hw/sd: sd: Move the sd_block_{read, write} and macros ahead
[qemu/ar7.git] / target / i386 / hvf / x86hvf.c
blob0d7533742ebf5ec07b1787c691862c44c958a47c
1 /*
2 * Copyright (c) 2003-2008 Fabrice Bellard
3 * Copyright (C) 2016 Veertu Inc,
4 * Copyright (C) 2017 Google Inc,
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
30 #include "hw/i386/apic_internal.h"
32 #include <Hypervisor/hv.h>
33 #include <Hypervisor/hv_vmx.h>
35 #include "hvf-accel-ops.h"
37 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
38 SegmentCache *qseg, bool is_tr)
40 vmx_seg->sel = qseg->selector;
41 vmx_seg->base = qseg->base;
42 vmx_seg->limit = qseg->limit;
44 if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
45 /* the TR register is usable after processor reset despite
46 * having a null selector */
47 vmx_seg->ar = 1 << 16;
48 return;
50 vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
51 vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
52 vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
53 vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
54 vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
55 vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
56 vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
57 vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
60 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
62 qseg->limit = vmx_seg->limit;
63 qseg->base = vmx_seg->base;
64 qseg->selector = vmx_seg->sel;
65 qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
66 (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
67 (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
68 (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
69 (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
70 (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
71 (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
72 (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
75 void hvf_put_xsave(CPUState *cpu_state)
78 struct X86XSaveArea *xsave;
80 xsave = X86_CPU(cpu_state)->env.xsave_buf;
82 x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
84 if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
85 abort();
89 void hvf_put_segments(CPUState *cpu_state)
91 CPUX86State *env = &X86_CPU(cpu_state)->env;
92 struct vmx_segment seg;
94 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
95 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
97 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
98 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
100 /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
101 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
102 vmx_update_tpr(cpu_state);
103 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
105 macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
106 macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
108 hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
109 vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
111 hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
112 vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
114 hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
115 vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
117 hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
118 vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
120 hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
121 vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
123 hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
124 vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
126 hvf_set_segment(cpu_state, &seg, &env->tr, true);
127 vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
129 hvf_set_segment(cpu_state, &seg, &env->ldt, false);
130 vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
132 hv_vcpu_flush(cpu_state->hvf_fd);
135 void hvf_put_msrs(CPUState *cpu_state)
137 CPUX86State *env = &X86_CPU(cpu_state)->env;
139 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
140 env->sysenter_cs);
141 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
142 env->sysenter_esp);
143 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
144 env->sysenter_eip);
146 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
148 #ifdef TARGET_X86_64
149 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
150 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
151 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
152 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
153 #endif
155 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
156 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
160 void hvf_get_xsave(CPUState *cpu_state)
162 struct X86XSaveArea *xsave;
164 xsave = X86_CPU(cpu_state)->env.xsave_buf;
166 if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
167 abort();
170 x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
173 void hvf_get_segments(CPUState *cpu_state)
175 CPUX86State *env = &X86_CPU(cpu_state)->env;
177 struct vmx_segment seg;
179 env->interrupt_injected = -1;
181 vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
182 hvf_get_segment(&env->segs[R_CS], &seg);
184 vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
185 hvf_get_segment(&env->segs[R_DS], &seg);
187 vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
188 hvf_get_segment(&env->segs[R_ES], &seg);
190 vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
191 hvf_get_segment(&env->segs[R_FS], &seg);
193 vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
194 hvf_get_segment(&env->segs[R_GS], &seg);
196 vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
197 hvf_get_segment(&env->segs[R_SS], &seg);
199 vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
200 hvf_get_segment(&env->tr, &seg);
202 vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
203 hvf_get_segment(&env->ldt, &seg);
205 env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
206 env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
207 env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
208 env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
210 env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
211 env->cr[2] = 0;
212 env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
213 env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
215 env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
218 void hvf_get_msrs(CPUState *cpu_state)
220 CPUX86State *env = &X86_CPU(cpu_state)->env;
221 uint64_t tmp;
223 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
224 env->sysenter_cs = tmp;
226 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
227 env->sysenter_esp = tmp;
229 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
230 env->sysenter_eip = tmp;
232 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
234 #ifdef TARGET_X86_64
235 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
236 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
237 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
238 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
239 #endif
241 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
243 env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
246 int hvf_put_registers(CPUState *cpu_state)
248 X86CPU *x86cpu = X86_CPU(cpu_state);
249 CPUX86State *env = &x86cpu->env;
251 wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
252 wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
253 wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
254 wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
255 wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
256 wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
257 wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
258 wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
259 wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
260 wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
261 wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
262 wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
263 wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
264 wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
265 wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
266 wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
267 wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
268 wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
270 wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
272 hvf_put_xsave(cpu_state);
274 hvf_put_segments(cpu_state);
276 hvf_put_msrs(cpu_state);
278 wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
279 wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
280 wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
281 wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
282 wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
283 wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
284 wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
285 wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
287 return 0;
290 int hvf_get_registers(CPUState *cpu_state)
292 X86CPU *x86cpu = X86_CPU(cpu_state);
293 CPUX86State *env = &x86cpu->env;
295 env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
296 env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
297 env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
298 env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
299 env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
300 env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
301 env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
302 env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
303 env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
304 env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
305 env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
306 env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
307 env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
308 env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
309 env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
310 env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
312 env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
313 env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
315 hvf_get_xsave(cpu_state);
316 env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
318 hvf_get_segments(cpu_state);
319 hvf_get_msrs(cpu_state);
321 env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
322 env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
323 env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
324 env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
325 env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
326 env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
327 env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
328 env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
330 x86_update_hflags(env);
331 return 0;
334 static void vmx_set_int_window_exiting(CPUState *cpu)
336 uint64_t val;
337 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
338 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
339 VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
342 void vmx_clear_int_window_exiting(CPUState *cpu)
344 uint64_t val;
345 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
346 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
347 ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
350 bool hvf_inject_interrupts(CPUState *cpu_state)
352 X86CPU *x86cpu = X86_CPU(cpu_state);
353 CPUX86State *env = &x86cpu->env;
355 uint8_t vector;
356 uint64_t intr_type;
357 bool have_event = true;
358 if (env->interrupt_injected != -1) {
359 vector = env->interrupt_injected;
360 if (env->ins_len) {
361 intr_type = VMCS_INTR_T_SWINTR;
362 } else {
363 intr_type = VMCS_INTR_T_HWINTR;
365 } else if (env->exception_nr != -1) {
366 vector = env->exception_nr;
367 if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
368 intr_type = VMCS_INTR_T_SWEXCEPTION;
369 } else {
370 intr_type = VMCS_INTR_T_HWEXCEPTION;
372 } else if (env->nmi_injected) {
373 vector = EXCP02_NMI;
374 intr_type = VMCS_INTR_T_NMI;
375 } else {
376 have_event = false;
379 uint64_t info = 0;
380 if (have_event) {
381 info = vector | intr_type | VMCS_INTR_VALID;
382 uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
383 if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
384 vmx_clear_nmi_blocking(cpu_state);
387 if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
388 info &= ~(1 << 12); /* clear undefined bit */
389 if (intr_type == VMCS_INTR_T_SWINTR ||
390 intr_type == VMCS_INTR_T_SWEXCEPTION) {
391 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
394 if (env->has_error_code) {
395 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
396 env->error_code);
397 /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
398 info |= VMCS_INTR_DEL_ERRCODE;
400 /*printf("reinject %lx err %d\n", info, err);*/
401 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
405 if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
406 if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
407 cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
408 info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
409 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
410 } else {
411 vmx_set_nmi_window_exiting(cpu_state);
415 if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
416 (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
417 (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
418 int line = cpu_get_pic_interrupt(&x86cpu->env);
419 cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
420 if (line >= 0) {
421 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
422 VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
425 if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
426 vmx_set_int_window_exiting(cpu_state);
428 return (cpu_state->interrupt_request
429 & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
432 int hvf_process_events(CPUState *cpu_state)
434 X86CPU *cpu = X86_CPU(cpu_state);
435 CPUX86State *env = &cpu->env;
437 env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
439 if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
440 hvf_cpu_synchronize_state(cpu_state);
441 do_cpu_init(cpu);
444 if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
445 cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
446 apic_poll_irq(cpu->apic_state);
448 if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
449 (env->eflags & IF_MASK)) ||
450 (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
451 cpu_state->halted = 0;
453 if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
454 hvf_cpu_synchronize_state(cpu_state);
455 do_cpu_sipi(cpu);
457 if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
458 cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
459 hvf_cpu_synchronize_state(cpu_state);
460 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
461 env->tpr_access_type);
463 return cpu_state->halted;