target/arm: Convert VADD to decodetree
[qemu/ar7.git] / target / tricore / fpu_helper.c
blobd8a6c0d25b59e0ed0db0b850dfb4c09493a603fa
1 /*
2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define DIV_NAN 0x7fc00008
28 #define MUL_NAN 0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
38 return get_float_exception_flags(&env->fp_status)
39 & (float_flag_invalid
40 | float_flag_overflow
41 | float_flag_underflow
42 | float_flag_output_denormal
43 | float_flag_divbyzero
44 | float_flag_inexact);
47 static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
48 float32 arg3, float32 result,
49 uint32_t muladd_negate_c)
51 uint32_t aSign, bSign, cSign;
52 uint32_t aExp, bExp, cExp;
54 if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
55 float32_is_any_nan(arg3)) {
56 return QUIET_NAN;
57 } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
58 return MUL_NAN;
59 } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
60 return MUL_NAN;
61 } else {
62 aSign = arg1 >> 31;
63 bSign = arg2 >> 31;
64 cSign = arg3 >> 31;
66 aExp = (arg1 >> 23) & 0xff;
67 bExp = (arg2 >> 23) & 0xff;
68 cExp = (arg3 >> 23) & 0xff;
70 if (muladd_negate_c) {
71 cSign ^= 1;
73 if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
74 if (aSign ^ bSign ^ cSign) {
75 return ADD_NAN;
80 return result;
83 static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
85 uint8_t some_excp = 0;
86 set_float_exception_flags(0, &env->fp_status);
88 if (flags & float_flag_invalid) {
89 env->FPU_FI = 1 << 31;
90 some_excp = 1;
93 if (flags & float_flag_overflow) {
94 env->FPU_FV = 1 << 31;
95 some_excp = 1;
98 if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
99 env->FPU_FU = 1 << 31;
100 some_excp = 1;
103 if (flags & float_flag_divbyzero) {
104 env->FPU_FZ = 1 << 31;
105 some_excp = 1;
108 if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
109 env->PSW |= 1 << 26;
110 some_excp = 1;
113 env->FPU_FS = some_excp;
116 #define FADD_SUB(op) \
117 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
119 float32 arg1 = make_float32(r1); \
120 float32 arg2 = make_float32(r2); \
121 uint32_t flags; \
122 float32 f_result; \
124 f_result = float32_##op(arg2, arg1, &env->fp_status); \
125 flags = f_get_excp_flags(env); \
126 if (flags) { \
127 /* If the output is a NaN, but the inputs aren't, \
128 we return a unique value. */ \
129 if ((flags & float_flag_invalid) \
130 && !float32_is_any_nan(arg1) \
131 && !float32_is_any_nan(arg2)) { \
132 f_result = ADD_NAN; \
134 f_update_psw_flags(env, flags); \
135 } else { \
136 env->FPU_FS = 0; \
138 return (uint32_t)f_result; \
140 FADD_SUB(add)
141 FADD_SUB(sub)
143 uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
145 uint32_t flags;
146 float32 arg1 = make_float32(r1);
147 float32 arg2 = make_float32(r2);
148 float32 f_result;
150 f_result = float32_mul(arg1, arg2, &env->fp_status);
152 flags = f_get_excp_flags(env);
153 if (flags) {
154 /* If the output is a NaN, but the inputs aren't,
155 we return a unique value. */
156 if ((flags & float_flag_invalid)
157 && !float32_is_any_nan(arg1)
158 && !float32_is_any_nan(arg2)) {
159 f_result = MUL_NAN;
161 f_update_psw_flags(env, flags);
162 } else {
163 env->FPU_FS = 0;
165 return (uint32_t)f_result;
169 uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
171 uint32_t flags;
172 float32 arg1 = make_float32(r1);
173 float32 arg2 = make_float32(r2);
174 float32 f_result;
176 f_result = float32_div(arg1, arg2 , &env->fp_status);
178 flags = f_get_excp_flags(env);
179 if (flags) {
180 /* If the output is a NaN, but the inputs aren't,
181 we return a unique value. */
182 if ((flags & float_flag_invalid)
183 && !float32_is_any_nan(arg1)
184 && !float32_is_any_nan(arg2)) {
185 f_result = DIV_NAN;
187 f_update_psw_flags(env, flags);
188 } else {
189 env->FPU_FS = 0;
192 return (uint32_t)f_result;
195 uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
196 uint32_t r2, uint32_t r3)
198 uint32_t flags;
199 float32 arg1 = make_float32(r1);
200 float32 arg2 = make_float32(r2);
201 float32 arg3 = make_float32(r3);
202 float32 f_result;
204 f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
206 flags = f_get_excp_flags(env);
207 if (flags) {
208 if (flags & float_flag_invalid) {
209 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
210 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
211 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
212 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
214 f_update_psw_flags(env, flags);
215 } else {
216 env->FPU_FS = 0;
218 return (uint32_t)f_result;
221 uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
222 uint32_t r2, uint32_t r3)
224 uint32_t flags;
225 float32 arg1 = make_float32(r1);
226 float32 arg2 = make_float32(r2);
227 float32 arg3 = make_float32(r3);
228 float32 f_result;
230 f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
231 &env->fp_status);
233 flags = f_get_excp_flags(env);
234 if (flags) {
235 if (flags & float_flag_invalid) {
236 arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
237 arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
238 arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
240 f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
242 f_update_psw_flags(env, flags);
243 } else {
244 env->FPU_FS = 0;
246 return (uint32_t)f_result;
249 uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
251 uint32_t result, flags;
252 float32 arg1 = make_float32(r1);
253 float32 arg2 = make_float32(r2);
255 set_flush_inputs_to_zero(0, &env->fp_status);
257 result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
258 result |= float32_is_denormal(arg1) << 4;
259 result |= float32_is_denormal(arg2) << 5;
261 flags = f_get_excp_flags(env);
262 if (flags) {
263 f_update_psw_flags(env, flags);
264 } else {
265 env->FPU_FS = 0;
268 set_flush_inputs_to_zero(1, &env->fp_status);
269 return result;
272 uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
274 float32 f_arg = make_float32(arg);
275 int32_t result, flags;
277 result = float32_to_int32(f_arg, &env->fp_status);
279 flags = f_get_excp_flags(env);
280 if (flags) {
281 if (float32_is_any_nan(f_arg)) {
282 result = 0;
284 f_update_psw_flags(env, flags);
285 } else {
286 env->FPU_FS = 0;
288 return (uint32_t)result;
291 uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
293 float32 f_result;
294 uint32_t flags;
295 f_result = int32_to_float32(arg, &env->fp_status);
297 flags = f_get_excp_flags(env);
298 if (flags) {
299 f_update_psw_flags(env, flags);
300 } else {
301 env->FPU_FS = 0;
303 return (uint32_t)f_result;
306 uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
308 float32 f_arg = make_float32(arg);
309 uint32_t result;
310 int32_t flags;
312 result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
314 flags = f_get_excp_flags(env);
315 if (flags & float_flag_invalid) {
316 flags &= ~float_flag_inexact;
317 if (float32_is_any_nan(f_arg)) {
318 result = 0;
320 } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
321 flags = float_flag_invalid;
322 result = 0;
325 if (flags) {
326 f_update_psw_flags(env, flags);
327 } else {
328 env->FPU_FS = 0;
330 return result;
333 void helper_updfl(CPUTriCoreState *env, uint32_t arg)
335 env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
336 env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
337 env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
338 env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
339 env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
340 /* clear FX and RM */
341 env->PSW &= ~(extract32(arg, 10, 1) << 26);
342 env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
344 fpu_set_state(env);