000000008000ull, /* 42 */
1228 0x0080000000008080ull, /* 43 */
1229 0x0080000000800000ull, /* 44 */
1230 0x0080000000800080ull, /* 45 */
1231 0x0080000000808000ull, /* 46 */
1232 0x0080000000808080ull, /* 47 */
1233 0x0080000080000000ull, /* 48 */
1234 0x0080000080000080ull, /* 49 */
1235 0x0080000080008000ull, /* 4A */
1236 0x0080000080008080ull, /* 4B */
1237 0x0080000080800000ull, /* 4C */
1238 0x0080000080800080ull, /* 4D */
1239 0x0080000080808000ull, /* 4E */
1240 0x0080000080808080ull, /* 4F */
1241 0x0080008000000000ull, /* 50 */
1242 0x0080008000000080ull, /* 51 */
1243 0x0080008000008000ull, /* 52 */
1244 0x0080008000008080ull, /* 53 */
1245 0x0080008000800000ull, /* 54 */
1246 0x0080008000800080ull, /* 55 */
1247 0x0080008000808000ull, /* 56 */
1248 0x0080008000808080ull, /* 57 */
1249 0x0080008080000000ull, /* 58 */
1250 0x0080008080000080ull, /* 59 */
1251 0x0080008080008000ull, /* 5A */
1252 0x0080008080008080ull, /* 5B */
1253 0x0080008080800000ull, /* 5C */
1254 0x0080008080800080ull, /* 5D */
1255 0x0080008080808000ull, /* 5E */
1256 0x0080008080808080ull, /* 5F */
1257 0x0080800000000000ull, /* 60 */
1258 0x0080800000000080ull, /* 61 */
1259 0x0080800000008000ull, /* 62 */
1260 0x0080800000008080ull, /* 63 */
1261 0x0080800000800000ull, /* 64 */
1262 0x0080800000800080ull, /* 65 */
1263 0x0080800000808000ull, /* 66 */
1264 0x0080800000808080ull, /* 67 */
1265 0x0080800080000000ull, /* 68 */
1266 0x0080800080000080ull, /* 69 */
1267 0x0080800080008000ull, /* 6A */
1268 0x0080800080008080ull, /* 6B */
1269 0x0080800080800000ull, /* 6C */
1270 0x0080800080800080ull, /* 6D */
1271 0x0080800080808000ull, /* 6E */
1272 0x0080800080808080ull, /* 6F */
1273 0x0080808000000000ull, /* 70 */
1274 0x0080808000000080ull, /* 71 */
1275 0x0080808000008000ull, /* 72 */
1276 0x0080808000008080ull, /* 73 */
1277 0x0080808000800000ull, /* 74 */
1278 0x0080808000800080ull, /* 75 */
1279 0x0080808000808000ull, /* 76 */
1280 0x0080808000808080ull, /* 77 */
1281 0x0080808080000000ull, /* 78 */
1282 0x0080808080000080ull, /* 79 */
1283 0x0080808080008000ull, /* 7A */
1284 0x0080808080008080ull, /* 7B */
1285 0x0080808080800000ull, /* 7C */
1286 0x0080808080800080ull, /* 7D */
1287 0x0080808080808000ull, /* 7E */
1288 0x0080808080808080ull, /* 7F */
1289 0x8000000000000000ull, /* 80 */
1290 0x8000000000000080ull, /* 81 */
1291 0x8000000000008000ull, /* 82 */
1292 0x8000000000008080ull, /* 83 */
1293 0x8000000000800000ull, /* 84 */
1294 0x8000000000800080ull, /* 85 */
1295 0x8000000000808000ull, /* 86 */
1296 0x8000000000808080ull, /* 87 */
1297 0x8000000080000000ull, /* 88 */
1298 0x8000000080000080ull, /* 89 */
1299 0x8000000080008000ull, /* 8A */
1300 0x8000000080008080ull, /* 8B */
1301 0x8000000080800000ull, /* 8C */
1302 0x8000000080800080ull, /* 8D */
1303 0x8000000080808000ull, /* 8E */
1304 0x8000000080808080ull, /* 8F */
1305 0x8000008000000000ull, /* 90 */
1306 0x8000008000000080ull, /* 91 */
1307 0x8000008000008000ull, /* 92 */
1308 0x8000008000008080ull, /* 93 */
1309 0x8000008000800000ull, /* 94 */
1310 0x8000008000800080ull, /* 95 */
1311 0x8000008000808000ull, /* 96 */
1312 0x8000008000808080ull, /* 97 */
1313 0x8000008080000000ull, /* 98 */
1314 0x8000008080000080ull, /* 99 */
1315 0x8000008080008000ull, /* 9A */
1316 0x8000008080008080ull, /* 9B */
1317 0x8000008080800000ull, /* 9C */
1318 0x8000008080800080ull, /* 9D */
1319 0x8000008080808000ull, /* 9E */
1320 0x8000008080808080ull, /* 9F */
1321 0x8000800000000000ull, /* A0 */
1322 0x8000800000000080ull, /* A1 */
1323 0x8000800000008000ull, /* A2 */
1324 0x8000800000008080ull, /* A3 */
1325 0x8000800000800000ull, /* A4 */
1326 0x8000800000800080ull, /* A5 */
1327 0x8000800000808000ull, /* A6 */
1328 0x8000800000808080ull, /* A7 */
1329 0x8000800080000000ull, /* A8 */
1330 0x8000800080000080ull, /* A9 */
1331 0x8000800080008000ull, /* AA */
1332 0x8000800080008080ull, /* AB */
1333 0x8000800080800000ull, /* AC */
1334 0x8000800080800080ull, /* AD */
1335 0x8000800080808000ull, /* AE */
1336 0x8000800080808080ull, /* AF */
1337 0x8000808000000000ull, /* B0 */
1338 0x8000808000000080ull, /* B1 */
1339 0x8000808000008000ull, /* B2 */
1340 0x8000808000008080ull, /* B3 */
1341 0x8000808000800000ull, /* B4 */
1342 0x8000808000800080ull, /* B5 */
1343 0x8000808000808000ull, /* B6 */
1344 0x8000808000808080ull, /* B7 */
1345 0x8000808080000000ull, /* B8 */
1346 0x8000808080000080ull, /* B9 */
1347 0x8000808080008000ull, /* BA */
1348 0x8000808080008080ull, /* BB */
1349 0x8000808080800000ull, /* BC */
1350 0x8000808080800080ull, /* BD */
1351 0x8000808080808000ull, /* BE */
1352 0x8000808080808080ull, /* BF */
1353 0x8080000000000000ull, /* C0 */
1354 0x8080000000000080ull, /* C1 */
1355 0x8080000000008000ull, /* C2 */
1356 0x8080000000008080ull, /* C3 */
1357 0x8080000000800000ull, /* C4 */
1358 0x8080000000800080ull, /* C5 */
1359 0x8080000000808000ull, /* C6 */
1360 0x8080000000808080ull, /* C7 */
1361 0x8080000080000000ull, /* C8 */
1362 0x8080000080000080ull, /* C9 */
1363 0x8080000080008000ull, /* CA */
1364 0x8080000080008080ull, /* CB */
1365 0x8080000080800000ull, /* CC */
1366 0x8080000080800080ull, /* CD */
1367 0x8080000080808000ull, /* CE */
1368 0x8080000080808080ull, /* CF */
1369 0x8080008000000000ull, /* D0 */
1370 0x8080008000000080ull, /* D1 */
1371 0x8080008000008000ull, /* D2 */
1372 0x8080008000008080ull, /* D3 */
1373 0x8080008000800000ull, /* D4 */
1374 0x8080008000800080ull, /* D5 */
1375 0x8080008000808000ull, /* D6 */
1376 0x8080008000808080ull, /* D7 */
1377 0x8080008080000000ull, /* D8 */
1378 0x8080008080000080ull, /* D9 */
1379 0x8080008080008000ull, /* DA */
1380 0x8080008080008080ull, /* DB */
1381 0x8080008080800000ull, /* DC */
1382 0x8080008080800080ull, /* DD */
1383 0x8080008080808000ull, /* DE */
1384 0x8080008080808080ull, /* DF */
1385 0x8080800000000000ull, /* E0 */
1386 0x8080800000000080ull, /* E1 */
1387 0x8080800000008000ull, /* E2 */
1388 0x8080800000008080ull, /* E3 */
1389 0x8080800000800000ull, /* E4 */
1390 0x8080800000800080ull, /* E5 */
1391 0x8080800000808000ull, /* E6 */
1392 0x8080800000808080ull, /* E7 */
1393 0x8080800080000000ull, /* E8 */
1394 0x8080800080000080ull, /* E9 */
1395 0x8080800080008000ull, /* EA */
1396 0x8080800080008080ull, /* EB */
1397 0x8080800080800000ull, /* EC */
1398 0x8080800080800080ull, /* ED */
1399 0x8080800080808000ull, /* EE */
1400 0x8080800080808080ull, /* EF */
1401 0x8080808000000000ull, /* F0 */
1402 0x8080808000000080ull, /* F1 */
1403 0x8080808000008000ull, /* F2 */
1404 0x8080808000008080ull, /* F3 */
1405 0x8080808000800000ull, /* F4 */
1406 0x8080808000800080ull, /* F5 */
1407 0x8080808000808000ull, /* F6 */
1408 0x8080808000808080ull, /* F7 */
1409 0x8080808080000000ull, /* F8 */
1410 0x8080808080000080ull, /* F9 */
1411 0x8080808080008000ull, /* FA */
1412 0x8080808080008080ull, /* FB */
1413 0x8080808080800000ull, /* FC */
1414 0x8080808080800080ull, /* FD */
1415 0x8080808080808000ull, /* FE */
1416 0x8080808080808080ull, /* FF */
1419 void helper_vgbbd(ppc_avr_t *r, ppc_avr_t *b)
1421 int i;
1422 uint64_t t[2] = { 0, 0 };
1424 VECTOR_FOR_INORDER_I(i, u8) {
1425 #if defined(HOST_WORDS_BIGENDIAN)
1426 t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (i & 7);
1427 #else
1428 t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (7-(i & 7));
1429 #endif
1432 r->u64[0] = t[0];
1433 r->u64[1] = t[1];
1436 #define PMSUM(name, srcfld, trgfld, trgtyp) \
1437 void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1439 int i, j; \
1440 trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])]; \
1442 VECTOR_FOR_INORDER_I(i, srcfld) { \
1443 prod[i] = 0; \
1444 for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) { \
1445 if (a->srcfld[i] & (1ull<<j)) { \
1446 prod[i] ^= ((trgtyp)b->srcfld[i] << j); \
1451 VECTOR_FOR_INORDER_I(i, trgfld) { \
1452 r->trgfld[i] = prod[2*i] ^ prod[2*i+1]; \
1456 PMSUM(vpmsumb, u8, u16, uint16_t)
1457 PMSUM(vpmsumh, u16, u32, uint32_t)
1458 PMSUM(vpmsumw, u32, u64, uint64_t)
1460 void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1463 #ifdef CONFIG_INT128
1464 int i, j;
1465 __uint128_t prod[2];
1467 VECTOR_FOR_INORDER_I(i, u64) {
1468 prod[i] = 0;
1469 for (j = 0; j < 64; j++) {
1470 if (a->u64[i] & (1ull<<j)) {
1471 prod[i] ^= (((__uint128_t)b->u64[i]) << j);
1476 r->u128 = prod[0] ^ prod[1];
1478 #else
1479 int i, j;
1480 ppc_avr_t prod[2];
1482 VECTOR_FOR_INORDER_I(i, u64) {
1483 prod[i].u64[LO_IDX] = prod[i].u64[HI_IDX] = 0;
1484 for (j = 0; j < 64; j++) {
1485 if (a->u64[i] & (1ull<<j)) {
1486 ppc_avr_t bshift;
1487 if (j == 0) {
1488 bshift.u64[HI_IDX] = 0;
1489 bshift.u64[LO_IDX] = b->u64[i];
1490 } else {
1491 bshift.u64[HI_IDX] = b->u64[i] >> (64-j);
1492 bshift.u64[LO_IDX] = b->u64[i] << j;
1494 prod[i].u64[LO_IDX] ^= bshift.u64[LO_IDX];
1495 prod[i].u64[HI_IDX] ^= bshift.u64[HI_IDX];
1500 r->u64[LO_IDX] = prod[0].u64[LO_IDX] ^ prod[1].u64[LO_IDX];
1501 r->u64[HI_IDX] = prod[0].u64[HI_IDX] ^ prod[1].u64[HI_IDX];
1502 #endif
1506 #if defined(HOST_WORDS_BIGENDIAN)
1507 #define PKBIG 1
1508 #else
1509 #define PKBIG 0
1510 #endif
1511 void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1513 int i, j;
1514 ppc_avr_t result;
1515 #if defined(HOST_WORDS_BIGENDIAN)
1516 const ppc_avr_t *x[2] = { a, b };
1517 #else
1518 const ppc_avr_t *x[2] = { b, a };
1519 #endif
1521 VECTOR_FOR_INORDER_I(i, u64) {
1522 VECTOR_FOR_INORDER_I(j, u32) {
1523 uint32_t e = x[i]->u32[j];
1525 result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
1526 ((e >> 6) & 0x3e0) |
1527 ((e >> 3) & 0x1f));
1530 *r = result;
1533 #define VPK(suffix, from, to, cvt, dosat) \
1534 void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r, \
1535 ppc_avr_t *a, ppc_avr_t *b) \
1537 int i; \
1538 int sat = 0; \
1539 ppc_avr_t result; \
1540 ppc_avr_t *a0 = PKBIG ? a : b; \
1541 ppc_avr_t *a1 = PKBIG ? b : a; \
1543 VECTOR_FOR_INORDER_I(i, from) { \
1544 result.to[i] = cvt(a0->from[i], &sat); \
1545 result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
1547 *r = result; \
1548 if (dosat && sat) { \
1549 env->vscr |= (1 << VSCR_SAT); \
1552 #define I(x, y) (x)
1553 VPK(shss, s16, s8, cvtshsb, 1)
1554 VPK(shus, s16, u8, cvtshub, 1)
1555 VPK(swss, s32, s16, cvtswsh, 1)
1556 VPK(swus, s32, u16, cvtswuh, 1)
1557 VPK(sdss, s64, s32, cvtsdsw, 1)
1558 VPK(sdus, s64, u32, cvtsduw, 1)
1559 VPK(uhus, u16, u8, cvtuhub, 1)
1560 VPK(uwus, u32, u16, cvtuwuh, 1)
1561 VPK(udus, u64, u32, cvtuduw, 1)
1562 VPK(uhum, u16, u8, I, 0)
1563 VPK(uwum, u32, u16, I, 0)
1564 VPK(udum, u64, u32, I, 0)
1565 #undef I
1566 #undef VPK
1567 #undef PKBIG
1569 void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1571 int i;
1573 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1574 r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
1578 #define VRFI(suffix, rounding) \
1579 void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r, \
1580 ppc_avr_t *b) \
1582 int i; \
1583 float_status s = env->vec_status; \
1585 set_float_rounding_mode(rounding, &s); \
1586 for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
1587 r->f[i] = float32_round_to_int (b->f[i], &s); \
1590 VRFI(n, float_round_nearest_even)
1591 VRFI(m, float_round_down)
1592 VRFI(p, float_round_up)
1593 VRFI(z, float_round_to_zero)
1594 #undef VRFI
1596 #define VROTATE(suffix, element, mask) \
1597 void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1599 int i; \
1601 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1602 unsigned int shift = b->element[i] & mask; \
1603 r->element[i] = (a->element[i] << shift) | \
1604 (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
1607 VROTATE(b, u8, 0x7)
1608 VROTATE(h, u16, 0xF)
1609 VROTATE(w, u32, 0x1F)
1610 VROTATE(d, u64, 0x3F)
1611 #undef VROTATE
1613 void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1615 int i;
1617 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1618 float32 t = float32_sqrt(b->f[i], &env->vec_status);
1620 r->f[i] = float32_div(float32_one, t, &env->vec_status);
1624 void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
1625 ppc_avr_t *c)
1627 r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
1628 r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
1631 void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1633 int i;
1635 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1636 r->f[i] = float32_exp2(b->f[i], &env->vec_status);
1640 void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
1642 int i;
1644 for (i = 0; i < ARRAY_SIZE(r->f); i++) {
1645 r->f[i] = float32_log2(b->f[i], &env->vec_status);
1649 /* The specification says that the results are undefined if all of the
1650 * shift counts are not identical. We check to make sure that they are
1651 * to conform to what real hardware appears to do. */
1652 #define VSHIFT(suffix, leftp) \
1653 void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1655 int shift = b->u8[LO_IDX*15] & 0x7; \
1656 int doit = 1; \
1657 int i; \
1659 for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
1660 doit = doit && ((b->u8[i] & 0x7) == shift); \
1662 if (doit) { \
1663 if (shift == 0) { \
1664 *r = *a; \
1665 } else if (leftp) { \
1666 uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
1668 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
1669 r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
1670 } else { \
1671 uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
1673 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
1674 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
1678 VSHIFT(l, 1)
1679 VSHIFT(r, 0)
1680 #undef VSHIFT
1682 #define VSL(suffix, element, mask) \
1683 void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1685 int i; \
1687 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1688 unsigned int shift = b->element[i] & mask; \
1690 r->element[i] = a->element[i] << shift; \
1693 VSL(b, u8, 0x7)
1694 VSL(h, u16, 0x0F)
1695 VSL(w, u32, 0x1F)
1696 VSL(d, u64, 0x3F)
1697 #undef VSL
1699 void helper_vslv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1701 int i;
1702 unsigned int shift, bytes, size;
1704 size = ARRAY_SIZE(r->u8);
1705 for (i = 0; i < size; i++) {
1706 shift = b->u8[i] & 0x7; /* extract shift value */
1707 bytes = (a->u8[i] << 8) + /* extract adjacent bytes */
1708 (((i + 1) < size) ? a->u8[i + 1] : 0);
1709 r->u8[i] = (bytes << shift) >> 8; /* shift and store result */
1713 void helper_vsrv(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1715 int i;
1716 unsigned int shift, bytes;
1718 /* Use reverse order, as destination and source register can be same. Its
1719 * being modified in place saving temporary, reverse order will guarantee
1720 * that computed result is not fed back.
1722 for (i = ARRAY_SIZE(r->u8) - 1; i >= 0; i--) {
1723 shift = b->u8[i] & 0x7; /* extract shift value */
1724 bytes = ((i ? a->u8[i - 1] : 0) << 8) + a->u8[i];
1725 /* extract adjacent bytes */
1726 r->u8[i] = (bytes >> shift) & 0xFF; /* shift and store result */
1730 void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
1732 int sh = shift & 0xf;
1733 int i;
1734 ppc_avr_t result;
1736 #if defined(HOST_WORDS_BIGENDIAN)
1737 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1738 int index = sh + i;
1739 if (index > 0xf) {
1740 result.u8[i] = b->u8[index - 0x10];
1741 } else {
1742 result.u8[i] = a->u8[index];
1745 #else
1746 for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
1747 int index = (16 - sh) + i;
1748 if (index > 0xf) {
1749 result.u8[i] = a->u8[index - 0x10];
1750 } else {
1751 result.u8[i] = b->u8[index];
1754 #endif
1755 *r = result;
1758 void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1760 int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
1762 #if defined(HOST_WORDS_BIGENDIAN)
1763 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1764 memset(&r->u8[16-sh], 0, sh);
1765 #else
1766 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1767 memset(&r->u8[0], 0, sh);
1768 #endif
1771 /* Experimental testing shows that hardware masks the immediate. */
1772 #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
1773 #if defined(HOST_WORDS_BIGENDIAN)
1774 #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
1775 #else
1776 #define SPLAT_ELEMENT(element) \
1777 (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
1778 #endif
1779 #define VSPLT(suffix, element) \
1780 void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
1782 uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
1783 int i; \
1785 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1786 r->element[i] = s; \
1789 VSPLT(b, u8)
1790 VSPLT(h, u16)
1791 VSPLT(w, u32)
1792 #undef VSPLT
1793 #undef SPLAT_ELEMENT
1794 #undef _SPLAT_MASKED
1796 #define VSPLTI(suffix, element, splat_type) \
1797 void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
1799 splat_type x = (int8_t)(splat << 3) >> 3; \
1800 int i; \
1802 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1803 r->element[i] = x; \
1806 VSPLTI(b, s8, int8_t)
1807 VSPLTI(h, s16, int16_t)
1808 VSPLTI(w, s32, int32_t)
1809 #undef VSPLTI
1811 #define VSR(suffix, element, mask) \
1812 void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
1814 int i; \
1816 for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
1817 unsigned int shift = b->element[i] & mask; \
1818 r->element[i] = a->element[i] >> shift; \
1821 VSR(ab, s8, 0x7)
1822 VSR(ah, s16, 0xF)
1823 VSR(aw, s32, 0x1F)
1824 VSR(ad, s64, 0x3F)
1825 VSR(b, u8, 0x7)
1826 VSR(h, u16, 0xF)
1827 VSR(w, u32, 0x1F)
1828 VSR(d, u64, 0x3F)
1829 #undef VSR
1831 void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1833 int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
1835 #if defined(HOST_WORDS_BIGENDIAN)
1836 memmove(&r->u8[sh], &a->u8[0], 16 - sh);
1837 memset(&r->u8[0], 0, sh);
1838 #else
1839 memmove(&r->u8[0], &a->u8[sh], 16 - sh);
1840 memset(&r->u8[16 - sh], 0, sh);
1841 #endif
1844 void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1846 int i;
1848 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1849 r->u32[i] = a->u32[i] >= b->u32[i];
1853 void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1855 int64_t t;
1856 int i, upper;
1857 ppc_avr_t result;
1858 int sat = 0;
1860 #if defined(HOST_WORDS_BIGENDIAN)
1861 upper = ARRAY_SIZE(r->s32)-1;
1862 #else
1863 upper = 0;
1864 #endif
1865 t = (int64_t)b->s32[upper];
1866 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1867 t += a->s32[i];
1868 result.s32[i] = 0;
1870 result.s32[upper] = cvtsdsw(t, &sat);
1871 *r = result;
1873 if (sat) {
1874 env->vscr |= (1 << VSCR_SAT);
1878 void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1880 int i, j, upper;
1881 ppc_avr_t result;
1882 int sat = 0;
1884 #if defined(HOST_WORDS_BIGENDIAN)
1885 upper = 1;
1886 #else
1887 upper = 0;
1888 #endif
1889 for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
1890 int64_t t = (int64_t)b->s32[upper + i * 2];
1892 result.u64[i] = 0;
1893 for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
1894 t += a->s32[2 * i + j];
1896 result.s32[upper + i * 2] = cvtsdsw(t, &sat);
1899 *r = result;
1900 if (sat) {
1901 env->vscr |= (1 << VSCR_SAT);
1905 void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1907 int i, j;
1908 int sat = 0;
1910 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1911 int64_t t = (int64_t)b->s32[i];
1913 for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
1914 t += a->s8[4 * i + j];
1916 r->s32[i] = cvtsdsw(t, &sat);
1919 if (sat) {
1920 env->vscr |= (1 << VSCR_SAT);
1924 void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1926 int sat = 0;
1927 int i;
1929 for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
1930 int64_t t = (int64_t)b->s32[i];
1932 t += a->s16[2 * i] + a->s16[2 * i + 1];
1933 r->s32[i] = cvtsdsw(t, &sat);
1936 if (sat) {
1937 env->vscr |= (1 << VSCR_SAT);
1941 void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
1943 int i, j;
1944 int sat = 0;
1946 for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
1947 uint64_t t = (uint64_t)b->u32[i];
1949 for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
1950 t += a->u8[4 * i + j];
1952 r->u32[i] = cvtuduw(t, &sat);
1955 if (sat) {
1956 env->vscr |= (1 << VSCR_SAT);
1960 #if defined(HOST_WORDS_BIGENDIAN)
1961 #define UPKHI 1
1962 #define UPKLO 0
1963 #else
1964 #define UPKHI 0
1965 #define UPKLO 1
1966 #endif
1967 #define VUPKPX(suffix, hi) \
1968 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1970 int i; \
1971 ppc_avr_t result; \
1973 for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
1974 uint16_t e = b->u16[hi ? i : i+4]; \
1975 uint8_t a = (e >> 15) ? 0xff : 0; \
1976 uint8_t r = (e >> 10) & 0x1f; \
1977 uint8_t g = (e >> 5) & 0x1f; \
1978 uint8_t b = e & 0x1f; \
1980 result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
1982 *r = result; \
1984 VUPKPX(lpx, UPKLO)
1985 VUPKPX(hpx, UPKHI)
1986 #undef VUPKPX
1988 #define VUPK(suffix, unpacked, packee, hi) \
1989 void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
1991 int i; \
1992 ppc_avr_t result; \
1994 if (hi) { \
1995 for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
1996 result.unpacked[i] = b->packee[i]; \
1998 } else { \
1999 for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
2000 i++) { \
2001 result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2004 *r = result; \
2006 VUPK(hsb, s16, s8, UPKHI)
2007 VUPK(hsh, s32, s16, UPKHI)
2008 VUPK(hsw, s64, s32, UPKHI)
2009 VUPK(lsb, s16, s8, UPKLO)
2010 VUPK(lsh, s32, s16, UPKLO)
2011 VUPK(lsw, s64, s32, UPKLO)
2012 #undef VUPK
2013 #undef UPKHI
2014 #undef UPKLO
2016 #define VGENERIC_DO(name, element) \
2017 void helper_v##name(ppc_avr_t *r, ppc_avr_t *b) \
2019 int i; \
2021 VECTOR_FOR_INORDER_I(i, element) { \
2022 r->element[i] = name(b->element[i]); \
2026 #define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
2027 #define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
2028 #define clzw(v) clz32((v))
2029 #define clzd(v) clz64((v))
2031 VGENERIC_DO(clzb, u8)
2032 VGENERIC_DO(clzh, u16)
2033 VGENERIC_DO(clzw, u32)
2034 VGENERIC_DO(clzd, u64)
2036 #undef clzb
2037 #undef clzh
2038 #undef clzw
2039 #undef clzd
2041 #define popcntb(v) ctpop8(v)
2042 #define popcnth(v) ctpop16(v)
2043 #define popcntw(v) ctpop32(v)
2044 #define popcntd(v) ctpop64(v)
2046 VGENERIC_DO(popcntb, u8)
2047 VGENERIC_DO(popcnth, u16)
2048 VGENERIC_DO(popcntw, u32)
2049 VGENERIC_DO(popcntd, u64)
2051 #undef popcntb
2052 #undef popcnth
2053 #undef popcntw
2054 #undef popcntd
2056 #undef VGENERIC_DO
2058 #if defined(HOST_WORDS_BIGENDIAN)
2059 #define QW_ONE { .u64 = { 0, 1 } }
2060 #else
2061 #define QW_ONE { .u64 = { 1, 0 } }
2062 #endif
2064 #ifndef CONFIG_INT128
2066 static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
2068 t->u64[0] = ~a.u64[0];
2069 t->u64[1] = ~a.u64[1];
2072 static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
2074 if (a.u64[HI_IDX] < b.u64[HI_IDX]) {
2075 return -1;
2076 } else if (a.u64[HI_IDX] > b.u64[HI_IDX]) {
2077 return 1;
2078 } else if (a.u64[LO_IDX] < b.u64[LO_IDX]) {
2079 return -1;
2080 } else if (a.u64[LO_IDX] > b.u64[LO_IDX]) {
2081 return 1;
2082 } else {
2083 return 0;
2087 static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2089 t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
2090 t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
2091 (~a.u64[LO_IDX] < b.u64[LO_IDX]);
2094 static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
2096 ppc_avr_t not_a;
2097 t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
2098 t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
2099 (~a.u64[LO_IDX] < b.u64[LO_IDX]);
2100 avr_qw_not(&not_a, a);
2101 return avr_qw_cmpu(not_a, b) < 0;
2104 #endif
2106 void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2108 #ifdef CONFIG_INT128
2109 r->u128 = a->u128 + b->u128;
2110 #else
2111 avr_qw_add(r, *a, *b);
2112 #endif
2115 void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2117 #ifdef CONFIG_INT128
2118 r->u128 = a->u128 + b->u128 + (c->u128 & 1);
2119 #else
2121 if (c->u64[LO_IDX] & 1) {
2122 ppc_avr_t tmp;
2124 tmp.u64[HI_IDX] = 0;
2125 tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
2126 avr_qw_add(&tmp, *a, tmp);
2127 avr_qw_add(r, tmp, *b);
2128 } else {
2129 avr_qw_add(r, *a, *b);
2131 #endif
2134 void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2136 #ifdef CONFIG_INT128
2137 r->u128 = (~a->u128 < b->u128);
2138 #else
2139 ppc_avr_t not_a;
2141 avr_qw_not(&not_a, *a);
2143 r->u64[HI_IDX] = 0;
2144 r->u64[LO_IDX] = (avr_qw_cmpu(not_a, *b) < 0);
2145 #endif
2148 void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2150 #ifdef CONFIG_INT128
2151 int carry_out = (~a->u128 < b->u128);
2152 if (!carry_out && (c->u128 & 1)) {
2153 carry_out = ((a->u128 + b->u128 + 1) == 0) &&
2154 ((a->u128 != 0) || (b->u128 != 0));
2156 r->u128 = carry_out;
2157 #else
2159 int carry_in = c->u64[LO_IDX] & 1;
2160 int carry_out = 0;
2161 ppc_avr_t tmp;
2163 carry_out = avr_qw_addc(&tmp, *a, *b);
2165 if (!carry_out && carry_in) {
2166 ppc_avr_t one = QW_ONE;
2167 carry_out = avr_qw_addc(&tmp, tmp, one);
2169 r->u64[HI_IDX] = 0;
2170 r->u64[LO_IDX] = carry_out;
2171 #endif
2174 void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2176 #ifdef CONFIG_INT128
2177 r->u128 = a->u128 - b->u128;
2178 #else
2179 ppc_avr_t tmp;
2180 ppc_avr_t one = QW_ONE;
2182 avr_qw_not(&tmp, *b);
2183 avr_qw_add(&tmp, *a, tmp);
2184 avr_qw_add(r, tmp, one);
2185 #endif
2188 void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2190 #ifdef CONFIG_INT128
2191 r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
2192 #else
2193 ppc_avr_t tmp, sum;
2195 avr_qw_not(&tmp, *b);
2196 avr_qw_add(&sum, *a, tmp);
2198 tmp.u64[HI_IDX] = 0;
2199 tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
2200 avr_qw_add(r, sum, tmp);
2201 #endif
2204 void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2206 #ifdef CONFIG_INT128
2207 r->u128 = (~a->u128 < ~b->u128) ||
2208 (a->u128 + ~b->u128 == (__uint128_t)-1);
2209 #else
2210 int carry = (avr_qw_cmpu(*a, *b) > 0);
2211 if (!carry) {
2212 ppc_avr_t tmp;
2213 avr_qw_not(&tmp, *b);
2214 avr_qw_add(&tmp, *a, tmp);
2215 carry = ((tmp.s64[HI_IDX] == -1ull) && (tmp.s64[LO_IDX] == -1ull));
2217 r->u64[HI_IDX] = 0;
2218 r->u64[LO_IDX] = carry;
2219 #endif
2222 void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2224 #ifdef CONFIG_INT128
2225 r->u128 =
2226 (~a->u128 < ~b->u128) ||
2227 ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
2228 #else
2229 int carry_in = c->u64[LO_IDX] & 1;
2230 int carry_out = (avr_qw_cmpu(*a, *b) > 0);
2231 if (!carry_out && carry_in) {
2232 ppc_avr_t tmp;
2233 avr_qw_not(&tmp, *b);
2234 avr_qw_add(&tmp, *a, tmp);
2235 carry_out = ((tmp.u64[HI_IDX] == -1ull) && (tmp.u64[LO_IDX] == -1ull));
2238 r->u64[HI_IDX] = 0;
2239 r->u64[LO_IDX] = carry_out;
2240 #endif
2243 #define BCD_PLUS_PREF_1 0xC
2244 #define BCD_PLUS_PREF_2 0xF
2245 #define BCD_PLUS_ALT_1 0xA
2246 #define BCD_NEG_PREF 0xD
2247 #define BCD_NEG_ALT 0xB
2248 #define BCD_PLUS_ALT_2 0xE
2250 #if defined(HOST_WORDS_BIGENDIAN)
2251 #define BCD_DIG_BYTE(n) (15 - (n/2))
2252 #else
2253 #define BCD_DIG_BYTE(n) (n/2)
2254 #endif
2256 static int bcd_get_sgn(ppc_avr_t *bcd)
2258 switch (bcd->u8[BCD_DIG_BYTE(0)] & 0xF) {
2259 case BCD_PLUS_PREF_1:
2260 case BCD_PLUS_PREF_2:
2261 case BCD_PLUS_ALT_1:
2262 case BCD_PLUS_ALT_2:
2264 return 1;
2267 case BCD_NEG_PREF:
2268 case BCD_NEG_ALT:
2270 return -1;
2273 default:
2275 return 0;
2280 static int bcd_preferred_sgn(int sgn, int ps)
2282 if (sgn >= 0) {
2283 return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
2284 } else {
2285 return BCD_NEG_PREF;
2289 static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
2291 uint8_t result;
2292 if (n & 1) {
2293 result = bcd->u8[BCD_DIG_BYTE(n)] >> 4;
2294 } else {
2295 result = bcd->u8[BCD_DIG_BYTE(n)] & 0xF;
2298 if (unlikely(result > 9)) {
2299 *invalid = true;
2301 return result;
2304 static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
2306 if (n & 1) {
2307 bcd->u8[BCD_DIG_BYTE(n)] &= 0x0F;
2308 bcd->u8[BCD_DIG_BYTE(n)] |= (digit<<4);
2309 } else {
2310 bcd->u8[BCD_DIG_BYTE(n)] &= 0xF0;
2311 bcd->u8[BCD_DIG_BYTE(n)] |= digit;
2315 static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
2317 int i;
2318 int invalid = 0;
2319 for (i = 31; i > 0; i--) {
2320 uint8_t dig_a = bcd_get_digit(a, i, &invalid);
2321 uint8_t dig_b = bcd_get_digit(b, i, &invalid);
2322 if (unlikely(invalid)) {
2323 return 0; /* doesn't matter */
2324 } else if (dig_a > dig_b) {
2325 return 1;
2326 } else if (dig_a < dig_b) {
2327 return -1;
2331 return 0;
2334 static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2335 int *overflow)
2337 int carry = 0;
2338 int i;
2339 int is_zero = 1;
2340 for (i = 1; i <= 31; i++) {
2341 uint8_t digit = bcd_get_digit(a, i, invalid) +
2342 bcd_get_digit(b, i, invalid) + carry;
2343 is_zero &= (digit == 0);
2344 if (digit > 9) {
2345 carry = 1;
2346 digit -= 10;
2347 } else {
2348 carry = 0;
2351 bcd_put_digit(t, digit, i);
2353 if (unlikely(*invalid)) {
2354 return -1;
2358 *overflow = carry;
2359 return is_zero;
2362 static int bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
2363 int *overflow)
2365 int carry = 0;
2366 int i;
2367 int is_zero = 1;
2368 for (i = 1; i <= 31; i++) {
2369 uint8_t digit = bcd_get_digit(a, i, invalid) -
2370 bcd_get_digit(b, i, invalid) + carry;
2371 is_zero &= (digit == 0);
2372 if (digit & 0x80) {
2373 carry = -1;
2374 digit += 10;
2375 } else {
2376 carry = 0;
2379 bcd_put_digit(t, digit, i);
2381 if (unlikely(*invalid)) {
2382 return -1;
2386 *overflow = carry;
2387 return is_zero;
2390 uint32_t helper_bcdadd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2393 int sgna = bcd_get_sgn(a);
2394 int sgnb = bcd_get_sgn(b);
2395 int invalid = (sgna == 0) || (sgnb == 0);
2396 int overflow = 0;
2397 int zero = 0;
2398 uint32_t cr = 0;
2399 ppc_avr_t result = { .u64 = { 0, 0 } };
2401 if (!invalid) {
2402 if (sgna == sgnb) {
2403 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
2404 zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
2405 cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2406 } else if (bcd_cmp_mag(a, b) > 0) {
2407 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
2408 zero = bcd_sub_mag(&result, a, b, &invalid, &overflow);
2409 cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2410 } else {
2411 result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb, ps);
2412 zero = bcd_sub_mag(&result, b, a, &invalid, &overflow);
2413 cr = (sgnb > 0) ? 1 << CRF_GT : 1 << CRF_LT;
2417 if (unlikely(invalid)) {
2418 result.u64[HI_IDX] = result.u64[LO_IDX] = -1;
2419 cr = 1 << CRF_SO;
2420 } else if (overflow) {
2421 cr |= 1 << CRF_SO;
2422 } else if (zero) {
2423 cr = 1 << CRF_EQ;
2426 *r = result;
2428 return cr;
2431 uint32_t helper_bcdsub(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
2433 ppc_avr_t bcopy = *b;
2434 int sgnb = bcd_get_sgn(b);
2435 if (sgnb < 0) {
2436 bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
2437 } else if (sgnb > 0) {
2438 bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
2440 /* else invalid ... defer to bcdadd code for proper handling */
2442 return helper_bcdadd(r, a, &bcopy, ps);
2445 void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
2447 int i;
2448 VECTOR_FOR_INORDER_I(i, u8) {
2449 r->u8[i] = AES_sbox[a->u8[i]];
2453 void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2455 ppc_avr_t result;
2456 int i;
2458 VECTOR_FOR_INORDER_I(i, u32) {
2459 result.AVRW(i) = b->AVRW(i) ^
2460 (AES_Te0[a->AVRB(AES_shifts[4*i + 0])] ^
2461 AES_Te1[a->AVRB(AES_shifts[4*i + 1])] ^
2462 AES_Te2[a->AVRB(AES_shifts[4*i + 2])] ^
2463 AES_Te3[a->AVRB(AES_shifts[4*i + 3])]);
2465 *r = result;
2468 void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2470 ppc_avr_t result;
2471 int i;
2473 VECTOR_FOR_INORDER_I(i, u8) {
2474 result.AVRB(i) = b->AVRB(i) ^ (AES_sbox[a->AVRB(AES_shifts[i])]);
2476 *r = result;
2479 void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2481 /* This differs from what is written in ISA V2.07. The RTL is */
2482 /* incorrect and will be fixed in V2.07B. */
2483 int i;
2484 ppc_avr_t tmp;
2486 VECTOR_FOR_INORDER_I(i, u8) {
2487 tmp.AVRB(i) = b->AVRB(i) ^ AES_isbox[a->AVRB(AES_ishifts[i])];
2490 VECTOR_FOR_INORDER_I(i, u32) {
2491 r->AVRW(i) =
2492 AES_imc[tmp.AVRB(4*i + 0)][0] ^
2493 AES_imc[tmp.AVRB(4*i + 1)][1] ^
2494 AES_imc[tmp.AVRB(4*i + 2)][2] ^
2495 AES_imc[tmp.AVRB(4*i + 3)][3];
2499 void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2501 ppc_avr_t result;
2502 int i;
2504 VECTOR_FOR_INORDER_I(i, u8) {
2505 result.AVRB(i) = b->AVRB(i) ^ (AES_isbox[a->AVRB(AES_ishifts[i])]);
2507 *r = result;
2510 #define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
2511 #if defined(HOST_WORDS_BIGENDIAN)
2512 #define EL_IDX(i) (i)
2513 #else
2514 #define EL_IDX(i) (3 - (i))
2515 #endif
2517 void helper_vshasigmaw(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2519 int st = (st_six & 0x10) != 0;
2520 int six = st_six & 0xF;
2521 int i;
2523 VECTOR_FOR_INORDER_I(i, u32) {
2524 if (st == 0) {
2525 if ((six & (0x8 >> i)) == 0) {
2526 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 7) ^
2527 ROTRu32(a->u32[EL_IDX(i)], 18) ^
2528 (a->u32[EL_IDX(i)] >> 3);
2529 } else { /* six.bit[i] == 1 */
2530 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 17) ^
2531 ROTRu32(a->u32[EL_IDX(i)], 19) ^
2532 (a->u32[EL_IDX(i)] >> 10);
2534 } else { /* st == 1 */
2535 if ((six & (0x8 >> i)) == 0) {
2536 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 2) ^
2537 ROTRu32(a->u32[EL_IDX(i)], 13) ^
2538 ROTRu32(a->u32[EL_IDX(i)], 22);
2539 } else { /* six.bit[i] == 1 */
2540 r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 6) ^
2541 ROTRu32(a->u32[EL_IDX(i)], 11) ^
2542 ROTRu32(a->u32[EL_IDX(i)], 25);
2548 #undef ROTRu32
2549 #undef EL_IDX
2551 #define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
2552 #if defined(HOST_WORDS_BIGENDIAN)
2553 #define EL_IDX(i) (i)
2554 #else
2555 #define EL_IDX(i) (1 - (i))
2556 #endif
2558 void helper_vshasigmad(ppc_avr_t *r, ppc_avr_t *a, uint32_t st_six)
2560 int st = (st_six & 0x10) != 0;
2561 int six = st_six & 0xF;
2562 int i;
2564 VECTOR_FOR_INORDER_I(i, u64) {
2565 if (st == 0) {
2566 if ((six & (0x8 >> (2*i))) == 0) {
2567 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 1) ^
2568 ROTRu64(a->u64[EL_IDX(i)], 8) ^
2569 (a->u64[EL_IDX(i)] >> 7);
2570 } else { /* six.bit[2*i] == 1 */
2571 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 19) ^
2572 ROTRu64(a->u64[EL_IDX(i)], 61) ^
2573 (a->u64[EL_IDX(i)] >> 6);
2575 } else { /* st == 1 */
2576 if ((six & (0x8 >> (2*i))) == 0) {
2577 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 28) ^
2578 ROTRu64(a->u64[EL_IDX(i)], 34) ^
2579 ROTRu64(a->u64[EL_IDX(i)], 39);
2580 } else { /* six.bit[2*i] == 1 */
2581 r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 14) ^
2582 ROTRu64(a->u64[EL_IDX(i)], 18) ^
2583 ROTRu64(a->u64[EL_IDX(i)], 41);
2589 #undef ROTRu64
2590 #undef EL_IDX
2592 void helper_vpermxor(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2594 ppc_avr_t result;
2595 int i;
2597 VECTOR_FOR_INORDER_I(i, u8) {
2598 int indexA = c->u8[i] >> 4;
2599 int indexB = c->u8[i] & 0xF;
2600 #if defined(HOST_WORDS_BIGENDIAN)
2601 result.u8[i] = a->u8[indexA] ^ b->u8[indexB];
2602 #else
2603 result.u8[i] = a->u8[15-indexA] ^ b->u8[15-indexB];
2604 #endif
2606 *r = result;
2609 #undef VECTOR_FOR_INORDER_I
2610 #undef HI_IDX
2611 #undef LO_IDX
2613 /*****************************************************************************/
2614 /* SPE extension helpers */
2615 /* Use a table to make this quicker */
2616 static const uint8_t hbrev[16] = {
2617 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2618 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2621 static inline uint8_t byte_reverse(uint8_t val)
2623 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2626 static inline uint32_t word_reverse(uint32_t val)
2628 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2629 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2632 #define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
2633 target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
2635 uint32_t a, b, d, mask;
2637 mask = UINT32_MAX >> (32 - MASKBITS);
2638 a = arg1 & mask;
2639 b = arg2 & mask;
2640 d = word_reverse(1 + word_reverse(a | ~b));
2641 return (arg1 & ~mask) | (d & b);
2644 uint32_t helper_cntlsw32(uint32_t val)
2646 if (val & 0x80000000) {
2647 return clz32(~val);
2648 } else {
2649 return clz32(val);
2653 uint32_t helper_cntlzw32(uint32_t val)
2655 return clz32(val);
2658 /* 440 specific */
2659 target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
2660 target_ulong low, uint32_t update_Rc)
2662 target_ulong mask;
2663 int i;
2665 i = 1;
2666 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2667 if ((high & mask) == 0) {
2668 if (update_Rc) {
2669 env->crf[0] = 0x4;
2671 goto done;
2673 i++;
2675 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
2676 if ((low & mask) == 0) {
2677 if (update_Rc) {
2678 env->crf[0] = 0x8;
2680 goto done;
2682 i++;
2684 i = 8;
2685 if (update_Rc) {
2686 env->crf[0] = 0x2;
2688 done:
2689 env->xer = (env->xer & ~0x7F) | i;
2690 if (update_Rc) {
2691 env->crf[0] |= xer_so;
2693 return i;