spapr/xive: fix multiple resets when using the 'dual' interrupt mode
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob62e0ef8fa5b467298899327ca2f4d5efec37a4c7
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive_regs.h"
25 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
26 * use for the ESB pages and the TIMA pages
28 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
29 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
32 * The allocation of VP blocks is a complex operation in OPAL and the
33 * VP identifiers have a relation with the number of HW chips, the
34 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
35 * controller model does not have the same constraints and can use a
36 * simple mapping scheme of the CPU vcpu_id
38 * These identifiers are never returned to the OS.
41 #define SPAPR_XIVE_NVT_BASE 0x400
44 * sPAPR NVT and END indexing helpers
46 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
48 return nvt_idx - SPAPR_XIVE_NVT_BASE;
51 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
52 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
54 assert(cpu);
56 if (out_nvt_blk) {
57 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
60 if (out_nvt_blk) {
61 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
65 static int spapr_xive_target_to_nvt(uint32_t target,
66 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
68 PowerPCCPU *cpu = spapr_find_cpu(target);
70 if (!cpu) {
71 return -1;
74 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
75 return 0;
79 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
80 * priorities per CPU
82 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
83 uint32_t *out_server, uint8_t *out_prio)
86 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
88 if (out_server) {
89 *out_server = end_idx >> 3;
92 if (out_prio) {
93 *out_prio = end_idx & 0x7;
95 return 0;
98 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
99 uint8_t *out_end_blk, uint32_t *out_end_idx)
101 assert(cpu);
103 if (out_end_blk) {
104 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
107 if (out_end_idx) {
108 *out_end_idx = (cpu->vcpu_id << 3) + prio;
112 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
113 uint8_t *out_end_blk, uint32_t *out_end_idx)
115 PowerPCCPU *cpu = spapr_find_cpu(target);
117 if (!cpu) {
118 return -1;
121 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
122 return 0;
126 * On sPAPR machines, use a simplified output for the XIVE END
127 * structure dumping only the information related to the OS EQ.
129 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
130 Monitor *mon)
132 uint64_t qaddr_base = xive_end_qaddr(end);
133 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
134 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
135 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
136 uint32_t qentries = 1 << (qsize + 10);
137 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
138 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
140 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
141 spapr_xive_nvt_to_target(0, nvt),
142 priority, qindex, qentries, qaddr_base, qgen);
144 xive_end_queue_pic_print_info(end, 6, mon);
145 monitor_printf(mon, "]");
148 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
150 XiveSource *xsrc = &xive->source;
151 int i;
153 if (kvm_irqchip_in_kernel()) {
154 Error *local_err = NULL;
156 kvmppc_xive_synchronize_state(xive, &local_err);
157 if (local_err) {
158 error_report_err(local_err);
159 return;
163 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
165 for (i = 0; i < xive->nr_irqs; i++) {
166 uint8_t pq = xive_source_esb_get(xsrc, i);
167 XiveEAS *eas = &xive->eat[i];
169 if (!xive_eas_is_valid(eas)) {
170 continue;
173 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
174 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
175 pq & XIVE_ESB_VAL_P ? 'P' : '-',
176 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
177 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
178 xive_eas_is_masked(eas) ? "M" : " ",
179 (int) xive_get_field64(EAS_END_DATA, eas->w));
181 if (!xive_eas_is_masked(eas)) {
182 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
183 XiveEND *end;
185 assert(end_idx < xive->nr_ends);
186 end = &xive->endt[end_idx];
188 if (xive_end_is_valid(end)) {
189 spapr_xive_end_pic_print_info(xive, end, mon);
192 monitor_printf(mon, "\n");
196 void spapr_xive_map_mmio(SpaprXive *xive)
198 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
199 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
200 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
203 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
205 memory_region_set_enabled(&xive->source.esb_mmio, enable);
206 memory_region_set_enabled(&xive->tm_mmio, enable);
208 /* Disable the END ESBs until a guest OS makes use of them */
209 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
213 * When a Virtual Processor is scheduled to run on a HW thread, the
214 * hypervisor pushes its identifier in the OS CAM line. Emulate the
215 * same behavior under QEMU.
217 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
219 uint8_t nvt_blk;
220 uint32_t nvt_idx;
221 uint32_t nvt_cam;
223 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
225 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
226 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
229 static void spapr_xive_end_reset(XiveEND *end)
231 memset(end, 0, sizeof(*end));
233 /* switch off the escalation and notification ESBs */
234 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
237 static void spapr_xive_reset(void *dev)
239 SpaprXive *xive = SPAPR_XIVE(dev);
240 int i;
243 * The XiveSource has its own reset handler, which mask off all
244 * IRQs (!P|Q)
247 /* Mask all valid EASs in the IRQ number space. */
248 for (i = 0; i < xive->nr_irqs; i++) {
249 XiveEAS *eas = &xive->eat[i];
250 if (xive_eas_is_valid(eas)) {
251 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
252 } else {
253 eas->w = 0;
257 /* Clear all ENDs */
258 for (i = 0; i < xive->nr_ends; i++) {
259 spapr_xive_end_reset(&xive->endt[i]);
263 static void spapr_xive_instance_init(Object *obj)
265 SpaprXive *xive = SPAPR_XIVE(obj);
267 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
268 TYPE_XIVE_SOURCE, &error_abort, NULL);
270 object_initialize_child(obj, "end_source", &xive->end_source,
271 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
272 &error_abort, NULL);
274 /* Not connected to the KVM XIVE device */
275 xive->fd = -1;
278 static void spapr_xive_realize(DeviceState *dev, Error **errp)
280 SpaprXive *xive = SPAPR_XIVE(dev);
281 XiveSource *xsrc = &xive->source;
282 XiveENDSource *end_xsrc = &xive->end_source;
283 Error *local_err = NULL;
285 if (!xive->nr_irqs) {
286 error_setg(errp, "Number of interrupt needs to be greater 0");
287 return;
290 if (!xive->nr_ends) {
291 error_setg(errp, "Number of interrupt needs to be greater 0");
292 return;
296 * Initialize the internal sources, for IPIs and virtual devices.
298 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
299 &error_fatal);
300 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
301 &error_fatal);
302 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
303 if (local_err) {
304 error_propagate(errp, local_err);
305 return;
309 * Initialize the END ESB source
311 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
312 &error_fatal);
313 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
314 &error_fatal);
315 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
316 if (local_err) {
317 error_propagate(errp, local_err);
318 return;
321 /* Set the mapping address of the END ESB pages after the source ESBs */
322 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
325 * Allocate the routing tables
327 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
328 xive->endt = g_new0(XiveEND, xive->nr_ends);
330 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
331 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
333 qemu_register_reset(spapr_xive_reset, dev);
335 /* Define all XIVE MMIO regions on SysBus */
336 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
337 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
338 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
341 void spapr_xive_init(SpaprXive *xive, Error **errp)
343 XiveSource *xsrc = &xive->source;
346 * The emulated XIVE device can only be initialized once. If the
347 * ESB memory region has been already mapped, it means we have been
348 * through there.
350 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
351 return;
354 /* TIMA initialization */
355 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
356 "xive.tima", 4ull << TM_SHIFT);
358 /* Map all regions */
359 spapr_xive_map_mmio(xive);
362 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
363 uint32_t eas_idx, XiveEAS *eas)
365 SpaprXive *xive = SPAPR_XIVE(xrtr);
367 if (eas_idx >= xive->nr_irqs) {
368 return -1;
371 *eas = xive->eat[eas_idx];
372 return 0;
375 static int spapr_xive_get_end(XiveRouter *xrtr,
376 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
378 SpaprXive *xive = SPAPR_XIVE(xrtr);
380 if (end_idx >= xive->nr_ends) {
381 return -1;
384 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
385 return 0;
388 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
389 uint32_t end_idx, XiveEND *end,
390 uint8_t word_number)
392 SpaprXive *xive = SPAPR_XIVE(xrtr);
394 if (end_idx >= xive->nr_ends) {
395 return -1;
398 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
399 return 0;
402 static int spapr_xive_get_nvt(XiveRouter *xrtr,
403 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
405 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
406 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
408 if (!cpu) {
409 /* TODO: should we assert() if we can find a NVT ? */
410 return -1;
414 * sPAPR does not maintain a NVT table. Return that the NVT is
415 * valid if we have found a matching CPU
417 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
418 return 0;
421 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
422 uint32_t nvt_idx, XiveNVT *nvt,
423 uint8_t word_number)
426 * We don't need to write back to the NVTs because the sPAPR
427 * machine should never hit a non-scheduled NVT. It should never
428 * get called.
430 g_assert_not_reached();
433 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
435 PowerPCCPU *cpu = POWERPC_CPU(cs);
437 return spapr_cpu_state(cpu)->tctx;
440 static const VMStateDescription vmstate_spapr_xive_end = {
441 .name = TYPE_SPAPR_XIVE "/end",
442 .version_id = 1,
443 .minimum_version_id = 1,
444 .fields = (VMStateField []) {
445 VMSTATE_UINT32(w0, XiveEND),
446 VMSTATE_UINT32(w1, XiveEND),
447 VMSTATE_UINT32(w2, XiveEND),
448 VMSTATE_UINT32(w3, XiveEND),
449 VMSTATE_UINT32(w4, XiveEND),
450 VMSTATE_UINT32(w5, XiveEND),
451 VMSTATE_UINT32(w6, XiveEND),
452 VMSTATE_UINT32(w7, XiveEND),
453 VMSTATE_END_OF_LIST()
457 static const VMStateDescription vmstate_spapr_xive_eas = {
458 .name = TYPE_SPAPR_XIVE "/eas",
459 .version_id = 1,
460 .minimum_version_id = 1,
461 .fields = (VMStateField []) {
462 VMSTATE_UINT64(w, XiveEAS),
463 VMSTATE_END_OF_LIST()
467 static int vmstate_spapr_xive_pre_save(void *opaque)
469 if (kvm_irqchip_in_kernel()) {
470 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
473 return 0;
477 * Called by the sPAPR IRQ backend 'post_load' method at the machine
478 * level.
480 int spapr_xive_post_load(SpaprXive *xive, int version_id)
482 if (kvm_irqchip_in_kernel()) {
483 return kvmppc_xive_post_load(xive, version_id);
486 return 0;
489 static const VMStateDescription vmstate_spapr_xive = {
490 .name = TYPE_SPAPR_XIVE,
491 .version_id = 1,
492 .minimum_version_id = 1,
493 .pre_save = vmstate_spapr_xive_pre_save,
494 .post_load = NULL, /* handled at the machine level */
495 .fields = (VMStateField[]) {
496 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
497 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
498 vmstate_spapr_xive_eas, XiveEAS),
499 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
500 vmstate_spapr_xive_end, XiveEND),
501 VMSTATE_END_OF_LIST()
505 static Property spapr_xive_properties[] = {
506 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
507 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
508 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
509 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
510 DEFINE_PROP_END_OF_LIST(),
513 static void spapr_xive_class_init(ObjectClass *klass, void *data)
515 DeviceClass *dc = DEVICE_CLASS(klass);
516 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
518 dc->desc = "sPAPR XIVE Interrupt Controller";
519 dc->props = spapr_xive_properties;
520 dc->realize = spapr_xive_realize;
521 dc->vmsd = &vmstate_spapr_xive;
523 xrc->get_eas = spapr_xive_get_eas;
524 xrc->get_end = spapr_xive_get_end;
525 xrc->write_end = spapr_xive_write_end;
526 xrc->get_nvt = spapr_xive_get_nvt;
527 xrc->write_nvt = spapr_xive_write_nvt;
528 xrc->get_tctx = spapr_xive_get_tctx;
531 static const TypeInfo spapr_xive_info = {
532 .name = TYPE_SPAPR_XIVE,
533 .parent = TYPE_XIVE_ROUTER,
534 .instance_init = spapr_xive_instance_init,
535 .instance_size = sizeof(SpaprXive),
536 .class_init = spapr_xive_class_init,
539 static void spapr_xive_register_types(void)
541 type_register_static(&spapr_xive_info);
544 type_init(spapr_xive_register_types)
546 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
548 XiveSource *xsrc = &xive->source;
550 if (lisn >= xive->nr_irqs) {
551 return false;
554 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
555 if (lsi) {
556 xive_source_irq_set_lsi(xsrc, lisn);
559 if (kvm_irqchip_in_kernel()) {
560 Error *local_err = NULL;
562 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err);
563 if (local_err) {
564 error_report_err(local_err);
565 return false;
569 return true;
572 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
574 if (lisn >= xive->nr_irqs) {
575 return false;
578 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
579 return true;
583 * XIVE hcalls
585 * The terminology used by the XIVE hcalls is the following :
587 * TARGET vCPU number
588 * EQ Event Queue assigned by OS to receive event data
589 * ESB page for source interrupt management
590 * LISN Logical Interrupt Source Number identifying a source in the
591 * machine
592 * EISN Effective Interrupt Source Number used by guest OS to
593 * identify source in the guest
595 * The EAS, END, NVT structures are not exposed.
599 * Linux hosts under OPAL reserve priority 7 for their own escalation
600 * interrupts (DD2.X POWER9). So we only allow the guest to use
601 * priorities [0..6].
603 static bool spapr_xive_priority_is_reserved(uint8_t priority)
605 switch (priority) {
606 case 0 ... 6:
607 return false;
608 case 7: /* OPAL escalation queue */
609 default:
610 return true;
615 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
616 * real address of the MMIO page through which the Event State Buffer
617 * entry associated with the value of the "lisn" parameter is managed.
619 * Parameters:
620 * Input
621 * - R4: "flags"
622 * Bits 0-63 reserved
623 * - R5: "lisn" is per "interrupts", "interrupt-map", or
624 * "ibm,xive-lisn-ranges" properties, or as returned by the
625 * ibm,query-interrupt-source-number RTAS call, or as returned
626 * by the H_ALLOCATE_VAS_WINDOW hcall
628 * Output
629 * - R4: "flags"
630 * Bits 0-59: Reserved
631 * Bit 60: H_INT_ESB must be used for Event State Buffer
632 * management
633 * Bit 61: 1 == LSI 0 == MSI
634 * Bit 62: the full function page supports trigger
635 * Bit 63: Store EOI Supported
636 * - R5: Logical Real address of full function Event State Buffer
637 * management page, -1 if H_INT_ESB hcall flag is set to 1.
638 * - R6: Logical Real Address of trigger only Event State Buffer
639 * management page or -1.
640 * - R7: Power of 2 page size for the ESB management pages returned in
641 * R5 and R6.
644 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
645 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
646 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
647 on same page */
648 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
650 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
651 SpaprMachineState *spapr,
652 target_ulong opcode,
653 target_ulong *args)
655 SpaprXive *xive = spapr->xive;
656 XiveSource *xsrc = &xive->source;
657 target_ulong flags = args[0];
658 target_ulong lisn = args[1];
660 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
661 return H_FUNCTION;
664 if (flags) {
665 return H_PARAMETER;
668 if (lisn >= xive->nr_irqs) {
669 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
670 lisn);
671 return H_P2;
674 if (!xive_eas_is_valid(&xive->eat[lisn])) {
675 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
676 lisn);
677 return H_P2;
681 * All sources are emulated under the main XIVE object and share
682 * the same characteristics.
684 args[0] = 0;
685 if (!xive_source_esb_has_2page(xsrc)) {
686 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
688 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
689 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
693 * Force the use of the H_INT_ESB hcall in case of an LSI
694 * interrupt. This is necessary under KVM to re-trigger the
695 * interrupt if the level is still asserted
697 if (xive_source_irq_is_lsi(xsrc, lisn)) {
698 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
701 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
702 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
703 } else {
704 args[1] = -1;
707 if (xive_source_esb_has_2page(xsrc) &&
708 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
709 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
710 } else {
711 args[2] = -1;
714 if (xive_source_esb_has_2page(xsrc)) {
715 args[3] = xsrc->esb_shift - 1;
716 } else {
717 args[3] = xsrc->esb_shift;
720 return H_SUCCESS;
724 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
725 * Interrupt Source to a target. The Logical Interrupt Source is
726 * designated with the "lisn" parameter and the target is designated
727 * with the "target" and "priority" parameters. Upon return from the
728 * hcall(), no additional interrupts will be directed to the old EQ.
730 * Parameters:
731 * Input:
732 * - R4: "flags"
733 * Bits 0-61: Reserved
734 * Bit 62: set the "eisn" in the EAS
735 * Bit 63: masks the interrupt source in the hardware interrupt
736 * control structure. An interrupt masked by this mechanism will
737 * be dropped, but it's source state bits will still be
738 * set. There is no race-free way of unmasking and restoring the
739 * source. Thus this should only be used in interrupts that are
740 * also masked at the source, and only in cases where the
741 * interrupt is not meant to be used for a large amount of time
742 * because no valid target exists for it for example
743 * - R5: "lisn" is per "interrupts", "interrupt-map", or
744 * "ibm,xive-lisn-ranges" properties, or as returned by the
745 * ibm,query-interrupt-source-number RTAS call, or as returned by
746 * the H_ALLOCATE_VAS_WINDOW hcall
747 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
748 * "ibm,ppc-interrupt-gserver#s"
749 * - R7: "priority" is a valid priority not in
750 * "ibm,plat-res-int-priorities"
751 * - R8: "eisn" is the guest EISN associated with the "lisn"
753 * Output:
754 * - None
757 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
758 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
760 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
761 SpaprMachineState *spapr,
762 target_ulong opcode,
763 target_ulong *args)
765 SpaprXive *xive = spapr->xive;
766 XiveEAS eas, new_eas;
767 target_ulong flags = args[0];
768 target_ulong lisn = args[1];
769 target_ulong target = args[2];
770 target_ulong priority = args[3];
771 target_ulong eisn = args[4];
772 uint8_t end_blk;
773 uint32_t end_idx;
775 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
776 return H_FUNCTION;
779 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
780 return H_PARAMETER;
783 if (lisn >= xive->nr_irqs) {
784 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
785 lisn);
786 return H_P2;
789 eas = xive->eat[lisn];
790 if (!xive_eas_is_valid(&eas)) {
791 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
792 lisn);
793 return H_P2;
796 /* priority 0xff is used to reset the EAS */
797 if (priority == 0xff) {
798 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
799 goto out;
802 if (flags & SPAPR_XIVE_SRC_MASK) {
803 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
804 } else {
805 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
808 if (spapr_xive_priority_is_reserved(priority)) {
809 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
810 " is reserved\n", priority);
811 return H_P4;
815 * Validate that "target" is part of the list of threads allocated
816 * to the partition. For that, find the END corresponding to the
817 * target.
819 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
820 return H_P3;
823 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
824 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
826 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
827 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
830 if (kvm_irqchip_in_kernel()) {
831 Error *local_err = NULL;
833 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
834 if (local_err) {
835 error_report_err(local_err);
836 return H_HARDWARE;
840 out:
841 xive->eat[lisn] = new_eas;
842 return H_SUCCESS;
846 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
847 * target/priority pair is assigned to the specified Logical Interrupt
848 * Source.
850 * Parameters:
851 * Input:
852 * - R4: "flags"
853 * Bits 0-63 Reserved
854 * - R5: "lisn" is per "interrupts", "interrupt-map", or
855 * "ibm,xive-lisn-ranges" properties, or as returned by the
856 * ibm,query-interrupt-source-number RTAS call, or as
857 * returned by the H_ALLOCATE_VAS_WINDOW hcall
859 * Output:
860 * - R4: Target to which the specified Logical Interrupt Source is
861 * assigned
862 * - R5: Priority to which the specified Logical Interrupt Source is
863 * assigned
864 * - R6: EISN for the specified Logical Interrupt Source (this will be
865 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
867 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
868 SpaprMachineState *spapr,
869 target_ulong opcode,
870 target_ulong *args)
872 SpaprXive *xive = spapr->xive;
873 target_ulong flags = args[0];
874 target_ulong lisn = args[1];
875 XiveEAS eas;
876 XiveEND *end;
877 uint8_t nvt_blk;
878 uint32_t end_idx, nvt_idx;
880 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
881 return H_FUNCTION;
884 if (flags) {
885 return H_PARAMETER;
888 if (lisn >= xive->nr_irqs) {
889 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
890 lisn);
891 return H_P2;
894 eas = xive->eat[lisn];
895 if (!xive_eas_is_valid(&eas)) {
896 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
897 lisn);
898 return H_P2;
901 /* EAS_END_BLOCK is unused on sPAPR */
902 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
904 assert(end_idx < xive->nr_ends);
905 end = &xive->endt[end_idx];
907 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
908 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
909 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
911 if (xive_eas_is_masked(&eas)) {
912 args[1] = 0xff;
913 } else {
914 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
917 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
919 return H_SUCCESS;
923 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
924 * address of the notification management page associated with the
925 * specified target and priority.
927 * Parameters:
928 * Input:
929 * - R4: "flags"
930 * Bits 0-63 Reserved
931 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
932 * "ibm,ppc-interrupt-gserver#s"
933 * - R6: "priority" is a valid priority not in
934 * "ibm,plat-res-int-priorities"
936 * Output:
937 * - R4: Logical real address of notification page
938 * - R5: Power of 2 page size of the notification page
940 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
941 SpaprMachineState *spapr,
942 target_ulong opcode,
943 target_ulong *args)
945 SpaprXive *xive = spapr->xive;
946 XiveENDSource *end_xsrc = &xive->end_source;
947 target_ulong flags = args[0];
948 target_ulong target = args[1];
949 target_ulong priority = args[2];
950 XiveEND *end;
951 uint8_t end_blk;
952 uint32_t end_idx;
954 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
955 return H_FUNCTION;
958 if (flags) {
959 return H_PARAMETER;
963 * H_STATE should be returned if a H_INT_RESET is in progress.
964 * This is not needed when running the emulation under QEMU
967 if (spapr_xive_priority_is_reserved(priority)) {
968 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
969 " is reserved\n", priority);
970 return H_P3;
974 * Validate that "target" is part of the list of threads allocated
975 * to the partition. For that, find the END corresponding to the
976 * target.
978 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
979 return H_P2;
982 assert(end_idx < xive->nr_ends);
983 end = &xive->endt[end_idx];
985 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
986 if (xive_end_is_enqueue(end)) {
987 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
988 } else {
989 args[1] = 0;
992 return H_SUCCESS;
996 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
997 * a given "target" and "priority". It is also used to set the
998 * notification config associated with the EQ. An EQ size of 0 is
999 * used to reset the EQ config for a given target and priority. If
1000 * resetting the EQ config, the END associated with the given "target"
1001 * and "priority" will be changed to disable queueing.
1003 * Upon return from the hcall(), no additional interrupts will be
1004 * directed to the old EQ (if one was set). The old EQ (if one was
1005 * set) should be investigated for interrupts that occurred prior to
1006 * or during the hcall().
1008 * Parameters:
1009 * Input:
1010 * - R4: "flags"
1011 * Bits 0-62: Reserved
1012 * Bit 63: Unconditional Notify (n) per the XIVE spec
1013 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1014 * "ibm,ppc-interrupt-gserver#s"
1015 * - R6: "priority" is a valid priority not in
1016 * "ibm,plat-res-int-priorities"
1017 * - R7: "eventQueue": The logical real address of the start of the EQ
1018 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1020 * Output:
1021 * - None
1024 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1026 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1027 SpaprMachineState *spapr,
1028 target_ulong opcode,
1029 target_ulong *args)
1031 SpaprXive *xive = spapr->xive;
1032 target_ulong flags = args[0];
1033 target_ulong target = args[1];
1034 target_ulong priority = args[2];
1035 target_ulong qpage = args[3];
1036 target_ulong qsize = args[4];
1037 XiveEND end;
1038 uint8_t end_blk, nvt_blk;
1039 uint32_t end_idx, nvt_idx;
1041 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1042 return H_FUNCTION;
1045 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1046 return H_PARAMETER;
1050 * H_STATE should be returned if a H_INT_RESET is in progress.
1051 * This is not needed when running the emulation under QEMU
1054 if (spapr_xive_priority_is_reserved(priority)) {
1055 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1056 " is reserved\n", priority);
1057 return H_P3;
1061 * Validate that "target" is part of the list of threads allocated
1062 * to the partition. For that, find the END corresponding to the
1063 * target.
1066 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1067 return H_P2;
1070 assert(end_idx < xive->nr_ends);
1071 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1073 switch (qsize) {
1074 case 12:
1075 case 16:
1076 case 21:
1077 case 24:
1078 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1079 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1080 " is not naturally aligned with %" HWADDR_PRIx "\n",
1081 qpage, (hwaddr)1 << qsize);
1082 return H_P4;
1084 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1085 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1086 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1087 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1088 break;
1089 case 0:
1090 /* reset queue and disable queueing */
1091 spapr_xive_end_reset(&end);
1092 goto out;
1094 default:
1095 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1096 qsize);
1097 return H_P5;
1100 if (qsize) {
1101 hwaddr plen = 1 << qsize;
1102 void *eq;
1105 * Validate the guest EQ. We should also check that the queue
1106 * has been zeroed by the OS.
1108 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1109 MEMTXATTRS_UNSPECIFIED);
1110 if (plen != 1 << qsize) {
1111 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1112 HWADDR_PRIx "\n", qpage);
1113 return H_P4;
1115 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1118 /* "target" should have been validated above */
1119 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1120 g_assert_not_reached();
1124 * Ensure the priority and target are correctly set (they will not
1125 * be right after allocation)
1127 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1128 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1129 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1131 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1132 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1133 } else {
1134 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1138 * The generation bit for the END starts at 1 and The END page
1139 * offset counter starts at 0.
1141 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1142 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1143 end.w0 |= cpu_to_be32(END_W0_VALID);
1146 * TODO: issue syncs required to ensure all in-flight interrupts
1147 * are complete on the old END
1150 out:
1151 if (kvm_irqchip_in_kernel()) {
1152 Error *local_err = NULL;
1154 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1155 if (local_err) {
1156 error_report_err(local_err);
1157 return H_HARDWARE;
1161 /* Update END */
1162 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1163 return H_SUCCESS;
1167 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1168 * target and priority.
1170 * Parameters:
1171 * Input:
1172 * - R4: "flags"
1173 * Bits 0-62: Reserved
1174 * Bit 63: Debug: Return debug data
1175 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1176 * "ibm,ppc-interrupt-gserver#s"
1177 * - R6: "priority" is a valid priority not in
1178 * "ibm,plat-res-int-priorities"
1180 * Output:
1181 * - R4: "flags":
1182 * Bits 0-61: Reserved
1183 * Bit 62: The value of Event Queue Generation Number (g) per
1184 * the XIVE spec if "Debug" = 1
1185 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1186 * - R5: The logical real address of the start of the EQ
1187 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1188 * - R7: The value of Event Queue Offset Counter per XIVE spec
1189 * if "Debug" = 1, else 0
1193 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1195 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1196 SpaprMachineState *spapr,
1197 target_ulong opcode,
1198 target_ulong *args)
1200 SpaprXive *xive = spapr->xive;
1201 target_ulong flags = args[0];
1202 target_ulong target = args[1];
1203 target_ulong priority = args[2];
1204 XiveEND *end;
1205 uint8_t end_blk;
1206 uint32_t end_idx;
1208 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1209 return H_FUNCTION;
1212 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1213 return H_PARAMETER;
1217 * H_STATE should be returned if a H_INT_RESET is in progress.
1218 * This is not needed when running the emulation under QEMU
1221 if (spapr_xive_priority_is_reserved(priority)) {
1222 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1223 " is reserved\n", priority);
1224 return H_P3;
1228 * Validate that "target" is part of the list of threads allocated
1229 * to the partition. For that, find the END corresponding to the
1230 * target.
1232 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1233 return H_P2;
1236 assert(end_idx < xive->nr_ends);
1237 end = &xive->endt[end_idx];
1239 args[0] = 0;
1240 if (xive_end_is_notify(end)) {
1241 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1244 if (xive_end_is_enqueue(end)) {
1245 args[1] = xive_end_qaddr(end);
1246 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1247 } else {
1248 args[1] = 0;
1249 args[2] = 0;
1252 if (kvm_irqchip_in_kernel()) {
1253 Error *local_err = NULL;
1255 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1256 if (local_err) {
1257 error_report_err(local_err);
1258 return H_HARDWARE;
1262 /* TODO: do we need any locking on the END ? */
1263 if (flags & SPAPR_XIVE_END_DEBUG) {
1264 /* Load the event queue generation number into the return flags */
1265 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1267 /* Load R7 with the event queue offset counter */
1268 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1269 } else {
1270 args[3] = 0;
1273 return H_SUCCESS;
1277 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1278 * reporting cache line pair for the calling thread. The reporting
1279 * cache lines will contain the OS interrupt context when the OS
1280 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1281 * interrupt. The reporting cache lines can be reset by inputting -1
1282 * in "reportingLine". Issuing the CI store byte without reporting
1283 * cache lines registered will result in the data not being accessible
1284 * to the OS.
1286 * Parameters:
1287 * Input:
1288 * - R4: "flags"
1289 * Bits 0-63: Reserved
1290 * - R5: "reportingLine": The logical real address of the reporting cache
1291 * line pair
1293 * Output:
1294 * - None
1296 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1297 SpaprMachineState *spapr,
1298 target_ulong opcode,
1299 target_ulong *args)
1301 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1302 return H_FUNCTION;
1306 * H_STATE should be returned if a H_INT_RESET is in progress.
1307 * This is not needed when running the emulation under QEMU
1310 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1311 return H_FUNCTION;
1315 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1316 * real address of the reporting cache line pair set for the input
1317 * "target". If no reporting cache line pair has been set, -1 is
1318 * returned.
1320 * Parameters:
1321 * Input:
1322 * - R4: "flags"
1323 * Bits 0-63: Reserved
1324 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1325 * "ibm,ppc-interrupt-gserver#s"
1326 * - R6: "reportingLine": The logical real address of the reporting
1327 * cache line pair
1329 * Output:
1330 * - R4: The logical real address of the reporting line if set, else -1
1332 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1333 SpaprMachineState *spapr,
1334 target_ulong opcode,
1335 target_ulong *args)
1337 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1338 return H_FUNCTION;
1342 * H_STATE should be returned if a H_INT_RESET is in progress.
1343 * This is not needed when running the emulation under QEMU
1346 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1347 return H_FUNCTION;
1351 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1352 * page for the input "lisn". This hcall is only supported for LISNs
1353 * that have the ESB hcall flag set to 1 when returned from hcall()
1354 * H_INT_GET_SOURCE_INFO.
1356 * Parameters:
1357 * Input:
1358 * - R4: "flags"
1359 * Bits 0-62: Reserved
1360 * bit 63: Store: Store=1, store operation, else load operation
1361 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1362 * "ibm,xive-lisn-ranges" properties, or as returned by the
1363 * ibm,query-interrupt-source-number RTAS call, or as
1364 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1365 * - R6: "esbOffset" is the offset into the ESB page for the load or
1366 * store operation
1367 * - R7: "storeData" is the data to write for a store operation
1369 * Output:
1370 * - R4: The value of the load if load operation, else -1
1373 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1375 static target_ulong h_int_esb(PowerPCCPU *cpu,
1376 SpaprMachineState *spapr,
1377 target_ulong opcode,
1378 target_ulong *args)
1380 SpaprXive *xive = spapr->xive;
1381 XiveEAS eas;
1382 target_ulong flags = args[0];
1383 target_ulong lisn = args[1];
1384 target_ulong offset = args[2];
1385 target_ulong data = args[3];
1386 hwaddr mmio_addr;
1387 XiveSource *xsrc = &xive->source;
1389 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1390 return H_FUNCTION;
1393 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1394 return H_PARAMETER;
1397 if (lisn >= xive->nr_irqs) {
1398 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1399 lisn);
1400 return H_P2;
1403 eas = xive->eat[lisn];
1404 if (!xive_eas_is_valid(&eas)) {
1405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1406 lisn);
1407 return H_P2;
1410 if (offset > (1ull << xsrc->esb_shift)) {
1411 return H_P3;
1414 if (kvm_irqchip_in_kernel()) {
1415 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1416 flags & SPAPR_XIVE_ESB_STORE);
1417 } else {
1418 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1420 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1421 (flags & SPAPR_XIVE_ESB_STORE))) {
1422 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1423 HWADDR_PRIx "\n", mmio_addr);
1424 return H_HARDWARE;
1426 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1428 return H_SUCCESS;
1432 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1433 * ensure any in flight events for the input lisn are in the event
1434 * queue.
1436 * Parameters:
1437 * Input:
1438 * - R4: "flags"
1439 * Bits 0-63: Reserved
1440 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1441 * "ibm,xive-lisn-ranges" properties, or as returned by the
1442 * ibm,query-interrupt-source-number RTAS call, or as
1443 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1445 * Output:
1446 * - None
1448 static target_ulong h_int_sync(PowerPCCPU *cpu,
1449 SpaprMachineState *spapr,
1450 target_ulong opcode,
1451 target_ulong *args)
1453 SpaprXive *xive = spapr->xive;
1454 XiveEAS eas;
1455 target_ulong flags = args[0];
1456 target_ulong lisn = args[1];
1458 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1459 return H_FUNCTION;
1462 if (flags) {
1463 return H_PARAMETER;
1466 if (lisn >= xive->nr_irqs) {
1467 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1468 lisn);
1469 return H_P2;
1472 eas = xive->eat[lisn];
1473 if (!xive_eas_is_valid(&eas)) {
1474 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1475 lisn);
1476 return H_P2;
1480 * H_STATE should be returned if a H_INT_RESET is in progress.
1481 * This is not needed when running the emulation under QEMU
1485 * This is not real hardware. Nothing to be done unless when
1486 * under KVM
1489 if (kvm_irqchip_in_kernel()) {
1490 Error *local_err = NULL;
1492 kvmppc_xive_sync_source(xive, lisn, &local_err);
1493 if (local_err) {
1494 error_report_err(local_err);
1495 return H_HARDWARE;
1498 return H_SUCCESS;
1502 * The H_INT_RESET hcall() is used to reset all of the partition's
1503 * interrupt exploitation structures to their initial state. This
1504 * means losing all previously set interrupt state set via
1505 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1507 * Parameters:
1508 * Input:
1509 * - R4: "flags"
1510 * Bits 0-63: Reserved
1512 * Output:
1513 * - None
1515 static target_ulong h_int_reset(PowerPCCPU *cpu,
1516 SpaprMachineState *spapr,
1517 target_ulong opcode,
1518 target_ulong *args)
1520 SpaprXive *xive = spapr->xive;
1521 target_ulong flags = args[0];
1523 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1524 return H_FUNCTION;
1527 if (flags) {
1528 return H_PARAMETER;
1531 device_reset(DEVICE(xive));
1533 if (kvm_irqchip_in_kernel()) {
1534 Error *local_err = NULL;
1536 kvmppc_xive_reset(xive, &local_err);
1537 if (local_err) {
1538 error_report_err(local_err);
1539 return H_HARDWARE;
1542 return H_SUCCESS;
1545 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1547 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1548 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1549 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1550 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1551 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1552 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1553 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1554 h_int_set_os_reporting_line);
1555 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1556 h_int_get_os_reporting_line);
1557 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1558 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1559 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1562 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1563 uint32_t phandle)
1565 SpaprXive *xive = spapr->xive;
1566 int node;
1567 uint64_t timas[2 * 2];
1568 /* Interrupt number ranges for the IPIs */
1569 uint32_t lisn_ranges[] = {
1570 cpu_to_be32(0),
1571 cpu_to_be32(nr_servers),
1574 * EQ size - the sizes of pages supported by the system 4K, 64K,
1575 * 2M, 16M. We only advertise 64K for the moment.
1577 uint32_t eq_sizes[] = {
1578 cpu_to_be32(16), /* 64K */
1581 * The following array is in sync with the reserved priorities
1582 * defined by the 'spapr_xive_priority_is_reserved' routine.
1584 uint32_t plat_res_int_priorities[] = {
1585 cpu_to_be32(7), /* start */
1586 cpu_to_be32(0xf8), /* count */
1589 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1590 timas[0] = cpu_to_be64(xive->tm_base +
1591 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1592 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1593 timas[2] = cpu_to_be64(xive->tm_base +
1594 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1595 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1597 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1599 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1600 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1602 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1603 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1604 sizeof(eq_sizes)));
1605 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1606 sizeof(lisn_ranges)));
1608 /* For Linux to link the LSIs to the interrupt controller. */
1609 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1610 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1612 /* For SLOF */
1613 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1614 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1617 * The "ibm,plat-res-int-priorities" property defines the priority
1618 * ranges reserved by the hypervisor
1620 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1621 plat_res_int_priorities, sizeof(plat_res_int_priorities)));