qdev: Convert bus-less devices to qdev_realize() with Coccinelle
[qemu/ar7.git] / hw / intc / spapr_xive.c
blobb7fc8dde7a70ec8b4f6f5f8d3f2a6dae2715f370
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, mon);
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
153 XiveSource *xsrc = &xive->source;
154 int i;
156 if (kvm_irqchip_in_kernel()) {
157 Error *local_err = NULL;
159 kvmppc_xive_synchronize_state(xive, &local_err);
160 if (local_err) {
161 error_report_err(local_err);
162 return;
166 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
168 for (i = 0; i < xive->nr_irqs; i++) {
169 uint8_t pq = xive_source_esb_get(xsrc, i);
170 XiveEAS *eas = &xive->eat[i];
172 if (!xive_eas_is_valid(eas)) {
173 continue;
176 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
177 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178 pq & XIVE_ESB_VAL_P ? 'P' : '-',
179 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181 xive_eas_is_masked(eas) ? "M" : " ",
182 (int) xive_get_field64(EAS_END_DATA, eas->w));
184 if (!xive_eas_is_masked(eas)) {
185 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186 XiveEND *end;
188 assert(end_idx < xive->nr_ends);
189 end = &xive->endt[end_idx];
191 if (xive_end_is_valid(end)) {
192 spapr_xive_end_pic_print_info(xive, end, mon);
195 monitor_printf(mon, "\n");
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
201 memory_region_set_enabled(&xive->source.esb_mmio, enable);
202 memory_region_set_enabled(&xive->tm_mmio, enable);
204 /* Disable the END ESBs until a guest OS makes use of them */
205 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
208 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
209 uint64_t value, unsigned size)
211 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
213 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
216 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
218 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
220 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
223 const MemoryRegionOps spapr_xive_tm_ops = {
224 .read = spapr_xive_tm_read,
225 .write = spapr_xive_tm_write,
226 .endianness = DEVICE_BIG_ENDIAN,
227 .valid = {
228 .min_access_size = 1,
229 .max_access_size = 8,
231 .impl = {
232 .min_access_size = 1,
233 .max_access_size = 8,
237 static void spapr_xive_end_reset(XiveEND *end)
239 memset(end, 0, sizeof(*end));
241 /* switch off the escalation and notification ESBs */
242 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
245 static void spapr_xive_reset(void *dev)
247 SpaprXive *xive = SPAPR_XIVE(dev);
248 int i;
251 * The XiveSource has its own reset handler, which mask off all
252 * IRQs (!P|Q)
255 /* Mask all valid EASs in the IRQ number space. */
256 for (i = 0; i < xive->nr_irqs; i++) {
257 XiveEAS *eas = &xive->eat[i];
258 if (xive_eas_is_valid(eas)) {
259 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
260 } else {
261 eas->w = 0;
265 /* Clear all ENDs */
266 for (i = 0; i < xive->nr_ends; i++) {
267 spapr_xive_end_reset(&xive->endt[i]);
271 static void spapr_xive_instance_init(Object *obj)
273 SpaprXive *xive = SPAPR_XIVE(obj);
275 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
277 object_initialize_child(obj, "end_source", &xive->end_source,
278 TYPE_XIVE_END_SOURCE);
280 /* Not connected to the KVM XIVE device */
281 xive->fd = -1;
284 static void spapr_xive_realize(DeviceState *dev, Error **errp)
286 SpaprXive *xive = SPAPR_XIVE(dev);
287 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
288 XiveSource *xsrc = &xive->source;
289 XiveENDSource *end_xsrc = &xive->end_source;
290 Error *local_err = NULL;
292 sxc->parent_realize(dev, &local_err);
293 if (local_err) {
294 error_propagate(errp, local_err);
295 return;
298 if (!xive->nr_irqs) {
299 error_setg(errp, "Number of interrupt needs to be greater 0");
300 return;
303 if (!xive->nr_ends) {
304 error_setg(errp, "Number of interrupt needs to be greater 0");
305 return;
309 * Initialize the internal sources, for IPIs and virtual devices.
311 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
312 &error_fatal);
313 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
314 &error_abort);
315 qdev_realize(DEVICE(xsrc), NULL, &local_err);
316 if (local_err) {
317 error_propagate(errp, local_err);
318 return;
320 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
323 * Initialize the END ESB source
325 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
326 &error_fatal);
327 object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
328 &error_abort);
329 qdev_realize(DEVICE(end_xsrc), NULL, &local_err);
330 if (local_err) {
331 error_propagate(errp, local_err);
332 return;
334 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
336 /* Set the mapping address of the END ESB pages after the source ESBs */
337 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
340 * Allocate the routing tables
342 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
343 xive->endt = g_new0(XiveEND, xive->nr_ends);
345 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
346 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
348 qemu_register_reset(spapr_xive_reset, dev);
350 /* TIMA initialization */
351 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
352 xive, "xive.tima", 4ull << TM_SHIFT);
353 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
356 * Map all regions. These will be enabled or disabled at reset and
357 * can also be overridden by KVM memory regions if active
359 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
360 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
361 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
364 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
365 uint32_t eas_idx, XiveEAS *eas)
367 SpaprXive *xive = SPAPR_XIVE(xrtr);
369 if (eas_idx >= xive->nr_irqs) {
370 return -1;
373 *eas = xive->eat[eas_idx];
374 return 0;
377 static int spapr_xive_get_end(XiveRouter *xrtr,
378 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
380 SpaprXive *xive = SPAPR_XIVE(xrtr);
382 if (end_idx >= xive->nr_ends) {
383 return -1;
386 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
387 return 0;
390 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
391 uint32_t end_idx, XiveEND *end,
392 uint8_t word_number)
394 SpaprXive *xive = SPAPR_XIVE(xrtr);
396 if (end_idx >= xive->nr_ends) {
397 return -1;
400 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
401 return 0;
404 static int spapr_xive_get_nvt(XiveRouter *xrtr,
405 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
407 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
408 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
410 if (!cpu) {
411 /* TODO: should we assert() if we can find a NVT ? */
412 return -1;
416 * sPAPR does not maintain a NVT table. Return that the NVT is
417 * valid if we have found a matching CPU
419 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
420 return 0;
423 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
424 uint32_t nvt_idx, XiveNVT *nvt,
425 uint8_t word_number)
428 * We don't need to write back to the NVTs because the sPAPR
429 * machine should never hit a non-scheduled NVT. It should never
430 * get called.
432 g_assert_not_reached();
435 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
436 uint8_t nvt_blk, uint32_t nvt_idx,
437 bool cam_ignore, uint8_t priority,
438 uint32_t logic_serv, XiveTCTXMatch *match)
440 CPUState *cs;
441 int count = 0;
443 CPU_FOREACH(cs) {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
446 int ring;
449 * Skip partially initialized vCPUs. This can happen when
450 * vCPUs are hotplugged.
452 if (!tctx) {
453 continue;
457 * Check the thread context CAM lines and record matches.
459 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
460 cam_ignore, logic_serv);
462 * Save the matching thread interrupt context and follow on to
463 * check for duplicates which are invalid.
465 if (ring != -1) {
466 if (match->tctx) {
467 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
468 "context NVT %x/%x\n", nvt_blk, nvt_idx);
469 return -1;
472 match->ring = ring;
473 match->tctx = tctx;
474 count++;
478 return count;
481 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
483 return SPAPR_XIVE_BLOCK_ID;
486 static const VMStateDescription vmstate_spapr_xive_end = {
487 .name = TYPE_SPAPR_XIVE "/end",
488 .version_id = 1,
489 .minimum_version_id = 1,
490 .fields = (VMStateField []) {
491 VMSTATE_UINT32(w0, XiveEND),
492 VMSTATE_UINT32(w1, XiveEND),
493 VMSTATE_UINT32(w2, XiveEND),
494 VMSTATE_UINT32(w3, XiveEND),
495 VMSTATE_UINT32(w4, XiveEND),
496 VMSTATE_UINT32(w5, XiveEND),
497 VMSTATE_UINT32(w6, XiveEND),
498 VMSTATE_UINT32(w7, XiveEND),
499 VMSTATE_END_OF_LIST()
503 static const VMStateDescription vmstate_spapr_xive_eas = {
504 .name = TYPE_SPAPR_XIVE "/eas",
505 .version_id = 1,
506 .minimum_version_id = 1,
507 .fields = (VMStateField []) {
508 VMSTATE_UINT64(w, XiveEAS),
509 VMSTATE_END_OF_LIST()
513 static int vmstate_spapr_xive_pre_save(void *opaque)
515 if (kvm_irqchip_in_kernel()) {
516 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
519 return 0;
523 * Called by the sPAPR IRQ backend 'post_load' method at the machine
524 * level.
526 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
528 if (kvm_irqchip_in_kernel()) {
529 return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
532 return 0;
535 static const VMStateDescription vmstate_spapr_xive = {
536 .name = TYPE_SPAPR_XIVE,
537 .version_id = 1,
538 .minimum_version_id = 1,
539 .pre_save = vmstate_spapr_xive_pre_save,
540 .post_load = NULL, /* handled at the machine level */
541 .fields = (VMStateField[]) {
542 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
543 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
544 vmstate_spapr_xive_eas, XiveEAS),
545 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
546 vmstate_spapr_xive_end, XiveEND),
547 VMSTATE_END_OF_LIST()
551 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
552 bool lsi, Error **errp)
554 SpaprXive *xive = SPAPR_XIVE(intc);
555 XiveSource *xsrc = &xive->source;
557 assert(lisn < xive->nr_irqs);
559 if (xive_eas_is_valid(&xive->eat[lisn])) {
560 error_setg(errp, "IRQ %d is not free", lisn);
561 return -EBUSY;
565 * Set default values when allocating an IRQ number
567 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
568 if (lsi) {
569 xive_source_irq_set_lsi(xsrc, lisn);
572 if (kvm_irqchip_in_kernel()) {
573 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
576 return 0;
579 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
581 SpaprXive *xive = SPAPR_XIVE(intc);
582 assert(lisn < xive->nr_irqs);
584 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
587 static Property spapr_xive_properties[] = {
588 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
589 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
590 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
591 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
592 DEFINE_PROP_END_OF_LIST(),
595 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
596 PowerPCCPU *cpu, Error **errp)
598 SpaprXive *xive = SPAPR_XIVE(intc);
599 Object *obj;
600 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
602 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
603 if (!obj) {
604 return -1;
607 spapr_cpu->tctx = XIVE_TCTX(obj);
608 return 0;
611 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
613 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
614 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
617 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
618 PowerPCCPU *cpu)
620 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
621 uint8_t nvt_blk;
622 uint32_t nvt_idx;
624 xive_tctx_reset(tctx);
627 * When a Virtual Processor is scheduled to run on a HW thread,
628 * the hypervisor pushes its identifier in the OS CAM line.
629 * Emulate the same behavior under QEMU.
631 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
633 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
636 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
637 PowerPCCPU *cpu)
639 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
641 xive_tctx_destroy(spapr_cpu->tctx);
642 spapr_cpu->tctx = NULL;
645 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
647 SpaprXive *xive = SPAPR_XIVE(intc);
649 if (kvm_irqchip_in_kernel()) {
650 kvmppc_xive_source_set_irq(&xive->source, irq, val);
651 } else {
652 xive_source_set_irq(&xive->source, irq, val);
656 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
658 SpaprXive *xive = SPAPR_XIVE(intc);
659 CPUState *cs;
661 CPU_FOREACH(cs) {
662 PowerPCCPU *cpu = POWERPC_CPU(cs);
664 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
667 spapr_xive_pic_print_info(xive, mon);
670 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
671 void *fdt, uint32_t phandle)
673 SpaprXive *xive = SPAPR_XIVE(intc);
674 int node;
675 uint64_t timas[2 * 2];
676 /* Interrupt number ranges for the IPIs */
677 uint32_t lisn_ranges[] = {
678 cpu_to_be32(SPAPR_IRQ_IPI),
679 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
682 * EQ size - the sizes of pages supported by the system 4K, 64K,
683 * 2M, 16M. We only advertise 64K for the moment.
685 uint32_t eq_sizes[] = {
686 cpu_to_be32(16), /* 64K */
689 * The following array is in sync with the reserved priorities
690 * defined by the 'spapr_xive_priority_is_reserved' routine.
692 uint32_t plat_res_int_priorities[] = {
693 cpu_to_be32(7), /* start */
694 cpu_to_be32(0xf8), /* count */
697 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
698 timas[0] = cpu_to_be64(xive->tm_base +
699 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
700 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
701 timas[2] = cpu_to_be64(xive->tm_base +
702 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
703 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
705 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
707 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
708 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
710 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
711 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
712 sizeof(eq_sizes)));
713 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
714 sizeof(lisn_ranges)));
716 /* For Linux to link the LSIs to the interrupt controller. */
717 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
718 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
720 /* For SLOF */
721 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
722 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
725 * The "ibm,plat-res-int-priorities" property defines the priority
726 * ranges reserved by the hypervisor
728 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
729 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
732 static int spapr_xive_activate(SpaprInterruptController *intc,
733 uint32_t nr_servers, Error **errp)
735 SpaprXive *xive = SPAPR_XIVE(intc);
737 if (kvm_enabled()) {
738 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
739 errp);
740 if (rc < 0) {
741 return rc;
745 /* Activate the XIVE MMIOs */
746 spapr_xive_mmio_set_enabled(xive, true);
748 return 0;
751 static void spapr_xive_deactivate(SpaprInterruptController *intc)
753 SpaprXive *xive = SPAPR_XIVE(intc);
755 spapr_xive_mmio_set_enabled(xive, false);
757 if (kvm_irqchip_in_kernel()) {
758 kvmppc_xive_disconnect(intc);
762 static void spapr_xive_class_init(ObjectClass *klass, void *data)
764 DeviceClass *dc = DEVICE_CLASS(klass);
765 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
766 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
767 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
768 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
770 dc->desc = "sPAPR XIVE Interrupt Controller";
771 device_class_set_props(dc, spapr_xive_properties);
772 device_class_set_parent_realize(dc, spapr_xive_realize,
773 &sxc->parent_realize);
774 dc->vmsd = &vmstate_spapr_xive;
776 xrc->get_eas = spapr_xive_get_eas;
777 xrc->get_end = spapr_xive_get_end;
778 xrc->write_end = spapr_xive_write_end;
779 xrc->get_nvt = spapr_xive_get_nvt;
780 xrc->write_nvt = spapr_xive_write_nvt;
781 xrc->get_block_id = spapr_xive_get_block_id;
783 sicc->activate = spapr_xive_activate;
784 sicc->deactivate = spapr_xive_deactivate;
785 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
786 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
787 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
788 sicc->claim_irq = spapr_xive_claim_irq;
789 sicc->free_irq = spapr_xive_free_irq;
790 sicc->set_irq = spapr_xive_set_irq;
791 sicc->print_info = spapr_xive_print_info;
792 sicc->dt = spapr_xive_dt;
793 sicc->post_load = spapr_xive_post_load;
795 xpc->match_nvt = spapr_xive_match_nvt;
798 static const TypeInfo spapr_xive_info = {
799 .name = TYPE_SPAPR_XIVE,
800 .parent = TYPE_XIVE_ROUTER,
801 .instance_init = spapr_xive_instance_init,
802 .instance_size = sizeof(SpaprXive),
803 .class_init = spapr_xive_class_init,
804 .class_size = sizeof(SpaprXiveClass),
805 .interfaces = (InterfaceInfo[]) {
806 { TYPE_SPAPR_INTC },
811 static void spapr_xive_register_types(void)
813 type_register_static(&spapr_xive_info);
816 type_init(spapr_xive_register_types)
819 * XIVE hcalls
821 * The terminology used by the XIVE hcalls is the following :
823 * TARGET vCPU number
824 * EQ Event Queue assigned by OS to receive event data
825 * ESB page for source interrupt management
826 * LISN Logical Interrupt Source Number identifying a source in the
827 * machine
828 * EISN Effective Interrupt Source Number used by guest OS to
829 * identify source in the guest
831 * The EAS, END, NVT structures are not exposed.
835 * Linux hosts under OPAL reserve priority 7 for their own escalation
836 * interrupts (DD2.X POWER9). So we only allow the guest to use
837 * priorities [0..6].
839 static bool spapr_xive_priority_is_reserved(uint8_t priority)
841 switch (priority) {
842 case 0 ... 6:
843 return false;
844 case 7: /* OPAL escalation queue */
845 default:
846 return true;
851 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
852 * real address of the MMIO page through which the Event State Buffer
853 * entry associated with the value of the "lisn" parameter is managed.
855 * Parameters:
856 * Input
857 * - R4: "flags"
858 * Bits 0-63 reserved
859 * - R5: "lisn" is per "interrupts", "interrupt-map", or
860 * "ibm,xive-lisn-ranges" properties, or as returned by the
861 * ibm,query-interrupt-source-number RTAS call, or as returned
862 * by the H_ALLOCATE_VAS_WINDOW hcall
864 * Output
865 * - R4: "flags"
866 * Bits 0-59: Reserved
867 * Bit 60: H_INT_ESB must be used for Event State Buffer
868 * management
869 * Bit 61: 1 == LSI 0 == MSI
870 * Bit 62: the full function page supports trigger
871 * Bit 63: Store EOI Supported
872 * - R5: Logical Real address of full function Event State Buffer
873 * management page, -1 if H_INT_ESB hcall flag is set to 1.
874 * - R6: Logical Real Address of trigger only Event State Buffer
875 * management page or -1.
876 * - R7: Power of 2 page size for the ESB management pages returned in
877 * R5 and R6.
880 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
881 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
882 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
883 on same page */
884 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
886 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
887 SpaprMachineState *spapr,
888 target_ulong opcode,
889 target_ulong *args)
891 SpaprXive *xive = spapr->xive;
892 XiveSource *xsrc = &xive->source;
893 target_ulong flags = args[0];
894 target_ulong lisn = args[1];
896 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
897 return H_FUNCTION;
900 if (flags) {
901 return H_PARAMETER;
904 if (lisn >= xive->nr_irqs) {
905 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
906 lisn);
907 return H_P2;
910 if (!xive_eas_is_valid(&xive->eat[lisn])) {
911 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
912 lisn);
913 return H_P2;
917 * All sources are emulated under the main XIVE object and share
918 * the same characteristics.
920 args[0] = 0;
921 if (!xive_source_esb_has_2page(xsrc)) {
922 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
924 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
925 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
929 * Force the use of the H_INT_ESB hcall in case of an LSI
930 * interrupt. This is necessary under KVM to re-trigger the
931 * interrupt if the level is still asserted
933 if (xive_source_irq_is_lsi(xsrc, lisn)) {
934 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
937 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
938 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
939 } else {
940 args[1] = -1;
943 if (xive_source_esb_has_2page(xsrc) &&
944 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
945 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
946 } else {
947 args[2] = -1;
950 if (xive_source_esb_has_2page(xsrc)) {
951 args[3] = xsrc->esb_shift - 1;
952 } else {
953 args[3] = xsrc->esb_shift;
956 return H_SUCCESS;
960 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
961 * Interrupt Source to a target. The Logical Interrupt Source is
962 * designated with the "lisn" parameter and the target is designated
963 * with the "target" and "priority" parameters. Upon return from the
964 * hcall(), no additional interrupts will be directed to the old EQ.
966 * Parameters:
967 * Input:
968 * - R4: "flags"
969 * Bits 0-61: Reserved
970 * Bit 62: set the "eisn" in the EAS
971 * Bit 63: masks the interrupt source in the hardware interrupt
972 * control structure. An interrupt masked by this mechanism will
973 * be dropped, but it's source state bits will still be
974 * set. There is no race-free way of unmasking and restoring the
975 * source. Thus this should only be used in interrupts that are
976 * also masked at the source, and only in cases where the
977 * interrupt is not meant to be used for a large amount of time
978 * because no valid target exists for it for example
979 * - R5: "lisn" is per "interrupts", "interrupt-map", or
980 * "ibm,xive-lisn-ranges" properties, or as returned by the
981 * ibm,query-interrupt-source-number RTAS call, or as returned by
982 * the H_ALLOCATE_VAS_WINDOW hcall
983 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
984 * "ibm,ppc-interrupt-gserver#s"
985 * - R7: "priority" is a valid priority not in
986 * "ibm,plat-res-int-priorities"
987 * - R8: "eisn" is the guest EISN associated with the "lisn"
989 * Output:
990 * - None
993 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
994 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
996 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
997 SpaprMachineState *spapr,
998 target_ulong opcode,
999 target_ulong *args)
1001 SpaprXive *xive = spapr->xive;
1002 XiveEAS eas, new_eas;
1003 target_ulong flags = args[0];
1004 target_ulong lisn = args[1];
1005 target_ulong target = args[2];
1006 target_ulong priority = args[3];
1007 target_ulong eisn = args[4];
1008 uint8_t end_blk;
1009 uint32_t end_idx;
1011 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1012 return H_FUNCTION;
1015 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1016 return H_PARAMETER;
1019 if (lisn >= xive->nr_irqs) {
1020 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1021 lisn);
1022 return H_P2;
1025 eas = xive->eat[lisn];
1026 if (!xive_eas_is_valid(&eas)) {
1027 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1028 lisn);
1029 return H_P2;
1032 /* priority 0xff is used to reset the EAS */
1033 if (priority == 0xff) {
1034 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1035 goto out;
1038 if (flags & SPAPR_XIVE_SRC_MASK) {
1039 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1040 } else {
1041 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1044 if (spapr_xive_priority_is_reserved(priority)) {
1045 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1046 " is reserved\n", priority);
1047 return H_P4;
1051 * Validate that "target" is part of the list of threads allocated
1052 * to the partition. For that, find the END corresponding to the
1053 * target.
1055 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1056 return H_P3;
1059 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1060 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1062 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1063 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1066 if (kvm_irqchip_in_kernel()) {
1067 Error *local_err = NULL;
1069 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1070 if (local_err) {
1071 error_report_err(local_err);
1072 return H_HARDWARE;
1076 out:
1077 xive->eat[lisn] = new_eas;
1078 return H_SUCCESS;
1082 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1083 * target/priority pair is assigned to the specified Logical Interrupt
1084 * Source.
1086 * Parameters:
1087 * Input:
1088 * - R4: "flags"
1089 * Bits 0-63 Reserved
1090 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1091 * "ibm,xive-lisn-ranges" properties, or as returned by the
1092 * ibm,query-interrupt-source-number RTAS call, or as
1093 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1095 * Output:
1096 * - R4: Target to which the specified Logical Interrupt Source is
1097 * assigned
1098 * - R5: Priority to which the specified Logical Interrupt Source is
1099 * assigned
1100 * - R6: EISN for the specified Logical Interrupt Source (this will be
1101 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1103 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1104 SpaprMachineState *spapr,
1105 target_ulong opcode,
1106 target_ulong *args)
1108 SpaprXive *xive = spapr->xive;
1109 target_ulong flags = args[0];
1110 target_ulong lisn = args[1];
1111 XiveEAS eas;
1112 XiveEND *end;
1113 uint8_t nvt_blk;
1114 uint32_t end_idx, nvt_idx;
1116 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1117 return H_FUNCTION;
1120 if (flags) {
1121 return H_PARAMETER;
1124 if (lisn >= xive->nr_irqs) {
1125 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1126 lisn);
1127 return H_P2;
1130 eas = xive->eat[lisn];
1131 if (!xive_eas_is_valid(&eas)) {
1132 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1133 lisn);
1134 return H_P2;
1137 /* EAS_END_BLOCK is unused on sPAPR */
1138 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1140 assert(end_idx < xive->nr_ends);
1141 end = &xive->endt[end_idx];
1143 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1144 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1145 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1147 if (xive_eas_is_masked(&eas)) {
1148 args[1] = 0xff;
1149 } else {
1150 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1153 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1155 return H_SUCCESS;
1159 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1160 * address of the notification management page associated with the
1161 * specified target and priority.
1163 * Parameters:
1164 * Input:
1165 * - R4: "flags"
1166 * Bits 0-63 Reserved
1167 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1168 * "ibm,ppc-interrupt-gserver#s"
1169 * - R6: "priority" is a valid priority not in
1170 * "ibm,plat-res-int-priorities"
1172 * Output:
1173 * - R4: Logical real address of notification page
1174 * - R5: Power of 2 page size of the notification page
1176 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1177 SpaprMachineState *spapr,
1178 target_ulong opcode,
1179 target_ulong *args)
1181 SpaprXive *xive = spapr->xive;
1182 XiveENDSource *end_xsrc = &xive->end_source;
1183 target_ulong flags = args[0];
1184 target_ulong target = args[1];
1185 target_ulong priority = args[2];
1186 XiveEND *end;
1187 uint8_t end_blk;
1188 uint32_t end_idx;
1190 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1191 return H_FUNCTION;
1194 if (flags) {
1195 return H_PARAMETER;
1199 * H_STATE should be returned if a H_INT_RESET is in progress.
1200 * This is not needed when running the emulation under QEMU
1203 if (spapr_xive_priority_is_reserved(priority)) {
1204 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1205 " is reserved\n", priority);
1206 return H_P3;
1210 * Validate that "target" is part of the list of threads allocated
1211 * to the partition. For that, find the END corresponding to the
1212 * target.
1214 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1215 return H_P2;
1218 assert(end_idx < xive->nr_ends);
1219 end = &xive->endt[end_idx];
1221 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1222 if (xive_end_is_enqueue(end)) {
1223 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1224 } else {
1225 args[1] = 0;
1228 return H_SUCCESS;
1232 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1233 * a given "target" and "priority". It is also used to set the
1234 * notification config associated with the EQ. An EQ size of 0 is
1235 * used to reset the EQ config for a given target and priority. If
1236 * resetting the EQ config, the END associated with the given "target"
1237 * and "priority" will be changed to disable queueing.
1239 * Upon return from the hcall(), no additional interrupts will be
1240 * directed to the old EQ (if one was set). The old EQ (if one was
1241 * set) should be investigated for interrupts that occurred prior to
1242 * or during the hcall().
1244 * Parameters:
1245 * Input:
1246 * - R4: "flags"
1247 * Bits 0-62: Reserved
1248 * Bit 63: Unconditional Notify (n) per the XIVE spec
1249 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1250 * "ibm,ppc-interrupt-gserver#s"
1251 * - R6: "priority" is a valid priority not in
1252 * "ibm,plat-res-int-priorities"
1253 * - R7: "eventQueue": The logical real address of the start of the EQ
1254 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1256 * Output:
1257 * - None
1260 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1262 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1263 SpaprMachineState *spapr,
1264 target_ulong opcode,
1265 target_ulong *args)
1267 SpaprXive *xive = spapr->xive;
1268 target_ulong flags = args[0];
1269 target_ulong target = args[1];
1270 target_ulong priority = args[2];
1271 target_ulong qpage = args[3];
1272 target_ulong qsize = args[4];
1273 XiveEND end;
1274 uint8_t end_blk, nvt_blk;
1275 uint32_t end_idx, nvt_idx;
1277 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1278 return H_FUNCTION;
1281 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1282 return H_PARAMETER;
1286 * H_STATE should be returned if a H_INT_RESET is in progress.
1287 * This is not needed when running the emulation under QEMU
1290 if (spapr_xive_priority_is_reserved(priority)) {
1291 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1292 " is reserved\n", priority);
1293 return H_P3;
1297 * Validate that "target" is part of the list of threads allocated
1298 * to the partition. For that, find the END corresponding to the
1299 * target.
1302 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1303 return H_P2;
1306 assert(end_idx < xive->nr_ends);
1307 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1309 switch (qsize) {
1310 case 12:
1311 case 16:
1312 case 21:
1313 case 24:
1314 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1315 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1316 " is not naturally aligned with %" HWADDR_PRIx "\n",
1317 qpage, (hwaddr)1 << qsize);
1318 return H_P4;
1320 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1321 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1322 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1323 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1324 break;
1325 case 0:
1326 /* reset queue and disable queueing */
1327 spapr_xive_end_reset(&end);
1328 goto out;
1330 default:
1331 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1332 qsize);
1333 return H_P5;
1336 if (qsize) {
1337 hwaddr plen = 1 << qsize;
1338 void *eq;
1341 * Validate the guest EQ. We should also check that the queue
1342 * has been zeroed by the OS.
1344 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1345 MEMTXATTRS_UNSPECIFIED);
1346 if (plen != 1 << qsize) {
1347 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1348 HWADDR_PRIx "\n", qpage);
1349 return H_P4;
1351 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1354 /* "target" should have been validated above */
1355 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1356 g_assert_not_reached();
1360 * Ensure the priority and target are correctly set (they will not
1361 * be right after allocation)
1363 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1364 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1365 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1367 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1368 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1369 } else {
1370 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1374 * The generation bit for the END starts at 1 and The END page
1375 * offset counter starts at 0.
1377 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1378 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1379 end.w0 |= cpu_to_be32(END_W0_VALID);
1382 * TODO: issue syncs required to ensure all in-flight interrupts
1383 * are complete on the old END
1386 out:
1387 if (kvm_irqchip_in_kernel()) {
1388 Error *local_err = NULL;
1390 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1391 if (local_err) {
1392 error_report_err(local_err);
1393 return H_HARDWARE;
1397 /* Update END */
1398 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1399 return H_SUCCESS;
1403 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1404 * target and priority.
1406 * Parameters:
1407 * Input:
1408 * - R4: "flags"
1409 * Bits 0-62: Reserved
1410 * Bit 63: Debug: Return debug data
1411 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1412 * "ibm,ppc-interrupt-gserver#s"
1413 * - R6: "priority" is a valid priority not in
1414 * "ibm,plat-res-int-priorities"
1416 * Output:
1417 * - R4: "flags":
1418 * Bits 0-61: Reserved
1419 * Bit 62: The value of Event Queue Generation Number (g) per
1420 * the XIVE spec if "Debug" = 1
1421 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1422 * - R5: The logical real address of the start of the EQ
1423 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1424 * - R7: The value of Event Queue Offset Counter per XIVE spec
1425 * if "Debug" = 1, else 0
1429 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1431 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1432 SpaprMachineState *spapr,
1433 target_ulong opcode,
1434 target_ulong *args)
1436 SpaprXive *xive = spapr->xive;
1437 target_ulong flags = args[0];
1438 target_ulong target = args[1];
1439 target_ulong priority = args[2];
1440 XiveEND *end;
1441 uint8_t end_blk;
1442 uint32_t end_idx;
1444 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1445 return H_FUNCTION;
1448 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1449 return H_PARAMETER;
1453 * H_STATE should be returned if a H_INT_RESET is in progress.
1454 * This is not needed when running the emulation under QEMU
1457 if (spapr_xive_priority_is_reserved(priority)) {
1458 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1459 " is reserved\n", priority);
1460 return H_P3;
1464 * Validate that "target" is part of the list of threads allocated
1465 * to the partition. For that, find the END corresponding to the
1466 * target.
1468 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1469 return H_P2;
1472 assert(end_idx < xive->nr_ends);
1473 end = &xive->endt[end_idx];
1475 args[0] = 0;
1476 if (xive_end_is_notify(end)) {
1477 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1480 if (xive_end_is_enqueue(end)) {
1481 args[1] = xive_end_qaddr(end);
1482 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1483 } else {
1484 args[1] = 0;
1485 args[2] = 0;
1488 if (kvm_irqchip_in_kernel()) {
1489 Error *local_err = NULL;
1491 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1492 if (local_err) {
1493 error_report_err(local_err);
1494 return H_HARDWARE;
1498 /* TODO: do we need any locking on the END ? */
1499 if (flags & SPAPR_XIVE_END_DEBUG) {
1500 /* Load the event queue generation number into the return flags */
1501 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1503 /* Load R7 with the event queue offset counter */
1504 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1505 } else {
1506 args[3] = 0;
1509 return H_SUCCESS;
1513 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1514 * reporting cache line pair for the calling thread. The reporting
1515 * cache lines will contain the OS interrupt context when the OS
1516 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1517 * interrupt. The reporting cache lines can be reset by inputting -1
1518 * in "reportingLine". Issuing the CI store byte without reporting
1519 * cache lines registered will result in the data not being accessible
1520 * to the OS.
1522 * Parameters:
1523 * Input:
1524 * - R4: "flags"
1525 * Bits 0-63: Reserved
1526 * - R5: "reportingLine": The logical real address of the reporting cache
1527 * line pair
1529 * Output:
1530 * - None
1532 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1533 SpaprMachineState *spapr,
1534 target_ulong opcode,
1535 target_ulong *args)
1537 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1538 return H_FUNCTION;
1542 * H_STATE should be returned if a H_INT_RESET is in progress.
1543 * This is not needed when running the emulation under QEMU
1546 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1547 return H_FUNCTION;
1551 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1552 * real address of the reporting cache line pair set for the input
1553 * "target". If no reporting cache line pair has been set, -1 is
1554 * returned.
1556 * Parameters:
1557 * Input:
1558 * - R4: "flags"
1559 * Bits 0-63: Reserved
1560 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1561 * "ibm,ppc-interrupt-gserver#s"
1562 * - R6: "reportingLine": The logical real address of the reporting
1563 * cache line pair
1565 * Output:
1566 * - R4: The logical real address of the reporting line if set, else -1
1568 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1569 SpaprMachineState *spapr,
1570 target_ulong opcode,
1571 target_ulong *args)
1573 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1574 return H_FUNCTION;
1578 * H_STATE should be returned if a H_INT_RESET is in progress.
1579 * This is not needed when running the emulation under QEMU
1582 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1583 return H_FUNCTION;
1587 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1588 * page for the input "lisn". This hcall is only supported for LISNs
1589 * that have the ESB hcall flag set to 1 when returned from hcall()
1590 * H_INT_GET_SOURCE_INFO.
1592 * Parameters:
1593 * Input:
1594 * - R4: "flags"
1595 * Bits 0-62: Reserved
1596 * bit 63: Store: Store=1, store operation, else load operation
1597 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1598 * "ibm,xive-lisn-ranges" properties, or as returned by the
1599 * ibm,query-interrupt-source-number RTAS call, or as
1600 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1601 * - R6: "esbOffset" is the offset into the ESB page for the load or
1602 * store operation
1603 * - R7: "storeData" is the data to write for a store operation
1605 * Output:
1606 * - R4: The value of the load if load operation, else -1
1609 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1611 static target_ulong h_int_esb(PowerPCCPU *cpu,
1612 SpaprMachineState *spapr,
1613 target_ulong opcode,
1614 target_ulong *args)
1616 SpaprXive *xive = spapr->xive;
1617 XiveEAS eas;
1618 target_ulong flags = args[0];
1619 target_ulong lisn = args[1];
1620 target_ulong offset = args[2];
1621 target_ulong data = args[3];
1622 hwaddr mmio_addr;
1623 XiveSource *xsrc = &xive->source;
1625 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1626 return H_FUNCTION;
1629 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1630 return H_PARAMETER;
1633 if (lisn >= xive->nr_irqs) {
1634 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1635 lisn);
1636 return H_P2;
1639 eas = xive->eat[lisn];
1640 if (!xive_eas_is_valid(&eas)) {
1641 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1642 lisn);
1643 return H_P2;
1646 if (offset > (1ull << xsrc->esb_shift)) {
1647 return H_P3;
1650 if (kvm_irqchip_in_kernel()) {
1651 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1652 flags & SPAPR_XIVE_ESB_STORE);
1653 } else {
1654 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1656 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1657 (flags & SPAPR_XIVE_ESB_STORE))) {
1658 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1659 HWADDR_PRIx "\n", mmio_addr);
1660 return H_HARDWARE;
1662 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1664 return H_SUCCESS;
1668 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1669 * ensure any in flight events for the input lisn are in the event
1670 * queue.
1672 * Parameters:
1673 * Input:
1674 * - R4: "flags"
1675 * Bits 0-63: Reserved
1676 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1677 * "ibm,xive-lisn-ranges" properties, or as returned by the
1678 * ibm,query-interrupt-source-number RTAS call, or as
1679 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1681 * Output:
1682 * - None
1684 static target_ulong h_int_sync(PowerPCCPU *cpu,
1685 SpaprMachineState *spapr,
1686 target_ulong opcode,
1687 target_ulong *args)
1689 SpaprXive *xive = spapr->xive;
1690 XiveEAS eas;
1691 target_ulong flags = args[0];
1692 target_ulong lisn = args[1];
1694 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1695 return H_FUNCTION;
1698 if (flags) {
1699 return H_PARAMETER;
1702 if (lisn >= xive->nr_irqs) {
1703 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1704 lisn);
1705 return H_P2;
1708 eas = xive->eat[lisn];
1709 if (!xive_eas_is_valid(&eas)) {
1710 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1711 lisn);
1712 return H_P2;
1716 * H_STATE should be returned if a H_INT_RESET is in progress.
1717 * This is not needed when running the emulation under QEMU
1721 * This is not real hardware. Nothing to be done unless when
1722 * under KVM
1725 if (kvm_irqchip_in_kernel()) {
1726 Error *local_err = NULL;
1728 kvmppc_xive_sync_source(xive, lisn, &local_err);
1729 if (local_err) {
1730 error_report_err(local_err);
1731 return H_HARDWARE;
1734 return H_SUCCESS;
1738 * The H_INT_RESET hcall() is used to reset all of the partition's
1739 * interrupt exploitation structures to their initial state. This
1740 * means losing all previously set interrupt state set via
1741 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1743 * Parameters:
1744 * Input:
1745 * - R4: "flags"
1746 * Bits 0-63: Reserved
1748 * Output:
1749 * - None
1751 static target_ulong h_int_reset(PowerPCCPU *cpu,
1752 SpaprMachineState *spapr,
1753 target_ulong opcode,
1754 target_ulong *args)
1756 SpaprXive *xive = spapr->xive;
1757 target_ulong flags = args[0];
1759 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1760 return H_FUNCTION;
1763 if (flags) {
1764 return H_PARAMETER;
1767 device_legacy_reset(DEVICE(xive));
1769 if (kvm_irqchip_in_kernel()) {
1770 Error *local_err = NULL;
1772 kvmppc_xive_reset(xive, &local_err);
1773 if (local_err) {
1774 error_report_err(local_err);
1775 return H_HARDWARE;
1778 return H_SUCCESS;
1781 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1783 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1784 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1785 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1786 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1787 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1788 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1789 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1790 h_int_set_os_reporting_line);
1791 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1792 h_int_get_os_reporting_line);
1793 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1794 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1795 spapr_register_hypercall(H_INT_RESET, h_int_reset);