vfio/iommufd: Introduce a VFIOIOMMU iommufd QOM interface
[qemu/ar7.git] / util / interval-tree.c
blob53465182e6f37215af9b634e6f9697a838725856
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 #include "qemu/osdep.h"
4 #include "qemu/interval-tree.h"
5 #include "qemu/atomic.h"
7 /*
8 * Red Black Trees.
10 * For now, don't expose Linux Red-Black Trees separately, but retain the
11 * separate type definitions to keep the implementation sane, and allow
12 * the possibility of separating them later.
14 * Derived from include/linux/rbtree_augmented.h and its dependencies.
18 * red-black trees properties: https://en.wikipedia.org/wiki/Rbtree
20 * 1) A node is either red or black
21 * 2) The root is black
22 * 3) All leaves (NULL) are black
23 * 4) Both children of every red node are black
24 * 5) Every simple path from root to leaves contains the same number
25 * of black nodes.
27 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
28 * consecutive red nodes in a path and every red node is therefore followed by
29 * a black. So if B is the number of black nodes on every simple path (as per
30 * 5), then the longest possible path due to 4 is 2B.
32 * We shall indicate color with case, where black nodes are uppercase and red
33 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
34 * parentheses and have some accompanying text comment.
36 * Notes on lockless lookups:
38 * All stores to the tree structure (rb_left and rb_right) must be done using
39 * WRITE_ONCE [qatomic_set for QEMU]. And we must not inadvertently cause
40 * (temporary) loops in the tree structure as seen in program order.
42 * These two requirements will allow lockless iteration of the tree -- not
43 * correct iteration mind you, tree rotations are not atomic so a lookup might
44 * miss entire subtrees.
46 * But they do guarantee that any such traversal will only see valid elements
47 * and that it will indeed complete -- does not get stuck in a loop.
49 * It also guarantees that if the lookup returns an element it is the 'correct'
50 * one. But not returning an element does _NOT_ mean it's not present.
53 typedef enum RBColor
55 RB_RED,
56 RB_BLACK,
57 } RBColor;
59 typedef struct RBAugmentCallbacks {
60 void (*propagate)(RBNode *node, RBNode *stop);
61 void (*copy)(RBNode *old, RBNode *new);
62 void (*rotate)(RBNode *old, RBNode *new);
63 } RBAugmentCallbacks;
65 static inline uintptr_t rb_pc(const RBNode *n)
67 return qatomic_read(&n->rb_parent_color);
70 static inline void rb_set_pc(RBNode *n, uintptr_t pc)
72 qatomic_set(&n->rb_parent_color, pc);
75 static inline RBNode *pc_parent(uintptr_t pc)
77 return (RBNode *)(pc & ~1);
80 static inline RBNode *rb_parent(const RBNode *n)
82 return pc_parent(rb_pc(n));
85 static inline RBNode *rb_red_parent(const RBNode *n)
87 return (RBNode *)rb_pc(n);
90 static inline RBColor pc_color(uintptr_t pc)
92 return (RBColor)(pc & 1);
95 static inline bool pc_is_red(uintptr_t pc)
97 return pc_color(pc) == RB_RED;
100 static inline bool pc_is_black(uintptr_t pc)
102 return !pc_is_red(pc);
105 static inline RBColor rb_color(const RBNode *n)
107 return pc_color(rb_pc(n));
110 static inline bool rb_is_red(const RBNode *n)
112 return pc_is_red(rb_pc(n));
115 static inline bool rb_is_black(const RBNode *n)
117 return pc_is_black(rb_pc(n));
120 static inline void rb_set_black(RBNode *n)
122 rb_set_pc(n, rb_pc(n) | RB_BLACK);
125 static inline void rb_set_parent_color(RBNode *n, RBNode *p, RBColor color)
127 rb_set_pc(n, (uintptr_t)p | color);
130 static inline void rb_set_parent(RBNode *n, RBNode *p)
132 rb_set_parent_color(n, p, rb_color(n));
135 static inline void rb_link_node(RBNode *node, RBNode *parent, RBNode **rb_link)
137 node->rb_parent_color = (uintptr_t)parent;
138 node->rb_left = node->rb_right = NULL;
141 * Ensure that node is initialized before insertion,
142 * as viewed by a concurrent search.
144 qatomic_set_mb(rb_link, node);
147 static RBNode *rb_next(RBNode *node)
149 RBNode *parent;
151 /* OMIT: if empty node, return null. */
154 * If we have a right-hand child, go down and then left as far as we can.
156 if (node->rb_right) {
157 node = node->rb_right;
158 while (node->rb_left) {
159 node = node->rb_left;
161 return node;
165 * No right-hand children. Everything down and left is smaller than us,
166 * so any 'next' node must be in the general direction of our parent.
167 * Go up the tree; any time the ancestor is a right-hand child of its
168 * parent, keep going up. First time it's a left-hand child of its
169 * parent, said parent is our 'next' node.
171 while ((parent = rb_parent(node)) && node == parent->rb_right) {
172 node = parent;
175 return parent;
178 static inline void rb_change_child(RBNode *old, RBNode *new,
179 RBNode *parent, RBRoot *root)
181 if (!parent) {
182 qatomic_set(&root->rb_node, new);
183 } else if (parent->rb_left == old) {
184 qatomic_set(&parent->rb_left, new);
185 } else {
186 qatomic_set(&parent->rb_right, new);
190 static inline void rb_rotate_set_parents(RBNode *old, RBNode *new,
191 RBRoot *root, RBColor color)
193 uintptr_t pc = rb_pc(old);
194 RBNode *parent = pc_parent(pc);
196 rb_set_pc(new, pc);
197 rb_set_parent_color(old, new, color);
198 rb_change_child(old, new, parent, root);
201 static void rb_insert_augmented(RBNode *node, RBRoot *root,
202 const RBAugmentCallbacks *augment)
204 RBNode *parent = rb_red_parent(node), *gparent, *tmp;
206 while (true) {
208 * Loop invariant: node is red.
210 if (unlikely(!parent)) {
212 * The inserted node is root. Either this is the first node, or
213 * we recursed at Case 1 below and are no longer violating 4).
215 rb_set_parent_color(node, NULL, RB_BLACK);
216 break;
220 * If there is a black parent, we are done. Otherwise, take some
221 * corrective action as, per 4), we don't want a red root or two
222 * consecutive red nodes.
224 if (rb_is_black(parent)) {
225 break;
228 gparent = rb_red_parent(parent);
230 tmp = gparent->rb_right;
231 if (parent != tmp) { /* parent == gparent->rb_left */
232 if (tmp && rb_is_red(tmp)) {
234 * Case 1 - node's uncle is red (color flips).
236 * G g
237 * / \ / \
238 * p u --> P U
239 * / /
240 * n n
242 * However, since g's parent might be red, and 4) does not
243 * allow this, we need to recurse at g.
245 rb_set_parent_color(tmp, gparent, RB_BLACK);
246 rb_set_parent_color(parent, gparent, RB_BLACK);
247 node = gparent;
248 parent = rb_parent(node);
249 rb_set_parent_color(node, parent, RB_RED);
250 continue;
253 tmp = parent->rb_right;
254 if (node == tmp) {
256 * Case 2 - node's uncle is black and node is
257 * the parent's right child (left rotate at parent).
259 * G G
260 * / \ / \
261 * p U --> n U
262 * \ /
263 * n p
265 * This still leaves us in violation of 4), the
266 * continuation into Case 3 will fix that.
268 tmp = node->rb_left;
269 qatomic_set(&parent->rb_right, tmp);
270 qatomic_set(&node->rb_left, parent);
271 if (tmp) {
272 rb_set_parent_color(tmp, parent, RB_BLACK);
274 rb_set_parent_color(parent, node, RB_RED);
275 augment->rotate(parent, node);
276 parent = node;
277 tmp = node->rb_right;
281 * Case 3 - node's uncle is black and node is
282 * the parent's left child (right rotate at gparent).
284 * G P
285 * / \ / \
286 * p U --> n g
287 * / \
288 * n U
290 qatomic_set(&gparent->rb_left, tmp); /* == parent->rb_right */
291 qatomic_set(&parent->rb_right, gparent);
292 if (tmp) {
293 rb_set_parent_color(tmp, gparent, RB_BLACK);
295 rb_rotate_set_parents(gparent, parent, root, RB_RED);
296 augment->rotate(gparent, parent);
297 break;
298 } else {
299 tmp = gparent->rb_left;
300 if (tmp && rb_is_red(tmp)) {
301 /* Case 1 - color flips */
302 rb_set_parent_color(tmp, gparent, RB_BLACK);
303 rb_set_parent_color(parent, gparent, RB_BLACK);
304 node = gparent;
305 parent = rb_parent(node);
306 rb_set_parent_color(node, parent, RB_RED);
307 continue;
310 tmp = parent->rb_left;
311 if (node == tmp) {
312 /* Case 2 - right rotate at parent */
313 tmp = node->rb_right;
314 qatomic_set(&parent->rb_left, tmp);
315 qatomic_set(&node->rb_right, parent);
316 if (tmp) {
317 rb_set_parent_color(tmp, parent, RB_BLACK);
319 rb_set_parent_color(parent, node, RB_RED);
320 augment->rotate(parent, node);
321 parent = node;
322 tmp = node->rb_left;
325 /* Case 3 - left rotate at gparent */
326 qatomic_set(&gparent->rb_right, tmp); /* == parent->rb_left */
327 qatomic_set(&parent->rb_left, gparent);
328 if (tmp) {
329 rb_set_parent_color(tmp, gparent, RB_BLACK);
331 rb_rotate_set_parents(gparent, parent, root, RB_RED);
332 augment->rotate(gparent, parent);
333 break;
338 static void rb_insert_augmented_cached(RBNode *node,
339 RBRootLeftCached *root, bool newleft,
340 const RBAugmentCallbacks *augment)
342 if (newleft) {
343 root->rb_leftmost = node;
345 rb_insert_augmented(node, &root->rb_root, augment);
348 static void rb_erase_color(RBNode *parent, RBRoot *root,
349 const RBAugmentCallbacks *augment)
351 RBNode *node = NULL, *sibling, *tmp1, *tmp2;
353 while (true) {
355 * Loop invariants:
356 * - node is black (or NULL on first iteration)
357 * - node is not the root (parent is not NULL)
358 * - All leaf paths going through parent and node have a
359 * black node count that is 1 lower than other leaf paths.
361 sibling = parent->rb_right;
362 if (node != sibling) { /* node == parent->rb_left */
363 if (rb_is_red(sibling)) {
365 * Case 1 - left rotate at parent
367 * P S
368 * / \ / \
369 * N s --> p Sr
370 * / \ / \
371 * Sl Sr N Sl
373 tmp1 = sibling->rb_left;
374 qatomic_set(&parent->rb_right, tmp1);
375 qatomic_set(&sibling->rb_left, parent);
376 rb_set_parent_color(tmp1, parent, RB_BLACK);
377 rb_rotate_set_parents(parent, sibling, root, RB_RED);
378 augment->rotate(parent, sibling);
379 sibling = tmp1;
381 tmp1 = sibling->rb_right;
382 if (!tmp1 || rb_is_black(tmp1)) {
383 tmp2 = sibling->rb_left;
384 if (!tmp2 || rb_is_black(tmp2)) {
386 * Case 2 - sibling color flip
387 * (p could be either color here)
389 * (p) (p)
390 * / \ / \
391 * N S --> N s
392 * / \ / \
393 * Sl Sr Sl Sr
395 * This leaves us violating 5) which
396 * can be fixed by flipping p to black
397 * if it was red, or by recursing at p.
398 * p is red when coming from Case 1.
400 rb_set_parent_color(sibling, parent, RB_RED);
401 if (rb_is_red(parent)) {
402 rb_set_black(parent);
403 } else {
404 node = parent;
405 parent = rb_parent(node);
406 if (parent) {
407 continue;
410 break;
413 * Case 3 - right rotate at sibling
414 * (p could be either color here)
416 * (p) (p)
417 * / \ / \
418 * N S --> N sl
419 * / \ \
420 * sl Sr S
422 * Sr
424 * Note: p might be red, and then bot
425 * p and sl are red after rotation (which
426 * breaks property 4). This is fixed in
427 * Case 4 (in rb_rotate_set_parents()
428 * which set sl the color of p
429 * and set p RB_BLACK)
431 * (p) (sl)
432 * / \ / \
433 * N sl --> P S
434 * \ / \
435 * S N Sr
437 * Sr
439 tmp1 = tmp2->rb_right;
440 qatomic_set(&sibling->rb_left, tmp1);
441 qatomic_set(&tmp2->rb_right, sibling);
442 qatomic_set(&parent->rb_right, tmp2);
443 if (tmp1) {
444 rb_set_parent_color(tmp1, sibling, RB_BLACK);
446 augment->rotate(sibling, tmp2);
447 tmp1 = sibling;
448 sibling = tmp2;
451 * Case 4 - left rotate at parent + color flips
452 * (p and sl could be either color here.
453 * After rotation, p becomes black, s acquires
454 * p's color, and sl keeps its color)
456 * (p) (s)
457 * / \ / \
458 * N S --> P Sr
459 * / \ / \
460 * (sl) sr N (sl)
462 tmp2 = sibling->rb_left;
463 qatomic_set(&parent->rb_right, tmp2);
464 qatomic_set(&sibling->rb_left, parent);
465 rb_set_parent_color(tmp1, sibling, RB_BLACK);
466 if (tmp2) {
467 rb_set_parent(tmp2, parent);
469 rb_rotate_set_parents(parent, sibling, root, RB_BLACK);
470 augment->rotate(parent, sibling);
471 break;
472 } else {
473 sibling = parent->rb_left;
474 if (rb_is_red(sibling)) {
475 /* Case 1 - right rotate at parent */
476 tmp1 = sibling->rb_right;
477 qatomic_set(&parent->rb_left, tmp1);
478 qatomic_set(&sibling->rb_right, parent);
479 rb_set_parent_color(tmp1, parent, RB_BLACK);
480 rb_rotate_set_parents(parent, sibling, root, RB_RED);
481 augment->rotate(parent, sibling);
482 sibling = tmp1;
484 tmp1 = sibling->rb_left;
485 if (!tmp1 || rb_is_black(tmp1)) {
486 tmp2 = sibling->rb_right;
487 if (!tmp2 || rb_is_black(tmp2)) {
488 /* Case 2 - sibling color flip */
489 rb_set_parent_color(sibling, parent, RB_RED);
490 if (rb_is_red(parent)) {
491 rb_set_black(parent);
492 } else {
493 node = parent;
494 parent = rb_parent(node);
495 if (parent) {
496 continue;
499 break;
501 /* Case 3 - left rotate at sibling */
502 tmp1 = tmp2->rb_left;
503 qatomic_set(&sibling->rb_right, tmp1);
504 qatomic_set(&tmp2->rb_left, sibling);
505 qatomic_set(&parent->rb_left, tmp2);
506 if (tmp1) {
507 rb_set_parent_color(tmp1, sibling, RB_BLACK);
509 augment->rotate(sibling, tmp2);
510 tmp1 = sibling;
511 sibling = tmp2;
513 /* Case 4 - right rotate at parent + color flips */
514 tmp2 = sibling->rb_right;
515 qatomic_set(&parent->rb_left, tmp2);
516 qatomic_set(&sibling->rb_right, parent);
517 rb_set_parent_color(tmp1, sibling, RB_BLACK);
518 if (tmp2) {
519 rb_set_parent(tmp2, parent);
521 rb_rotate_set_parents(parent, sibling, root, RB_BLACK);
522 augment->rotate(parent, sibling);
523 break;
528 static void rb_erase_augmented(RBNode *node, RBRoot *root,
529 const RBAugmentCallbacks *augment)
531 RBNode *child = node->rb_right;
532 RBNode *tmp = node->rb_left;
533 RBNode *parent, *rebalance;
534 uintptr_t pc;
536 if (!tmp) {
538 * Case 1: node to erase has no more than 1 child (easy!)
540 * Note that if there is one child it must be red due to 5)
541 * and node must be black due to 4). We adjust colors locally
542 * so as to bypass rb_erase_color() later on.
544 pc = rb_pc(node);
545 parent = pc_parent(pc);
546 rb_change_child(node, child, parent, root);
547 if (child) {
548 rb_set_pc(child, pc);
549 rebalance = NULL;
550 } else {
551 rebalance = pc_is_black(pc) ? parent : NULL;
553 tmp = parent;
554 } else if (!child) {
555 /* Still case 1, but this time the child is node->rb_left */
556 pc = rb_pc(node);
557 parent = pc_parent(pc);
558 rb_set_pc(tmp, pc);
559 rb_change_child(node, tmp, parent, root);
560 rebalance = NULL;
561 tmp = parent;
562 } else {
563 RBNode *successor = child, *child2;
564 tmp = child->rb_left;
565 if (!tmp) {
567 * Case 2: node's successor is its right child
569 * (n) (s)
570 * / \ / \
571 * (x) (s) -> (x) (c)
573 * (c)
575 parent = successor;
576 child2 = successor->rb_right;
578 augment->copy(node, successor);
579 } else {
581 * Case 3: node's successor is leftmost under
582 * node's right child subtree
584 * (n) (s)
585 * / \ / \
586 * (x) (y) -> (x) (y)
587 * / /
588 * (p) (p)
589 * / /
590 * (s) (c)
592 * (c)
594 do {
595 parent = successor;
596 successor = tmp;
597 tmp = tmp->rb_left;
598 } while (tmp);
599 child2 = successor->rb_right;
600 qatomic_set(&parent->rb_left, child2);
601 qatomic_set(&successor->rb_right, child);
602 rb_set_parent(child, successor);
604 augment->copy(node, successor);
605 augment->propagate(parent, successor);
608 tmp = node->rb_left;
609 qatomic_set(&successor->rb_left, tmp);
610 rb_set_parent(tmp, successor);
612 pc = rb_pc(node);
613 tmp = pc_parent(pc);
614 rb_change_child(node, successor, tmp, root);
616 if (child2) {
617 rb_set_parent_color(child2, parent, RB_BLACK);
618 rebalance = NULL;
619 } else {
620 rebalance = rb_is_black(successor) ? parent : NULL;
622 rb_set_pc(successor, pc);
623 tmp = successor;
626 augment->propagate(tmp, NULL);
628 if (rebalance) {
629 rb_erase_color(rebalance, root, augment);
633 static void rb_erase_augmented_cached(RBNode *node, RBRootLeftCached *root,
634 const RBAugmentCallbacks *augment)
636 if (root->rb_leftmost == node) {
637 root->rb_leftmost = rb_next(node);
639 rb_erase_augmented(node, &root->rb_root, augment);
644 * Interval trees.
646 * Derived from lib/interval_tree.c and its dependencies,
647 * especially include/linux/interval_tree_generic.h.
650 #define rb_to_itree(N) container_of(N, IntervalTreeNode, rb)
652 static bool interval_tree_compute_max(IntervalTreeNode *node, bool exit)
654 IntervalTreeNode *child;
655 uint64_t max = node->last;
657 if (node->rb.rb_left) {
658 child = rb_to_itree(node->rb.rb_left);
659 if (child->subtree_last > max) {
660 max = child->subtree_last;
663 if (node->rb.rb_right) {
664 child = rb_to_itree(node->rb.rb_right);
665 if (child->subtree_last > max) {
666 max = child->subtree_last;
669 if (exit && node->subtree_last == max) {
670 return true;
672 node->subtree_last = max;
673 return false;
676 static void interval_tree_propagate(RBNode *rb, RBNode *stop)
678 while (rb != stop) {
679 IntervalTreeNode *node = rb_to_itree(rb);
680 if (interval_tree_compute_max(node, true)) {
681 break;
683 rb = rb_parent(&node->rb);
687 static void interval_tree_copy(RBNode *rb_old, RBNode *rb_new)
689 IntervalTreeNode *old = rb_to_itree(rb_old);
690 IntervalTreeNode *new = rb_to_itree(rb_new);
692 new->subtree_last = old->subtree_last;
695 static void interval_tree_rotate(RBNode *rb_old, RBNode *rb_new)
697 IntervalTreeNode *old = rb_to_itree(rb_old);
698 IntervalTreeNode *new = rb_to_itree(rb_new);
700 new->subtree_last = old->subtree_last;
701 interval_tree_compute_max(old, false);
704 static const RBAugmentCallbacks interval_tree_augment = {
705 .propagate = interval_tree_propagate,
706 .copy = interval_tree_copy,
707 .rotate = interval_tree_rotate,
710 /* Insert / remove interval nodes from the tree */
711 void interval_tree_insert(IntervalTreeNode *node, IntervalTreeRoot *root)
713 RBNode **link = &root->rb_root.rb_node, *rb_parent = NULL;
714 uint64_t start = node->start, last = node->last;
715 IntervalTreeNode *parent;
716 bool leftmost = true;
718 while (*link) {
719 rb_parent = *link;
720 parent = rb_to_itree(rb_parent);
722 if (parent->subtree_last < last) {
723 parent->subtree_last = last;
725 if (start < parent->start) {
726 link = &parent->rb.rb_left;
727 } else {
728 link = &parent->rb.rb_right;
729 leftmost = false;
733 node->subtree_last = last;
734 rb_link_node(&node->rb, rb_parent, link);
735 rb_insert_augmented_cached(&node->rb, root, leftmost,
736 &interval_tree_augment);
739 void interval_tree_remove(IntervalTreeNode *node, IntervalTreeRoot *root)
741 rb_erase_augmented_cached(&node->rb, root, &interval_tree_augment);
745 * Iterate over intervals intersecting [start;last]
747 * Note that a node's interval intersects [start;last] iff:
748 * Cond1: node->start <= last
749 * and
750 * Cond2: start <= node->last
753 static IntervalTreeNode *interval_tree_subtree_search(IntervalTreeNode *node,
754 uint64_t start,
755 uint64_t last)
757 while (true) {
759 * Loop invariant: start <= node->subtree_last
760 * (Cond2 is satisfied by one of the subtree nodes)
762 RBNode *tmp = qatomic_read(&node->rb.rb_left);
763 if (tmp) {
764 IntervalTreeNode *left = rb_to_itree(tmp);
766 if (start <= left->subtree_last) {
768 * Some nodes in left subtree satisfy Cond2.
769 * Iterate to find the leftmost such node N.
770 * If it also satisfies Cond1, that's the
771 * match we are looking for. Otherwise, there
772 * is no matching interval as nodes to the
773 * right of N can't satisfy Cond1 either.
775 node = left;
776 continue;
779 if (node->start <= last) { /* Cond1 */
780 if (start <= node->last) { /* Cond2 */
781 return node; /* node is leftmost match */
783 tmp = qatomic_read(&node->rb.rb_right);
784 if (tmp) {
785 node = rb_to_itree(tmp);
786 if (start <= node->subtree_last) {
787 continue;
791 return NULL; /* no match */
795 IntervalTreeNode *interval_tree_iter_first(IntervalTreeRoot *root,
796 uint64_t start, uint64_t last)
798 IntervalTreeNode *node, *leftmost;
800 if (!root || !root->rb_root.rb_node) {
801 return NULL;
805 * Fastpath range intersection/overlap between A: [a0, a1] and
806 * B: [b0, b1] is given by:
808 * a0 <= b1 && b0 <= a1
810 * ... where A holds the lock range and B holds the smallest
811 * 'start' and largest 'last' in the tree. For the later, we
812 * rely on the root node, which by augmented interval tree
813 * property, holds the largest value in its last-in-subtree.
814 * This allows mitigating some of the tree walk overhead for
815 * for non-intersecting ranges, maintained and consulted in O(1).
817 node = rb_to_itree(root->rb_root.rb_node);
818 if (node->subtree_last < start) {
819 return NULL;
822 leftmost = rb_to_itree(root->rb_leftmost);
823 if (leftmost->start > last) {
824 return NULL;
827 return interval_tree_subtree_search(node, start, last);
830 IntervalTreeNode *interval_tree_iter_next(IntervalTreeNode *node,
831 uint64_t start, uint64_t last)
833 RBNode *rb, *prev;
835 rb = qatomic_read(&node->rb.rb_right);
836 while (true) {
838 * Loop invariants:
839 * Cond1: node->start <= last
840 * rb == node->rb.rb_right
842 * First, search right subtree if suitable
844 if (rb) {
845 IntervalTreeNode *right = rb_to_itree(rb);
847 if (start <= right->subtree_last) {
848 return interval_tree_subtree_search(right, start, last);
852 /* Move up the tree until we come from a node's left child */
853 do {
854 rb = rb_parent(&node->rb);
855 if (!rb) {
856 return NULL;
858 prev = &node->rb;
859 node = rb_to_itree(rb);
860 rb = qatomic_read(&node->rb.rb_right);
861 } while (prev == rb);
863 /* Check if the node intersects [start;last] */
864 if (last < node->start) { /* !Cond1 */
865 return NULL;
867 if (start <= node->last) { /* Cond2 */
868 return node;
873 /* Occasionally useful for calling from within the debugger. */
874 #if 0
875 static void debug_interval_tree_int(IntervalTreeNode *node,
876 const char *dir, int level)
878 printf("%4d %*s %s [%" PRIu64 ",%" PRIu64 "] subtree_last:%" PRIu64 "\n",
879 level, level + 1, dir, rb_is_red(&node->rb) ? "r" : "b",
880 node->start, node->last, node->subtree_last);
882 if (node->rb.rb_left) {
883 debug_interval_tree_int(rb_to_itree(node->rb.rb_left), "<", level + 1);
885 if (node->rb.rb_right) {
886 debug_interval_tree_int(rb_to_itree(node->rb.rb_right), ">", level + 1);
890 void debug_interval_tree(IntervalTreeNode *node);
891 void debug_interval_tree(IntervalTreeNode *node)
893 if (node) {
894 debug_interval_tree_int(node, "*", 0);
895 } else {
896 printf("null\n");
899 #endif