memory: split accesses even when the old MMIO callbacks are used
[qemu/ar7.git] / block / qcow2-cluster.c
blob76f30e5c26a37c4516a402b51b7dababd24338a0
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
35 BDRVQcowState *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t new_l1_table_offset, new_l1_size;
39 uint8_t data[12];
41 if (min_size <= s->l1_size)
42 return 0;
44 if (exact_size) {
45 new_l1_size = min_size;
46 } else {
47 /* Bump size up to reduce the number of times we have to grow */
48 new_l1_size = s->l1_size;
49 if (new_l1_size == 0) {
50 new_l1_size = 1;
52 while (min_size > new_l1_size) {
53 new_l1_size = (new_l1_size * 3 + 1) / 2;
57 if (new_l1_size > INT_MAX) {
58 return -EFBIG;
61 #ifdef DEBUG_ALLOC2
62 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
63 s->l1_size, new_l1_size);
64 #endif
66 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
67 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
68 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70 /* write new table (align to cluster) */
71 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
72 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
73 if (new_l1_table_offset < 0) {
74 g_free(new_l1_table);
75 return new_l1_table_offset;
78 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
79 if (ret < 0) {
80 goto fail;
83 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
84 for(i = 0; i < s->l1_size; i++)
85 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
86 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
87 if (ret < 0)
88 goto fail;
89 for(i = 0; i < s->l1_size; i++)
90 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
92 /* set new table */
93 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
94 cpu_to_be32w((uint32_t*)data, new_l1_size);
95 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
96 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
97 if (ret < 0) {
98 goto fail;
100 g_free(s->l1_table);
101 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
102 s->l1_table_offset = new_l1_table_offset;
103 s->l1_table = new_l1_table;
104 s->l1_size = new_l1_size;
105 return 0;
106 fail:
107 g_free(new_l1_table);
108 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
109 return ret;
113 * l2_load
115 * Loads a L2 table into memory. If the table is in the cache, the cache
116 * is used; otherwise the L2 table is loaded from the image file.
118 * Returns a pointer to the L2 table on success, or NULL if the read from
119 * the image file failed.
122 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
123 uint64_t **l2_table)
125 BDRVQcowState *s = bs->opaque;
126 int ret;
128 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
130 return ret;
134 * Writes one sector of the L1 table to the disk (can't update single entries
135 * and we really don't want bdrv_pread to perform a read-modify-write)
137 #define L1_ENTRIES_PER_SECTOR (512 / 8)
138 static int write_l1_entry(BlockDriverState *bs, int l1_index)
140 BDRVQcowState *s = bs->opaque;
141 uint64_t buf[L1_ENTRIES_PER_SECTOR];
142 int l1_start_index;
143 int i, ret;
145 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
146 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
147 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
150 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
151 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
152 buf, sizeof(buf));
153 if (ret < 0) {
154 return ret;
157 return 0;
161 * l2_allocate
163 * Allocate a new l2 entry in the file. If l1_index points to an already
164 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
165 * table) copy the contents of the old L2 table into the newly allocated one.
166 * Otherwise the new table is initialized with zeros.
170 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
172 BDRVQcowState *s = bs->opaque;
173 uint64_t old_l2_offset;
174 uint64_t *l2_table;
175 int64_t l2_offset;
176 int ret;
178 old_l2_offset = s->l1_table[l1_index];
180 trace_qcow2_l2_allocate(bs, l1_index);
182 /* allocate a new l2 entry */
184 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
185 if (l2_offset < 0) {
186 return l2_offset;
189 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
190 if (ret < 0) {
191 goto fail;
194 /* allocate a new entry in the l2 cache */
196 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
197 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
198 if (ret < 0) {
199 return ret;
202 l2_table = *table;
204 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
205 /* if there was no old l2 table, clear the new table */
206 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
207 } else {
208 uint64_t* old_table;
210 /* if there was an old l2 table, read it from the disk */
211 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
212 ret = qcow2_cache_get(bs, s->l2_table_cache,
213 old_l2_offset & L1E_OFFSET_MASK,
214 (void**) &old_table);
215 if (ret < 0) {
216 goto fail;
219 memcpy(l2_table, old_table, s->cluster_size);
221 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
222 if (ret < 0) {
223 goto fail;
227 /* write the l2 table to the file */
228 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
230 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
231 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
232 ret = qcow2_cache_flush(bs, s->l2_table_cache);
233 if (ret < 0) {
234 goto fail;
237 /* update the L1 entry */
238 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
239 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
240 ret = write_l1_entry(bs, l1_index);
241 if (ret < 0) {
242 goto fail;
245 *table = l2_table;
246 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
247 return 0;
249 fail:
250 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
251 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
252 s->l1_table[l1_index] = old_l2_offset;
253 return ret;
257 * Checks how many clusters in a given L2 table are contiguous in the image
258 * file. As soon as one of the flags in the bitmask stop_flags changes compared
259 * to the first cluster, the search is stopped and the cluster is not counted
260 * as contiguous. (This allows it, for example, to stop at the first compressed
261 * cluster which may require a different handling)
263 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
264 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
266 int i;
267 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
268 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
270 if (!offset)
271 return 0;
273 for (i = start; i < start + nb_clusters; i++) {
274 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
275 if (offset + (uint64_t) i * cluster_size != l2_entry) {
276 break;
280 return (i - start);
283 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
285 int i;
287 for (i = 0; i < nb_clusters; i++) {
288 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
290 if (type != QCOW2_CLUSTER_UNALLOCATED) {
291 break;
295 return i;
298 /* The crypt function is compatible with the linux cryptoloop
299 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
300 supported */
301 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
302 uint8_t *out_buf, const uint8_t *in_buf,
303 int nb_sectors, int enc,
304 const AES_KEY *key)
306 union {
307 uint64_t ll[2];
308 uint8_t b[16];
309 } ivec;
310 int i;
312 for(i = 0; i < nb_sectors; i++) {
313 ivec.ll[0] = cpu_to_le64(sector_num);
314 ivec.ll[1] = 0;
315 AES_cbc_encrypt(in_buf, out_buf, 512, key,
316 ivec.b, enc);
317 sector_num++;
318 in_buf += 512;
319 out_buf += 512;
323 static int coroutine_fn copy_sectors(BlockDriverState *bs,
324 uint64_t start_sect,
325 uint64_t cluster_offset,
326 int n_start, int n_end)
328 BDRVQcowState *s = bs->opaque;
329 QEMUIOVector qiov;
330 struct iovec iov;
331 int n, ret;
334 * If this is the last cluster and it is only partially used, we must only
335 * copy until the end of the image, or bdrv_check_request will fail for the
336 * bdrv_read/write calls below.
338 if (start_sect + n_end > bs->total_sectors) {
339 n_end = bs->total_sectors - start_sect;
342 n = n_end - n_start;
343 if (n <= 0) {
344 return 0;
347 iov.iov_len = n * BDRV_SECTOR_SIZE;
348 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
350 qemu_iovec_init_external(&qiov, &iov, 1);
352 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
354 /* Call .bdrv_co_readv() directly instead of using the public block-layer
355 * interface. This avoids double I/O throttling and request tracking,
356 * which can lead to deadlock when block layer copy-on-read is enabled.
358 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
359 if (ret < 0) {
360 goto out;
363 if (s->crypt_method) {
364 qcow2_encrypt_sectors(s, start_sect + n_start,
365 iov.iov_base, iov.iov_base, n, 1,
366 &s->aes_encrypt_key);
369 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
370 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
371 if (ret < 0) {
372 goto out;
375 ret = 0;
376 out:
377 qemu_vfree(iov.iov_base);
378 return ret;
383 * get_cluster_offset
385 * For a given offset of the disk image, find the cluster offset in
386 * qcow2 file. The offset is stored in *cluster_offset.
388 * on entry, *num is the number of contiguous sectors we'd like to
389 * access following offset.
391 * on exit, *num is the number of contiguous sectors we can read.
393 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
394 * cases.
396 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
397 int *num, uint64_t *cluster_offset)
399 BDRVQcowState *s = bs->opaque;
400 unsigned int l2_index;
401 uint64_t l1_index, l2_offset, *l2_table;
402 int l1_bits, c;
403 unsigned int index_in_cluster, nb_clusters;
404 uint64_t nb_available, nb_needed;
405 int ret;
407 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
408 nb_needed = *num + index_in_cluster;
410 l1_bits = s->l2_bits + s->cluster_bits;
412 /* compute how many bytes there are between the offset and
413 * the end of the l1 entry
416 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
418 /* compute the number of available sectors */
420 nb_available = (nb_available >> 9) + index_in_cluster;
422 if (nb_needed > nb_available) {
423 nb_needed = nb_available;
426 *cluster_offset = 0;
428 /* seek the the l2 offset in the l1 table */
430 l1_index = offset >> l1_bits;
431 if (l1_index >= s->l1_size) {
432 ret = QCOW2_CLUSTER_UNALLOCATED;
433 goto out;
436 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
437 if (!l2_offset) {
438 ret = QCOW2_CLUSTER_UNALLOCATED;
439 goto out;
442 /* load the l2 table in memory */
444 ret = l2_load(bs, l2_offset, &l2_table);
445 if (ret < 0) {
446 return ret;
449 /* find the cluster offset for the given disk offset */
451 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
452 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
453 nb_clusters = size_to_clusters(s, nb_needed << 9);
455 ret = qcow2_get_cluster_type(*cluster_offset);
456 switch (ret) {
457 case QCOW2_CLUSTER_COMPRESSED:
458 /* Compressed clusters can only be processed one by one */
459 c = 1;
460 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
461 break;
462 case QCOW2_CLUSTER_ZERO:
463 if (s->qcow_version < 3) {
464 return -EIO;
466 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
467 &l2_table[l2_index], 0,
468 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
469 *cluster_offset = 0;
470 break;
471 case QCOW2_CLUSTER_UNALLOCATED:
472 /* how many empty clusters ? */
473 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
474 *cluster_offset = 0;
475 break;
476 case QCOW2_CLUSTER_NORMAL:
477 /* how many allocated clusters ? */
478 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
479 &l2_table[l2_index], 0,
480 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
481 *cluster_offset &= L2E_OFFSET_MASK;
482 break;
483 default:
484 abort();
487 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
489 nb_available = (c * s->cluster_sectors);
491 out:
492 if (nb_available > nb_needed)
493 nb_available = nb_needed;
495 *num = nb_available - index_in_cluster;
497 return ret;
501 * get_cluster_table
503 * for a given disk offset, load (and allocate if needed)
504 * the l2 table.
506 * the l2 table offset in the qcow2 file and the cluster index
507 * in the l2 table are given to the caller.
509 * Returns 0 on success, -errno in failure case
511 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
512 uint64_t **new_l2_table,
513 int *new_l2_index)
515 BDRVQcowState *s = bs->opaque;
516 unsigned int l2_index;
517 uint64_t l1_index, l2_offset;
518 uint64_t *l2_table = NULL;
519 int ret;
521 /* seek the the l2 offset in the l1 table */
523 l1_index = offset >> (s->l2_bits + s->cluster_bits);
524 if (l1_index >= s->l1_size) {
525 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
526 if (ret < 0) {
527 return ret;
531 assert(l1_index < s->l1_size);
532 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
534 /* seek the l2 table of the given l2 offset */
536 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
537 /* load the l2 table in memory */
538 ret = l2_load(bs, l2_offset, &l2_table);
539 if (ret < 0) {
540 return ret;
542 } else {
543 /* First allocate a new L2 table (and do COW if needed) */
544 ret = l2_allocate(bs, l1_index, &l2_table);
545 if (ret < 0) {
546 return ret;
549 /* Then decrease the refcount of the old table */
550 if (l2_offset) {
551 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
555 /* find the cluster offset for the given disk offset */
557 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
559 *new_l2_table = l2_table;
560 *new_l2_index = l2_index;
562 return 0;
566 * alloc_compressed_cluster_offset
568 * For a given offset of the disk image, return cluster offset in
569 * qcow2 file.
571 * If the offset is not found, allocate a new compressed cluster.
573 * Return the cluster offset if successful,
574 * Return 0, otherwise.
578 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
579 uint64_t offset,
580 int compressed_size)
582 BDRVQcowState *s = bs->opaque;
583 int l2_index, ret;
584 uint64_t *l2_table;
585 int64_t cluster_offset;
586 int nb_csectors;
588 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
589 if (ret < 0) {
590 return 0;
593 /* Compression can't overwrite anything. Fail if the cluster was already
594 * allocated. */
595 cluster_offset = be64_to_cpu(l2_table[l2_index]);
596 if (cluster_offset & L2E_OFFSET_MASK) {
597 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
598 return 0;
601 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
602 if (cluster_offset < 0) {
603 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
604 return 0;
607 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
608 (cluster_offset >> 9);
610 cluster_offset |= QCOW_OFLAG_COMPRESSED |
611 ((uint64_t)nb_csectors << s->csize_shift);
613 /* update L2 table */
615 /* compressed clusters never have the copied flag */
617 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
618 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
619 l2_table[l2_index] = cpu_to_be64(cluster_offset);
620 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
621 if (ret < 0) {
622 return 0;
625 return cluster_offset;
628 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
630 BDRVQcowState *s = bs->opaque;
631 int ret;
633 if (r->nb_sectors == 0) {
634 return 0;
637 qemu_co_mutex_unlock(&s->lock);
638 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
639 r->offset / BDRV_SECTOR_SIZE,
640 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
641 qemu_co_mutex_lock(&s->lock);
643 if (ret < 0) {
644 return ret;
648 * Before we update the L2 table to actually point to the new cluster, we
649 * need to be sure that the refcounts have been increased and COW was
650 * handled.
652 qcow2_cache_depends_on_flush(s->l2_table_cache);
654 return 0;
657 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
659 BDRVQcowState *s = bs->opaque;
660 int i, j = 0, l2_index, ret;
661 uint64_t *old_cluster, *l2_table;
662 uint64_t cluster_offset = m->alloc_offset;
664 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
665 assert(m->nb_clusters > 0);
667 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
669 /* copy content of unmodified sectors */
670 ret = perform_cow(bs, m, &m->cow_start);
671 if (ret < 0) {
672 goto err;
675 ret = perform_cow(bs, m, &m->cow_end);
676 if (ret < 0) {
677 goto err;
680 /* Update L2 table. */
681 if (s->use_lazy_refcounts) {
682 qcow2_mark_dirty(bs);
684 if (qcow2_need_accurate_refcounts(s)) {
685 qcow2_cache_set_dependency(bs, s->l2_table_cache,
686 s->refcount_block_cache);
689 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
690 if (ret < 0) {
691 goto err;
693 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
695 for (i = 0; i < m->nb_clusters; i++) {
696 /* if two concurrent writes happen to the same unallocated cluster
697 * each write allocates separate cluster and writes data concurrently.
698 * The first one to complete updates l2 table with pointer to its
699 * cluster the second one has to do RMW (which is done above by
700 * copy_sectors()), update l2 table with its cluster pointer and free
701 * old cluster. This is what this loop does */
702 if(l2_table[l2_index + i] != 0)
703 old_cluster[j++] = l2_table[l2_index + i];
705 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
706 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
710 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
711 if (ret < 0) {
712 goto err;
716 * If this was a COW, we need to decrease the refcount of the old cluster.
717 * Also flush bs->file to get the right order for L2 and refcount update.
719 if (j != 0) {
720 for (i = 0; i < j; i++) {
721 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1);
725 ret = 0;
726 err:
727 g_free(old_cluster);
728 return ret;
732 * Returns the number of contiguous clusters that can be used for an allocating
733 * write, but require COW to be performed (this includes yet unallocated space,
734 * which must copy from the backing file)
736 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
737 uint64_t *l2_table, int l2_index)
739 int i;
741 for (i = 0; i < nb_clusters; i++) {
742 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
743 int cluster_type = qcow2_get_cluster_type(l2_entry);
745 switch(cluster_type) {
746 case QCOW2_CLUSTER_NORMAL:
747 if (l2_entry & QCOW_OFLAG_COPIED) {
748 goto out;
750 break;
751 case QCOW2_CLUSTER_UNALLOCATED:
752 case QCOW2_CLUSTER_COMPRESSED:
753 case QCOW2_CLUSTER_ZERO:
754 break;
755 default:
756 abort();
760 out:
761 assert(i <= nb_clusters);
762 return i;
766 * Check if there already is an AIO write request in flight which allocates
767 * the same cluster. In this case we need to wait until the previous
768 * request has completed and updated the L2 table accordingly.
770 * Returns:
771 * 0 if there was no dependency. *cur_bytes indicates the number of
772 * bytes from guest_offset that can be read before the next
773 * dependency must be processed (or the request is complete)
775 * -EAGAIN if we had to wait for another request, previously gathered
776 * information on cluster allocation may be invalid now. The caller
777 * must start over anyway, so consider *cur_bytes undefined.
779 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
780 uint64_t *cur_bytes, QCowL2Meta **m)
782 BDRVQcowState *s = bs->opaque;
783 QCowL2Meta *old_alloc;
784 uint64_t bytes = *cur_bytes;
786 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
788 uint64_t start = guest_offset;
789 uint64_t end = start + bytes;
790 uint64_t old_start = l2meta_cow_start(old_alloc);
791 uint64_t old_end = l2meta_cow_end(old_alloc);
793 if (end <= old_start || start >= old_end) {
794 /* No intersection */
795 } else {
796 if (start < old_start) {
797 /* Stop at the start of a running allocation */
798 bytes = old_start - start;
799 } else {
800 bytes = 0;
803 /* Stop if already an l2meta exists. After yielding, it wouldn't
804 * be valid any more, so we'd have to clean up the old L2Metas
805 * and deal with requests depending on them before starting to
806 * gather new ones. Not worth the trouble. */
807 if (bytes == 0 && *m) {
808 *cur_bytes = 0;
809 return 0;
812 if (bytes == 0) {
813 /* Wait for the dependency to complete. We need to recheck
814 * the free/allocated clusters when we continue. */
815 qemu_co_mutex_unlock(&s->lock);
816 qemu_co_queue_wait(&old_alloc->dependent_requests);
817 qemu_co_mutex_lock(&s->lock);
818 return -EAGAIN;
823 /* Make sure that existing clusters and new allocations are only used up to
824 * the next dependency if we shortened the request above */
825 *cur_bytes = bytes;
827 return 0;
831 * Checks how many already allocated clusters that don't require a copy on
832 * write there are at the given guest_offset (up to *bytes). If
833 * *host_offset is not zero, only physically contiguous clusters beginning at
834 * this host offset are counted.
836 * Note that guest_offset may not be cluster aligned. In this case, the
837 * returned *host_offset points to exact byte referenced by guest_offset and
838 * therefore isn't cluster aligned as well.
840 * Returns:
841 * 0: if no allocated clusters are available at the given offset.
842 * *bytes is normally unchanged. It is set to 0 if the cluster
843 * is allocated and doesn't need COW, but doesn't have the right
844 * physical offset.
846 * 1: if allocated clusters that don't require a COW are available at
847 * the requested offset. *bytes may have decreased and describes
848 * the length of the area that can be written to.
850 * -errno: in error cases
852 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
853 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
855 BDRVQcowState *s = bs->opaque;
856 int l2_index;
857 uint64_t cluster_offset;
858 uint64_t *l2_table;
859 unsigned int nb_clusters;
860 unsigned int keep_clusters;
861 int ret, pret;
863 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
864 *bytes);
866 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
867 == offset_into_cluster(s, *host_offset));
870 * Calculate the number of clusters to look for. We stop at L2 table
871 * boundaries to keep things simple.
873 nb_clusters =
874 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
876 l2_index = offset_to_l2_index(s, guest_offset);
877 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
879 /* Find L2 entry for the first involved cluster */
880 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
881 if (ret < 0) {
882 return ret;
885 cluster_offset = be64_to_cpu(l2_table[l2_index]);
887 /* Check how many clusters are already allocated and don't need COW */
888 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
889 && (cluster_offset & QCOW_OFLAG_COPIED))
891 /* If a specific host_offset is required, check it */
892 bool offset_matches =
893 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
895 if (*host_offset != 0 && !offset_matches) {
896 *bytes = 0;
897 ret = 0;
898 goto out;
901 /* We keep all QCOW_OFLAG_COPIED clusters */
902 keep_clusters =
903 count_contiguous_clusters(nb_clusters, s->cluster_size,
904 &l2_table[l2_index], 0,
905 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
906 assert(keep_clusters <= nb_clusters);
908 *bytes = MIN(*bytes,
909 keep_clusters * s->cluster_size
910 - offset_into_cluster(s, guest_offset));
912 ret = 1;
913 } else {
914 ret = 0;
917 /* Cleanup */
918 out:
919 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
920 if (pret < 0) {
921 return pret;
924 /* Only return a host offset if we actually made progress. Otherwise we
925 * would make requirements for handle_alloc() that it can't fulfill */
926 if (ret) {
927 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
928 + offset_into_cluster(s, guest_offset);
931 return ret;
935 * Allocates new clusters for the given guest_offset.
937 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
938 * contain the number of clusters that have been allocated and are contiguous
939 * in the image file.
941 * If *host_offset is non-zero, it specifies the offset in the image file at
942 * which the new clusters must start. *nb_clusters can be 0 on return in this
943 * case if the cluster at host_offset is already in use. If *host_offset is
944 * zero, the clusters can be allocated anywhere in the image file.
946 * *host_offset is updated to contain the offset into the image file at which
947 * the first allocated cluster starts.
949 * Return 0 on success and -errno in error cases. -EAGAIN means that the
950 * function has been waiting for another request and the allocation must be
951 * restarted, but the whole request should not be failed.
953 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
954 uint64_t *host_offset, unsigned int *nb_clusters)
956 BDRVQcowState *s = bs->opaque;
958 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
959 *host_offset, *nb_clusters);
961 /* Allocate new clusters */
962 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
963 if (*host_offset == 0) {
964 int64_t cluster_offset =
965 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
966 if (cluster_offset < 0) {
967 return cluster_offset;
969 *host_offset = cluster_offset;
970 return 0;
971 } else {
972 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
973 if (ret < 0) {
974 return ret;
976 *nb_clusters = ret;
977 return 0;
982 * Allocates new clusters for an area that either is yet unallocated or needs a
983 * copy on write. If *host_offset is non-zero, clusters are only allocated if
984 * the new allocation can match the specified host offset.
986 * Note that guest_offset may not be cluster aligned. In this case, the
987 * returned *host_offset points to exact byte referenced by guest_offset and
988 * therefore isn't cluster aligned as well.
990 * Returns:
991 * 0: if no clusters could be allocated. *bytes is set to 0,
992 * *host_offset is left unchanged.
994 * 1: if new clusters were allocated. *bytes may be decreased if the
995 * new allocation doesn't cover all of the requested area.
996 * *host_offset is updated to contain the host offset of the first
997 * newly allocated cluster.
999 * -errno: in error cases
1001 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1002 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1004 BDRVQcowState *s = bs->opaque;
1005 int l2_index;
1006 uint64_t *l2_table;
1007 uint64_t entry;
1008 unsigned int nb_clusters;
1009 int ret;
1011 uint64_t alloc_cluster_offset;
1013 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1014 *bytes);
1015 assert(*bytes > 0);
1018 * Calculate the number of clusters to look for. We stop at L2 table
1019 * boundaries to keep things simple.
1021 nb_clusters =
1022 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1024 l2_index = offset_to_l2_index(s, guest_offset);
1025 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1027 /* Find L2 entry for the first involved cluster */
1028 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1029 if (ret < 0) {
1030 return ret;
1033 entry = be64_to_cpu(l2_table[l2_index]);
1035 /* For the moment, overwrite compressed clusters one by one */
1036 if (entry & QCOW_OFLAG_COMPRESSED) {
1037 nb_clusters = 1;
1038 } else {
1039 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1042 /* This function is only called when there were no non-COW clusters, so if
1043 * we can't find any unallocated or COW clusters either, something is
1044 * wrong with our code. */
1045 assert(nb_clusters > 0);
1047 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1048 if (ret < 0) {
1049 return ret;
1052 /* Allocate, if necessary at a given offset in the image file */
1053 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1054 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1055 &nb_clusters);
1056 if (ret < 0) {
1057 goto fail;
1060 /* Can't extend contiguous allocation */
1061 if (nb_clusters == 0) {
1062 *bytes = 0;
1063 return 0;
1067 * Save info needed for meta data update.
1069 * requested_sectors: Number of sectors from the start of the first
1070 * newly allocated cluster to the end of the (possibly shortened
1071 * before) write request.
1073 * avail_sectors: Number of sectors from the start of the first
1074 * newly allocated to the end of the last newly allocated cluster.
1076 * nb_sectors: The number of sectors from the start of the first
1077 * newly allocated cluster to the end of the area that the write
1078 * request actually writes to (excluding COW at the end)
1080 int requested_sectors =
1081 (*bytes + offset_into_cluster(s, guest_offset))
1082 >> BDRV_SECTOR_BITS;
1083 int avail_sectors = nb_clusters
1084 << (s->cluster_bits - BDRV_SECTOR_BITS);
1085 int alloc_n_start = offset_into_cluster(s, guest_offset)
1086 >> BDRV_SECTOR_BITS;
1087 int nb_sectors = MIN(requested_sectors, avail_sectors);
1088 QCowL2Meta *old_m = *m;
1090 *m = g_malloc0(sizeof(**m));
1092 **m = (QCowL2Meta) {
1093 .next = old_m,
1095 .alloc_offset = alloc_cluster_offset,
1096 .offset = start_of_cluster(s, guest_offset),
1097 .nb_clusters = nb_clusters,
1098 .nb_available = nb_sectors,
1100 .cow_start = {
1101 .offset = 0,
1102 .nb_sectors = alloc_n_start,
1104 .cow_end = {
1105 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1106 .nb_sectors = avail_sectors - nb_sectors,
1109 qemu_co_queue_init(&(*m)->dependent_requests);
1110 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1112 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1113 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1114 - offset_into_cluster(s, guest_offset));
1115 assert(*bytes != 0);
1117 return 1;
1119 fail:
1120 if (*m && (*m)->nb_clusters > 0) {
1121 QLIST_REMOVE(*m, next_in_flight);
1123 return ret;
1127 * alloc_cluster_offset
1129 * For a given offset on the virtual disk, find the cluster offset in qcow2
1130 * file. If the offset is not found, allocate a new cluster.
1132 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1133 * other fields in m are meaningless.
1135 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1136 * contiguous clusters that have been allocated. In this case, the other
1137 * fields of m are valid and contain information about the first allocated
1138 * cluster.
1140 * If the request conflicts with another write request in flight, the coroutine
1141 * is queued and will be reentered when the dependency has completed.
1143 * Return 0 on success and -errno in error cases
1145 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1146 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1148 BDRVQcowState *s = bs->opaque;
1149 uint64_t start, remaining;
1150 uint64_t cluster_offset;
1151 uint64_t cur_bytes;
1152 int ret;
1154 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1155 n_start, n_end);
1157 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1158 offset = start_of_cluster(s, offset);
1160 again:
1161 start = offset + (n_start << BDRV_SECTOR_BITS);
1162 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1163 cluster_offset = 0;
1164 *host_offset = 0;
1165 cur_bytes = 0;
1166 *m = NULL;
1168 while (true) {
1170 if (!*host_offset) {
1171 *host_offset = start_of_cluster(s, cluster_offset);
1174 assert(remaining >= cur_bytes);
1176 start += cur_bytes;
1177 remaining -= cur_bytes;
1178 cluster_offset += cur_bytes;
1180 if (remaining == 0) {
1181 break;
1184 cur_bytes = remaining;
1187 * Now start gathering as many contiguous clusters as possible:
1189 * 1. Check for overlaps with in-flight allocations
1191 * a) Overlap not in the first cluster -> shorten this request and
1192 * let the caller handle the rest in its next loop iteration.
1194 * b) Real overlaps of two requests. Yield and restart the search
1195 * for contiguous clusters (the situation could have changed
1196 * while we were sleeping)
1198 * c) TODO: Request starts in the same cluster as the in-flight
1199 * allocation ends. Shorten the COW of the in-fight allocation,
1200 * set cluster_offset to write to the same cluster and set up
1201 * the right synchronisation between the in-flight request and
1202 * the new one.
1204 ret = handle_dependencies(bs, start, &cur_bytes, m);
1205 if (ret == -EAGAIN) {
1206 /* Currently handle_dependencies() doesn't yield if we already had
1207 * an allocation. If it did, we would have to clean up the L2Meta
1208 * structs before starting over. */
1209 assert(*m == NULL);
1210 goto again;
1211 } else if (ret < 0) {
1212 return ret;
1213 } else if (cur_bytes == 0) {
1214 break;
1215 } else {
1216 /* handle_dependencies() may have decreased cur_bytes (shortened
1217 * the allocations below) so that the next dependency is processed
1218 * correctly during the next loop iteration. */
1222 * 2. Count contiguous COPIED clusters.
1224 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1225 if (ret < 0) {
1226 return ret;
1227 } else if (ret) {
1228 continue;
1229 } else if (cur_bytes == 0) {
1230 break;
1234 * 3. If the request still hasn't completed, allocate new clusters,
1235 * considering any cluster_offset of steps 1c or 2.
1237 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1238 if (ret < 0) {
1239 return ret;
1240 } else if (ret) {
1241 continue;
1242 } else {
1243 assert(cur_bytes == 0);
1244 break;
1248 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1249 assert(*num > 0);
1250 assert(*host_offset != 0);
1252 return 0;
1255 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1256 const uint8_t *buf, int buf_size)
1258 z_stream strm1, *strm = &strm1;
1259 int ret, out_len;
1261 memset(strm, 0, sizeof(*strm));
1263 strm->next_in = (uint8_t *)buf;
1264 strm->avail_in = buf_size;
1265 strm->next_out = out_buf;
1266 strm->avail_out = out_buf_size;
1268 ret = inflateInit2(strm, -12);
1269 if (ret != Z_OK)
1270 return -1;
1271 ret = inflate(strm, Z_FINISH);
1272 out_len = strm->next_out - out_buf;
1273 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1274 out_len != out_buf_size) {
1275 inflateEnd(strm);
1276 return -1;
1278 inflateEnd(strm);
1279 return 0;
1282 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1284 BDRVQcowState *s = bs->opaque;
1285 int ret, csize, nb_csectors, sector_offset;
1286 uint64_t coffset;
1288 coffset = cluster_offset & s->cluster_offset_mask;
1289 if (s->cluster_cache_offset != coffset) {
1290 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1291 sector_offset = coffset & 511;
1292 csize = nb_csectors * 512 - sector_offset;
1293 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1294 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1295 if (ret < 0) {
1296 return ret;
1298 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1299 s->cluster_data + sector_offset, csize) < 0) {
1300 return -EIO;
1302 s->cluster_cache_offset = coffset;
1304 return 0;
1308 * This discards as many clusters of nb_clusters as possible at once (i.e.
1309 * all clusters in the same L2 table) and returns the number of discarded
1310 * clusters.
1312 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1313 unsigned int nb_clusters)
1315 BDRVQcowState *s = bs->opaque;
1316 uint64_t *l2_table;
1317 int l2_index;
1318 int ret;
1319 int i;
1321 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1322 if (ret < 0) {
1323 return ret;
1326 /* Limit nb_clusters to one L2 table */
1327 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1329 for (i = 0; i < nb_clusters; i++) {
1330 uint64_t old_offset;
1332 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1333 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1334 continue;
1337 /* First remove L2 entries */
1338 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1339 l2_table[l2_index + i] = cpu_to_be64(0);
1341 /* Then decrease the refcount */
1342 qcow2_free_any_clusters(bs, old_offset, 1);
1345 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1346 if (ret < 0) {
1347 return ret;
1350 return nb_clusters;
1353 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1354 int nb_sectors)
1356 BDRVQcowState *s = bs->opaque;
1357 uint64_t end_offset;
1358 unsigned int nb_clusters;
1359 int ret;
1361 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1363 /* Round start up and end down */
1364 offset = align_offset(offset, s->cluster_size);
1365 end_offset &= ~(s->cluster_size - 1);
1367 if (offset > end_offset) {
1368 return 0;
1371 nb_clusters = size_to_clusters(s, end_offset - offset);
1373 /* Each L2 table is handled by its own loop iteration */
1374 while (nb_clusters > 0) {
1375 ret = discard_single_l2(bs, offset, nb_clusters);
1376 if (ret < 0) {
1377 return ret;
1380 nb_clusters -= ret;
1381 offset += (ret * s->cluster_size);
1384 return 0;
1388 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1389 * all clusters in the same L2 table) and returns the number of zeroed
1390 * clusters.
1392 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1393 unsigned int nb_clusters)
1395 BDRVQcowState *s = bs->opaque;
1396 uint64_t *l2_table;
1397 int l2_index;
1398 int ret;
1399 int i;
1401 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1402 if (ret < 0) {
1403 return ret;
1406 /* Limit nb_clusters to one L2 table */
1407 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1409 for (i = 0; i < nb_clusters; i++) {
1410 uint64_t old_offset;
1412 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1414 /* Update L2 entries */
1415 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1416 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1417 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1418 qcow2_free_any_clusters(bs, old_offset, 1);
1419 } else {
1420 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1424 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1425 if (ret < 0) {
1426 return ret;
1429 return nb_clusters;
1432 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1434 BDRVQcowState *s = bs->opaque;
1435 unsigned int nb_clusters;
1436 int ret;
1438 /* The zero flag is only supported by version 3 and newer */
1439 if (s->qcow_version < 3) {
1440 return -ENOTSUP;
1443 /* Each L2 table is handled by its own loop iteration */
1444 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1446 while (nb_clusters > 0) {
1447 ret = zero_single_l2(bs, offset, nb_clusters);
1448 if (ret < 0) {
1449 return ret;
1452 nb_clusters -= ret;
1453 offset += (ret * s->cluster_size);
1456 return 0;