2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
34 //#define DEBUG_UNASSIGNED
36 static unsigned memory_region_transaction_depth
;
37 static bool memory_region_update_pending
;
38 static bool ioeventfd_update_pending
;
39 static bool global_dirty_log
= false;
41 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
42 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
44 static QTAILQ_HEAD(, AddressSpace
) address_spaces
45 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
47 typedef struct AddrRange AddrRange
;
50 * Note that signed integers are needed for negative offsetting in aliases
51 * (large MemoryRegion::alias_offset).
58 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
60 return (AddrRange
) { start
, size
};
63 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
65 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
68 static Int128
addrrange_end(AddrRange r
)
70 return int128_add(r
.start
, r
.size
);
73 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
75 int128_addto(&range
.start
, delta
);
79 static bool addrrange_contains(AddrRange range
, Int128 addr
)
81 return int128_ge(addr
, range
.start
)
82 && int128_lt(addr
, addrrange_end(range
));
85 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
87 return addrrange_contains(r1
, r2
.start
)
88 || addrrange_contains(r2
, r1
.start
);
91 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
93 Int128 start
= int128_max(r1
.start
, r2
.start
);
94 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
95 return addrrange_make(start
, int128_sub(end
, start
));
98 enum ListenerDirection
{ Forward
, Reverse
};
100 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
102 MemoryListener *_listener; \
104 switch (_direction) { \
106 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
107 if (_listener->_callback) { \
108 _listener->_callback(_listener, ##_args); \
113 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
114 memory_listeners, link) { \
115 if (_listener->_callback) { \
116 _listener->_callback(_listener, ##_args); \
125 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
127 MemoryListener *_listener; \
128 struct memory_listeners_as *list = &(_as)->listeners; \
130 switch (_direction) { \
132 QTAILQ_FOREACH(_listener, list, link_as) { \
133 if (_listener->_callback) { \
134 _listener->_callback(_listener, _section, ##_args); \
139 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
141 if (_listener->_callback) { \
142 _listener->_callback(_listener, _section, ##_args); \
151 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
152 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
154 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
155 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
158 struct CoalescedMemoryRange
{
160 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
163 struct MemoryRegionIoeventfd
{
170 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a
,
171 MemoryRegionIoeventfd b
)
173 if (int128_lt(a
.addr
.start
, b
.addr
.start
)) {
175 } else if (int128_gt(a
.addr
.start
, b
.addr
.start
)) {
177 } else if (int128_lt(a
.addr
.size
, b
.addr
.size
)) {
179 } else if (int128_gt(a
.addr
.size
, b
.addr
.size
)) {
181 } else if (a
.match_data
< b
.match_data
) {
183 } else if (a
.match_data
> b
.match_data
) {
185 } else if (a
.match_data
) {
186 if (a
.data
< b
.data
) {
188 } else if (a
.data
> b
.data
) {
194 } else if (a
.e
> b
.e
) {
200 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a
,
201 MemoryRegionIoeventfd b
)
203 return !memory_region_ioeventfd_before(a
, b
)
204 && !memory_region_ioeventfd_before(b
, a
);
207 typedef struct FlatRange FlatRange
;
208 typedef struct FlatView FlatView
;
210 /* Range of memory in the global map. Addresses are absolute. */
213 hwaddr offset_in_region
;
215 uint8_t dirty_log_mask
;
220 /* Flattened global view of current active memory hierarchy. Kept in sorted
228 unsigned nr_allocated
;
231 typedef struct AddressSpaceOps AddressSpaceOps
;
233 #define FOR_EACH_FLAT_RANGE(var, view) \
234 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
236 static inline MemoryRegionSection
237 section_from_flat_range(FlatRange
*fr
, AddressSpace
*as
)
239 return (MemoryRegionSection
) {
242 .offset_within_region
= fr
->offset_in_region
,
243 .size
= fr
->addr
.size
,
244 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
245 .readonly
= fr
->readonly
,
249 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
251 return a
->mr
== b
->mr
252 && addrrange_equal(a
->addr
, b
->addr
)
253 && a
->offset_in_region
== b
->offset_in_region
254 && a
->romd_mode
== b
->romd_mode
255 && a
->readonly
== b
->readonly
;
258 static void flatview_init(FlatView
*view
)
263 view
->nr_allocated
= 0;
266 /* Insert a range into a given position. Caller is responsible for maintaining
269 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
271 if (view
->nr
== view
->nr_allocated
) {
272 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
273 view
->ranges
= g_realloc(view
->ranges
,
274 view
->nr_allocated
* sizeof(*view
->ranges
));
276 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
277 (view
->nr
- pos
) * sizeof(FlatRange
));
278 view
->ranges
[pos
] = *range
;
279 memory_region_ref(range
->mr
);
283 static void flatview_destroy(FlatView
*view
)
287 for (i
= 0; i
< view
->nr
; i
++) {
288 memory_region_unref(view
->ranges
[i
].mr
);
290 g_free(view
->ranges
);
294 static void flatview_ref(FlatView
*view
)
296 atomic_inc(&view
->ref
);
299 static void flatview_unref(FlatView
*view
)
301 if (atomic_fetch_dec(&view
->ref
) == 1) {
302 flatview_destroy(view
);
306 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
308 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
310 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
312 int128_make64(r2
->offset_in_region
))
313 && r1
->dirty_log_mask
== r2
->dirty_log_mask
314 && r1
->romd_mode
== r2
->romd_mode
315 && r1
->readonly
== r2
->readonly
;
318 /* Attempt to simplify a view by merging adjacent ranges */
319 static void flatview_simplify(FlatView
*view
)
324 while (i
< view
->nr
) {
327 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
328 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
332 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
333 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
338 static bool memory_region_big_endian(MemoryRegion
*mr
)
340 #ifdef TARGET_WORDS_BIGENDIAN
341 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
343 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
347 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
349 #ifdef TARGET_WORDS_BIGENDIAN
350 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
352 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
356 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
358 if (memory_region_wrong_endianness(mr
)) {
363 *data
= bswap16(*data
);
366 *data
= bswap32(*data
);
369 *data
= bswap64(*data
);
377 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
380 hwaddr abs_addr
= offset
;
382 abs_addr
+= mr
->addr
;
383 for (root
= mr
; root
->container
; ) {
384 root
= root
->container
;
385 abs_addr
+= root
->addr
;
391 static int get_cpu_index(void)
394 return current_cpu
->cpu_index
;
399 static MemTxResult
memory_region_oldmmio_read_accessor(MemoryRegion
*mr
,
409 tmp
= mr
->ops
->old_mmio
.read
[ctz32(size
)](mr
->opaque
, addr
);
411 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
412 } else if (mr
== &io_mem_notdirty
) {
413 /* Accesses to code which has previously been translated into a TB show
414 * up in the MMIO path, as accesses to the io_mem_notdirty
416 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
417 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
418 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
419 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
421 *value
|= (tmp
& mask
) << shift
;
425 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
435 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
437 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
438 } else if (mr
== &io_mem_notdirty
) {
439 /* Accesses to code which has previously been translated into a TB show
440 * up in the MMIO path, as accesses to the io_mem_notdirty
442 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
443 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
444 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
445 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
447 *value
|= (tmp
& mask
) << shift
;
451 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
462 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
464 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
465 } else if (mr
== &io_mem_notdirty
) {
466 /* Accesses to code which has previously been translated into a TB show
467 * up in the MMIO path, as accesses to the io_mem_notdirty
469 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
470 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
471 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
472 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
474 *value
|= (tmp
& mask
) << shift
;
478 static MemTxResult
memory_region_oldmmio_write_accessor(MemoryRegion
*mr
,
488 tmp
= (*value
>> shift
) & mask
;
490 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
491 } else if (mr
== &io_mem_notdirty
) {
492 /* Accesses to code which has previously been translated into a TB show
493 * up in the MMIO path, as accesses to the io_mem_notdirty
495 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
496 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
497 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
498 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
500 mr
->ops
->old_mmio
.write
[ctz32(size
)](mr
->opaque
, addr
, tmp
);
504 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
514 tmp
= (*value
>> shift
) & mask
;
516 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
517 } else if (mr
== &io_mem_notdirty
) {
518 /* Accesses to code which has previously been translated into a TB show
519 * up in the MMIO path, as accesses to the io_mem_notdirty
521 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
522 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
523 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
524 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
526 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
530 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
540 tmp
= (*value
>> shift
) & mask
;
542 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
543 } else if (mr
== &io_mem_notdirty
) {
544 /* Accesses to code which has previously been translated into a TB show
545 * up in the MMIO path, as accesses to the io_mem_notdirty
547 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
548 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
549 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
550 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
552 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
555 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
558 unsigned access_size_min
,
559 unsigned access_size_max
,
560 MemTxResult (*access
)(MemoryRegion
*mr
,
570 uint64_t access_mask
;
571 unsigned access_size
;
573 MemTxResult r
= MEMTX_OK
;
575 if (!access_size_min
) {
578 if (!access_size_max
) {
582 /* FIXME: support unaligned access? */
583 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
584 access_mask
= -1ULL >> (64 - access_size
* 8);
585 if (memory_region_big_endian(mr
)) {
586 for (i
= 0; i
< size
; i
+= access_size
) {
587 r
|= access(mr
, addr
+ i
, value
, access_size
,
588 (size
- access_size
- i
) * 8, access_mask
, attrs
);
591 for (i
= 0; i
< size
; i
+= access_size
) {
592 r
|= access(mr
, addr
+ i
, value
, access_size
, i
* 8,
599 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
603 while (mr
->container
) {
606 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
607 if (mr
== as
->root
) {
614 /* Render a memory region into the global view. Ranges in @view obscure
617 static void render_memory_region(FlatView
*view
,
623 MemoryRegion
*subregion
;
625 hwaddr offset_in_region
;
635 int128_addto(&base
, int128_make64(mr
->addr
));
636 readonly
|= mr
->readonly
;
638 tmp
= addrrange_make(base
, mr
->size
);
640 if (!addrrange_intersects(tmp
, clip
)) {
644 clip
= addrrange_intersection(tmp
, clip
);
647 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
648 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
649 render_memory_region(view
, mr
->alias
, base
, clip
, readonly
);
653 /* Render subregions in priority order. */
654 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
655 render_memory_region(view
, subregion
, base
, clip
, readonly
);
658 if (!mr
->terminates
) {
662 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
667 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
668 fr
.romd_mode
= mr
->romd_mode
;
669 fr
.readonly
= readonly
;
671 /* Render the region itself into any gaps left by the current view. */
672 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
673 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
676 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
677 now
= int128_min(remain
,
678 int128_sub(view
->ranges
[i
].addr
.start
, base
));
679 fr
.offset_in_region
= offset_in_region
;
680 fr
.addr
= addrrange_make(base
, now
);
681 flatview_insert(view
, i
, &fr
);
683 int128_addto(&base
, now
);
684 offset_in_region
+= int128_get64(now
);
685 int128_subfrom(&remain
, now
);
687 now
= int128_sub(int128_min(int128_add(base
, remain
),
688 addrrange_end(view
->ranges
[i
].addr
)),
690 int128_addto(&base
, now
);
691 offset_in_region
+= int128_get64(now
);
692 int128_subfrom(&remain
, now
);
694 if (int128_nz(remain
)) {
695 fr
.offset_in_region
= offset_in_region
;
696 fr
.addr
= addrrange_make(base
, remain
);
697 flatview_insert(view
, i
, &fr
);
701 /* Render a memory topology into a list of disjoint absolute ranges. */
702 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
706 view
= g_new(FlatView
, 1);
710 render_memory_region(view
, mr
, int128_zero(),
711 addrrange_make(int128_zero(), int128_2_64()), false);
713 flatview_simplify(view
);
718 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
719 MemoryRegionIoeventfd
*fds_new
,
721 MemoryRegionIoeventfd
*fds_old
,
725 MemoryRegionIoeventfd
*fd
;
726 MemoryRegionSection section
;
728 /* Generate a symmetric difference of the old and new fd sets, adding
729 * and deleting as necessary.
733 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
734 if (iold
< fds_old_nb
735 && (inew
== fds_new_nb
736 || memory_region_ioeventfd_before(fds_old
[iold
],
739 section
= (MemoryRegionSection
) {
741 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
742 .size
= fd
->addr
.size
,
744 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
745 fd
->match_data
, fd
->data
, fd
->e
);
747 } else if (inew
< fds_new_nb
748 && (iold
== fds_old_nb
749 || memory_region_ioeventfd_before(fds_new
[inew
],
752 section
= (MemoryRegionSection
) {
754 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
755 .size
= fd
->addr
.size
,
757 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
758 fd
->match_data
, fd
->data
, fd
->e
);
767 static FlatView
*address_space_get_flatview(AddressSpace
*as
)
772 view
= atomic_rcu_read(&as
->current_map
);
778 static void address_space_update_ioeventfds(AddressSpace
*as
)
782 unsigned ioeventfd_nb
= 0;
783 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
787 view
= address_space_get_flatview(as
);
788 FOR_EACH_FLAT_RANGE(fr
, view
) {
789 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
790 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
791 int128_sub(fr
->addr
.start
,
792 int128_make64(fr
->offset_in_region
)));
793 if (addrrange_intersects(fr
->addr
, tmp
)) {
795 ioeventfds
= g_realloc(ioeventfds
,
796 ioeventfd_nb
* sizeof(*ioeventfds
));
797 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
798 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
803 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
804 as
->ioeventfds
, as
->ioeventfd_nb
);
806 g_free(as
->ioeventfds
);
807 as
->ioeventfds
= ioeventfds
;
808 as
->ioeventfd_nb
= ioeventfd_nb
;
809 flatview_unref(view
);
812 static void address_space_update_topology_pass(AddressSpace
*as
,
813 const FlatView
*old_view
,
814 const FlatView
*new_view
,
818 FlatRange
*frold
, *frnew
;
820 /* Generate a symmetric difference of the old and new memory maps.
821 * Kill ranges in the old map, and instantiate ranges in the new map.
824 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
825 if (iold
< old_view
->nr
) {
826 frold
= &old_view
->ranges
[iold
];
830 if (inew
< new_view
->nr
) {
831 frnew
= &new_view
->ranges
[inew
];
838 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
839 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
840 && !flatrange_equal(frold
, frnew
)))) {
841 /* In old but not in new, or in both but attributes changed. */
844 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
848 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
849 /* In both and unchanged (except logging may have changed) */
852 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
853 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
854 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
855 frold
->dirty_log_mask
,
856 frnew
->dirty_log_mask
);
858 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
859 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
860 frold
->dirty_log_mask
,
861 frnew
->dirty_log_mask
);
871 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
880 static void address_space_update_topology(AddressSpace
*as
)
882 FlatView
*old_view
= address_space_get_flatview(as
);
883 FlatView
*new_view
= generate_memory_topology(as
->root
);
885 address_space_update_topology_pass(as
, old_view
, new_view
, false);
886 address_space_update_topology_pass(as
, old_view
, new_view
, true);
888 /* Writes are protected by the BQL. */
889 atomic_rcu_set(&as
->current_map
, new_view
);
890 call_rcu(old_view
, flatview_unref
, rcu
);
892 /* Note that all the old MemoryRegions are still alive up to this
893 * point. This relieves most MemoryListeners from the need to
894 * ref/unref the MemoryRegions they get---unless they use them
895 * outside the iothread mutex, in which case precise reference
896 * counting is necessary.
898 flatview_unref(old_view
);
900 address_space_update_ioeventfds(as
);
903 void memory_region_transaction_begin(void)
905 qemu_flush_coalesced_mmio_buffer();
906 ++memory_region_transaction_depth
;
909 void memory_region_transaction_commit(void)
913 assert(memory_region_transaction_depth
);
914 assert(qemu_mutex_iothread_locked());
916 --memory_region_transaction_depth
;
917 if (!memory_region_transaction_depth
) {
918 if (memory_region_update_pending
) {
919 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
921 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
922 address_space_update_topology(as
);
924 memory_region_update_pending
= false;
925 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
926 } else if (ioeventfd_update_pending
) {
927 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
928 address_space_update_ioeventfds(as
);
930 ioeventfd_update_pending
= false;
935 static void memory_region_destructor_none(MemoryRegion
*mr
)
939 static void memory_region_destructor_ram(MemoryRegion
*mr
)
941 qemu_ram_free(mr
->ram_block
);
944 static bool memory_region_need_escape(char c
)
946 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
949 static char *memory_region_escape_name(const char *name
)
956 for (p
= name
; *p
; p
++) {
957 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
959 if (bytes
== p
- name
) {
960 return g_memdup(name
, bytes
+ 1);
963 escaped
= g_malloc(bytes
+ 1);
964 for (p
= name
, q
= escaped
; *p
; p
++) {
966 if (unlikely(memory_region_need_escape(c
))) {
969 *q
++ = "0123456789abcdef"[c
>> 4];
970 c
= "0123456789abcdef"[c
& 15];
978 void memory_region_init(MemoryRegion
*mr
,
983 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
984 mr
->size
= int128_make64(size
);
985 if (size
== UINT64_MAX
) {
986 mr
->size
= int128_2_64();
988 mr
->name
= g_strdup(name
);
990 mr
->ram_block
= NULL
;
993 char *escaped_name
= memory_region_escape_name(name
);
994 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
997 owner
= container_get(qdev_get_machine(), "/unattached");
1000 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1001 object_unref(OBJECT(mr
));
1003 g_free(escaped_name
);
1007 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1008 void *opaque
, Error
**errp
)
1010 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1011 uint64_t value
= mr
->addr
;
1013 visit_type_uint64(v
, name
, &value
, errp
);
1016 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1017 const char *name
, void *opaque
,
1020 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1021 gchar
*path
= (gchar
*)"";
1023 if (mr
->container
) {
1024 path
= object_get_canonical_path(OBJECT(mr
->container
));
1026 visit_type_str(v
, name
, &path
, errp
);
1027 if (mr
->container
) {
1032 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1035 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1037 return OBJECT(mr
->container
);
1040 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1041 const char *name
, void *opaque
,
1044 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1045 int32_t value
= mr
->priority
;
1047 visit_type_int32(v
, name
, &value
, errp
);
1050 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1051 void *opaque
, Error
**errp
)
1053 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1054 uint64_t value
= memory_region_size(mr
);
1056 visit_type_uint64(v
, name
, &value
, errp
);
1059 static void memory_region_initfn(Object
*obj
)
1061 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1064 mr
->ops
= &unassigned_mem_ops
;
1066 mr
->romd_mode
= true;
1067 mr
->global_locking
= true;
1068 mr
->destructor
= memory_region_destructor_none
;
1069 QTAILQ_INIT(&mr
->subregions
);
1070 QTAILQ_INIT(&mr
->coalesced
);
1072 op
= object_property_add(OBJECT(mr
), "container",
1073 "link<" TYPE_MEMORY_REGION
">",
1074 memory_region_get_container
,
1075 NULL
, /* memory_region_set_container */
1076 NULL
, NULL
, &error_abort
);
1077 op
->resolve
= memory_region_resolve_container
;
1079 object_property_add(OBJECT(mr
), "addr", "uint64",
1080 memory_region_get_addr
,
1081 NULL
, /* memory_region_set_addr */
1082 NULL
, NULL
, &error_abort
);
1083 object_property_add(OBJECT(mr
), "priority", "uint32",
1084 memory_region_get_priority
,
1085 NULL
, /* memory_region_set_priority */
1086 NULL
, NULL
, &error_abort
);
1087 object_property_add(OBJECT(mr
), "size", "uint64",
1088 memory_region_get_size
,
1089 NULL
, /* memory_region_set_size, */
1090 NULL
, NULL
, &error_abort
);
1093 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1096 #ifdef DEBUG_UNASSIGNED
1097 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1099 if (current_cpu
!= NULL
) {
1100 cpu_unassigned_access(current_cpu
, addr
, false, false, 0, size
);
1105 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1106 uint64_t val
, unsigned size
)
1108 #ifdef DEBUG_UNASSIGNED
1109 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1111 if (current_cpu
!= NULL
) {
1112 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1116 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1117 unsigned size
, bool is_write
)
1122 const MemoryRegionOps unassigned_mem_ops
= {
1123 .valid
.accepts
= unassigned_mem_accepts
,
1124 .endianness
= DEVICE_NATIVE_ENDIAN
,
1127 static uint64_t memory_region_ram_device_read(void *opaque
,
1128 hwaddr addr
, unsigned size
)
1130 MemoryRegion
*mr
= opaque
;
1131 uint64_t data
= (uint64_t)~0;
1135 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1138 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1141 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1144 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1148 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1153 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1154 uint64_t data
, unsigned size
)
1156 MemoryRegion
*mr
= opaque
;
1158 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1162 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1165 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1168 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1171 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1176 static const MemoryRegionOps ram_device_mem_ops
= {
1177 .read
= memory_region_ram_device_read
,
1178 .write
= memory_region_ram_device_write
,
1179 .endianness
= DEVICE_HOST_ENDIAN
,
1181 .min_access_size
= 1,
1182 .max_access_size
= 8,
1186 .min_access_size
= 1,
1187 .max_access_size
= 8,
1192 bool memory_region_access_valid(MemoryRegion
*mr
,
1197 int access_size_min
, access_size_max
;
1200 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1204 if (!mr
->ops
->valid
.accepts
) {
1208 access_size_min
= mr
->ops
->valid
.min_access_size
;
1209 if (!mr
->ops
->valid
.min_access_size
) {
1210 access_size_min
= 1;
1213 access_size_max
= mr
->ops
->valid
.max_access_size
;
1214 if (!mr
->ops
->valid
.max_access_size
) {
1215 access_size_max
= 4;
1218 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1219 for (i
= 0; i
< size
; i
+= access_size
) {
1220 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1229 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1237 if (mr
->ops
->read
) {
1238 return access_with_adjusted_size(addr
, pval
, size
,
1239 mr
->ops
->impl
.min_access_size
,
1240 mr
->ops
->impl
.max_access_size
,
1241 memory_region_read_accessor
,
1243 } else if (mr
->ops
->read_with_attrs
) {
1244 return access_with_adjusted_size(addr
, pval
, size
,
1245 mr
->ops
->impl
.min_access_size
,
1246 mr
->ops
->impl
.max_access_size
,
1247 memory_region_read_with_attrs_accessor
,
1250 return access_with_adjusted_size(addr
, pval
, size
, 1, 4,
1251 memory_region_oldmmio_read_accessor
,
1256 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1264 if (!memory_region_access_valid(mr
, addr
, size
, false)) {
1265 *pval
= unassigned_mem_read(mr
, addr
, size
);
1266 return MEMTX_DECODE_ERROR
;
1269 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1270 adjust_endianness(mr
, pval
, size
);
1274 /* Return true if an eventfd was signalled */
1275 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1281 MemoryRegionIoeventfd ioeventfd
= {
1282 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1287 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1288 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1289 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1291 if (memory_region_ioeventfd_equal(ioeventfd
, mr
->ioeventfds
[i
])) {
1292 event_notifier_set(ioeventfd
.e
);
1300 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1306 if (!memory_region_access_valid(mr
, addr
, size
, true)) {
1307 unassigned_mem_write(mr
, addr
, data
, size
);
1308 return MEMTX_DECODE_ERROR
;
1311 adjust_endianness(mr
, &data
, size
);
1313 if ((!kvm_eventfds_enabled()) &&
1314 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1318 if (mr
->ops
->write
) {
1319 return access_with_adjusted_size(addr
, &data
, size
,
1320 mr
->ops
->impl
.min_access_size
,
1321 mr
->ops
->impl
.max_access_size
,
1322 memory_region_write_accessor
, mr
,
1324 } else if (mr
->ops
->write_with_attrs
) {
1326 access_with_adjusted_size(addr
, &data
, size
,
1327 mr
->ops
->impl
.min_access_size
,
1328 mr
->ops
->impl
.max_access_size
,
1329 memory_region_write_with_attrs_accessor
,
1332 return access_with_adjusted_size(addr
, &data
, size
, 1, 4,
1333 memory_region_oldmmio_write_accessor
,
1338 void memory_region_init_io(MemoryRegion
*mr
,
1340 const MemoryRegionOps
*ops
,
1345 memory_region_init(mr
, owner
, name
, size
);
1346 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1347 mr
->opaque
= opaque
;
1348 mr
->terminates
= true;
1351 void memory_region_init_ram(MemoryRegion
*mr
,
1357 memory_region_init(mr
, owner
, name
, size
);
1359 mr
->terminates
= true;
1360 mr
->destructor
= memory_region_destructor_ram
;
1361 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1362 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1365 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1370 void (*resized
)(const char*,
1375 memory_region_init(mr
, owner
, name
, size
);
1377 mr
->terminates
= true;
1378 mr
->destructor
= memory_region_destructor_ram
;
1379 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1381 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1385 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1386 struct Object
*owner
,
1393 memory_region_init(mr
, owner
, name
, size
);
1395 mr
->terminates
= true;
1396 mr
->destructor
= memory_region_destructor_ram
;
1397 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, share
, path
, errp
);
1398 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1402 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1408 memory_region_init(mr
, owner
, name
, size
);
1410 mr
->terminates
= true;
1411 mr
->destructor
= memory_region_destructor_ram
;
1412 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1414 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1415 assert(ptr
!= NULL
);
1416 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1419 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1425 memory_region_init_ram_ptr(mr
, owner
, name
, size
, ptr
);
1426 mr
->ram_device
= true;
1427 mr
->ops
= &ram_device_mem_ops
;
1431 void memory_region_init_alias(MemoryRegion
*mr
,
1438 memory_region_init(mr
, owner
, name
, size
);
1440 mr
->alias_offset
= offset
;
1443 void memory_region_init_rom(MemoryRegion
*mr
,
1444 struct Object
*owner
,
1449 memory_region_init(mr
, owner
, name
, size
);
1451 mr
->readonly
= true;
1452 mr
->terminates
= true;
1453 mr
->destructor
= memory_region_destructor_ram
;
1454 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1455 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1458 void memory_region_init_rom_device(MemoryRegion
*mr
,
1460 const MemoryRegionOps
*ops
,
1467 memory_region_init(mr
, owner
, name
, size
);
1469 mr
->opaque
= opaque
;
1470 mr
->terminates
= true;
1471 mr
->rom_device
= true;
1472 mr
->destructor
= memory_region_destructor_ram
;
1473 mr
->ram_block
= qemu_ram_alloc(size
, mr
, errp
);
1476 void memory_region_init_iommu(MemoryRegion
*mr
,
1478 const MemoryRegionIOMMUOps
*ops
,
1482 memory_region_init(mr
, owner
, name
, size
);
1483 mr
->iommu_ops
= ops
,
1484 mr
->terminates
= true; /* then re-forwards */
1485 QLIST_INIT(&mr
->iommu_notify
);
1486 mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1489 static void memory_region_finalize(Object
*obj
)
1491 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1493 assert(!mr
->container
);
1495 /* We know the region is not visible in any address space (it
1496 * does not have a container and cannot be a root either because
1497 * it has no references, so we can blindly clear mr->enabled.
1498 * memory_region_set_enabled instead could trigger a transaction
1499 * and cause an infinite loop.
1501 mr
->enabled
= false;
1502 memory_region_transaction_begin();
1503 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1504 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1505 memory_region_del_subregion(mr
, subregion
);
1507 memory_region_transaction_commit();
1510 memory_region_clear_coalescing(mr
);
1511 g_free((char *)mr
->name
);
1512 g_free(mr
->ioeventfds
);
1515 Object
*memory_region_owner(MemoryRegion
*mr
)
1517 Object
*obj
= OBJECT(mr
);
1521 void memory_region_ref(MemoryRegion
*mr
)
1523 /* MMIO callbacks most likely will access data that belongs
1524 * to the owner, hence the need to ref/unref the owner whenever
1525 * the memory region is in use.
1527 * The memory region is a child of its owner. As long as the
1528 * owner doesn't call unparent itself on the memory region,
1529 * ref-ing the owner will also keep the memory region alive.
1530 * Memory regions without an owner are supposed to never go away;
1531 * we do not ref/unref them because it slows down DMA sensibly.
1533 if (mr
&& mr
->owner
) {
1534 object_ref(mr
->owner
);
1538 void memory_region_unref(MemoryRegion
*mr
)
1540 if (mr
&& mr
->owner
) {
1541 object_unref(mr
->owner
);
1545 uint64_t memory_region_size(MemoryRegion
*mr
)
1547 if (int128_eq(mr
->size
, int128_2_64())) {
1550 return int128_get64(mr
->size
);
1553 const char *memory_region_name(const MemoryRegion
*mr
)
1556 ((MemoryRegion
*)mr
)->name
=
1557 object_get_canonical_path_component(OBJECT(mr
));
1562 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1564 return mr
->ram_device
;
1567 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1569 uint8_t mask
= mr
->dirty_log_mask
;
1570 if (global_dirty_log
&& mr
->ram_block
) {
1571 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1576 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1578 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1581 static void memory_region_update_iommu_notify_flags(MemoryRegion
*mr
)
1583 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1584 IOMMUNotifier
*iommu_notifier
;
1586 QLIST_FOREACH(iommu_notifier
, &mr
->iommu_notify
, node
) {
1587 flags
|= iommu_notifier
->notifier_flags
;
1590 if (flags
!= mr
->iommu_notify_flags
&&
1591 mr
->iommu_ops
->notify_flag_changed
) {
1592 mr
->iommu_ops
->notify_flag_changed(mr
, mr
->iommu_notify_flags
,
1596 mr
->iommu_notify_flags
= flags
;
1599 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1603 memory_region_register_iommu_notifier(mr
->alias
, n
);
1607 /* We need to register for at least one bitfield */
1608 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1609 QLIST_INSERT_HEAD(&mr
->iommu_notify
, n
, node
);
1610 memory_region_update_iommu_notify_flags(mr
);
1613 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion
*mr
)
1615 assert(memory_region_is_iommu(mr
));
1616 if (mr
->iommu_ops
&& mr
->iommu_ops
->get_min_page_size
) {
1617 return mr
->iommu_ops
->get_min_page_size(mr
);
1619 return TARGET_PAGE_SIZE
;
1622 void memory_region_iommu_replay(MemoryRegion
*mr
, IOMMUNotifier
*n
,
1625 hwaddr addr
, granularity
;
1626 IOMMUTLBEntry iotlb
;
1628 granularity
= memory_region_iommu_get_min_page_size(mr
);
1630 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1631 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
1632 if (iotlb
.perm
!= IOMMU_NONE
) {
1633 n
->notify(n
, &iotlb
);
1636 /* if (2^64 - MR size) < granularity, it's possible to get an
1637 * infinite loop here. This should catch such a wraparound */
1638 if ((addr
+ granularity
) < addr
) {
1644 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1648 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1651 QLIST_REMOVE(n
, node
);
1652 memory_region_update_iommu_notify_flags(mr
);
1655 void memory_region_notify_iommu(MemoryRegion
*mr
,
1656 IOMMUTLBEntry entry
)
1658 IOMMUNotifier
*iommu_notifier
;
1659 IOMMUNotifierFlag request_flags
;
1661 assert(memory_region_is_iommu(mr
));
1663 if (entry
.perm
& IOMMU_RW
) {
1664 request_flags
= IOMMU_NOTIFIER_MAP
;
1666 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1669 QLIST_FOREACH(iommu_notifier
, &mr
->iommu_notify
, node
) {
1670 if (iommu_notifier
->notifier_flags
& request_flags
) {
1671 iommu_notifier
->notify(iommu_notifier
, &entry
);
1676 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1678 uint8_t mask
= 1 << client
;
1679 uint8_t old_logging
;
1681 assert(client
== DIRTY_MEMORY_VGA
);
1682 old_logging
= mr
->vga_logging_count
;
1683 mr
->vga_logging_count
+= log
? 1 : -1;
1684 if (!!old_logging
== !!mr
->vga_logging_count
) {
1688 memory_region_transaction_begin();
1689 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1690 memory_region_update_pending
|= mr
->enabled
;
1691 memory_region_transaction_commit();
1694 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1695 hwaddr size
, unsigned client
)
1697 assert(mr
->ram_block
);
1698 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1702 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1705 assert(mr
->ram_block
);
1706 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1708 memory_region_get_dirty_log_mask(mr
));
1711 bool memory_region_test_and_clear_dirty(MemoryRegion
*mr
, hwaddr addr
,
1712 hwaddr size
, unsigned client
)
1714 assert(mr
->ram_block
);
1715 return cpu_physical_memory_test_and_clear_dirty(
1716 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1720 void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1722 MemoryListener
*listener
;
1727 /* If the same address space has multiple log_sync listeners, we
1728 * visit that address space's FlatView multiple times. But because
1729 * log_sync listeners are rare, it's still cheaper than walking each
1730 * address space once.
1732 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
1733 if (!listener
->log_sync
) {
1736 as
= listener
->address_space
;
1737 view
= address_space_get_flatview(as
);
1738 FOR_EACH_FLAT_RANGE(fr
, view
) {
1740 MemoryRegionSection mrs
= section_from_flat_range(fr
, as
);
1741 listener
->log_sync(listener
, &mrs
);
1744 flatview_unref(view
);
1748 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
1750 if (mr
->readonly
!= readonly
) {
1751 memory_region_transaction_begin();
1752 mr
->readonly
= readonly
;
1753 memory_region_update_pending
|= mr
->enabled
;
1754 memory_region_transaction_commit();
1758 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
1760 if (mr
->romd_mode
!= romd_mode
) {
1761 memory_region_transaction_begin();
1762 mr
->romd_mode
= romd_mode
;
1763 memory_region_update_pending
|= mr
->enabled
;
1764 memory_region_transaction_commit();
1768 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
1769 hwaddr size
, unsigned client
)
1771 assert(mr
->ram_block
);
1772 cpu_physical_memory_test_and_clear_dirty(
1773 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
1776 int memory_region_get_fd(MemoryRegion
*mr
)
1784 fd
= mr
->ram_block
->fd
;
1790 void memory_region_set_fd(MemoryRegion
*mr
, int fd
)
1796 mr
->ram_block
->fd
= fd
;
1800 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
1803 uint64_t offset
= 0;
1807 offset
+= mr
->alias_offset
;
1810 assert(mr
->ram_block
);
1811 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
1817 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
1821 block
= qemu_ram_block_from_host(ptr
, false, offset
);
1829 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
1831 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
1834 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
1836 assert(mr
->ram_block
);
1838 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
1841 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
1845 CoalescedMemoryRange
*cmr
;
1847 MemoryRegionSection section
;
1849 view
= address_space_get_flatview(as
);
1850 FOR_EACH_FLAT_RANGE(fr
, view
) {
1852 section
= (MemoryRegionSection
) {
1853 .address_space
= as
,
1854 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
1855 .size
= fr
->addr
.size
,
1858 MEMORY_LISTENER_CALL(as
, coalesced_mmio_del
, Reverse
, §ion
,
1859 int128_get64(fr
->addr
.start
),
1860 int128_get64(fr
->addr
.size
));
1861 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
1862 tmp
= addrrange_shift(cmr
->addr
,
1863 int128_sub(fr
->addr
.start
,
1864 int128_make64(fr
->offset_in_region
)));
1865 if (!addrrange_intersects(tmp
, fr
->addr
)) {
1868 tmp
= addrrange_intersection(tmp
, fr
->addr
);
1869 MEMORY_LISTENER_CALL(as
, coalesced_mmio_add
, Forward
, §ion
,
1870 int128_get64(tmp
.start
),
1871 int128_get64(tmp
.size
));
1875 flatview_unref(view
);
1878 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
1882 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1883 memory_region_update_coalesced_range_as(mr
, as
);
1887 void memory_region_set_coalescing(MemoryRegion
*mr
)
1889 memory_region_clear_coalescing(mr
);
1890 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
1893 void memory_region_add_coalescing(MemoryRegion
*mr
,
1897 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
1899 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
1900 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
1901 memory_region_update_coalesced_range(mr
);
1902 memory_region_set_flush_coalesced(mr
);
1905 void memory_region_clear_coalescing(MemoryRegion
*mr
)
1907 CoalescedMemoryRange
*cmr
;
1908 bool updated
= false;
1910 qemu_flush_coalesced_mmio_buffer();
1911 mr
->flush_coalesced_mmio
= false;
1913 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
1914 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
1915 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
1921 memory_region_update_coalesced_range(mr
);
1925 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
1927 mr
->flush_coalesced_mmio
= true;
1930 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
1932 qemu_flush_coalesced_mmio_buffer();
1933 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
1934 mr
->flush_coalesced_mmio
= false;
1938 void memory_region_set_global_locking(MemoryRegion
*mr
)
1940 mr
->global_locking
= true;
1943 void memory_region_clear_global_locking(MemoryRegion
*mr
)
1945 mr
->global_locking
= false;
1948 static bool userspace_eventfd_warning
;
1950 void memory_region_add_eventfd(MemoryRegion
*mr
,
1957 MemoryRegionIoeventfd mrfd
= {
1958 .addr
.start
= int128_make64(addr
),
1959 .addr
.size
= int128_make64(size
),
1960 .match_data
= match_data
,
1966 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
1967 userspace_eventfd_warning
))) {
1968 userspace_eventfd_warning
= true;
1969 error_report("Using eventfd without MMIO binding in KVM. "
1970 "Suboptimal performance expected");
1974 adjust_endianness(mr
, &mrfd
.data
, size
);
1976 memory_region_transaction_begin();
1977 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
1978 if (memory_region_ioeventfd_before(mrfd
, mr
->ioeventfds
[i
])) {
1983 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
1984 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
1985 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
1986 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
1987 mr
->ioeventfds
[i
] = mrfd
;
1988 ioeventfd_update_pending
|= mr
->enabled
;
1989 memory_region_transaction_commit();
1992 void memory_region_del_eventfd(MemoryRegion
*mr
,
1999 MemoryRegionIoeventfd mrfd
= {
2000 .addr
.start
= int128_make64(addr
),
2001 .addr
.size
= int128_make64(size
),
2002 .match_data
= match_data
,
2009 adjust_endianness(mr
, &mrfd
.data
, size
);
2011 memory_region_transaction_begin();
2012 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2013 if (memory_region_ioeventfd_equal(mrfd
, mr
->ioeventfds
[i
])) {
2017 assert(i
!= mr
->ioeventfd_nb
);
2018 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2019 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2021 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2022 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2023 ioeventfd_update_pending
|= mr
->enabled
;
2024 memory_region_transaction_commit();
2027 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2029 MemoryRegion
*mr
= subregion
->container
;
2030 MemoryRegion
*other
;
2032 memory_region_transaction_begin();
2034 memory_region_ref(subregion
);
2035 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2036 if (subregion
->priority
>= other
->priority
) {
2037 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2041 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2043 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2044 memory_region_transaction_commit();
2047 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2049 MemoryRegion
*subregion
)
2051 assert(!subregion
->container
);
2052 subregion
->container
= mr
;
2053 subregion
->addr
= offset
;
2054 memory_region_update_container_subregions(subregion
);
2057 void memory_region_add_subregion(MemoryRegion
*mr
,
2059 MemoryRegion
*subregion
)
2061 subregion
->priority
= 0;
2062 memory_region_add_subregion_common(mr
, offset
, subregion
);
2065 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2067 MemoryRegion
*subregion
,
2070 subregion
->priority
= priority
;
2071 memory_region_add_subregion_common(mr
, offset
, subregion
);
2074 void memory_region_del_subregion(MemoryRegion
*mr
,
2075 MemoryRegion
*subregion
)
2077 memory_region_transaction_begin();
2078 assert(subregion
->container
== mr
);
2079 subregion
->container
= NULL
;
2080 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2081 memory_region_unref(subregion
);
2082 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2083 memory_region_transaction_commit();
2086 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2088 if (enabled
== mr
->enabled
) {
2091 memory_region_transaction_begin();
2092 mr
->enabled
= enabled
;
2093 memory_region_update_pending
= true;
2094 memory_region_transaction_commit();
2097 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2099 Int128 s
= int128_make64(size
);
2101 if (size
== UINT64_MAX
) {
2104 if (int128_eq(s
, mr
->size
)) {
2107 memory_region_transaction_begin();
2109 memory_region_update_pending
= true;
2110 memory_region_transaction_commit();
2113 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2115 MemoryRegion
*container
= mr
->container
;
2118 memory_region_transaction_begin();
2119 memory_region_ref(mr
);
2120 memory_region_del_subregion(container
, mr
);
2121 mr
->container
= container
;
2122 memory_region_update_container_subregions(mr
);
2123 memory_region_unref(mr
);
2124 memory_region_transaction_commit();
2128 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2130 if (addr
!= mr
->addr
) {
2132 memory_region_readd_subregion(mr
);
2136 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2140 if (offset
== mr
->alias_offset
) {
2144 memory_region_transaction_begin();
2145 mr
->alias_offset
= offset
;
2146 memory_region_update_pending
|= mr
->enabled
;
2147 memory_region_transaction_commit();
2150 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2155 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2157 const AddrRange
*addr
= addr_
;
2158 const FlatRange
*fr
= fr_
;
2160 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2162 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2168 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2170 return bsearch(&addr
, view
->ranges
, view
->nr
,
2171 sizeof(FlatRange
), cmp_flatrange_addr
);
2174 bool memory_region_is_mapped(MemoryRegion
*mr
)
2176 return mr
->container
? true : false;
2179 /* Same as memory_region_find, but it does not add a reference to the
2180 * returned region. It must be called from an RCU critical section.
2182 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2183 hwaddr addr
, uint64_t size
)
2185 MemoryRegionSection ret
= { .mr
= NULL
};
2193 for (root
= mr
; root
->container
; ) {
2194 root
= root
->container
;
2198 as
= memory_region_to_address_space(root
);
2202 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2204 view
= atomic_rcu_read(&as
->current_map
);
2205 fr
= flatview_lookup(view
, range
);
2210 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2215 ret
.address_space
= as
;
2216 range
= addrrange_intersection(range
, fr
->addr
);
2217 ret
.offset_within_region
= fr
->offset_in_region
;
2218 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2220 ret
.size
= range
.size
;
2221 ret
.offset_within_address_space
= int128_get64(range
.start
);
2222 ret
.readonly
= fr
->readonly
;
2226 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2227 hwaddr addr
, uint64_t size
)
2229 MemoryRegionSection ret
;
2231 ret
= memory_region_find_rcu(mr
, addr
, size
);
2233 memory_region_ref(ret
.mr
);
2239 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2244 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2246 return mr
&& mr
!= container
;
2249 void memory_global_dirty_log_sync(void)
2251 MemoryListener
*listener
;
2256 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2257 if (!listener
->log_sync
) {
2260 as
= listener
->address_space
;
2261 view
= address_space_get_flatview(as
);
2262 FOR_EACH_FLAT_RANGE(fr
, view
) {
2263 if (fr
->dirty_log_mask
) {
2264 MemoryRegionSection mrs
= section_from_flat_range(fr
, as
);
2265 listener
->log_sync(listener
, &mrs
);
2268 flatview_unref(view
);
2272 void memory_global_dirty_log_start(void)
2274 global_dirty_log
= true;
2276 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2278 /* Refresh DIRTY_LOG_MIGRATION bit. */
2279 memory_region_transaction_begin();
2280 memory_region_update_pending
= true;
2281 memory_region_transaction_commit();
2284 void memory_global_dirty_log_stop(void)
2286 global_dirty_log
= false;
2288 /* Refresh DIRTY_LOG_MIGRATION bit. */
2289 memory_region_transaction_begin();
2290 memory_region_update_pending
= true;
2291 memory_region_transaction_commit();
2293 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2296 static void listener_add_address_space(MemoryListener
*listener
,
2302 if (listener
->begin
) {
2303 listener
->begin(listener
);
2305 if (global_dirty_log
) {
2306 if (listener
->log_global_start
) {
2307 listener
->log_global_start(listener
);
2311 view
= address_space_get_flatview(as
);
2312 FOR_EACH_FLAT_RANGE(fr
, view
) {
2313 MemoryRegionSection section
= {
2315 .address_space
= as
,
2316 .offset_within_region
= fr
->offset_in_region
,
2317 .size
= fr
->addr
.size
,
2318 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2319 .readonly
= fr
->readonly
,
2321 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2322 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2324 if (listener
->region_add
) {
2325 listener
->region_add(listener
, §ion
);
2328 if (listener
->commit
) {
2329 listener
->commit(listener
);
2331 flatview_unref(view
);
2334 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2336 MemoryListener
*other
= NULL
;
2338 listener
->address_space
= as
;
2339 if (QTAILQ_EMPTY(&memory_listeners
)
2340 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2341 memory_listeners
)->priority
) {
2342 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2344 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2345 if (listener
->priority
< other
->priority
) {
2349 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2352 if (QTAILQ_EMPTY(&as
->listeners
)
2353 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
,
2354 memory_listeners
)->priority
) {
2355 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2357 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2358 if (listener
->priority
< other
->priority
) {
2362 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2365 listener_add_address_space(listener
, as
);
2368 void memory_listener_unregister(MemoryListener
*listener
)
2370 if (!listener
->address_space
) {
2374 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2375 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2376 listener
->address_space
= NULL
;
2379 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2381 memory_region_ref(root
);
2382 memory_region_transaction_begin();
2385 as
->malloced
= false;
2386 as
->current_map
= g_new(FlatView
, 1);
2387 flatview_init(as
->current_map
);
2388 as
->ioeventfd_nb
= 0;
2389 as
->ioeventfds
= NULL
;
2390 QTAILQ_INIT(&as
->listeners
);
2391 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2392 as
->name
= g_strdup(name
? name
: "anonymous");
2393 address_space_init_dispatch(as
);
2394 memory_region_update_pending
|= root
->enabled
;
2395 memory_region_transaction_commit();
2398 static void do_address_space_destroy(AddressSpace
*as
)
2400 bool do_free
= as
->malloced
;
2402 address_space_destroy_dispatch(as
);
2403 assert(QTAILQ_EMPTY(&as
->listeners
));
2405 flatview_unref(as
->current_map
);
2407 g_free(as
->ioeventfds
);
2408 memory_region_unref(as
->root
);
2414 AddressSpace
*address_space_init_shareable(MemoryRegion
*root
, const char *name
)
2418 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2419 if (root
== as
->root
&& as
->malloced
) {
2425 as
= g_malloc0(sizeof *as
);
2426 address_space_init(as
, root
, name
);
2427 as
->malloced
= true;
2431 void address_space_destroy(AddressSpace
*as
)
2433 MemoryRegion
*root
= as
->root
;
2436 if (as
->ref_count
) {
2439 /* Flush out anything from MemoryListeners listening in on this */
2440 memory_region_transaction_begin();
2442 memory_region_transaction_commit();
2443 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2444 address_space_unregister(as
);
2446 /* At this point, as->dispatch and as->current_map are dummy
2447 * entries that the guest should never use. Wait for the old
2448 * values to expire before freeing the data.
2451 call_rcu(as
, do_address_space_destroy
, rcu
);
2454 static const char *memory_region_type(MemoryRegion
*mr
)
2456 if (memory_region_is_ram_device(mr
)) {
2458 } else if (memory_region_is_romd(mr
)) {
2460 } else if (memory_region_is_rom(mr
)) {
2462 } else if (memory_region_is_ram(mr
)) {
2469 typedef struct MemoryRegionList MemoryRegionList
;
2471 struct MemoryRegionList
{
2472 const MemoryRegion
*mr
;
2473 QTAILQ_ENTRY(MemoryRegionList
) queue
;
2476 typedef QTAILQ_HEAD(queue
, MemoryRegionList
) MemoryRegionListHead
;
2478 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2479 int128_sub((size), int128_one())) : 0)
2480 #define MTREE_INDENT " "
2482 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2483 const MemoryRegion
*mr
, unsigned int level
,
2485 MemoryRegionListHead
*alias_print_queue
)
2487 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2488 MemoryRegionListHead submr_print_queue
;
2489 const MemoryRegion
*submr
;
2491 hwaddr cur_start
, cur_end
;
2497 for (i
= 0; i
< level
; i
++) {
2498 mon_printf(f
, MTREE_INDENT
);
2501 cur_start
= base
+ mr
->addr
;
2502 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2505 * Try to detect overflow of memory region. This should never
2506 * happen normally. When it happens, we dump something to warn the
2507 * user who is observing this.
2509 if (cur_start
< base
|| cur_end
< cur_start
) {
2510 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2514 MemoryRegionList
*ml
;
2517 /* check if the alias is already in the queue */
2518 QTAILQ_FOREACH(ml
, alias_print_queue
, queue
) {
2519 if (ml
->mr
== mr
->alias
) {
2525 ml
= g_new(MemoryRegionList
, 1);
2527 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, queue
);
2529 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2530 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2531 "-" TARGET_FMT_plx
"%s\n",
2534 memory_region_type((MemoryRegion
*)mr
),
2535 memory_region_name(mr
),
2536 memory_region_name(mr
->alias
),
2538 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2539 mr
->enabled
? "" : " [disabled]");
2542 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s): %s%s\n",
2545 memory_region_type((MemoryRegion
*)mr
),
2546 memory_region_name(mr
),
2547 mr
->enabled
? "" : " [disabled]");
2550 QTAILQ_INIT(&submr_print_queue
);
2552 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2553 new_ml
= g_new(MemoryRegionList
, 1);
2555 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2556 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2557 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2558 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2559 QTAILQ_INSERT_BEFORE(ml
, new_ml
, queue
);
2565 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, queue
);
2569 QTAILQ_FOREACH(ml
, &submr_print_queue
, queue
) {
2570 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2574 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, queue
, next_ml
) {
2579 static void mtree_print_flatview(fprintf_function p
, void *f
,
2582 FlatView
*view
= address_space_get_flatview(as
);
2583 FlatRange
*range
= &view
->ranges
[0];
2588 p(f
, MTREE_INDENT
"No rendered FlatView for "
2589 "address space '%s'\n", as
->name
);
2590 flatview_unref(view
);
2596 if (range
->offset_in_region
) {
2597 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2598 TARGET_FMT_plx
" (prio %d, %s): %s @" TARGET_FMT_plx
"\n",
2599 int128_get64(range
->addr
.start
),
2600 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2602 range
->readonly
? "rom" : memory_region_type(mr
),
2603 memory_region_name(mr
),
2604 range
->offset_in_region
);
2606 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2607 TARGET_FMT_plx
" (prio %d, %s): %s\n",
2608 int128_get64(range
->addr
.start
),
2609 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2611 range
->readonly
? "rom" : memory_region_type(mr
),
2612 memory_region_name(mr
));
2617 flatview_unref(view
);
2620 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
)
2622 MemoryRegionListHead ml_head
;
2623 MemoryRegionList
*ml
, *ml2
;
2627 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2628 mon_printf(f
, "address-space (flat view): %s\n", as
->name
);
2629 mtree_print_flatview(mon_printf
, f
, as
);
2630 mon_printf(f
, "\n");
2635 QTAILQ_INIT(&ml_head
);
2637 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2638 mon_printf(f
, "address-space: %s\n", as
->name
);
2639 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
);
2640 mon_printf(f
, "\n");
2643 /* print aliased regions */
2644 QTAILQ_FOREACH(ml
, &ml_head
, queue
) {
2645 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
2646 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
);
2647 mon_printf(f
, "\n");
2650 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, queue
, ml2
) {
2655 static const TypeInfo memory_region_info
= {
2656 .parent
= TYPE_OBJECT
,
2657 .name
= TYPE_MEMORY_REGION
,
2658 .instance_size
= sizeof(MemoryRegion
),
2659 .instance_init
= memory_region_initfn
,
2660 .instance_finalize
= memory_region_finalize
,
2663 static void memory_register_types(void)
2665 type_register_static(&memory_region_info
);
2668 type_init(memory_register_types
)