qmp-input: Require struct push to visit members of top dict
[qemu/ar7.git] / hw / char / cadence_uart.c
blob797787823e0672cb57c5ba1b24f017c9394c5fd7
1 /*
2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/char/cadence_uart.h"
22 #ifdef CADENCE_UART_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
26 } while (0);
27 #else
28 #define DB_PRINT(...)
29 #endif
31 #define UART_SR_INTR_RTRIG 0x00000001
32 #define UART_SR_INTR_REMPTY 0x00000002
33 #define UART_SR_INTR_RFUL 0x00000004
34 #define UART_SR_INTR_TEMPTY 0x00000008
35 #define UART_SR_INTR_TFUL 0x00000010
36 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
37 #define UART_SR_TTRIG 0x00002000
38 #define UART_INTR_TTRIG 0x00000400
39 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
40 * SR, then the same bit in CISR is set high too */
41 #define UART_SR_TO_CISR_MASK 0x0000001F
43 #define UART_INTR_ROVR 0x00000020
44 #define UART_INTR_FRAME 0x00000040
45 #define UART_INTR_PARE 0x00000080
46 #define UART_INTR_TIMEOUT 0x00000100
47 #define UART_INTR_DMSI 0x00000200
48 #define UART_INTR_TOVR 0x00001000
50 #define UART_SR_RACTIVE 0x00000400
51 #define UART_SR_TACTIVE 0x00000800
52 #define UART_SR_FDELT 0x00001000
54 #define UART_CR_RXRST 0x00000001
55 #define UART_CR_TXRST 0x00000002
56 #define UART_CR_RX_EN 0x00000004
57 #define UART_CR_RX_DIS 0x00000008
58 #define UART_CR_TX_EN 0x00000010
59 #define UART_CR_TX_DIS 0x00000020
60 #define UART_CR_RST_TO 0x00000040
61 #define UART_CR_STARTBRK 0x00000080
62 #define UART_CR_STOPBRK 0x00000100
64 #define UART_MR_CLKS 0x00000001
65 #define UART_MR_CHRL 0x00000006
66 #define UART_MR_CHRL_SH 1
67 #define UART_MR_PAR 0x00000038
68 #define UART_MR_PAR_SH 3
69 #define UART_MR_NBSTOP 0x000000C0
70 #define UART_MR_NBSTOP_SH 6
71 #define UART_MR_CHMODE 0x00000300
72 #define UART_MR_CHMODE_SH 8
73 #define UART_MR_UCLKEN 0x00000400
74 #define UART_MR_IRMODE 0x00000800
76 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
77 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
78 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
79 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
80 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
81 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
82 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
83 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
84 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
85 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
87 #define UART_INPUT_CLK 50000000
89 #define R_CR (0x00/4)
90 #define R_MR (0x04/4)
91 #define R_IER (0x08/4)
92 #define R_IDR (0x0C/4)
93 #define R_IMR (0x10/4)
94 #define R_CISR (0x14/4)
95 #define R_BRGR (0x18/4)
96 #define R_RTOR (0x1C/4)
97 #define R_RTRIG (0x20/4)
98 #define R_MCR (0x24/4)
99 #define R_MSR (0x28/4)
100 #define R_SR (0x2C/4)
101 #define R_TX_RX (0x30/4)
102 #define R_BDIV (0x34/4)
103 #define R_FDEL (0x38/4)
104 #define R_PMIN (0x3C/4)
105 #define R_PWID (0x40/4)
106 #define R_TTRIG (0x44/4)
109 static void uart_update_status(CadenceUARTState *s)
111 s->r[R_SR] = 0;
113 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
114 : 0;
115 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
116 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
118 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
119 : 0;
120 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
121 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
123 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
124 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
125 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
128 static void fifo_trigger_update(void *opaque)
130 CadenceUARTState *s = opaque;
132 s->r[R_CISR] |= UART_INTR_TIMEOUT;
134 uart_update_status(s);
137 static void uart_rx_reset(CadenceUARTState *s)
139 s->rx_wpos = 0;
140 s->rx_count = 0;
141 if (s->chr) {
142 qemu_chr_accept_input(s->chr);
146 static void uart_tx_reset(CadenceUARTState *s)
148 s->tx_count = 0;
151 static void uart_send_breaks(CadenceUARTState *s)
153 int break_enabled = 1;
155 if (s->chr) {
156 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
157 &break_enabled);
161 static void uart_parameters_setup(CadenceUARTState *s)
163 QEMUSerialSetParams ssp;
164 unsigned int baud_rate, packet_size;
166 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
167 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
169 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
170 packet_size = 1;
172 switch (s->r[R_MR] & UART_MR_PAR) {
173 case UART_PARITY_EVEN:
174 ssp.parity = 'E';
175 packet_size++;
176 break;
177 case UART_PARITY_ODD:
178 ssp.parity = 'O';
179 packet_size++;
180 break;
181 default:
182 ssp.parity = 'N';
183 break;
186 switch (s->r[R_MR] & UART_MR_CHRL) {
187 case UART_DATA_BITS_6:
188 ssp.data_bits = 6;
189 break;
190 case UART_DATA_BITS_7:
191 ssp.data_bits = 7;
192 break;
193 default:
194 ssp.data_bits = 8;
195 break;
198 switch (s->r[R_MR] & UART_MR_NBSTOP) {
199 case UART_STOP_BITS_1:
200 ssp.stop_bits = 1;
201 break;
202 default:
203 ssp.stop_bits = 2;
204 break;
207 packet_size += ssp.data_bits + ssp.stop_bits;
208 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
209 if (s->chr) {
210 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
214 static int uart_can_receive(void *opaque)
216 CadenceUARTState *s = opaque;
217 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
218 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
220 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
221 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
223 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
224 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
226 return ret;
229 static void uart_ctrl_update(CadenceUARTState *s)
231 if (s->r[R_CR] & UART_CR_TXRST) {
232 uart_tx_reset(s);
235 if (s->r[R_CR] & UART_CR_RXRST) {
236 uart_rx_reset(s);
239 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
241 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
242 uart_send_breaks(s);
246 static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
248 CadenceUARTState *s = opaque;
249 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
250 int i;
252 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
253 return;
256 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
257 s->r[R_CISR] |= UART_INTR_ROVR;
258 } else {
259 for (i = 0; i < size; i++) {
260 s->rx_fifo[s->rx_wpos] = buf[i];
261 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
262 s->rx_count++;
264 timer_mod(s->fifo_trigger_handle, new_rx_time +
265 (s->char_tx_time * 4));
267 uart_update_status(s);
270 static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
271 void *opaque)
273 CadenceUARTState *s = opaque;
274 int ret;
276 /* instant drain the fifo when there's no back-end */
277 if (!s->chr) {
278 s->tx_count = 0;
279 return FALSE;
282 if (!s->tx_count) {
283 return FALSE;
286 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
287 s->tx_count -= ret;
288 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
290 if (s->tx_count) {
291 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
292 cadence_uart_xmit, s);
293 assert(r);
296 uart_update_status(s);
297 return FALSE;
300 static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
301 int size)
303 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
304 return;
307 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
308 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
310 * This can only be a guest error via a bad tx fifo register push,
311 * as can_receive() should stop remote loop and echo modes ever getting
312 * us to here.
314 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
315 s->r[R_CISR] |= UART_INTR_ROVR;
318 memcpy(s->tx_fifo + s->tx_count, buf, size);
319 s->tx_count += size;
321 cadence_uart_xmit(NULL, G_IO_OUT, s);
324 static void uart_receive(void *opaque, const uint8_t *buf, int size)
326 CadenceUARTState *s = opaque;
327 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
329 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
330 uart_write_rx_fifo(opaque, buf, size);
332 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
333 uart_write_tx_fifo(s, buf, size);
337 static void uart_event(void *opaque, int event)
339 CadenceUARTState *s = opaque;
340 uint8_t buf = '\0';
342 if (event == CHR_EVENT_BREAK) {
343 uart_write_rx_fifo(opaque, &buf, 1);
346 uart_update_status(s);
349 static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
351 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
352 return;
355 if (s->rx_count) {
356 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
357 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
358 *c = s->rx_fifo[rx_rpos];
359 s->rx_count--;
361 if (s->chr) {
362 qemu_chr_accept_input(s->chr);
364 } else {
365 *c = 0;
368 uart_update_status(s);
371 static void uart_write(void *opaque, hwaddr offset,
372 uint64_t value, unsigned size)
374 CadenceUARTState *s = opaque;
376 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
377 offset >>= 2;
378 if (offset >= CADENCE_UART_R_MAX) {
379 return;
381 switch (offset) {
382 case R_IER: /* ier (wts imr) */
383 s->r[R_IMR] |= value;
384 break;
385 case R_IDR: /* idr (wtc imr) */
386 s->r[R_IMR] &= ~value;
387 break;
388 case R_IMR: /* imr (read only) */
389 break;
390 case R_CISR: /* cisr (wtc) */
391 s->r[R_CISR] &= ~value;
392 break;
393 case R_TX_RX: /* UARTDR */
394 switch (s->r[R_MR] & UART_MR_CHMODE) {
395 case NORMAL_MODE:
396 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
397 break;
398 case LOCAL_LOOPBACK:
399 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
400 break;
402 break;
403 default:
404 s->r[offset] = value;
407 switch (offset) {
408 case R_CR:
409 uart_ctrl_update(s);
410 break;
411 case R_MR:
412 uart_parameters_setup(s);
413 break;
415 uart_update_status(s);
418 static uint64_t uart_read(void *opaque, hwaddr offset,
419 unsigned size)
421 CadenceUARTState *s = opaque;
422 uint32_t c = 0;
424 offset >>= 2;
425 if (offset >= CADENCE_UART_R_MAX) {
426 c = 0;
427 } else if (offset == R_TX_RX) {
428 uart_read_rx_fifo(s, &c);
429 } else {
430 c = s->r[offset];
433 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
434 return c;
437 static const MemoryRegionOps uart_ops = {
438 .read = uart_read,
439 .write = uart_write,
440 .endianness = DEVICE_NATIVE_ENDIAN,
443 static void cadence_uart_reset(DeviceState *dev)
445 CadenceUARTState *s = CADENCE_UART(dev);
447 s->r[R_CR] = 0x00000128;
448 s->r[R_IMR] = 0;
449 s->r[R_CISR] = 0;
450 s->r[R_RTRIG] = 0x00000020;
451 s->r[R_BRGR] = 0x0000000F;
452 s->r[R_TTRIG] = 0x00000020;
454 uart_rx_reset(s);
455 uart_tx_reset(s);
457 uart_update_status(s);
460 static void cadence_uart_realize(DeviceState *dev, Error **errp)
462 CadenceUARTState *s = CADENCE_UART(dev);
464 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
465 fifo_trigger_update, s);
467 /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
468 s->chr = qemu_char_get_next_serial();
470 if (s->chr) {
471 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
472 uart_event, s);
476 static void cadence_uart_init(Object *obj)
478 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
479 CadenceUARTState *s = CADENCE_UART(obj);
481 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
482 sysbus_init_mmio(sbd, &s->iomem);
483 sysbus_init_irq(sbd, &s->irq);
485 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
488 static int cadence_uart_post_load(void *opaque, int version_id)
490 CadenceUARTState *s = opaque;
492 uart_parameters_setup(s);
493 uart_update_status(s);
494 return 0;
497 static const VMStateDescription vmstate_cadence_uart = {
498 .name = "cadence_uart",
499 .version_id = 2,
500 .minimum_version_id = 2,
501 .post_load = cadence_uart_post_load,
502 .fields = (VMStateField[]) {
503 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
504 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
505 CADENCE_UART_RX_FIFO_SIZE),
506 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
507 CADENCE_UART_TX_FIFO_SIZE),
508 VMSTATE_UINT32(rx_count, CadenceUARTState),
509 VMSTATE_UINT32(tx_count, CadenceUARTState),
510 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
511 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
512 VMSTATE_END_OF_LIST()
516 static void cadence_uart_class_init(ObjectClass *klass, void *data)
518 DeviceClass *dc = DEVICE_CLASS(klass);
520 dc->realize = cadence_uart_realize;
521 dc->vmsd = &vmstate_cadence_uart;
522 dc->reset = cadence_uart_reset;
523 /* Reason: realize() method uses qemu_char_get_next_serial() */
524 dc->cannot_instantiate_with_device_add_yet = true;
527 static const TypeInfo cadence_uart_info = {
528 .name = TYPE_CADENCE_UART,
529 .parent = TYPE_SYS_BUS_DEVICE,
530 .instance_size = sizeof(CadenceUARTState),
531 .instance_init = cadence_uart_init,
532 .class_init = cadence_uart_class_init,
535 static void cadence_uart_register_types(void)
537 type_register_static(&cadence_uart_info);
540 type_init(cadence_uart_register_types)