target-arm: change LDREX alignment checks to use existing MO_ALIGN mechanism
[qemu/ar7.git] / target-arm / cpu.c
blob35a1f1266155afad7163a02315d40289709d4def
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "cpu.h"
22 #include "internals.h"
23 #include "qemu-common.h"
24 #include "hw/qdev-properties.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
33 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
35 ARMCPU *cpu = ARM_CPU(cs);
37 cpu->env.regs[15] = value;
40 static bool arm_cpu_has_work(CPUState *cs)
42 ARMCPU *cpu = ARM_CPU(cs);
44 return !cpu->powered_off
45 && cs->interrupt_request &
46 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
47 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
48 | CPU_INTERRUPT_EXITTB);
51 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
53 /* Reset a single ARMCPRegInfo register */
54 ARMCPRegInfo *ri = value;
55 ARMCPU *cpu = opaque;
57 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
58 return;
61 if (ri->resetfn) {
62 ri->resetfn(&cpu->env, ri);
63 return;
66 /* A zero offset is never possible as it would be regs[0]
67 * so we use it to indicate that reset is being handled elsewhere.
68 * This is basically only used for fields in non-core coprocessors
69 * (like the pxa2xx ones).
71 if (!ri->fieldoffset) {
72 return;
75 if (cpreg_field_is_64bit(ri)) {
76 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
77 } else {
78 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
82 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
84 /* Purely an assertion check: we've already done reset once,
85 * so now check that running the reset for the cpreg doesn't
86 * change its value. This traps bugs where two different cpregs
87 * both try to reset the same state field but to different values.
89 ARMCPRegInfo *ri = value;
90 ARMCPU *cpu = opaque;
91 uint64_t oldvalue, newvalue;
93 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
94 return;
97 oldvalue = read_raw_cp_reg(&cpu->env, ri);
98 cp_reg_reset(key, value, opaque);
99 newvalue = read_raw_cp_reg(&cpu->env, ri);
100 assert(oldvalue == newvalue);
103 /* CPUClass::reset() */
104 static void arm_cpu_reset(CPUState *s)
106 ARMCPU *cpu = ARM_CPU(s);
107 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
108 CPUARMState *env = &cpu->env;
110 acc->parent_reset(s);
112 memset(env, 0, offsetof(CPUARMState, features));
113 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
114 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
116 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
117 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
118 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
119 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
121 cpu->powered_off = cpu->start_powered_off;
122 s->halted = cpu->start_powered_off;
124 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
125 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
128 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
129 /* 64 bit CPUs always start in 64 bit mode */
130 env->aarch64 = 1;
131 #if defined(CONFIG_USER_ONLY)
132 env->pstate = PSTATE_MODE_EL0t;
133 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
134 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
135 /* and to the FP/Neon instructions */
136 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
137 #else
138 /* Reset into the highest available EL */
139 if (arm_feature(env, ARM_FEATURE_EL3)) {
140 env->pstate = PSTATE_MODE_EL3h;
141 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
142 env->pstate = PSTATE_MODE_EL2h;
143 } else {
144 env->pstate = PSTATE_MODE_EL1h;
146 env->pc = cpu->rvbar;
147 #endif
148 } else {
149 #if defined(CONFIG_USER_ONLY)
150 /* Userspace expects access to cp10 and cp11 for FP/Neon */
151 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
152 #endif
155 #if defined(CONFIG_USER_ONLY)
156 env->uncached_cpsr = ARM_CPU_MODE_USR;
157 /* For user mode we must enable access to coprocessors */
158 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
159 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
160 env->cp15.c15_cpar = 3;
161 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
162 env->cp15.c15_cpar = 1;
164 #else
165 /* SVC mode with interrupts disabled. */
166 env->uncached_cpsr = ARM_CPU_MODE_SVC;
167 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
168 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
169 * clear at reset. Initial SP and PC are loaded from ROM.
171 if (IS_M(env)) {
172 uint32_t initial_msp; /* Loaded from 0x0 */
173 uint32_t initial_pc; /* Loaded from 0x4 */
174 uint8_t *rom;
176 env->daif &= ~PSTATE_I;
177 rom = rom_ptr(0);
178 if (rom) {
179 /* Address zero is covered by ROM which hasn't yet been
180 * copied into physical memory.
182 initial_msp = ldl_p(rom);
183 initial_pc = ldl_p(rom + 4);
184 } else {
185 /* Address zero not covered by a ROM blob, or the ROM blob
186 * is in non-modifiable memory and this is a second reset after
187 * it got copied into memory. In the latter case, rom_ptr
188 * will return a NULL pointer and we should use ldl_phys instead.
190 initial_msp = ldl_phys(s->as, 0);
191 initial_pc = ldl_phys(s->as, 4);
194 env->regs[13] = initial_msp & 0xFFFFFFFC;
195 env->regs[15] = initial_pc & ~1;
196 env->thumb = initial_pc & 1;
199 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
200 * executing as AArch32 then check if highvecs are enabled and
201 * adjust the PC accordingly.
203 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
204 env->regs[15] = 0xFFFF0000;
207 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
208 #endif
209 set_flush_to_zero(1, &env->vfp.standard_fp_status);
210 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
211 set_default_nan_mode(1, &env->vfp.standard_fp_status);
212 set_float_detect_tininess(float_tininess_before_rounding,
213 &env->vfp.fp_status);
214 set_float_detect_tininess(float_tininess_before_rounding,
215 &env->vfp.standard_fp_status);
216 tlb_flush(s, 1);
218 #ifndef CONFIG_USER_ONLY
219 if (kvm_enabled()) {
220 kvm_arm_reset_vcpu(cpu);
222 #endif
224 hw_breakpoint_update_all(cpu);
225 hw_watchpoint_update_all(cpu);
228 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
230 CPUClass *cc = CPU_GET_CLASS(cs);
231 CPUARMState *env = cs->env_ptr;
232 uint32_t cur_el = arm_current_el(env);
233 bool secure = arm_is_secure(env);
234 uint32_t target_el;
235 uint32_t excp_idx;
236 bool ret = false;
238 if (interrupt_request & CPU_INTERRUPT_FIQ) {
239 excp_idx = EXCP_FIQ;
240 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
241 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
242 cs->exception_index = excp_idx;
243 env->exception.target_el = target_el;
244 cc->do_interrupt(cs);
245 ret = true;
248 if (interrupt_request & CPU_INTERRUPT_HARD) {
249 excp_idx = EXCP_IRQ;
250 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
251 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
252 cs->exception_index = excp_idx;
253 env->exception.target_el = target_el;
254 cc->do_interrupt(cs);
255 ret = true;
258 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
259 excp_idx = EXCP_VIRQ;
260 target_el = 1;
261 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
262 cs->exception_index = excp_idx;
263 env->exception.target_el = target_el;
264 cc->do_interrupt(cs);
265 ret = true;
268 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
269 excp_idx = EXCP_VFIQ;
270 target_el = 1;
271 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
272 cs->exception_index = excp_idx;
273 env->exception.target_el = target_el;
274 cc->do_interrupt(cs);
275 ret = true;
279 return ret;
282 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
283 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
285 CPUClass *cc = CPU_GET_CLASS(cs);
286 ARMCPU *cpu = ARM_CPU(cs);
287 CPUARMState *env = &cpu->env;
288 bool ret = false;
291 if (interrupt_request & CPU_INTERRUPT_FIQ
292 && !(env->daif & PSTATE_F)) {
293 cs->exception_index = EXCP_FIQ;
294 cc->do_interrupt(cs);
295 ret = true;
297 /* ARMv7-M interrupt return works by loading a magic value
298 * into the PC. On real hardware the load causes the
299 * return to occur. The qemu implementation performs the
300 * jump normally, then does the exception return when the
301 * CPU tries to execute code at the magic address.
302 * This will cause the magic PC value to be pushed to
303 * the stack if an interrupt occurred at the wrong time.
304 * We avoid this by disabling interrupts when
305 * pc contains a magic address.
307 if (interrupt_request & CPU_INTERRUPT_HARD
308 && !(env->daif & PSTATE_I)
309 && (env->regs[15] < 0xfffffff0)) {
310 cs->exception_index = EXCP_IRQ;
311 cc->do_interrupt(cs);
312 ret = true;
314 return ret;
316 #endif
318 #ifndef CONFIG_USER_ONLY
319 static void arm_cpu_set_irq(void *opaque, int irq, int level)
321 ARMCPU *cpu = opaque;
322 CPUARMState *env = &cpu->env;
323 CPUState *cs = CPU(cpu);
324 static const int mask[] = {
325 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
326 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
327 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
328 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
331 switch (irq) {
332 case ARM_CPU_VIRQ:
333 case ARM_CPU_VFIQ:
334 assert(arm_feature(env, ARM_FEATURE_EL2));
335 /* fall through */
336 case ARM_CPU_IRQ:
337 case ARM_CPU_FIQ:
338 if (level) {
339 cpu_interrupt(cs, mask[irq]);
340 } else {
341 cpu_reset_interrupt(cs, mask[irq]);
343 break;
344 default:
345 g_assert_not_reached();
349 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
351 #ifdef CONFIG_KVM
352 ARMCPU *cpu = opaque;
353 CPUState *cs = CPU(cpu);
354 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
356 switch (irq) {
357 case ARM_CPU_IRQ:
358 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
359 break;
360 case ARM_CPU_FIQ:
361 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
362 break;
363 default:
364 g_assert_not_reached();
366 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
367 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
368 #endif
371 static bool arm_cpu_is_big_endian(CPUState *cs)
373 ARMCPU *cpu = ARM_CPU(cs);
374 CPUARMState *env = &cpu->env;
375 int cur_el;
377 cpu_synchronize_state(cs);
379 /* In 32bit guest endianness is determined by looking at CPSR's E bit */
380 if (!is_a64(env)) {
381 return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
384 cur_el = arm_current_el(env);
386 if (cur_el == 0) {
387 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
390 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
393 #endif
395 static inline void set_feature(CPUARMState *env, int feature)
397 env->features |= 1ULL << feature;
400 static inline void unset_feature(CPUARMState *env, int feature)
402 env->features &= ~(1ULL << feature);
405 static int
406 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
408 return print_insn_arm(pc | 1, info);
411 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
413 ARMCPU *ac = ARM_CPU(cpu);
414 CPUARMState *env = &ac->env;
416 if (is_a64(env)) {
417 /* We might not be compiled with the A64 disassembler
418 * because it needs a C++ compiler. Leave print_insn
419 * unset in this case to use the caller default behaviour.
421 #if defined(CONFIG_ARM_A64_DIS)
422 info->print_insn = print_insn_arm_a64;
423 #endif
424 } else if (env->thumb) {
425 info->print_insn = print_insn_thumb1;
426 } else {
427 info->print_insn = print_insn_arm;
429 if (env->bswap_code) {
430 #ifdef TARGET_WORDS_BIGENDIAN
431 info->endian = BFD_ENDIAN_LITTLE;
432 #else
433 info->endian = BFD_ENDIAN_BIG;
434 #endif
438 #define ARM_CPUS_PER_CLUSTER 8
440 static void arm_cpu_initfn(Object *obj)
442 CPUState *cs = CPU(obj);
443 ARMCPU *cpu = ARM_CPU(obj);
444 static bool inited;
445 uint32_t Aff1, Aff0;
447 cs->env_ptr = &cpu->env;
448 cpu_exec_init(cs, &error_abort);
449 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
450 g_free, g_free);
452 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
453 * We don't support setting cluster ID ([16..23]) (known as Aff2
454 * in later ARM ARM versions), or any of the higher affinity level fields,
455 * so these bits always RAZ.
457 Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
458 Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
459 cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
461 #ifndef CONFIG_USER_ONLY
462 /* Our inbound IRQ and FIQ lines */
463 if (kvm_enabled()) {
464 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
465 * the same interface as non-KVM CPUs.
467 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
468 } else {
469 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
472 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
473 arm_gt_ptimer_cb, cpu);
474 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
475 arm_gt_vtimer_cb, cpu);
476 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
477 arm_gt_htimer_cb, cpu);
478 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
479 arm_gt_stimer_cb, cpu);
480 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
481 ARRAY_SIZE(cpu->gt_timer_outputs));
482 #endif
484 /* DTB consumers generally don't in fact care what the 'compatible'
485 * string is, so always provide some string and trust that a hypothetical
486 * picky DTB consumer will also provide a helpful error message.
488 cpu->dtb_compatible = "qemu,unknown";
489 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
490 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
492 if (tcg_enabled()) {
493 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
494 if (!inited) {
495 inited = true;
496 arm_translate_init();
501 static Property arm_cpu_reset_cbar_property =
502 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
504 static Property arm_cpu_reset_hivecs_property =
505 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
507 static Property arm_cpu_rvbar_property =
508 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
510 static Property arm_cpu_has_el3_property =
511 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
513 static Property arm_cpu_has_mpu_property =
514 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
516 static Property arm_cpu_pmsav7_dregion_property =
517 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
519 static void arm_cpu_post_init(Object *obj)
521 ARMCPU *cpu = ARM_CPU(obj);
523 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
524 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
525 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
526 &error_abort);
529 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
530 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
531 &error_abort);
534 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
535 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
536 &error_abort);
539 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
540 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
541 * prevent "has_el3" from existing on CPUs which cannot support EL3.
543 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
544 &error_abort);
547 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
548 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
549 &error_abort);
550 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
551 qdev_property_add_static(DEVICE(obj),
552 &arm_cpu_pmsav7_dregion_property,
553 &error_abort);
559 static void arm_cpu_finalizefn(Object *obj)
561 ARMCPU *cpu = ARM_CPU(obj);
562 g_hash_table_destroy(cpu->cp_regs);
565 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
567 CPUState *cs = CPU(dev);
568 ARMCPU *cpu = ARM_CPU(dev);
569 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
570 CPUARMState *env = &cpu->env;
572 /* Some features automatically imply others: */
573 if (arm_feature(env, ARM_FEATURE_V8)) {
574 set_feature(env, ARM_FEATURE_V7);
575 set_feature(env, ARM_FEATURE_ARM_DIV);
576 set_feature(env, ARM_FEATURE_LPAE);
578 if (arm_feature(env, ARM_FEATURE_V7)) {
579 set_feature(env, ARM_FEATURE_VAPA);
580 set_feature(env, ARM_FEATURE_THUMB2);
581 set_feature(env, ARM_FEATURE_MPIDR);
582 if (!arm_feature(env, ARM_FEATURE_M)) {
583 set_feature(env, ARM_FEATURE_V6K);
584 } else {
585 set_feature(env, ARM_FEATURE_V6);
588 if (arm_feature(env, ARM_FEATURE_V6K)) {
589 set_feature(env, ARM_FEATURE_V6);
590 set_feature(env, ARM_FEATURE_MVFR);
592 if (arm_feature(env, ARM_FEATURE_V6)) {
593 set_feature(env, ARM_FEATURE_V5);
594 if (!arm_feature(env, ARM_FEATURE_M)) {
595 set_feature(env, ARM_FEATURE_AUXCR);
598 if (arm_feature(env, ARM_FEATURE_V5)) {
599 set_feature(env, ARM_FEATURE_V4T);
601 if (arm_feature(env, ARM_FEATURE_M)) {
602 set_feature(env, ARM_FEATURE_THUMB_DIV);
604 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
605 set_feature(env, ARM_FEATURE_THUMB_DIV);
607 if (arm_feature(env, ARM_FEATURE_VFP4)) {
608 set_feature(env, ARM_FEATURE_VFP3);
609 set_feature(env, ARM_FEATURE_VFP_FP16);
611 if (arm_feature(env, ARM_FEATURE_VFP3)) {
612 set_feature(env, ARM_FEATURE_VFP);
614 if (arm_feature(env, ARM_FEATURE_LPAE)) {
615 set_feature(env, ARM_FEATURE_V7MP);
616 set_feature(env, ARM_FEATURE_PXN);
618 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
619 set_feature(env, ARM_FEATURE_CBAR);
621 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
622 !arm_feature(env, ARM_FEATURE_M)) {
623 set_feature(env, ARM_FEATURE_THUMB_DSP);
626 if (cpu->reset_hivecs) {
627 cpu->reset_sctlr |= (1 << 13);
630 if (!cpu->has_el3) {
631 /* If the has_el3 CPU property is disabled then we need to disable the
632 * feature.
634 unset_feature(env, ARM_FEATURE_EL3);
636 /* Disable the security extension feature bits in the processor feature
637 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
639 cpu->id_pfr1 &= ~0xf0;
640 cpu->id_aa64pfr0 &= ~0xf000;
643 if (!cpu->has_mpu) {
644 unset_feature(env, ARM_FEATURE_MPU);
647 if (arm_feature(env, ARM_FEATURE_MPU) &&
648 arm_feature(env, ARM_FEATURE_V7)) {
649 uint32_t nr = cpu->pmsav7_dregion;
651 if (nr > 0xff) {
652 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32 "\n", nr);
653 return;
656 if (nr) {
657 env->pmsav7.drbar = g_new0(uint32_t, nr);
658 env->pmsav7.drsr = g_new0(uint32_t, nr);
659 env->pmsav7.dracr = g_new0(uint32_t, nr);
663 register_cp_regs_for_features(cpu);
664 arm_cpu_register_gdb_regs_for_features(cpu);
666 init_cpreg_list(cpu);
668 qemu_init_vcpu(cs);
669 cpu_reset(cs);
671 acc->parent_realize(dev, errp);
674 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
676 ObjectClass *oc;
677 char *typename;
678 char **cpuname;
680 if (!cpu_model) {
681 return NULL;
684 cpuname = g_strsplit(cpu_model, ",", 1);
685 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
686 oc = object_class_by_name(typename);
687 g_strfreev(cpuname);
688 g_free(typename);
689 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
690 object_class_is_abstract(oc)) {
691 return NULL;
693 return oc;
696 /* CPU models. These are not needed for the AArch64 linux-user build. */
697 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
699 static void arm926_initfn(Object *obj)
701 ARMCPU *cpu = ARM_CPU(obj);
703 cpu->dtb_compatible = "arm,arm926";
704 set_feature(&cpu->env, ARM_FEATURE_V5);
705 set_feature(&cpu->env, ARM_FEATURE_VFP);
706 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
707 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
708 cpu->midr = 0x41069265;
709 cpu->reset_fpsid = 0x41011090;
710 cpu->ctr = 0x1dd20d2;
711 cpu->reset_sctlr = 0x00090078;
714 static void arm946_initfn(Object *obj)
716 ARMCPU *cpu = ARM_CPU(obj);
718 cpu->dtb_compatible = "arm,arm946";
719 set_feature(&cpu->env, ARM_FEATURE_V5);
720 set_feature(&cpu->env, ARM_FEATURE_MPU);
721 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
722 cpu->midr = 0x41059461;
723 cpu->ctr = 0x0f004006;
724 cpu->reset_sctlr = 0x00000078;
727 static void arm1026_initfn(Object *obj)
729 ARMCPU *cpu = ARM_CPU(obj);
731 cpu->dtb_compatible = "arm,arm1026";
732 set_feature(&cpu->env, ARM_FEATURE_V5);
733 set_feature(&cpu->env, ARM_FEATURE_VFP);
734 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
735 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
736 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
737 cpu->midr = 0x4106a262;
738 cpu->reset_fpsid = 0x410110a0;
739 cpu->ctr = 0x1dd20d2;
740 cpu->reset_sctlr = 0x00090078;
741 cpu->reset_auxcr = 1;
743 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
744 ARMCPRegInfo ifar = {
745 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
746 .access = PL1_RW,
747 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
748 .resetvalue = 0
750 define_one_arm_cp_reg(cpu, &ifar);
754 static void arm1136_r2_initfn(Object *obj)
756 ARMCPU *cpu = ARM_CPU(obj);
757 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
758 * older core than plain "arm1136". In particular this does not
759 * have the v6K features.
760 * These ID register values are correct for 1136 but may be wrong
761 * for 1136_r2 (in particular r0p2 does not actually implement most
762 * of the ID registers).
765 cpu->dtb_compatible = "arm,arm1136";
766 set_feature(&cpu->env, ARM_FEATURE_V6);
767 set_feature(&cpu->env, ARM_FEATURE_VFP);
768 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
769 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
770 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
771 cpu->midr = 0x4107b362;
772 cpu->reset_fpsid = 0x410120b4;
773 cpu->mvfr0 = 0x11111111;
774 cpu->mvfr1 = 0x00000000;
775 cpu->ctr = 0x1dd20d2;
776 cpu->reset_sctlr = 0x00050078;
777 cpu->id_pfr0 = 0x111;
778 cpu->id_pfr1 = 0x1;
779 cpu->id_dfr0 = 0x2;
780 cpu->id_afr0 = 0x3;
781 cpu->id_mmfr0 = 0x01130003;
782 cpu->id_mmfr1 = 0x10030302;
783 cpu->id_mmfr2 = 0x01222110;
784 cpu->id_isar0 = 0x00140011;
785 cpu->id_isar1 = 0x12002111;
786 cpu->id_isar2 = 0x11231111;
787 cpu->id_isar3 = 0x01102131;
788 cpu->id_isar4 = 0x141;
789 cpu->reset_auxcr = 7;
792 static void arm1136_initfn(Object *obj)
794 ARMCPU *cpu = ARM_CPU(obj);
796 cpu->dtb_compatible = "arm,arm1136";
797 set_feature(&cpu->env, ARM_FEATURE_V6K);
798 set_feature(&cpu->env, ARM_FEATURE_V6);
799 set_feature(&cpu->env, ARM_FEATURE_VFP);
800 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
801 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
802 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
803 cpu->midr = 0x4117b363;
804 cpu->reset_fpsid = 0x410120b4;
805 cpu->mvfr0 = 0x11111111;
806 cpu->mvfr1 = 0x00000000;
807 cpu->ctr = 0x1dd20d2;
808 cpu->reset_sctlr = 0x00050078;
809 cpu->id_pfr0 = 0x111;
810 cpu->id_pfr1 = 0x1;
811 cpu->id_dfr0 = 0x2;
812 cpu->id_afr0 = 0x3;
813 cpu->id_mmfr0 = 0x01130003;
814 cpu->id_mmfr1 = 0x10030302;
815 cpu->id_mmfr2 = 0x01222110;
816 cpu->id_isar0 = 0x00140011;
817 cpu->id_isar1 = 0x12002111;
818 cpu->id_isar2 = 0x11231111;
819 cpu->id_isar3 = 0x01102131;
820 cpu->id_isar4 = 0x141;
821 cpu->reset_auxcr = 7;
824 static void arm1176_initfn(Object *obj)
826 ARMCPU *cpu = ARM_CPU(obj);
828 cpu->dtb_compatible = "arm,arm1176";
829 set_feature(&cpu->env, ARM_FEATURE_V6K);
830 set_feature(&cpu->env, ARM_FEATURE_VFP);
831 set_feature(&cpu->env, ARM_FEATURE_VAPA);
832 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
833 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
834 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
835 set_feature(&cpu->env, ARM_FEATURE_EL3);
836 cpu->midr = 0x410fb767;
837 cpu->reset_fpsid = 0x410120b5;
838 cpu->mvfr0 = 0x11111111;
839 cpu->mvfr1 = 0x00000000;
840 cpu->ctr = 0x1dd20d2;
841 cpu->reset_sctlr = 0x00050078;
842 cpu->id_pfr0 = 0x111;
843 cpu->id_pfr1 = 0x11;
844 cpu->id_dfr0 = 0x33;
845 cpu->id_afr0 = 0;
846 cpu->id_mmfr0 = 0x01130003;
847 cpu->id_mmfr1 = 0x10030302;
848 cpu->id_mmfr2 = 0x01222100;
849 cpu->id_isar0 = 0x0140011;
850 cpu->id_isar1 = 0x12002111;
851 cpu->id_isar2 = 0x11231121;
852 cpu->id_isar3 = 0x01102131;
853 cpu->id_isar4 = 0x01141;
854 cpu->reset_auxcr = 7;
857 static void arm11mpcore_initfn(Object *obj)
859 ARMCPU *cpu = ARM_CPU(obj);
861 cpu->dtb_compatible = "arm,arm11mpcore";
862 set_feature(&cpu->env, ARM_FEATURE_V6K);
863 set_feature(&cpu->env, ARM_FEATURE_VFP);
864 set_feature(&cpu->env, ARM_FEATURE_VAPA);
865 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
866 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
867 cpu->midr = 0x410fb022;
868 cpu->reset_fpsid = 0x410120b4;
869 cpu->mvfr0 = 0x11111111;
870 cpu->mvfr1 = 0x00000000;
871 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
872 cpu->id_pfr0 = 0x111;
873 cpu->id_pfr1 = 0x1;
874 cpu->id_dfr0 = 0;
875 cpu->id_afr0 = 0x2;
876 cpu->id_mmfr0 = 0x01100103;
877 cpu->id_mmfr1 = 0x10020302;
878 cpu->id_mmfr2 = 0x01222000;
879 cpu->id_isar0 = 0x00100011;
880 cpu->id_isar1 = 0x12002111;
881 cpu->id_isar2 = 0x11221011;
882 cpu->id_isar3 = 0x01102131;
883 cpu->id_isar4 = 0x141;
884 cpu->reset_auxcr = 1;
887 static void cortex_m3_initfn(Object *obj)
889 ARMCPU *cpu = ARM_CPU(obj);
890 set_feature(&cpu->env, ARM_FEATURE_V7);
891 set_feature(&cpu->env, ARM_FEATURE_M);
892 cpu->midr = 0x410fc231;
895 static void cortex_m4_initfn(Object *obj)
897 ARMCPU *cpu = ARM_CPU(obj);
899 set_feature(&cpu->env, ARM_FEATURE_V7);
900 set_feature(&cpu->env, ARM_FEATURE_M);
901 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
902 cpu->midr = 0x410fc240; /* r0p0 */
904 static void arm_v7m_class_init(ObjectClass *oc, void *data)
906 CPUClass *cc = CPU_CLASS(oc);
908 #ifndef CONFIG_USER_ONLY
909 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
910 #endif
912 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
915 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
916 /* Dummy the TCM region regs for the moment */
917 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
918 .access = PL1_RW, .type = ARM_CP_CONST },
919 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
920 .access = PL1_RW, .type = ARM_CP_CONST },
921 REGINFO_SENTINEL
924 static void cortex_r5_initfn(Object *obj)
926 ARMCPU *cpu = ARM_CPU(obj);
928 set_feature(&cpu->env, ARM_FEATURE_V7);
929 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
930 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
931 set_feature(&cpu->env, ARM_FEATURE_V7MP);
932 set_feature(&cpu->env, ARM_FEATURE_MPU);
933 cpu->midr = 0x411fc153; /* r1p3 */
934 cpu->id_pfr0 = 0x0131;
935 cpu->id_pfr1 = 0x001;
936 cpu->id_dfr0 = 0x010400;
937 cpu->id_afr0 = 0x0;
938 cpu->id_mmfr0 = 0x0210030;
939 cpu->id_mmfr1 = 0x00000000;
940 cpu->id_mmfr2 = 0x01200000;
941 cpu->id_mmfr3 = 0x0211;
942 cpu->id_isar0 = 0x2101111;
943 cpu->id_isar1 = 0x13112111;
944 cpu->id_isar2 = 0x21232141;
945 cpu->id_isar3 = 0x01112131;
946 cpu->id_isar4 = 0x0010142;
947 cpu->id_isar5 = 0x0;
948 cpu->mp_is_up = true;
949 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
952 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
953 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
954 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
955 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
956 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
957 REGINFO_SENTINEL
960 static void cortex_a8_initfn(Object *obj)
962 ARMCPU *cpu = ARM_CPU(obj);
964 cpu->dtb_compatible = "arm,cortex-a8";
965 set_feature(&cpu->env, ARM_FEATURE_V7);
966 set_feature(&cpu->env, ARM_FEATURE_VFP3);
967 set_feature(&cpu->env, ARM_FEATURE_NEON);
968 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
969 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
970 set_feature(&cpu->env, ARM_FEATURE_EL3);
971 cpu->midr = 0x410fc080;
972 cpu->reset_fpsid = 0x410330c0;
973 cpu->mvfr0 = 0x11110222;
974 cpu->mvfr1 = 0x00011100;
975 cpu->ctr = 0x82048004;
976 cpu->reset_sctlr = 0x00c50078;
977 cpu->id_pfr0 = 0x1031;
978 cpu->id_pfr1 = 0x11;
979 cpu->id_dfr0 = 0x400;
980 cpu->id_afr0 = 0;
981 cpu->id_mmfr0 = 0x31100003;
982 cpu->id_mmfr1 = 0x20000000;
983 cpu->id_mmfr2 = 0x01202000;
984 cpu->id_mmfr3 = 0x11;
985 cpu->id_isar0 = 0x00101111;
986 cpu->id_isar1 = 0x12112111;
987 cpu->id_isar2 = 0x21232031;
988 cpu->id_isar3 = 0x11112131;
989 cpu->id_isar4 = 0x00111142;
990 cpu->dbgdidr = 0x15141000;
991 cpu->clidr = (1 << 27) | (2 << 24) | 3;
992 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
993 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
994 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
995 cpu->reset_auxcr = 2;
996 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
999 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1000 /* power_control should be set to maximum latency. Again,
1001 * default to 0 and set by private hook
1003 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1004 .access = PL1_RW, .resetvalue = 0,
1005 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1006 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1007 .access = PL1_RW, .resetvalue = 0,
1008 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1009 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1010 .access = PL1_RW, .resetvalue = 0,
1011 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1012 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1013 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1014 /* TLB lockdown control */
1015 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1016 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1017 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1018 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1019 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1020 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1021 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1022 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1023 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1024 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1025 REGINFO_SENTINEL
1028 static void cortex_a9_initfn(Object *obj)
1030 ARMCPU *cpu = ARM_CPU(obj);
1032 cpu->dtb_compatible = "arm,cortex-a9";
1033 set_feature(&cpu->env, ARM_FEATURE_V7);
1034 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1035 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1036 set_feature(&cpu->env, ARM_FEATURE_NEON);
1037 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1038 set_feature(&cpu->env, ARM_FEATURE_EL3);
1039 /* Note that A9 supports the MP extensions even for
1040 * A9UP and single-core A9MP (which are both different
1041 * and valid configurations; we don't model A9UP).
1043 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1044 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1045 cpu->midr = 0x410fc090;
1046 cpu->reset_fpsid = 0x41033090;
1047 cpu->mvfr0 = 0x11110222;
1048 cpu->mvfr1 = 0x01111111;
1049 cpu->ctr = 0x80038003;
1050 cpu->reset_sctlr = 0x00c50078;
1051 cpu->id_pfr0 = 0x1031;
1052 cpu->id_pfr1 = 0x11;
1053 cpu->id_dfr0 = 0x000;
1054 cpu->id_afr0 = 0;
1055 cpu->id_mmfr0 = 0x00100103;
1056 cpu->id_mmfr1 = 0x20000000;
1057 cpu->id_mmfr2 = 0x01230000;
1058 cpu->id_mmfr3 = 0x00002111;
1059 cpu->id_isar0 = 0x00101111;
1060 cpu->id_isar1 = 0x13112111;
1061 cpu->id_isar2 = 0x21232041;
1062 cpu->id_isar3 = 0x11112131;
1063 cpu->id_isar4 = 0x00111142;
1064 cpu->dbgdidr = 0x35141000;
1065 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1066 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1067 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1068 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1071 #ifndef CONFIG_USER_ONLY
1072 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1074 /* Linux wants the number of processors from here.
1075 * Might as well set the interrupt-controller bit too.
1077 return ((smp_cpus - 1) << 24) | (1 << 23);
1079 #endif
1081 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1082 #ifndef CONFIG_USER_ONLY
1083 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1084 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1085 .writefn = arm_cp_write_ignore, },
1086 #endif
1087 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1088 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1089 REGINFO_SENTINEL
1092 static void cortex_a15_initfn(Object *obj)
1094 ARMCPU *cpu = ARM_CPU(obj);
1096 cpu->dtb_compatible = "arm,cortex-a15";
1097 set_feature(&cpu->env, ARM_FEATURE_V7);
1098 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1099 set_feature(&cpu->env, ARM_FEATURE_NEON);
1100 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1101 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1102 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1103 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1104 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1105 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1106 set_feature(&cpu->env, ARM_FEATURE_EL3);
1107 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1108 cpu->midr = 0x412fc0f1;
1109 cpu->reset_fpsid = 0x410430f0;
1110 cpu->mvfr0 = 0x10110222;
1111 cpu->mvfr1 = 0x11111111;
1112 cpu->ctr = 0x8444c004;
1113 cpu->reset_sctlr = 0x00c50078;
1114 cpu->id_pfr0 = 0x00001131;
1115 cpu->id_pfr1 = 0x00011011;
1116 cpu->id_dfr0 = 0x02010555;
1117 cpu->id_afr0 = 0x00000000;
1118 cpu->id_mmfr0 = 0x10201105;
1119 cpu->id_mmfr1 = 0x20000000;
1120 cpu->id_mmfr2 = 0x01240000;
1121 cpu->id_mmfr3 = 0x02102211;
1122 cpu->id_isar0 = 0x02101110;
1123 cpu->id_isar1 = 0x13112111;
1124 cpu->id_isar2 = 0x21232041;
1125 cpu->id_isar3 = 0x11112131;
1126 cpu->id_isar4 = 0x10011142;
1127 cpu->dbgdidr = 0x3515f021;
1128 cpu->clidr = 0x0a200023;
1129 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1130 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1131 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1132 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1135 static void ti925t_initfn(Object *obj)
1137 ARMCPU *cpu = ARM_CPU(obj);
1138 set_feature(&cpu->env, ARM_FEATURE_V4T);
1139 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1140 cpu->midr = ARM_CPUID_TI925T;
1141 cpu->ctr = 0x5109149;
1142 cpu->reset_sctlr = 0x00000070;
1145 static void sa1100_initfn(Object *obj)
1147 ARMCPU *cpu = ARM_CPU(obj);
1149 cpu->dtb_compatible = "intel,sa1100";
1150 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1151 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1152 cpu->midr = 0x4401A11B;
1153 cpu->reset_sctlr = 0x00000070;
1156 static void sa1110_initfn(Object *obj)
1158 ARMCPU *cpu = ARM_CPU(obj);
1159 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1160 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1161 cpu->midr = 0x6901B119;
1162 cpu->reset_sctlr = 0x00000070;
1165 static void pxa250_initfn(Object *obj)
1167 ARMCPU *cpu = ARM_CPU(obj);
1169 cpu->dtb_compatible = "marvell,xscale";
1170 set_feature(&cpu->env, ARM_FEATURE_V5);
1171 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1172 cpu->midr = 0x69052100;
1173 cpu->ctr = 0xd172172;
1174 cpu->reset_sctlr = 0x00000078;
1177 static void pxa255_initfn(Object *obj)
1179 ARMCPU *cpu = ARM_CPU(obj);
1181 cpu->dtb_compatible = "marvell,xscale";
1182 set_feature(&cpu->env, ARM_FEATURE_V5);
1183 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1184 cpu->midr = 0x69052d00;
1185 cpu->ctr = 0xd172172;
1186 cpu->reset_sctlr = 0x00000078;
1189 static void pxa260_initfn(Object *obj)
1191 ARMCPU *cpu = ARM_CPU(obj);
1193 cpu->dtb_compatible = "marvell,xscale";
1194 set_feature(&cpu->env, ARM_FEATURE_V5);
1195 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1196 cpu->midr = 0x69052903;
1197 cpu->ctr = 0xd172172;
1198 cpu->reset_sctlr = 0x00000078;
1201 static void pxa261_initfn(Object *obj)
1203 ARMCPU *cpu = ARM_CPU(obj);
1205 cpu->dtb_compatible = "marvell,xscale";
1206 set_feature(&cpu->env, ARM_FEATURE_V5);
1207 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1208 cpu->midr = 0x69052d05;
1209 cpu->ctr = 0xd172172;
1210 cpu->reset_sctlr = 0x00000078;
1213 static void pxa262_initfn(Object *obj)
1215 ARMCPU *cpu = ARM_CPU(obj);
1217 cpu->dtb_compatible = "marvell,xscale";
1218 set_feature(&cpu->env, ARM_FEATURE_V5);
1219 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1220 cpu->midr = 0x69052d06;
1221 cpu->ctr = 0xd172172;
1222 cpu->reset_sctlr = 0x00000078;
1225 static void pxa270a0_initfn(Object *obj)
1227 ARMCPU *cpu = ARM_CPU(obj);
1229 cpu->dtb_compatible = "marvell,xscale";
1230 set_feature(&cpu->env, ARM_FEATURE_V5);
1231 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1232 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1233 cpu->midr = 0x69054110;
1234 cpu->ctr = 0xd172172;
1235 cpu->reset_sctlr = 0x00000078;
1238 static void pxa270a1_initfn(Object *obj)
1240 ARMCPU *cpu = ARM_CPU(obj);
1242 cpu->dtb_compatible = "marvell,xscale";
1243 set_feature(&cpu->env, ARM_FEATURE_V5);
1244 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1245 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1246 cpu->midr = 0x69054111;
1247 cpu->ctr = 0xd172172;
1248 cpu->reset_sctlr = 0x00000078;
1251 static void pxa270b0_initfn(Object *obj)
1253 ARMCPU *cpu = ARM_CPU(obj);
1255 cpu->dtb_compatible = "marvell,xscale";
1256 set_feature(&cpu->env, ARM_FEATURE_V5);
1257 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1258 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1259 cpu->midr = 0x69054112;
1260 cpu->ctr = 0xd172172;
1261 cpu->reset_sctlr = 0x00000078;
1264 static void pxa270b1_initfn(Object *obj)
1266 ARMCPU *cpu = ARM_CPU(obj);
1268 cpu->dtb_compatible = "marvell,xscale";
1269 set_feature(&cpu->env, ARM_FEATURE_V5);
1270 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1271 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1272 cpu->midr = 0x69054113;
1273 cpu->ctr = 0xd172172;
1274 cpu->reset_sctlr = 0x00000078;
1277 static void pxa270c0_initfn(Object *obj)
1279 ARMCPU *cpu = ARM_CPU(obj);
1281 cpu->dtb_compatible = "marvell,xscale";
1282 set_feature(&cpu->env, ARM_FEATURE_V5);
1283 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1284 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1285 cpu->midr = 0x69054114;
1286 cpu->ctr = 0xd172172;
1287 cpu->reset_sctlr = 0x00000078;
1290 static void pxa270c5_initfn(Object *obj)
1292 ARMCPU *cpu = ARM_CPU(obj);
1294 cpu->dtb_compatible = "marvell,xscale";
1295 set_feature(&cpu->env, ARM_FEATURE_V5);
1296 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1297 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1298 cpu->midr = 0x69054117;
1299 cpu->ctr = 0xd172172;
1300 cpu->reset_sctlr = 0x00000078;
1303 #ifdef CONFIG_USER_ONLY
1304 static void arm_any_initfn(Object *obj)
1306 ARMCPU *cpu = ARM_CPU(obj);
1307 set_feature(&cpu->env, ARM_FEATURE_V8);
1308 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1309 set_feature(&cpu->env, ARM_FEATURE_NEON);
1310 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1311 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1312 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1313 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1314 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1315 set_feature(&cpu->env, ARM_FEATURE_CRC);
1316 cpu->midr = 0xffffffff;
1318 #endif
1320 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1322 typedef struct ARMCPUInfo {
1323 const char *name;
1324 void (*initfn)(Object *obj);
1325 void (*class_init)(ObjectClass *oc, void *data);
1326 } ARMCPUInfo;
1328 static const ARMCPUInfo arm_cpus[] = {
1329 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1330 { .name = "arm926", .initfn = arm926_initfn },
1331 { .name = "arm946", .initfn = arm946_initfn },
1332 { .name = "arm1026", .initfn = arm1026_initfn },
1333 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1334 * older core than plain "arm1136". In particular this does not
1335 * have the v6K features.
1337 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1338 { .name = "arm1136", .initfn = arm1136_initfn },
1339 { .name = "arm1176", .initfn = arm1176_initfn },
1340 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1341 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1342 .class_init = arm_v7m_class_init },
1343 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1344 .class_init = arm_v7m_class_init },
1345 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1346 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1347 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1348 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1349 { .name = "ti925t", .initfn = ti925t_initfn },
1350 { .name = "sa1100", .initfn = sa1100_initfn },
1351 { .name = "sa1110", .initfn = sa1110_initfn },
1352 { .name = "pxa250", .initfn = pxa250_initfn },
1353 { .name = "pxa255", .initfn = pxa255_initfn },
1354 { .name = "pxa260", .initfn = pxa260_initfn },
1355 { .name = "pxa261", .initfn = pxa261_initfn },
1356 { .name = "pxa262", .initfn = pxa262_initfn },
1357 /* "pxa270" is an alias for "pxa270-a0" */
1358 { .name = "pxa270", .initfn = pxa270a0_initfn },
1359 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1360 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1361 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1362 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1363 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1364 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1365 #ifdef CONFIG_USER_ONLY
1366 { .name = "any", .initfn = arm_any_initfn },
1367 #endif
1368 #endif
1369 { .name = NULL }
1372 static Property arm_cpu_properties[] = {
1373 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1374 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1375 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1376 DEFINE_PROP_END_OF_LIST()
1379 #ifdef CONFIG_USER_ONLY
1380 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1381 int mmu_idx)
1383 ARMCPU *cpu = ARM_CPU(cs);
1384 CPUARMState *env = &cpu->env;
1386 env->exception.vaddress = address;
1387 if (rw == 2) {
1388 cs->exception_index = EXCP_PREFETCH_ABORT;
1389 } else {
1390 cs->exception_index = EXCP_DATA_ABORT;
1392 return 1;
1394 #endif
1396 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1398 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1399 CPUClass *cc = CPU_CLASS(acc);
1400 DeviceClass *dc = DEVICE_CLASS(oc);
1402 acc->parent_realize = dc->realize;
1403 dc->realize = arm_cpu_realizefn;
1404 dc->props = arm_cpu_properties;
1406 acc->parent_reset = cc->reset;
1407 cc->reset = arm_cpu_reset;
1409 cc->class_by_name = arm_cpu_class_by_name;
1410 cc->has_work = arm_cpu_has_work;
1411 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1412 cc->dump_state = arm_cpu_dump_state;
1413 cc->set_pc = arm_cpu_set_pc;
1414 cc->gdb_read_register = arm_cpu_gdb_read_register;
1415 cc->gdb_write_register = arm_cpu_gdb_write_register;
1416 #ifdef CONFIG_USER_ONLY
1417 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1418 #else
1419 cc->do_interrupt = arm_cpu_do_interrupt;
1420 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1421 cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
1422 cc->vmsd = &vmstate_arm_cpu;
1423 cc->virtio_is_big_endian = arm_cpu_is_big_endian;
1424 #endif
1425 cc->gdb_num_core_regs = 26;
1426 cc->gdb_core_xml_file = "arm-core.xml";
1427 cc->gdb_stop_before_watchpoint = true;
1428 cc->debug_excp_handler = arm_debug_excp_handler;
1430 cc->disas_set_info = arm_disas_set_info;
1433 * Reason: arm_cpu_initfn() calls cpu_exec_init(), which saves
1434 * the object in cpus -> dangling pointer after final
1435 * object_unref().
1437 * Once this is fixed, the devices that create ARM CPUs should be
1438 * updated not to set cannot_destroy_with_object_finalize_yet,
1439 * unless they still screw up something else.
1441 dc->cannot_destroy_with_object_finalize_yet = true;
1444 static void cpu_register(const ARMCPUInfo *info)
1446 TypeInfo type_info = {
1447 .parent = TYPE_ARM_CPU,
1448 .instance_size = sizeof(ARMCPU),
1449 .instance_init = info->initfn,
1450 .class_size = sizeof(ARMCPUClass),
1451 .class_init = info->class_init,
1454 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1455 type_register(&type_info);
1456 g_free((void *)type_info.name);
1459 static const TypeInfo arm_cpu_type_info = {
1460 .name = TYPE_ARM_CPU,
1461 .parent = TYPE_CPU,
1462 .instance_size = sizeof(ARMCPU),
1463 .instance_init = arm_cpu_initfn,
1464 .instance_post_init = arm_cpu_post_init,
1465 .instance_finalize = arm_cpu_finalizefn,
1466 .abstract = true,
1467 .class_size = sizeof(ARMCPUClass),
1468 .class_init = arm_cpu_class_init,
1471 static void arm_cpu_register_types(void)
1473 const ARMCPUInfo *info = arm_cpus;
1475 type_register_static(&arm_cpu_type_info);
1477 while (info->name) {
1478 cpu_register(info);
1479 info++;
1483 type_init(arm_cpu_register_types)