2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define DIV_NAN 0x7fc00008
28 #define MUL_NAN 0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState
*env
)
38 return get_float_exception_flags(&env
->fp_status
)
41 | float_flag_underflow
42 | float_flag_output_denormal
43 | float_flag_divbyzero
44 | float_flag_inexact
);
47 static inline float32
f_maddsub_nan_result(float32 arg1
, float32 arg2
,
48 float32 arg3
, float32 result
,
49 uint32_t muladd_negate_c
)
51 uint32_t aSign
, bSign
, cSign
;
52 uint32_t aExp
, bExp
, cExp
;
54 if (float32_is_any_nan(arg1
) || float32_is_any_nan(arg2
) ||
55 float32_is_any_nan(arg3
)) {
57 } else if (float32_is_infinity(arg1
) && float32_is_zero(arg2
)) {
59 } else if (float32_is_zero(arg1
) && float32_is_infinity(arg2
)) {
66 aExp
= (arg1
>> 23) & 0xff;
67 bExp
= (arg2
>> 23) & 0xff;
68 cExp
= (arg3
>> 23) & 0xff;
70 if (muladd_negate_c
) {
73 if (((aExp
== 0xff) || (bExp
== 0xff)) && (cExp
== 0xff)) {
74 if (aSign
^ bSign
^ cSign
) {
83 static void f_update_psw_flags(CPUTriCoreState
*env
, uint8_t flags
)
85 uint8_t some_excp
= 0;
86 set_float_exception_flags(0, &env
->fp_status
);
88 if (flags
& float_flag_invalid
) {
89 env
->FPU_FI
= 1 << 31;
93 if (flags
& float_flag_overflow
) {
94 env
->FPU_FV
= 1 << 31;
98 if (flags
& float_flag_underflow
|| flags
& float_flag_output_denormal
) {
99 env
->FPU_FU
= 1 << 31;
103 if (flags
& float_flag_divbyzero
) {
104 env
->FPU_FZ
= 1 << 31;
108 if (flags
& float_flag_inexact
|| flags
& float_flag_output_denormal
) {
113 env
->FPU_FS
= some_excp
;
116 #define FADD_SUB(op) \
117 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
119 float32 arg1 = make_float32(r1); \
120 float32 arg2 = make_float32(r2); \
124 f_result = float32_##op(arg2, arg1, &env->fp_status); \
125 flags = f_get_excp_flags(env); \
127 /* If the output is a NaN, but the inputs aren't, \
128 we return a unique value. */ \
129 if ((flags & float_flag_invalid) \
130 && !float32_is_any_nan(arg1) \
131 && !float32_is_any_nan(arg2)) { \
132 f_result = ADD_NAN; \
134 f_update_psw_flags(env, flags); \
138 return (uint32_t)f_result; \
143 uint32_t helper_fmul(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
146 float32 arg1
= make_float32(r1
);
147 float32 arg2
= make_float32(r2
);
150 f_result
= float32_mul(arg1
, arg2
, &env
->fp_status
);
152 flags
= f_get_excp_flags(env
);
154 /* If the output is a NaN, but the inputs aren't,
155 we return a unique value. */
156 if ((flags
& float_flag_invalid
)
157 && !float32_is_any_nan(arg1
)
158 && !float32_is_any_nan(arg2
)) {
161 f_update_psw_flags(env
, flags
);
165 return (uint32_t)f_result
;
169 uint32_t helper_fdiv(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
172 float32 arg1
= make_float32(r1
);
173 float32 arg2
= make_float32(r2
);
176 f_result
= float32_div(arg1
, arg2
, &env
->fp_status
);
178 flags
= f_get_excp_flags(env
);
180 /* If the output is a NaN, but the inputs aren't,
181 we return a unique value. */
182 if ((flags
& float_flag_invalid
)
183 && !float32_is_any_nan(arg1
)
184 && !float32_is_any_nan(arg2
)) {
187 f_update_psw_flags(env
, flags
);
192 return (uint32_t)f_result
;
195 uint32_t helper_fmadd(CPUTriCoreState
*env
, uint32_t r1
,
196 uint32_t r2
, uint32_t r3
)
199 float32 arg1
= make_float32(r1
);
200 float32 arg2
= make_float32(r2
);
201 float32 arg3
= make_float32(r3
);
204 f_result
= float32_muladd(arg1
, arg2
, arg3
, 0, &env
->fp_status
);
206 flags
= f_get_excp_flags(env
);
208 if (flags
& float_flag_invalid
) {
209 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
210 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
211 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
212 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 0);
214 f_update_psw_flags(env
, flags
);
218 return (uint32_t)f_result
;
221 uint32_t helper_fmsub(CPUTriCoreState
*env
, uint32_t r1
,
222 uint32_t r2
, uint32_t r3
)
225 float32 arg1
= make_float32(r1
);
226 float32 arg2
= make_float32(r2
);
227 float32 arg3
= make_float32(r3
);
230 f_result
= float32_muladd(arg1
, arg2
, arg3
, float_muladd_negate_product
,
233 flags
= f_get_excp_flags(env
);
235 if (flags
& float_flag_invalid
) {
236 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
237 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
238 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
240 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 1);
242 f_update_psw_flags(env
, flags
);
246 return (uint32_t)f_result
;
249 uint32_t helper_fcmp(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
251 uint32_t result
, flags
;
252 float32 arg1
= make_float32(r1
);
253 float32 arg2
= make_float32(r2
);
255 set_flush_inputs_to_zero(0, &env
->fp_status
);
257 result
= 1 << (float32_compare_quiet(arg1
, arg2
, &env
->fp_status
) + 1);
258 result
|= float32_is_denormal(arg1
) << 4;
259 result
|= float32_is_denormal(arg2
) << 5;
261 flags
= f_get_excp_flags(env
);
263 f_update_psw_flags(env
, flags
);
268 set_flush_inputs_to_zero(1, &env
->fp_status
);
272 uint32_t helper_ftoi(CPUTriCoreState
*env
, uint32_t arg
)
274 float32 f_arg
= make_float32(arg
);
275 int32_t result
, flags
;
277 result
= float32_to_int32(f_arg
, &env
->fp_status
);
279 flags
= f_get_excp_flags(env
);
281 if (float32_is_any_nan(f_arg
)) {
284 f_update_psw_flags(env
, flags
);
288 return (uint32_t)result
;
291 uint32_t helper_itof(CPUTriCoreState
*env
, uint32_t arg
)
295 f_result
= int32_to_float32(arg
, &env
->fp_status
);
297 flags
= f_get_excp_flags(env
);
299 f_update_psw_flags(env
, flags
);
303 return (uint32_t)f_result
;
306 uint32_t helper_ftouz(CPUTriCoreState
*env
, uint32_t arg
)
308 float32 f_arg
= make_float32(arg
);
312 result
= float32_to_uint32_round_to_zero(f_arg
, &env
->fp_status
);
314 flags
= f_get_excp_flags(env
);
315 if (flags
& float_flag_invalid
) {
316 flags
&= ~float_flag_inexact
;
317 if (float32_is_any_nan(f_arg
)) {
320 } else if (float32_lt_quiet(f_arg
, 0, &env
->fp_status
)) {
321 flags
= float_flag_invalid
;
326 f_update_psw_flags(env
, flags
);
333 void helper_updfl(CPUTriCoreState
*env
, uint32_t arg
)
335 env
->FPU_FS
= extract32(arg
, 7, 1) & extract32(arg
, 15, 1);
336 env
->FPU_FI
= (extract32(arg
, 6, 1) & extract32(arg
, 14, 1)) << 31;
337 env
->FPU_FV
= (extract32(arg
, 5, 1) & extract32(arg
, 13, 1)) << 31;
338 env
->FPU_FZ
= (extract32(arg
, 4, 1) & extract32(arg
, 12, 1)) << 31;
339 env
->FPU_FU
= (extract32(arg
, 3, 1) & extract32(arg
, 11, 1)) << 31;
340 /* clear FX and RM */
341 env
->PSW
&= ~(extract32(arg
, 10, 1) << 26);
342 env
->PSW
|= (extract32(arg
, 2, 1) & extract32(arg
, 10, 1)) << 26;