2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState
*bs
, uint64_t min_size
,
35 BDRVQcowState
*s
= bs
->opaque
;
36 int new_l1_size2
, ret
, i
;
37 uint64_t *new_l1_table
;
38 int64_t new_l1_table_offset
, new_l1_size
;
41 if (min_size
<= s
->l1_size
)
45 new_l1_size
= min_size
;
47 /* Bump size up to reduce the number of times we have to grow */
48 new_l1_size
= s
->l1_size
;
49 if (new_l1_size
== 0) {
52 while (min_size
> new_l1_size
) {
53 new_l1_size
= (new_l1_size
* 3 + 1) / 2;
57 if (new_l1_size
> INT_MAX
) {
62 fprintf(stderr
, "grow l1_table from %d to %" PRId64
"\n",
63 s
->l1_size
, new_l1_size
);
66 new_l1_size2
= sizeof(uint64_t) * new_l1_size
;
67 new_l1_table
= g_malloc0(align_offset(new_l1_size2
, 512));
68 memcpy(new_l1_table
, s
->l1_table
, s
->l1_size
* sizeof(uint64_t));
70 /* write new table (align to cluster) */
71 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ALLOC_TABLE
);
72 new_l1_table_offset
= qcow2_alloc_clusters(bs
, new_l1_size2
);
73 if (new_l1_table_offset
< 0) {
75 return new_l1_table_offset
;
78 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
83 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_WRITE_TABLE
);
84 for(i
= 0; i
< s
->l1_size
; i
++)
85 new_l1_table
[i
] = cpu_to_be64(new_l1_table
[i
]);
86 ret
= bdrv_pwrite_sync(bs
->file
, new_l1_table_offset
, new_l1_table
, new_l1_size2
);
89 for(i
= 0; i
< s
->l1_size
; i
++)
90 new_l1_table
[i
] = be64_to_cpu(new_l1_table
[i
]);
93 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_GROW_ACTIVATE_TABLE
);
94 cpu_to_be32w((uint32_t*)data
, new_l1_size
);
95 cpu_to_be64wu((uint64_t*)(data
+ 4), new_l1_table_offset
);
96 ret
= bdrv_pwrite_sync(bs
->file
, offsetof(QCowHeader
, l1_size
), data
,sizeof(data
));
101 qcow2_free_clusters(bs
, s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t));
102 s
->l1_table_offset
= new_l1_table_offset
;
103 s
->l1_table
= new_l1_table
;
104 s
->l1_size
= new_l1_size
;
107 g_free(new_l1_table
);
108 qcow2_free_clusters(bs
, new_l1_table_offset
, new_l1_size2
);
115 * Loads a L2 table into memory. If the table is in the cache, the cache
116 * is used; otherwise the L2 table is loaded from the image file.
118 * Returns a pointer to the L2 table on success, or NULL if the read from
119 * the image file failed.
122 static int l2_load(BlockDriverState
*bs
, uint64_t l2_offset
,
125 BDRVQcowState
*s
= bs
->opaque
;
128 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
, (void**) l2_table
);
134 * Writes one sector of the L1 table to the disk (can't update single entries
135 * and we really don't want bdrv_pread to perform a read-modify-write)
137 #define L1_ENTRIES_PER_SECTOR (512 / 8)
138 static int write_l1_entry(BlockDriverState
*bs
, int l1_index
)
140 BDRVQcowState
*s
= bs
->opaque
;
141 uint64_t buf
[L1_ENTRIES_PER_SECTOR
];
145 l1_start_index
= l1_index
& ~(L1_ENTRIES_PER_SECTOR
- 1);
146 for (i
= 0; i
< L1_ENTRIES_PER_SECTOR
; i
++) {
147 buf
[i
] = cpu_to_be64(s
->l1_table
[l1_start_index
+ i
]);
150 BLKDBG_EVENT(bs
->file
, BLKDBG_L1_UPDATE
);
151 ret
= bdrv_pwrite_sync(bs
->file
, s
->l1_table_offset
+ 8 * l1_start_index
,
163 * Allocate a new l2 entry in the file. If l1_index points to an already
164 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
165 * table) copy the contents of the old L2 table into the newly allocated one.
166 * Otherwise the new table is initialized with zeros.
170 static int l2_allocate(BlockDriverState
*bs
, int l1_index
, uint64_t **table
)
172 BDRVQcowState
*s
= bs
->opaque
;
173 uint64_t old_l2_offset
;
178 old_l2_offset
= s
->l1_table
[l1_index
];
180 trace_qcow2_l2_allocate(bs
, l1_index
);
182 /* allocate a new l2 entry */
184 l2_offset
= qcow2_alloc_clusters(bs
, s
->l2_size
* sizeof(uint64_t));
189 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
194 /* allocate a new entry in the l2 cache */
196 trace_qcow2_l2_allocate_get_empty(bs
, l1_index
);
197 ret
= qcow2_cache_get_empty(bs
, s
->l2_table_cache
, l2_offset
, (void**) table
);
204 if ((old_l2_offset
& L1E_OFFSET_MASK
) == 0) {
205 /* if there was no old l2 table, clear the new table */
206 memset(l2_table
, 0, s
->l2_size
* sizeof(uint64_t));
210 /* if there was an old l2 table, read it from the disk */
211 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_COW_READ
);
212 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
,
213 old_l2_offset
& L1E_OFFSET_MASK
,
214 (void**) &old_table
);
219 memcpy(l2_table
, old_table
, s
->cluster_size
);
221 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &old_table
);
227 /* write the l2 table to the file */
228 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_ALLOC_WRITE
);
230 trace_qcow2_l2_allocate_write_l2(bs
, l1_index
);
231 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
232 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
237 /* update the L1 entry */
238 trace_qcow2_l2_allocate_write_l1(bs
, l1_index
);
239 s
->l1_table
[l1_index
] = l2_offset
| QCOW_OFLAG_COPIED
;
240 ret
= write_l1_entry(bs
, l1_index
);
246 trace_qcow2_l2_allocate_done(bs
, l1_index
, 0);
250 trace_qcow2_l2_allocate_done(bs
, l1_index
, ret
);
251 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) table
);
252 s
->l1_table
[l1_index
] = old_l2_offset
;
257 * Checks how many clusters in a given L2 table are contiguous in the image
258 * file. As soon as one of the flags in the bitmask stop_flags changes compared
259 * to the first cluster, the search is stopped and the cluster is not counted
260 * as contiguous. (This allows it, for example, to stop at the first compressed
261 * cluster which may require a different handling)
263 static int count_contiguous_clusters(uint64_t nb_clusters
, int cluster_size
,
264 uint64_t *l2_table
, uint64_t start
, uint64_t stop_flags
)
267 uint64_t mask
= stop_flags
| L2E_OFFSET_MASK
;
268 uint64_t offset
= be64_to_cpu(l2_table
[0]) & mask
;
273 for (i
= start
; i
< start
+ nb_clusters
; i
++) {
274 uint64_t l2_entry
= be64_to_cpu(l2_table
[i
]) & mask
;
275 if (offset
+ (uint64_t) i
* cluster_size
!= l2_entry
) {
283 static int count_contiguous_free_clusters(uint64_t nb_clusters
, uint64_t *l2_table
)
287 for (i
= 0; i
< nb_clusters
; i
++) {
288 int type
= qcow2_get_cluster_type(be64_to_cpu(l2_table
[i
]));
290 if (type
!= QCOW2_CLUSTER_UNALLOCATED
) {
298 /* The crypt function is compatible with the linux cryptoloop
299 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
301 void qcow2_encrypt_sectors(BDRVQcowState
*s
, int64_t sector_num
,
302 uint8_t *out_buf
, const uint8_t *in_buf
,
303 int nb_sectors
, int enc
,
312 for(i
= 0; i
< nb_sectors
; i
++) {
313 ivec
.ll
[0] = cpu_to_le64(sector_num
);
315 AES_cbc_encrypt(in_buf
, out_buf
, 512, key
,
323 static int coroutine_fn
copy_sectors(BlockDriverState
*bs
,
325 uint64_t cluster_offset
,
326 int n_start
, int n_end
)
328 BDRVQcowState
*s
= bs
->opaque
;
334 * If this is the last cluster and it is only partially used, we must only
335 * copy until the end of the image, or bdrv_check_request will fail for the
336 * bdrv_read/write calls below.
338 if (start_sect
+ n_end
> bs
->total_sectors
) {
339 n_end
= bs
->total_sectors
- start_sect
;
347 iov
.iov_len
= n
* BDRV_SECTOR_SIZE
;
348 iov
.iov_base
= qemu_blockalign(bs
, iov
.iov_len
);
350 qemu_iovec_init_external(&qiov
, &iov
, 1);
352 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_READ
);
354 /* Call .bdrv_co_readv() directly instead of using the public block-layer
355 * interface. This avoids double I/O throttling and request tracking,
356 * which can lead to deadlock when block layer copy-on-read is enabled.
358 ret
= bs
->drv
->bdrv_co_readv(bs
, start_sect
+ n_start
, n
, &qiov
);
363 if (s
->crypt_method
) {
364 qcow2_encrypt_sectors(s
, start_sect
+ n_start
,
365 iov
.iov_base
, iov
.iov_base
, n
, 1,
366 &s
->aes_encrypt_key
);
369 BLKDBG_EVENT(bs
->file
, BLKDBG_COW_WRITE
);
370 ret
= bdrv_co_writev(bs
->file
, (cluster_offset
>> 9) + n_start
, n
, &qiov
);
377 qemu_vfree(iov
.iov_base
);
385 * For a given offset of the disk image, find the cluster offset in
386 * qcow2 file. The offset is stored in *cluster_offset.
388 * on entry, *num is the number of contiguous sectors we'd like to
389 * access following offset.
391 * on exit, *num is the number of contiguous sectors we can read.
393 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
396 int qcow2_get_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
397 int *num
, uint64_t *cluster_offset
)
399 BDRVQcowState
*s
= bs
->opaque
;
400 unsigned int l2_index
;
401 uint64_t l1_index
, l2_offset
, *l2_table
;
403 unsigned int index_in_cluster
, nb_clusters
;
404 uint64_t nb_available
, nb_needed
;
407 index_in_cluster
= (offset
>> 9) & (s
->cluster_sectors
- 1);
408 nb_needed
= *num
+ index_in_cluster
;
410 l1_bits
= s
->l2_bits
+ s
->cluster_bits
;
412 /* compute how many bytes there are between the offset and
413 * the end of the l1 entry
416 nb_available
= (1ULL << l1_bits
) - (offset
& ((1ULL << l1_bits
) - 1));
418 /* compute the number of available sectors */
420 nb_available
= (nb_available
>> 9) + index_in_cluster
;
422 if (nb_needed
> nb_available
) {
423 nb_needed
= nb_available
;
428 /* seek the the l2 offset in the l1 table */
430 l1_index
= offset
>> l1_bits
;
431 if (l1_index
>= s
->l1_size
) {
432 ret
= QCOW2_CLUSTER_UNALLOCATED
;
436 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
438 ret
= QCOW2_CLUSTER_UNALLOCATED
;
442 /* load the l2 table in memory */
444 ret
= l2_load(bs
, l2_offset
, &l2_table
);
449 /* find the cluster offset for the given disk offset */
451 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
452 *cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
453 nb_clusters
= size_to_clusters(s
, nb_needed
<< 9);
455 ret
= qcow2_get_cluster_type(*cluster_offset
);
457 case QCOW2_CLUSTER_COMPRESSED
:
458 /* Compressed clusters can only be processed one by one */
460 *cluster_offset
&= L2E_COMPRESSED_OFFSET_SIZE_MASK
;
462 case QCOW2_CLUSTER_ZERO
:
463 if (s
->qcow_version
< 3) {
466 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
467 &l2_table
[l2_index
], 0,
468 QCOW_OFLAG_COMPRESSED
| QCOW_OFLAG_ZERO
);
471 case QCOW2_CLUSTER_UNALLOCATED
:
472 /* how many empty clusters ? */
473 c
= count_contiguous_free_clusters(nb_clusters
, &l2_table
[l2_index
]);
476 case QCOW2_CLUSTER_NORMAL
:
477 /* how many allocated clusters ? */
478 c
= count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
479 &l2_table
[l2_index
], 0,
480 QCOW_OFLAG_COMPRESSED
| QCOW_OFLAG_ZERO
);
481 *cluster_offset
&= L2E_OFFSET_MASK
;
487 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
489 nb_available
= (c
* s
->cluster_sectors
);
492 if (nb_available
> nb_needed
)
493 nb_available
= nb_needed
;
495 *num
= nb_available
- index_in_cluster
;
503 * for a given disk offset, load (and allocate if needed)
506 * the l2 table offset in the qcow2 file and the cluster index
507 * in the l2 table are given to the caller.
509 * Returns 0 on success, -errno in failure case
511 static int get_cluster_table(BlockDriverState
*bs
, uint64_t offset
,
512 uint64_t **new_l2_table
,
515 BDRVQcowState
*s
= bs
->opaque
;
516 unsigned int l2_index
;
517 uint64_t l1_index
, l2_offset
;
518 uint64_t *l2_table
= NULL
;
521 /* seek the the l2 offset in the l1 table */
523 l1_index
= offset
>> (s
->l2_bits
+ s
->cluster_bits
);
524 if (l1_index
>= s
->l1_size
) {
525 ret
= qcow2_grow_l1_table(bs
, l1_index
+ 1, false);
531 assert(l1_index
< s
->l1_size
);
532 l2_offset
= s
->l1_table
[l1_index
] & L1E_OFFSET_MASK
;
534 /* seek the l2 table of the given l2 offset */
536 if (s
->l1_table
[l1_index
] & QCOW_OFLAG_COPIED
) {
537 /* load the l2 table in memory */
538 ret
= l2_load(bs
, l2_offset
, &l2_table
);
543 /* First allocate a new L2 table (and do COW if needed) */
544 ret
= l2_allocate(bs
, l1_index
, &l2_table
);
549 /* Then decrease the refcount of the old table */
551 qcow2_free_clusters(bs
, l2_offset
, s
->l2_size
* sizeof(uint64_t));
555 /* find the cluster offset for the given disk offset */
557 l2_index
= (offset
>> s
->cluster_bits
) & (s
->l2_size
- 1);
559 *new_l2_table
= l2_table
;
560 *new_l2_index
= l2_index
;
566 * alloc_compressed_cluster_offset
568 * For a given offset of the disk image, return cluster offset in
571 * If the offset is not found, allocate a new compressed cluster.
573 * Return the cluster offset if successful,
574 * Return 0, otherwise.
578 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState
*bs
,
582 BDRVQcowState
*s
= bs
->opaque
;
585 int64_t cluster_offset
;
588 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
593 /* Compression can't overwrite anything. Fail if the cluster was already
595 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
596 if (cluster_offset
& L2E_OFFSET_MASK
) {
597 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
601 cluster_offset
= qcow2_alloc_bytes(bs
, compressed_size
);
602 if (cluster_offset
< 0) {
603 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
607 nb_csectors
= ((cluster_offset
+ compressed_size
- 1) >> 9) -
608 (cluster_offset
>> 9);
610 cluster_offset
|= QCOW_OFLAG_COMPRESSED
|
611 ((uint64_t)nb_csectors
<< s
->csize_shift
);
613 /* update L2 table */
615 /* compressed clusters never have the copied flag */
617 BLKDBG_EVENT(bs
->file
, BLKDBG_L2_UPDATE_COMPRESSED
);
618 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
619 l2_table
[l2_index
] = cpu_to_be64(cluster_offset
);
620 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
625 return cluster_offset
;
628 static int perform_cow(BlockDriverState
*bs
, QCowL2Meta
*m
, Qcow2COWRegion
*r
)
630 BDRVQcowState
*s
= bs
->opaque
;
633 if (r
->nb_sectors
== 0) {
637 qemu_co_mutex_unlock(&s
->lock
);
638 ret
= copy_sectors(bs
, m
->offset
/ BDRV_SECTOR_SIZE
, m
->alloc_offset
,
639 r
->offset
/ BDRV_SECTOR_SIZE
,
640 r
->offset
/ BDRV_SECTOR_SIZE
+ r
->nb_sectors
);
641 qemu_co_mutex_lock(&s
->lock
);
648 * Before we update the L2 table to actually point to the new cluster, we
649 * need to be sure that the refcounts have been increased and COW was
652 qcow2_cache_depends_on_flush(s
->l2_table_cache
);
657 int qcow2_alloc_cluster_link_l2(BlockDriverState
*bs
, QCowL2Meta
*m
)
659 BDRVQcowState
*s
= bs
->opaque
;
660 int i
, j
= 0, l2_index
, ret
;
661 uint64_t *old_cluster
, *l2_table
;
662 uint64_t cluster_offset
= m
->alloc_offset
;
664 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m
->nb_clusters
);
665 assert(m
->nb_clusters
> 0);
667 old_cluster
= g_malloc(m
->nb_clusters
* sizeof(uint64_t));
669 /* copy content of unmodified sectors */
670 ret
= perform_cow(bs
, m
, &m
->cow_start
);
675 ret
= perform_cow(bs
, m
, &m
->cow_end
);
680 /* Update L2 table. */
681 if (s
->use_lazy_refcounts
) {
682 qcow2_mark_dirty(bs
);
684 if (qcow2_need_accurate_refcounts(s
)) {
685 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
686 s
->refcount_block_cache
);
689 ret
= get_cluster_table(bs
, m
->offset
, &l2_table
, &l2_index
);
693 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
695 for (i
= 0; i
< m
->nb_clusters
; i
++) {
696 /* if two concurrent writes happen to the same unallocated cluster
697 * each write allocates separate cluster and writes data concurrently.
698 * The first one to complete updates l2 table with pointer to its
699 * cluster the second one has to do RMW (which is done above by
700 * copy_sectors()), update l2 table with its cluster pointer and free
701 * old cluster. This is what this loop does */
702 if(l2_table
[l2_index
+ i
] != 0)
703 old_cluster
[j
++] = l2_table
[l2_index
+ i
];
705 l2_table
[l2_index
+ i
] = cpu_to_be64((cluster_offset
+
706 (i
<< s
->cluster_bits
)) | QCOW_OFLAG_COPIED
);
710 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
716 * If this was a COW, we need to decrease the refcount of the old cluster.
717 * Also flush bs->file to get the right order for L2 and refcount update.
720 for (i
= 0; i
< j
; i
++) {
721 qcow2_free_any_clusters(bs
, be64_to_cpu(old_cluster
[i
]), 1);
732 * Returns the number of contiguous clusters that can be used for an allocating
733 * write, but require COW to be performed (this includes yet unallocated space,
734 * which must copy from the backing file)
736 static int count_cow_clusters(BDRVQcowState
*s
, int nb_clusters
,
737 uint64_t *l2_table
, int l2_index
)
741 for (i
= 0; i
< nb_clusters
; i
++) {
742 uint64_t l2_entry
= be64_to_cpu(l2_table
[l2_index
+ i
]);
743 int cluster_type
= qcow2_get_cluster_type(l2_entry
);
745 switch(cluster_type
) {
746 case QCOW2_CLUSTER_NORMAL
:
747 if (l2_entry
& QCOW_OFLAG_COPIED
) {
751 case QCOW2_CLUSTER_UNALLOCATED
:
752 case QCOW2_CLUSTER_COMPRESSED
:
753 case QCOW2_CLUSTER_ZERO
:
761 assert(i
<= nb_clusters
);
766 * Check if there already is an AIO write request in flight which allocates
767 * the same cluster. In this case we need to wait until the previous
768 * request has completed and updated the L2 table accordingly.
771 * 0 if there was no dependency. *cur_bytes indicates the number of
772 * bytes from guest_offset that can be read before the next
773 * dependency must be processed (or the request is complete)
775 * -EAGAIN if we had to wait for another request, previously gathered
776 * information on cluster allocation may be invalid now. The caller
777 * must start over anyway, so consider *cur_bytes undefined.
779 static int handle_dependencies(BlockDriverState
*bs
, uint64_t guest_offset
,
780 uint64_t *cur_bytes
, QCowL2Meta
**m
)
782 BDRVQcowState
*s
= bs
->opaque
;
783 QCowL2Meta
*old_alloc
;
784 uint64_t bytes
= *cur_bytes
;
786 QLIST_FOREACH(old_alloc
, &s
->cluster_allocs
, next_in_flight
) {
788 uint64_t start
= guest_offset
;
789 uint64_t end
= start
+ bytes
;
790 uint64_t old_start
= l2meta_cow_start(old_alloc
);
791 uint64_t old_end
= l2meta_cow_end(old_alloc
);
793 if (end
<= old_start
|| start
>= old_end
) {
794 /* No intersection */
796 if (start
< old_start
) {
797 /* Stop at the start of a running allocation */
798 bytes
= old_start
- start
;
803 /* Stop if already an l2meta exists. After yielding, it wouldn't
804 * be valid any more, so we'd have to clean up the old L2Metas
805 * and deal with requests depending on them before starting to
806 * gather new ones. Not worth the trouble. */
807 if (bytes
== 0 && *m
) {
813 /* Wait for the dependency to complete. We need to recheck
814 * the free/allocated clusters when we continue. */
815 qemu_co_mutex_unlock(&s
->lock
);
816 qemu_co_queue_wait(&old_alloc
->dependent_requests
);
817 qemu_co_mutex_lock(&s
->lock
);
823 /* Make sure that existing clusters and new allocations are only used up to
824 * the next dependency if we shortened the request above */
831 * Checks how many already allocated clusters that don't require a copy on
832 * write there are at the given guest_offset (up to *bytes). If
833 * *host_offset is not zero, only physically contiguous clusters beginning at
834 * this host offset are counted.
836 * Note that guest_offset may not be cluster aligned. In this case, the
837 * returned *host_offset points to exact byte referenced by guest_offset and
838 * therefore isn't cluster aligned as well.
841 * 0: if no allocated clusters are available at the given offset.
842 * *bytes is normally unchanged. It is set to 0 if the cluster
843 * is allocated and doesn't need COW, but doesn't have the right
846 * 1: if allocated clusters that don't require a COW are available at
847 * the requested offset. *bytes may have decreased and describes
848 * the length of the area that can be written to.
850 * -errno: in error cases
852 static int handle_copied(BlockDriverState
*bs
, uint64_t guest_offset
,
853 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
855 BDRVQcowState
*s
= bs
->opaque
;
857 uint64_t cluster_offset
;
859 unsigned int nb_clusters
;
860 unsigned int keep_clusters
;
863 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset
, *host_offset
,
866 assert(*host_offset
== 0 || offset_into_cluster(s
, guest_offset
)
867 == offset_into_cluster(s
, *host_offset
));
870 * Calculate the number of clusters to look for. We stop at L2 table
871 * boundaries to keep things simple.
874 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
876 l2_index
= offset_to_l2_index(s
, guest_offset
);
877 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
879 /* Find L2 entry for the first involved cluster */
880 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
885 cluster_offset
= be64_to_cpu(l2_table
[l2_index
]);
887 /* Check how many clusters are already allocated and don't need COW */
888 if (qcow2_get_cluster_type(cluster_offset
) == QCOW2_CLUSTER_NORMAL
889 && (cluster_offset
& QCOW_OFLAG_COPIED
))
891 /* If a specific host_offset is required, check it */
892 bool offset_matches
=
893 (cluster_offset
& L2E_OFFSET_MASK
) == *host_offset
;
895 if (*host_offset
!= 0 && !offset_matches
) {
901 /* We keep all QCOW_OFLAG_COPIED clusters */
903 count_contiguous_clusters(nb_clusters
, s
->cluster_size
,
904 &l2_table
[l2_index
], 0,
905 QCOW_OFLAG_COPIED
| QCOW_OFLAG_ZERO
);
906 assert(keep_clusters
<= nb_clusters
);
909 keep_clusters
* s
->cluster_size
910 - offset_into_cluster(s
, guest_offset
));
919 pret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
924 /* Only return a host offset if we actually made progress. Otherwise we
925 * would make requirements for handle_alloc() that it can't fulfill */
927 *host_offset
= (cluster_offset
& L2E_OFFSET_MASK
)
928 + offset_into_cluster(s
, guest_offset
);
935 * Allocates new clusters for the given guest_offset.
937 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
938 * contain the number of clusters that have been allocated and are contiguous
941 * If *host_offset is non-zero, it specifies the offset in the image file at
942 * which the new clusters must start. *nb_clusters can be 0 on return in this
943 * case if the cluster at host_offset is already in use. If *host_offset is
944 * zero, the clusters can be allocated anywhere in the image file.
946 * *host_offset is updated to contain the offset into the image file at which
947 * the first allocated cluster starts.
949 * Return 0 on success and -errno in error cases. -EAGAIN means that the
950 * function has been waiting for another request and the allocation must be
951 * restarted, but the whole request should not be failed.
953 static int do_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t guest_offset
,
954 uint64_t *host_offset
, unsigned int *nb_clusters
)
956 BDRVQcowState
*s
= bs
->opaque
;
958 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset
,
959 *host_offset
, *nb_clusters
);
961 /* Allocate new clusters */
962 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
963 if (*host_offset
== 0) {
964 int64_t cluster_offset
=
965 qcow2_alloc_clusters(bs
, *nb_clusters
* s
->cluster_size
);
966 if (cluster_offset
< 0) {
967 return cluster_offset
;
969 *host_offset
= cluster_offset
;
972 int ret
= qcow2_alloc_clusters_at(bs
, *host_offset
, *nb_clusters
);
982 * Allocates new clusters for an area that either is yet unallocated or needs a
983 * copy on write. If *host_offset is non-zero, clusters are only allocated if
984 * the new allocation can match the specified host offset.
986 * Note that guest_offset may not be cluster aligned. In this case, the
987 * returned *host_offset points to exact byte referenced by guest_offset and
988 * therefore isn't cluster aligned as well.
991 * 0: if no clusters could be allocated. *bytes is set to 0,
992 * *host_offset is left unchanged.
994 * 1: if new clusters were allocated. *bytes may be decreased if the
995 * new allocation doesn't cover all of the requested area.
996 * *host_offset is updated to contain the host offset of the first
997 * newly allocated cluster.
999 * -errno: in error cases
1001 static int handle_alloc(BlockDriverState
*bs
, uint64_t guest_offset
,
1002 uint64_t *host_offset
, uint64_t *bytes
, QCowL2Meta
**m
)
1004 BDRVQcowState
*s
= bs
->opaque
;
1008 unsigned int nb_clusters
;
1011 uint64_t alloc_cluster_offset
;
1013 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset
, *host_offset
,
1018 * Calculate the number of clusters to look for. We stop at L2 table
1019 * boundaries to keep things simple.
1022 size_to_clusters(s
, offset_into_cluster(s
, guest_offset
) + *bytes
);
1024 l2_index
= offset_to_l2_index(s
, guest_offset
);
1025 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1027 /* Find L2 entry for the first involved cluster */
1028 ret
= get_cluster_table(bs
, guest_offset
, &l2_table
, &l2_index
);
1033 entry
= be64_to_cpu(l2_table
[l2_index
]);
1035 /* For the moment, overwrite compressed clusters one by one */
1036 if (entry
& QCOW_OFLAG_COMPRESSED
) {
1039 nb_clusters
= count_cow_clusters(s
, nb_clusters
, l2_table
, l2_index
);
1042 /* This function is only called when there were no non-COW clusters, so if
1043 * we can't find any unallocated or COW clusters either, something is
1044 * wrong with our code. */
1045 assert(nb_clusters
> 0);
1047 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1052 /* Allocate, if necessary at a given offset in the image file */
1053 alloc_cluster_offset
= start_of_cluster(s
, *host_offset
);
1054 ret
= do_alloc_cluster_offset(bs
, guest_offset
, &alloc_cluster_offset
,
1060 /* Can't extend contiguous allocation */
1061 if (nb_clusters
== 0) {
1067 * Save info needed for meta data update.
1069 * requested_sectors: Number of sectors from the start of the first
1070 * newly allocated cluster to the end of the (possibly shortened
1071 * before) write request.
1073 * avail_sectors: Number of sectors from the start of the first
1074 * newly allocated to the end of the last newly allocated cluster.
1076 * nb_sectors: The number of sectors from the start of the first
1077 * newly allocated cluster to the end of the area that the write
1078 * request actually writes to (excluding COW at the end)
1080 int requested_sectors
=
1081 (*bytes
+ offset_into_cluster(s
, guest_offset
))
1082 >> BDRV_SECTOR_BITS
;
1083 int avail_sectors
= nb_clusters
1084 << (s
->cluster_bits
- BDRV_SECTOR_BITS
);
1085 int alloc_n_start
= offset_into_cluster(s
, guest_offset
)
1086 >> BDRV_SECTOR_BITS
;
1087 int nb_sectors
= MIN(requested_sectors
, avail_sectors
);
1088 QCowL2Meta
*old_m
= *m
;
1090 *m
= g_malloc0(sizeof(**m
));
1092 **m
= (QCowL2Meta
) {
1095 .alloc_offset
= alloc_cluster_offset
,
1096 .offset
= start_of_cluster(s
, guest_offset
),
1097 .nb_clusters
= nb_clusters
,
1098 .nb_available
= nb_sectors
,
1102 .nb_sectors
= alloc_n_start
,
1105 .offset
= nb_sectors
* BDRV_SECTOR_SIZE
,
1106 .nb_sectors
= avail_sectors
- nb_sectors
,
1109 qemu_co_queue_init(&(*m
)->dependent_requests
);
1110 QLIST_INSERT_HEAD(&s
->cluster_allocs
, *m
, next_in_flight
);
1112 *host_offset
= alloc_cluster_offset
+ offset_into_cluster(s
, guest_offset
);
1113 *bytes
= MIN(*bytes
, (nb_sectors
* BDRV_SECTOR_SIZE
)
1114 - offset_into_cluster(s
, guest_offset
));
1115 assert(*bytes
!= 0);
1120 if (*m
&& (*m
)->nb_clusters
> 0) {
1121 QLIST_REMOVE(*m
, next_in_flight
);
1127 * alloc_cluster_offset
1129 * For a given offset on the virtual disk, find the cluster offset in qcow2
1130 * file. If the offset is not found, allocate a new cluster.
1132 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1133 * other fields in m are meaningless.
1135 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1136 * contiguous clusters that have been allocated. In this case, the other
1137 * fields of m are valid and contain information about the first allocated
1140 * If the request conflicts with another write request in flight, the coroutine
1141 * is queued and will be reentered when the dependency has completed.
1143 * Return 0 on success and -errno in error cases
1145 int qcow2_alloc_cluster_offset(BlockDriverState
*bs
, uint64_t offset
,
1146 int n_start
, int n_end
, int *num
, uint64_t *host_offset
, QCowL2Meta
**m
)
1148 BDRVQcowState
*s
= bs
->opaque
;
1149 uint64_t start
, remaining
;
1150 uint64_t cluster_offset
;
1154 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset
,
1157 assert(n_start
* BDRV_SECTOR_SIZE
== offset_into_cluster(s
, offset
));
1158 offset
= start_of_cluster(s
, offset
);
1161 start
= offset
+ (n_start
<< BDRV_SECTOR_BITS
);
1162 remaining
= (n_end
- n_start
) << BDRV_SECTOR_BITS
;
1170 if (!*host_offset
) {
1171 *host_offset
= start_of_cluster(s
, cluster_offset
);
1174 assert(remaining
>= cur_bytes
);
1177 remaining
-= cur_bytes
;
1178 cluster_offset
+= cur_bytes
;
1180 if (remaining
== 0) {
1184 cur_bytes
= remaining
;
1187 * Now start gathering as many contiguous clusters as possible:
1189 * 1. Check for overlaps with in-flight allocations
1191 * a) Overlap not in the first cluster -> shorten this request and
1192 * let the caller handle the rest in its next loop iteration.
1194 * b) Real overlaps of two requests. Yield and restart the search
1195 * for contiguous clusters (the situation could have changed
1196 * while we were sleeping)
1198 * c) TODO: Request starts in the same cluster as the in-flight
1199 * allocation ends. Shorten the COW of the in-fight allocation,
1200 * set cluster_offset to write to the same cluster and set up
1201 * the right synchronisation between the in-flight request and
1204 ret
= handle_dependencies(bs
, start
, &cur_bytes
, m
);
1205 if (ret
== -EAGAIN
) {
1206 /* Currently handle_dependencies() doesn't yield if we already had
1207 * an allocation. If it did, we would have to clean up the L2Meta
1208 * structs before starting over. */
1211 } else if (ret
< 0) {
1213 } else if (cur_bytes
== 0) {
1216 /* handle_dependencies() may have decreased cur_bytes (shortened
1217 * the allocations below) so that the next dependency is processed
1218 * correctly during the next loop iteration. */
1222 * 2. Count contiguous COPIED clusters.
1224 ret
= handle_copied(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1229 } else if (cur_bytes
== 0) {
1234 * 3. If the request still hasn't completed, allocate new clusters,
1235 * considering any cluster_offset of steps 1c or 2.
1237 ret
= handle_alloc(bs
, start
, &cluster_offset
, &cur_bytes
, m
);
1243 assert(cur_bytes
== 0);
1248 *num
= (n_end
- n_start
) - (remaining
>> BDRV_SECTOR_BITS
);
1250 assert(*host_offset
!= 0);
1255 static int decompress_buffer(uint8_t *out_buf
, int out_buf_size
,
1256 const uint8_t *buf
, int buf_size
)
1258 z_stream strm1
, *strm
= &strm1
;
1261 memset(strm
, 0, sizeof(*strm
));
1263 strm
->next_in
= (uint8_t *)buf
;
1264 strm
->avail_in
= buf_size
;
1265 strm
->next_out
= out_buf
;
1266 strm
->avail_out
= out_buf_size
;
1268 ret
= inflateInit2(strm
, -12);
1271 ret
= inflate(strm
, Z_FINISH
);
1272 out_len
= strm
->next_out
- out_buf
;
1273 if ((ret
!= Z_STREAM_END
&& ret
!= Z_BUF_ERROR
) ||
1274 out_len
!= out_buf_size
) {
1282 int qcow2_decompress_cluster(BlockDriverState
*bs
, uint64_t cluster_offset
)
1284 BDRVQcowState
*s
= bs
->opaque
;
1285 int ret
, csize
, nb_csectors
, sector_offset
;
1288 coffset
= cluster_offset
& s
->cluster_offset_mask
;
1289 if (s
->cluster_cache_offset
!= coffset
) {
1290 nb_csectors
= ((cluster_offset
>> s
->csize_shift
) & s
->csize_mask
) + 1;
1291 sector_offset
= coffset
& 511;
1292 csize
= nb_csectors
* 512 - sector_offset
;
1293 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_COMPRESSED
);
1294 ret
= bdrv_read(bs
->file
, coffset
>> 9, s
->cluster_data
, nb_csectors
);
1298 if (decompress_buffer(s
->cluster_cache
, s
->cluster_size
,
1299 s
->cluster_data
+ sector_offset
, csize
) < 0) {
1302 s
->cluster_cache_offset
= coffset
;
1308 * This discards as many clusters of nb_clusters as possible at once (i.e.
1309 * all clusters in the same L2 table) and returns the number of discarded
1312 static int discard_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1313 unsigned int nb_clusters
)
1315 BDRVQcowState
*s
= bs
->opaque
;
1321 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1326 /* Limit nb_clusters to one L2 table */
1327 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1329 for (i
= 0; i
< nb_clusters
; i
++) {
1330 uint64_t old_offset
;
1332 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1333 if ((old_offset
& L2E_OFFSET_MASK
) == 0) {
1337 /* First remove L2 entries */
1338 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1339 l2_table
[l2_index
+ i
] = cpu_to_be64(0);
1341 /* Then decrease the refcount */
1342 qcow2_free_any_clusters(bs
, old_offset
, 1);
1345 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1353 int qcow2_discard_clusters(BlockDriverState
*bs
, uint64_t offset
,
1356 BDRVQcowState
*s
= bs
->opaque
;
1357 uint64_t end_offset
;
1358 unsigned int nb_clusters
;
1361 end_offset
= offset
+ (nb_sectors
<< BDRV_SECTOR_BITS
);
1363 /* Round start up and end down */
1364 offset
= align_offset(offset
, s
->cluster_size
);
1365 end_offset
&= ~(s
->cluster_size
- 1);
1367 if (offset
> end_offset
) {
1371 nb_clusters
= size_to_clusters(s
, end_offset
- offset
);
1373 /* Each L2 table is handled by its own loop iteration */
1374 while (nb_clusters
> 0) {
1375 ret
= discard_single_l2(bs
, offset
, nb_clusters
);
1381 offset
+= (ret
* s
->cluster_size
);
1388 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1389 * all clusters in the same L2 table) and returns the number of zeroed
1392 static int zero_single_l2(BlockDriverState
*bs
, uint64_t offset
,
1393 unsigned int nb_clusters
)
1395 BDRVQcowState
*s
= bs
->opaque
;
1401 ret
= get_cluster_table(bs
, offset
, &l2_table
, &l2_index
);
1406 /* Limit nb_clusters to one L2 table */
1407 nb_clusters
= MIN(nb_clusters
, s
->l2_size
- l2_index
);
1409 for (i
= 0; i
< nb_clusters
; i
++) {
1410 uint64_t old_offset
;
1412 old_offset
= be64_to_cpu(l2_table
[l2_index
+ i
]);
1414 /* Update L2 entries */
1415 qcow2_cache_entry_mark_dirty(s
->l2_table_cache
, l2_table
);
1416 if (old_offset
& QCOW_OFLAG_COMPRESSED
) {
1417 l2_table
[l2_index
+ i
] = cpu_to_be64(QCOW_OFLAG_ZERO
);
1418 qcow2_free_any_clusters(bs
, old_offset
, 1);
1420 l2_table
[l2_index
+ i
] |= cpu_to_be64(QCOW_OFLAG_ZERO
);
1424 ret
= qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1432 int qcow2_zero_clusters(BlockDriverState
*bs
, uint64_t offset
, int nb_sectors
)
1434 BDRVQcowState
*s
= bs
->opaque
;
1435 unsigned int nb_clusters
;
1438 /* The zero flag is only supported by version 3 and newer */
1439 if (s
->qcow_version
< 3) {
1443 /* Each L2 table is handled by its own loop iteration */
1444 nb_clusters
= size_to_clusters(s
, nb_sectors
<< BDRV_SECTOR_BITS
);
1446 while (nb_clusters
> 0) {
1447 ret
= zero_single_l2(bs
, offset
, nb_clusters
);
1453 offset
+= (ret
* s
->cluster_size
);