Merge tag 'pull-request-2022-11-06' of https://gitlab.com/thuth/qemu into staging
[qemu/ar7.git] / target / riscv / cpu_helper.c
blob278d16380305e8bfa07f88b680ffd3511a914667
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "pmu.h"
25 #include "exec/exec-all.h"
26 #include "instmap.h"
27 #include "tcg/tcg-op.h"
28 #include "trace.h"
29 #include "semihosting/common-semi.h"
30 #include "cpu_bits.h"
32 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
34 #ifdef CONFIG_USER_ONLY
35 return 0;
36 #else
37 return env->priv;
38 #endif
41 void cpu_get_tb_cpu_state(CPURISCVState *env, target_ulong *pc,
42 target_ulong *cs_base, uint32_t *pflags)
44 CPUState *cs = env_cpu(env);
45 RISCVCPU *cpu = RISCV_CPU(cs);
47 uint32_t flags = 0;
49 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
50 *cs_base = 0;
52 if (riscv_has_ext(env, RVV) || cpu->cfg.ext_zve32f || cpu->cfg.ext_zve64f) {
54 * If env->vl equals to VLMAX, we can use generic vector operation
55 * expanders (GVEC) to accerlate the vector operations.
56 * However, as LMUL could be a fractional number. The maximum
57 * vector size can be operated might be less than 8 bytes,
58 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
59 * only when maxsz >= 8 bytes.
61 uint32_t vlmax = vext_get_vlmax(env_archcpu(env), env->vtype);
62 uint32_t sew = FIELD_EX64(env->vtype, VTYPE, VSEW);
63 uint32_t maxsz = vlmax << sew;
64 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
65 (maxsz >= 8);
66 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
67 flags = FIELD_DP32(flags, TB_FLAGS, SEW, sew);
68 flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
69 FIELD_EX64(env->vtype, VTYPE, VLMUL));
70 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
71 flags = FIELD_DP32(flags, TB_FLAGS, VTA,
72 FIELD_EX64(env->vtype, VTYPE, VTA));
73 flags = FIELD_DP32(flags, TB_FLAGS, VMA,
74 FIELD_EX64(env->vtype, VTYPE, VMA));
75 } else {
76 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
79 #ifdef CONFIG_USER_ONLY
80 flags |= TB_FLAGS_MSTATUS_FS;
81 flags |= TB_FLAGS_MSTATUS_VS;
82 #else
83 flags |= cpu_mmu_index(env, 0);
84 if (riscv_cpu_fp_enabled(env)) {
85 flags |= env->mstatus & MSTATUS_FS;
88 if (riscv_cpu_vector_enabled(env)) {
89 flags |= env->mstatus & MSTATUS_VS;
92 if (riscv_has_ext(env, RVH)) {
93 if (env->priv == PRV_M ||
94 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
95 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
96 get_field(env->hstatus, HSTATUS_HU))) {
97 flags = FIELD_DP32(flags, TB_FLAGS, HLSX, 1);
100 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_FS,
101 get_field(env->mstatus_hs, MSTATUS_FS));
103 flags = FIELD_DP32(flags, TB_FLAGS, MSTATUS_HS_VS,
104 get_field(env->mstatus_hs, MSTATUS_VS));
106 #endif
108 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
109 if (env->cur_pmmask < (env->xl == MXL_RV32 ? UINT32_MAX : UINT64_MAX)) {
110 flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
112 if (env->cur_pmbase != 0) {
113 flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
116 *pflags = flags;
119 void riscv_cpu_update_mask(CPURISCVState *env)
121 target_ulong mask = -1, base = 0;
123 * TODO: Current RVJ spec does not specify
124 * how the extension interacts with XLEN.
126 #ifndef CONFIG_USER_ONLY
127 if (riscv_has_ext(env, RVJ)) {
128 switch (env->priv) {
129 case PRV_M:
130 if (env->mmte & M_PM_ENABLE) {
131 mask = env->mpmmask;
132 base = env->mpmbase;
134 break;
135 case PRV_S:
136 if (env->mmte & S_PM_ENABLE) {
137 mask = env->spmmask;
138 base = env->spmbase;
140 break;
141 case PRV_U:
142 if (env->mmte & U_PM_ENABLE) {
143 mask = env->upmmask;
144 base = env->upmbase;
146 break;
147 default:
148 g_assert_not_reached();
151 #endif
152 if (env->xl == MXL_RV32) {
153 env->cur_pmmask = mask & UINT32_MAX;
154 env->cur_pmbase = base & UINT32_MAX;
155 } else {
156 env->cur_pmmask = mask;
157 env->cur_pmbase = base;
161 #ifndef CONFIG_USER_ONLY
164 * The HS-mode is allowed to configure priority only for the
165 * following VS-mode local interrupts:
167 * 0 (Reserved interrupt, reads as zero)
168 * 1 Supervisor software interrupt
169 * 4 (Reserved interrupt, reads as zero)
170 * 5 Supervisor timer interrupt
171 * 8 (Reserved interrupt, reads as zero)
172 * 13 (Reserved interrupt)
173 * 14 "
174 * 15 "
175 * 16 "
176 * 17 "
177 * 18 "
178 * 19 "
179 * 20 "
180 * 21 "
181 * 22 "
182 * 23 "
185 static const int hviprio_index2irq[] = {
186 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
187 static const int hviprio_index2rdzero[] = {
188 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
190 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
192 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
193 return -EINVAL;
196 if (out_irq) {
197 *out_irq = hviprio_index2irq[index];
200 if (out_rdzero) {
201 *out_rdzero = hviprio_index2rdzero[index];
204 return 0;
208 * Default priorities of local interrupts are defined in the
209 * RISC-V Advanced Interrupt Architecture specification.
211 * ----------------------------------------------------------------
212 * Default |
213 * Priority | Major Interrupt Numbers
214 * ----------------------------------------------------------------
215 * Highest | 47, 23, 46, 45, 22, 44,
216 * | 43, 21, 42, 41, 20, 40
218 * | 11 (0b), 3 (03), 7 (07)
219 * | 9 (09), 1 (01), 5 (05)
220 * | 12 (0c)
221 * | 10 (0a), 2 (02), 6 (06)
223 * | 39, 19, 38, 37, 18, 36,
224 * Lowest | 35, 17, 34, 33, 16, 32
225 * ----------------------------------------------------------------
227 static const uint8_t default_iprio[64] = {
228 /* Custom interrupts 48 to 63 */
229 [63] = IPRIO_MMAXIPRIO,
230 [62] = IPRIO_MMAXIPRIO,
231 [61] = IPRIO_MMAXIPRIO,
232 [60] = IPRIO_MMAXIPRIO,
233 [59] = IPRIO_MMAXIPRIO,
234 [58] = IPRIO_MMAXIPRIO,
235 [57] = IPRIO_MMAXIPRIO,
236 [56] = IPRIO_MMAXIPRIO,
237 [55] = IPRIO_MMAXIPRIO,
238 [54] = IPRIO_MMAXIPRIO,
239 [53] = IPRIO_MMAXIPRIO,
240 [52] = IPRIO_MMAXIPRIO,
241 [51] = IPRIO_MMAXIPRIO,
242 [50] = IPRIO_MMAXIPRIO,
243 [49] = IPRIO_MMAXIPRIO,
244 [48] = IPRIO_MMAXIPRIO,
246 /* Custom interrupts 24 to 31 */
247 [31] = IPRIO_MMAXIPRIO,
248 [30] = IPRIO_MMAXIPRIO,
249 [29] = IPRIO_MMAXIPRIO,
250 [28] = IPRIO_MMAXIPRIO,
251 [27] = IPRIO_MMAXIPRIO,
252 [26] = IPRIO_MMAXIPRIO,
253 [25] = IPRIO_MMAXIPRIO,
254 [24] = IPRIO_MMAXIPRIO,
256 [47] = IPRIO_DEFAULT_UPPER,
257 [23] = IPRIO_DEFAULT_UPPER + 1,
258 [46] = IPRIO_DEFAULT_UPPER + 2,
259 [45] = IPRIO_DEFAULT_UPPER + 3,
260 [22] = IPRIO_DEFAULT_UPPER + 4,
261 [44] = IPRIO_DEFAULT_UPPER + 5,
263 [43] = IPRIO_DEFAULT_UPPER + 6,
264 [21] = IPRIO_DEFAULT_UPPER + 7,
265 [42] = IPRIO_DEFAULT_UPPER + 8,
266 [41] = IPRIO_DEFAULT_UPPER + 9,
267 [20] = IPRIO_DEFAULT_UPPER + 10,
268 [40] = IPRIO_DEFAULT_UPPER + 11,
270 [11] = IPRIO_DEFAULT_M,
271 [3] = IPRIO_DEFAULT_M + 1,
272 [7] = IPRIO_DEFAULT_M + 2,
274 [9] = IPRIO_DEFAULT_S,
275 [1] = IPRIO_DEFAULT_S + 1,
276 [5] = IPRIO_DEFAULT_S + 2,
278 [12] = IPRIO_DEFAULT_SGEXT,
280 [10] = IPRIO_DEFAULT_VS,
281 [2] = IPRIO_DEFAULT_VS + 1,
282 [6] = IPRIO_DEFAULT_VS + 2,
284 [39] = IPRIO_DEFAULT_LOWER,
285 [19] = IPRIO_DEFAULT_LOWER + 1,
286 [38] = IPRIO_DEFAULT_LOWER + 2,
287 [37] = IPRIO_DEFAULT_LOWER + 3,
288 [18] = IPRIO_DEFAULT_LOWER + 4,
289 [36] = IPRIO_DEFAULT_LOWER + 5,
291 [35] = IPRIO_DEFAULT_LOWER + 6,
292 [17] = IPRIO_DEFAULT_LOWER + 7,
293 [34] = IPRIO_DEFAULT_LOWER + 8,
294 [33] = IPRIO_DEFAULT_LOWER + 9,
295 [16] = IPRIO_DEFAULT_LOWER + 10,
296 [32] = IPRIO_DEFAULT_LOWER + 11,
299 uint8_t riscv_cpu_default_priority(int irq)
301 if (irq < 0 || irq > 63) {
302 return IPRIO_MMAXIPRIO;
305 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
308 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
309 int extirq, unsigned int extirq_def_prio,
310 uint64_t pending, uint8_t *iprio)
312 RISCVCPU *cpu = env_archcpu(env);
313 int irq, best_irq = RISCV_EXCP_NONE;
314 unsigned int prio, best_prio = UINT_MAX;
316 if (!pending) {
317 return RISCV_EXCP_NONE;
320 irq = ctz64(pending);
321 if (!((extirq == IRQ_M_EXT) ? cpu->cfg.ext_smaia : cpu->cfg.ext_ssaia)) {
322 return irq;
325 pending = pending >> irq;
326 while (pending) {
327 prio = iprio[irq];
328 if (!prio) {
329 if (irq == extirq) {
330 prio = extirq_def_prio;
331 } else {
332 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
333 1 : IPRIO_MMAXIPRIO;
336 if ((pending & 0x1) && (prio <= best_prio)) {
337 best_irq = irq;
338 best_prio = prio;
340 irq++;
341 pending = pending >> 1;
344 return best_irq;
347 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
349 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
350 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
351 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
353 return (env->mip | vsgein | vstip) & env->mie;
356 int riscv_cpu_mirq_pending(CPURISCVState *env)
358 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
359 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
361 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
362 irqs, env->miprio);
365 int riscv_cpu_sirq_pending(CPURISCVState *env)
367 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
368 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
370 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
371 irqs, env->siprio);
374 int riscv_cpu_vsirq_pending(CPURISCVState *env)
376 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
377 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
379 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
380 irqs >> 1, env->hviprio);
383 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
385 int virq;
386 uint64_t irqs, pending, mie, hsie, vsie;
388 /* Determine interrupt enable state of all privilege modes */
389 if (riscv_cpu_virt_enabled(env)) {
390 mie = 1;
391 hsie = 1;
392 vsie = (env->priv < PRV_S) ||
393 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
394 } else {
395 mie = (env->priv < PRV_M) ||
396 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
397 hsie = (env->priv < PRV_S) ||
398 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
399 vsie = 0;
402 /* Determine all pending interrupts */
403 pending = riscv_cpu_all_pending(env);
405 /* Check M-mode interrupts */
406 irqs = pending & ~env->mideleg & -mie;
407 if (irqs) {
408 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
409 irqs, env->miprio);
412 /* Check HS-mode interrupts */
413 irqs = pending & env->mideleg & ~env->hideleg & -hsie;
414 if (irqs) {
415 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
416 irqs, env->siprio);
419 /* Check VS-mode interrupts */
420 irqs = pending & env->mideleg & env->hideleg & -vsie;
421 if (irqs) {
422 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
423 irqs >> 1, env->hviprio);
424 return (virq <= 0) ? virq : virq + 1;
427 /* Indicate no pending interrupt */
428 return RISCV_EXCP_NONE;
431 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
433 if (interrupt_request & CPU_INTERRUPT_HARD) {
434 RISCVCPU *cpu = RISCV_CPU(cs);
435 CPURISCVState *env = &cpu->env;
436 int interruptno = riscv_cpu_local_irq_pending(env);
437 if (interruptno >= 0) {
438 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
439 riscv_cpu_do_interrupt(cs);
440 return true;
443 return false;
446 /* Return true is floating point support is currently enabled */
447 bool riscv_cpu_fp_enabled(CPURISCVState *env)
449 if (env->mstatus & MSTATUS_FS) {
450 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
451 return false;
453 return true;
456 return false;
459 /* Return true is vector support is currently enabled */
460 bool riscv_cpu_vector_enabled(CPURISCVState *env)
462 if (env->mstatus & MSTATUS_VS) {
463 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_VS)) {
464 return false;
466 return true;
469 return false;
472 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
474 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
475 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
476 MSTATUS64_UXL | MSTATUS_VS;
478 if (riscv_has_ext(env, RVF)) {
479 mstatus_mask |= MSTATUS_FS;
481 bool current_virt = riscv_cpu_virt_enabled(env);
483 g_assert(riscv_has_ext(env, RVH));
485 if (current_virt) {
486 /* Current V=1 and we are about to change to V=0 */
487 env->vsstatus = env->mstatus & mstatus_mask;
488 env->mstatus &= ~mstatus_mask;
489 env->mstatus |= env->mstatus_hs;
491 env->vstvec = env->stvec;
492 env->stvec = env->stvec_hs;
494 env->vsscratch = env->sscratch;
495 env->sscratch = env->sscratch_hs;
497 env->vsepc = env->sepc;
498 env->sepc = env->sepc_hs;
500 env->vscause = env->scause;
501 env->scause = env->scause_hs;
503 env->vstval = env->stval;
504 env->stval = env->stval_hs;
506 env->vsatp = env->satp;
507 env->satp = env->satp_hs;
508 } else {
509 /* Current V=0 and we are about to change to V=1 */
510 env->mstatus_hs = env->mstatus & mstatus_mask;
511 env->mstatus &= ~mstatus_mask;
512 env->mstatus |= env->vsstatus;
514 env->stvec_hs = env->stvec;
515 env->stvec = env->vstvec;
517 env->sscratch_hs = env->sscratch;
518 env->sscratch = env->vsscratch;
520 env->sepc_hs = env->sepc;
521 env->sepc = env->vsepc;
523 env->scause_hs = env->scause;
524 env->scause = env->vscause;
526 env->stval_hs = env->stval;
527 env->stval = env->vstval;
529 env->satp_hs = env->satp;
530 env->satp = env->vsatp;
534 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
536 if (!riscv_has_ext(env, RVH)) {
537 return 0;
540 return env->geilen;
543 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
545 if (!riscv_has_ext(env, RVH)) {
546 return;
549 if (geilen > (TARGET_LONG_BITS - 1)) {
550 return;
553 env->geilen = geilen;
556 bool riscv_cpu_virt_enabled(CPURISCVState *env)
558 if (!riscv_has_ext(env, RVH)) {
559 return false;
562 return get_field(env->virt, VIRT_ONOFF);
565 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
567 if (!riscv_has_ext(env, RVH)) {
568 return;
571 /* Flush the TLB on all virt mode changes. */
572 if (get_field(env->virt, VIRT_ONOFF) != enable) {
573 tlb_flush(env_cpu(env));
576 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
578 if (enable) {
580 * The guest external interrupts from an interrupt controller are
581 * delivered only when the Guest/VM is running (i.e. V=1). This means
582 * any guest external interrupt which is triggered while the Guest/VM
583 * is not running (i.e. V=0) will be missed on QEMU resulting in guest
584 * with sluggish response to serial console input and other I/O events.
586 * To solve this, we check and inject interrupt after setting V=1.
588 riscv_cpu_update_mip(env_archcpu(env), 0, 0);
592 bool riscv_cpu_two_stage_lookup(int mmu_idx)
594 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
597 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
599 CPURISCVState *env = &cpu->env;
600 if (env->miclaim & interrupts) {
601 return -1;
602 } else {
603 env->miclaim |= interrupts;
604 return 0;
608 uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
610 CPURISCVState *env = &cpu->env;
611 CPUState *cs = CPU(cpu);
612 uint64_t gein, vsgein = 0, vstip = 0, old = env->mip;
613 bool locked = false;
615 if (riscv_cpu_virt_enabled(env)) {
616 gein = get_field(env->hstatus, HSTATUS_VGEIN);
617 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
620 /* No need to update mip for VSTIP */
621 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
622 vstip = env->vstime_irq ? MIP_VSTIP : 0;
624 if (!qemu_mutex_iothread_locked()) {
625 locked = true;
626 qemu_mutex_lock_iothread();
629 env->mip = (env->mip & ~mask) | (value & mask);
631 if (env->mip | vsgein | vstip) {
632 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
633 } else {
634 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
637 if (locked) {
638 qemu_mutex_unlock_iothread();
641 return old;
644 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
645 void *arg)
647 env->rdtime_fn = fn;
648 env->rdtime_fn_arg = arg;
651 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
652 int (*rmw_fn)(void *arg,
653 target_ulong reg,
654 target_ulong *val,
655 target_ulong new_val,
656 target_ulong write_mask),
657 void *rmw_fn_arg)
659 if (priv <= PRV_M) {
660 env->aia_ireg_rmw_fn[priv] = rmw_fn;
661 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
665 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
667 if (newpriv > PRV_M) {
668 g_assert_not_reached();
670 if (newpriv == PRV_H) {
671 newpriv = PRV_U;
673 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
674 env->priv = newpriv;
675 env->xl = cpu_recompute_xl(env);
676 riscv_cpu_update_mask(env);
679 * Clear the load reservation - otherwise a reservation placed in one
680 * context/process can be used by another, resulting in an SC succeeding
681 * incorrectly. Version 2.2 of the ISA specification explicitly requires
682 * this behaviour, while later revisions say that the kernel "should" use
683 * an SC instruction to force the yielding of a load reservation on a
684 * preemptive context switch. As a result, do both.
686 env->load_res = -1;
690 * get_physical_address_pmp - check PMP permission for this physical address
692 * Match the PMP region and check permission for this physical address and it's
693 * TLB page. Returns 0 if the permission checking was successful
695 * @env: CPURISCVState
696 * @prot: The returned protection attributes
697 * @tlb_size: TLB page size containing addr. It could be modified after PMP
698 * permission checking. NULL if not set TLB page for addr.
699 * @addr: The physical address to be checked permission
700 * @access_type: The type of MMU access
701 * @mode: Indicates current privilege level.
703 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
704 target_ulong *tlb_size, hwaddr addr,
705 int size, MMUAccessType access_type,
706 int mode)
708 pmp_priv_t pmp_priv;
709 target_ulong tlb_size_pmp = 0;
711 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
712 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
713 return TRANSLATE_SUCCESS;
716 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
717 mode)) {
718 *prot = 0;
719 return TRANSLATE_PMP_FAIL;
722 *prot = pmp_priv_to_page_prot(pmp_priv);
723 if (tlb_size != NULL) {
724 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
725 *tlb_size = tlb_size_pmp;
729 return TRANSLATE_SUCCESS;
732 /* get_physical_address - get the physical address for this virtual address
734 * Do a page table walk to obtain the physical address corresponding to a
735 * virtual address. Returns 0 if the translation was successful
737 * Adapted from Spike's mmu_t::translate and mmu_t::walk
739 * @env: CPURISCVState
740 * @physical: This will be set to the calculated physical address
741 * @prot: The returned protection attributes
742 * @addr: The virtual address to be translated
743 * @fault_pte_addr: If not NULL, this will be set to fault pte address
744 * when a error occurs on pte address translation.
745 * This will already be shifted to match htval.
746 * @access_type: The type of MMU access
747 * @mmu_idx: Indicates current privilege level
748 * @first_stage: Are we in first stage translation?
749 * Second stage is used for hypervisor guest translation
750 * @two_stage: Are we going to perform two stage translation
751 * @is_debug: Is this access from a debugger or the monitor?
753 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
754 int *prot, target_ulong addr,
755 target_ulong *fault_pte_addr,
756 int access_type, int mmu_idx,
757 bool first_stage, bool two_stage,
758 bool is_debug)
760 /* NOTE: the env->pc value visible here will not be
761 * correct, but the value visible to the exception handler
762 * (riscv_cpu_do_interrupt) is correct */
763 MemTxResult res;
764 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
765 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
766 bool use_background = false;
767 hwaddr ppn;
768 RISCVCPU *cpu = env_archcpu(env);
769 int napot_bits = 0;
770 target_ulong napot_mask;
773 * Check if we should use the background registers for the two
774 * stage translation. We don't need to check if we actually need
775 * two stage translation as that happened before this function
776 * was called. Background registers will be used if the guest has
777 * forced a two stage translation to be on (in HS or M mode).
779 if (!riscv_cpu_virt_enabled(env) && two_stage) {
780 use_background = true;
783 /* MPRV does not affect the virtual-machine load/store
784 instructions, HLV, HLVX, and HSV. */
785 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
786 mode = get_field(env->hstatus, HSTATUS_SPVP);
787 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
788 if (get_field(env->mstatus, MSTATUS_MPRV)) {
789 mode = get_field(env->mstatus, MSTATUS_MPP);
793 if (first_stage == false) {
794 /* We are in stage 2 translation, this is similar to stage 1. */
795 /* Stage 2 is always taken as U-mode */
796 mode = PRV_U;
799 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
800 *physical = addr;
801 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
802 return TRANSLATE_SUCCESS;
805 *prot = 0;
807 hwaddr base;
808 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
810 if (first_stage == true) {
811 mxr = get_field(env->mstatus, MSTATUS_MXR);
812 } else {
813 mxr = get_field(env->vsstatus, MSTATUS_MXR);
816 if (first_stage == true) {
817 if (use_background) {
818 if (riscv_cpu_mxl(env) == MXL_RV32) {
819 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
820 vm = get_field(env->vsatp, SATP32_MODE);
821 } else {
822 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
823 vm = get_field(env->vsatp, SATP64_MODE);
825 } else {
826 if (riscv_cpu_mxl(env) == MXL_RV32) {
827 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
828 vm = get_field(env->satp, SATP32_MODE);
829 } else {
830 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
831 vm = get_field(env->satp, SATP64_MODE);
834 widened = 0;
835 } else {
836 if (riscv_cpu_mxl(env) == MXL_RV32) {
837 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
838 vm = get_field(env->hgatp, SATP32_MODE);
839 } else {
840 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
841 vm = get_field(env->hgatp, SATP64_MODE);
843 widened = 2;
845 /* status.SUM will be ignored if execute on background */
846 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
847 switch (vm) {
848 case VM_1_10_SV32:
849 levels = 2; ptidxbits = 10; ptesize = 4; break;
850 case VM_1_10_SV39:
851 levels = 3; ptidxbits = 9; ptesize = 8; break;
852 case VM_1_10_SV48:
853 levels = 4; ptidxbits = 9; ptesize = 8; break;
854 case VM_1_10_SV57:
855 levels = 5; ptidxbits = 9; ptesize = 8; break;
856 case VM_1_10_MBARE:
857 *physical = addr;
858 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
859 return TRANSLATE_SUCCESS;
860 default:
861 g_assert_not_reached();
864 CPUState *cs = env_cpu(env);
865 int va_bits = PGSHIFT + levels * ptidxbits + widened;
866 target_ulong mask, masked_msbs;
868 if (TARGET_LONG_BITS > (va_bits - 1)) {
869 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
870 } else {
871 mask = 0;
873 masked_msbs = (addr >> (va_bits - 1)) & mask;
875 if (masked_msbs != 0 && masked_msbs != mask) {
876 return TRANSLATE_FAIL;
879 int ptshift = (levels - 1) * ptidxbits;
880 int i;
882 #if !TCG_OVERSIZED_GUEST
883 restart:
884 #endif
885 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
886 target_ulong idx;
887 if (i == 0) {
888 idx = (addr >> (PGSHIFT + ptshift)) &
889 ((1 << (ptidxbits + widened)) - 1);
890 } else {
891 idx = (addr >> (PGSHIFT + ptshift)) &
892 ((1 << ptidxbits) - 1);
895 /* check that physical address of PTE is legal */
896 hwaddr pte_addr;
898 if (two_stage && first_stage) {
899 int vbase_prot;
900 hwaddr vbase;
902 /* Do the second stage translation on the base PTE address. */
903 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
904 base, NULL, MMU_DATA_LOAD,
905 mmu_idx, false, true,
906 is_debug);
908 if (vbase_ret != TRANSLATE_SUCCESS) {
909 if (fault_pte_addr) {
910 *fault_pte_addr = (base + idx * ptesize) >> 2;
912 return TRANSLATE_G_STAGE_FAIL;
915 pte_addr = vbase + idx * ptesize;
916 } else {
917 pte_addr = base + idx * ptesize;
920 int pmp_prot;
921 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
922 sizeof(target_ulong),
923 MMU_DATA_LOAD, PRV_S);
924 if (pmp_ret != TRANSLATE_SUCCESS) {
925 return TRANSLATE_PMP_FAIL;
928 target_ulong pte;
929 if (riscv_cpu_mxl(env) == MXL_RV32) {
930 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
931 } else {
932 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
935 if (res != MEMTX_OK) {
936 return TRANSLATE_FAIL;
939 if (riscv_cpu_sxl(env) == MXL_RV32) {
940 ppn = pte >> PTE_PPN_SHIFT;
941 } else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
942 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
943 } else {
944 ppn = pte >> PTE_PPN_SHIFT;
945 if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
946 return TRANSLATE_FAIL;
950 if (!(pte & PTE_V)) {
951 /* Invalid PTE */
952 return TRANSLATE_FAIL;
953 } else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
954 return TRANSLATE_FAIL;
955 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
956 /* Inner PTE, continue walking */
957 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
958 return TRANSLATE_FAIL;
960 base = ppn << PGSHIFT;
961 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
962 /* Reserved leaf PTE flags: PTE_W */
963 return TRANSLATE_FAIL;
964 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
965 /* Reserved leaf PTE flags: PTE_W + PTE_X */
966 return TRANSLATE_FAIL;
967 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
968 (!sum || access_type == MMU_INST_FETCH))) {
969 /* User PTE flags when not U mode and mstatus.SUM is not set,
970 or the access type is an instruction fetch */
971 return TRANSLATE_FAIL;
972 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
973 /* Supervisor PTE flags when not S mode */
974 return TRANSLATE_FAIL;
975 } else if (ppn & ((1ULL << ptshift) - 1)) {
976 /* Misaligned PPN */
977 return TRANSLATE_FAIL;
978 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
979 ((pte & PTE_X) && mxr))) {
980 /* Read access check failed */
981 return TRANSLATE_FAIL;
982 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
983 /* Write access check failed */
984 return TRANSLATE_FAIL;
985 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
986 /* Fetch access check failed */
987 return TRANSLATE_FAIL;
988 } else {
989 /* if necessary, set accessed and dirty bits. */
990 target_ulong updated_pte = pte | PTE_A |
991 (access_type == MMU_DATA_STORE ? PTE_D : 0);
993 /* Page table updates need to be atomic with MTTCG enabled */
994 if (updated_pte != pte) {
996 * - if accessed or dirty bits need updating, and the PTE is
997 * in RAM, then we do so atomically with a compare and swap.
998 * - if the PTE is in IO space or ROM, then it can't be updated
999 * and we return TRANSLATE_FAIL.
1000 * - if the PTE changed by the time we went to update it, then
1001 * it is no longer valid and we must re-walk the page table.
1003 MemoryRegion *mr;
1004 hwaddr l = sizeof(target_ulong), addr1;
1005 mr = address_space_translate(cs->as, pte_addr,
1006 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
1007 if (memory_region_is_ram(mr)) {
1008 target_ulong *pte_pa =
1009 qemu_map_ram_ptr(mr->ram_block, addr1);
1010 #if TCG_OVERSIZED_GUEST
1011 /* MTTCG is not enabled on oversized TCG guests so
1012 * page table updates do not need to be atomic */
1013 *pte_pa = pte = updated_pte;
1014 #else
1015 target_ulong old_pte =
1016 qatomic_cmpxchg(pte_pa, pte, updated_pte);
1017 if (old_pte != pte) {
1018 goto restart;
1019 } else {
1020 pte = updated_pte;
1022 #endif
1023 } else {
1024 /* misconfigured PTE in ROM (AD bits are not preset) or
1025 * PTE is in IO space and can't be updated atomically */
1026 return TRANSLATE_FAIL;
1030 /* for superpage mappings, make a fake leaf PTE for the TLB's
1031 benefit. */
1032 target_ulong vpn = addr >> PGSHIFT;
1034 if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
1035 napot_bits = ctzl(ppn) + 1;
1036 if ((i != (levels - 1)) || (napot_bits != 4)) {
1037 return TRANSLATE_FAIL;
1041 napot_mask = (1 << napot_bits) - 1;
1042 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1043 (vpn & (((target_ulong)1 << ptshift) - 1))
1044 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1046 /* set permissions on the TLB entry */
1047 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
1048 *prot |= PAGE_READ;
1050 if ((pte & PTE_X)) {
1051 *prot |= PAGE_EXEC;
1053 /* add write permission on stores or if the page is already dirty,
1054 so that we TLB miss on later writes to update the dirty bit */
1055 if ((pte & PTE_W) &&
1056 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
1057 *prot |= PAGE_WRITE;
1059 return TRANSLATE_SUCCESS;
1062 return TRANSLATE_FAIL;
1065 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1066 MMUAccessType access_type, bool pmp_violation,
1067 bool first_stage, bool two_stage,
1068 bool two_stage_indirect)
1070 CPUState *cs = env_cpu(env);
1071 int page_fault_exceptions, vm;
1072 uint64_t stap_mode;
1074 if (riscv_cpu_mxl(env) == MXL_RV32) {
1075 stap_mode = SATP32_MODE;
1076 } else {
1077 stap_mode = SATP64_MODE;
1080 if (first_stage) {
1081 vm = get_field(env->satp, stap_mode);
1082 } else {
1083 vm = get_field(env->hgatp, stap_mode);
1086 page_fault_exceptions = vm != VM_1_10_MBARE && !pmp_violation;
1088 switch (access_type) {
1089 case MMU_INST_FETCH:
1090 if (riscv_cpu_virt_enabled(env) && !first_stage) {
1091 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1092 } else {
1093 cs->exception_index = page_fault_exceptions ?
1094 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
1096 break;
1097 case MMU_DATA_LOAD:
1098 if (two_stage && !first_stage) {
1099 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1100 } else {
1101 cs->exception_index = page_fault_exceptions ?
1102 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
1104 break;
1105 case MMU_DATA_STORE:
1106 if (two_stage && !first_stage) {
1107 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1108 } else {
1109 cs->exception_index = page_fault_exceptions ?
1110 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1112 break;
1113 default:
1114 g_assert_not_reached();
1116 env->badaddr = address;
1117 env->two_stage_lookup = two_stage;
1118 env->two_stage_indirect_lookup = two_stage_indirect;
1121 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1123 RISCVCPU *cpu = RISCV_CPU(cs);
1124 CPURISCVState *env = &cpu->env;
1125 hwaddr phys_addr;
1126 int prot;
1127 int mmu_idx = cpu_mmu_index(&cpu->env, false);
1129 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1130 true, riscv_cpu_virt_enabled(env), true)) {
1131 return -1;
1134 if (riscv_cpu_virt_enabled(env)) {
1135 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1136 0, mmu_idx, false, true, true)) {
1137 return -1;
1141 return phys_addr & TARGET_PAGE_MASK;
1144 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1145 vaddr addr, unsigned size,
1146 MMUAccessType access_type,
1147 int mmu_idx, MemTxAttrs attrs,
1148 MemTxResult response, uintptr_t retaddr)
1150 RISCVCPU *cpu = RISCV_CPU(cs);
1151 CPURISCVState *env = &cpu->env;
1153 if (access_type == MMU_DATA_STORE) {
1154 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1155 } else if (access_type == MMU_DATA_LOAD) {
1156 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1157 } else {
1158 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1161 env->badaddr = addr;
1162 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1163 riscv_cpu_two_stage_lookup(mmu_idx);
1164 env->two_stage_indirect_lookup = false;
1165 cpu_loop_exit_restore(cs, retaddr);
1168 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1169 MMUAccessType access_type, int mmu_idx,
1170 uintptr_t retaddr)
1172 RISCVCPU *cpu = RISCV_CPU(cs);
1173 CPURISCVState *env = &cpu->env;
1174 switch (access_type) {
1175 case MMU_INST_FETCH:
1176 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1177 break;
1178 case MMU_DATA_LOAD:
1179 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1180 break;
1181 case MMU_DATA_STORE:
1182 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1183 break;
1184 default:
1185 g_assert_not_reached();
1187 env->badaddr = addr;
1188 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
1189 riscv_cpu_two_stage_lookup(mmu_idx);
1190 env->two_stage_indirect_lookup = false;
1191 cpu_loop_exit_restore(cs, retaddr);
1195 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1197 enum riscv_pmu_event_idx pmu_event_type;
1199 switch (access_type) {
1200 case MMU_INST_FETCH:
1201 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1202 break;
1203 case MMU_DATA_LOAD:
1204 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1205 break;
1206 case MMU_DATA_STORE:
1207 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1208 break;
1209 default:
1210 return;
1213 riscv_pmu_incr_ctr(cpu, pmu_event_type);
1216 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1217 MMUAccessType access_type, int mmu_idx,
1218 bool probe, uintptr_t retaddr)
1220 RISCVCPU *cpu = RISCV_CPU(cs);
1221 CPURISCVState *env = &cpu->env;
1222 vaddr im_address;
1223 hwaddr pa = 0;
1224 int prot, prot2, prot_pmp;
1225 bool pmp_violation = false;
1226 bool first_stage_error = true;
1227 bool two_stage_lookup = false;
1228 bool two_stage_indirect_error = false;
1229 int ret = TRANSLATE_FAIL;
1230 int mode = mmu_idx;
1231 /* default TLB page size */
1232 target_ulong tlb_size = TARGET_PAGE_SIZE;
1234 env->guest_phys_fault_addr = 0;
1236 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1237 __func__, address, access_type, mmu_idx);
1239 /* MPRV does not affect the virtual-machine load/store
1240 instructions, HLV, HLVX, and HSV. */
1241 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
1242 mode = get_field(env->hstatus, HSTATUS_SPVP);
1243 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
1244 get_field(env->mstatus, MSTATUS_MPRV)) {
1245 mode = get_field(env->mstatus, MSTATUS_MPP);
1246 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
1247 two_stage_lookup = true;
1251 if (riscv_cpu_virt_enabled(env) ||
1252 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
1253 access_type != MMU_INST_FETCH)) {
1254 /* Two stage lookup */
1255 ret = get_physical_address(env, &pa, &prot, address,
1256 &env->guest_phys_fault_addr, access_type,
1257 mmu_idx, true, true, false);
1260 * A G-stage exception may be triggered during two state lookup.
1261 * And the env->guest_phys_fault_addr has already been set in
1262 * get_physical_address().
1264 if (ret == TRANSLATE_G_STAGE_FAIL) {
1265 first_stage_error = false;
1266 two_stage_indirect_error = true;
1267 access_type = MMU_DATA_LOAD;
1270 qemu_log_mask(CPU_LOG_MMU,
1271 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1272 TARGET_FMT_plx " prot %d\n",
1273 __func__, address, ret, pa, prot);
1275 if (ret == TRANSLATE_SUCCESS) {
1276 /* Second stage lookup */
1277 im_address = pa;
1279 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1280 access_type, mmu_idx, false, true,
1281 false);
1283 qemu_log_mask(CPU_LOG_MMU,
1284 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
1285 TARGET_FMT_plx " prot %d\n",
1286 __func__, im_address, ret, pa, prot2);
1288 prot &= prot2;
1290 if (ret == TRANSLATE_SUCCESS) {
1291 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1292 size, access_type, mode);
1294 qemu_log_mask(CPU_LOG_MMU,
1295 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1296 " %d tlb_size " TARGET_FMT_lu "\n",
1297 __func__, pa, ret, prot_pmp, tlb_size);
1299 prot &= prot_pmp;
1302 if (ret != TRANSLATE_SUCCESS) {
1304 * Guest physical address translation failed, this is a HS
1305 * level exception
1307 first_stage_error = false;
1308 env->guest_phys_fault_addr = (im_address |
1309 (address &
1310 (TARGET_PAGE_SIZE - 1))) >> 2;
1313 } else {
1314 pmu_tlb_fill_incr_ctr(cpu, access_type);
1315 /* Single stage lookup */
1316 ret = get_physical_address(env, &pa, &prot, address, NULL,
1317 access_type, mmu_idx, true, false, false);
1319 qemu_log_mask(CPU_LOG_MMU,
1320 "%s address=%" VADDR_PRIx " ret %d physical "
1321 TARGET_FMT_plx " prot %d\n",
1322 __func__, address, ret, pa, prot);
1324 if (ret == TRANSLATE_SUCCESS) {
1325 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
1326 size, access_type, mode);
1328 qemu_log_mask(CPU_LOG_MMU,
1329 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
1330 " %d tlb_size " TARGET_FMT_lu "\n",
1331 __func__, pa, ret, prot_pmp, tlb_size);
1333 prot &= prot_pmp;
1337 if (ret == TRANSLATE_PMP_FAIL) {
1338 pmp_violation = true;
1341 if (ret == TRANSLATE_SUCCESS) {
1342 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1343 prot, mmu_idx, tlb_size);
1344 return true;
1345 } else if (probe) {
1346 return false;
1347 } else {
1348 raise_mmu_exception(env, address, access_type, pmp_violation,
1349 first_stage_error,
1350 riscv_cpu_virt_enabled(env) ||
1351 riscv_cpu_two_stage_lookup(mmu_idx),
1352 two_stage_indirect_error);
1353 cpu_loop_exit_restore(cs, retaddr);
1356 return true;
1359 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1360 target_ulong insn,
1361 target_ulong taddr)
1363 target_ulong xinsn = 0;
1364 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1367 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1368 * be uncompressed. The Quadrant 1 of RVC instruction space need
1369 * not be transformed because these instructions won't generate
1370 * any load/store trap.
1373 if ((insn & 0x3) != 0x3) {
1374 /* Transform 16bit instruction into 32bit instruction */
1375 switch (GET_C_OP(insn)) {
1376 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1377 switch (GET_C_FUNC(insn)) {
1378 case OPC_RISC_C_FUNC_FLD_LQ:
1379 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1380 xinsn = OPC_RISC_FLD;
1381 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1382 access_rs1 = GET_C_RS1S(insn);
1383 access_imm = GET_C_LD_IMM(insn);
1384 access_size = 8;
1386 break;
1387 case OPC_RISC_C_FUNC_LW: /* C.LW */
1388 xinsn = OPC_RISC_LW;
1389 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1390 access_rs1 = GET_C_RS1S(insn);
1391 access_imm = GET_C_LW_IMM(insn);
1392 access_size = 4;
1393 break;
1394 case OPC_RISC_C_FUNC_FLW_LD:
1395 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1396 xinsn = OPC_RISC_FLW;
1397 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1398 access_rs1 = GET_C_RS1S(insn);
1399 access_imm = GET_C_LW_IMM(insn);
1400 access_size = 4;
1401 } else { /* C.LD (RV64/RV128) */
1402 xinsn = OPC_RISC_LD;
1403 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1404 access_rs1 = GET_C_RS1S(insn);
1405 access_imm = GET_C_LD_IMM(insn);
1406 access_size = 8;
1408 break;
1409 case OPC_RISC_C_FUNC_FSD_SQ:
1410 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1411 xinsn = OPC_RISC_FSD;
1412 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1413 access_rs1 = GET_C_RS1S(insn);
1414 access_imm = GET_C_SD_IMM(insn);
1415 access_size = 8;
1417 break;
1418 case OPC_RISC_C_FUNC_SW: /* C.SW */
1419 xinsn = OPC_RISC_SW;
1420 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1421 access_rs1 = GET_C_RS1S(insn);
1422 access_imm = GET_C_SW_IMM(insn);
1423 access_size = 4;
1424 break;
1425 case OPC_RISC_C_FUNC_FSW_SD:
1426 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1427 xinsn = OPC_RISC_FSW;
1428 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1429 access_rs1 = GET_C_RS1S(insn);
1430 access_imm = GET_C_SW_IMM(insn);
1431 access_size = 4;
1432 } else { /* C.SD (RV64/RV128) */
1433 xinsn = OPC_RISC_SD;
1434 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1435 access_rs1 = GET_C_RS1S(insn);
1436 access_imm = GET_C_SD_IMM(insn);
1437 access_size = 8;
1439 break;
1440 default:
1441 break;
1443 break;
1444 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1445 switch (GET_C_FUNC(insn)) {
1446 case OPC_RISC_C_FUNC_FLDSP_LQSP:
1447 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1448 xinsn = OPC_RISC_FLD;
1449 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1450 access_rs1 = 2;
1451 access_imm = GET_C_LDSP_IMM(insn);
1452 access_size = 8;
1454 break;
1455 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1456 xinsn = OPC_RISC_LW;
1457 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1458 access_rs1 = 2;
1459 access_imm = GET_C_LWSP_IMM(insn);
1460 access_size = 4;
1461 break;
1462 case OPC_RISC_C_FUNC_FLWSP_LDSP:
1463 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1464 xinsn = OPC_RISC_FLW;
1465 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1466 access_rs1 = 2;
1467 access_imm = GET_C_LWSP_IMM(insn);
1468 access_size = 4;
1469 } else { /* C.LDSP (RV64/RV128) */
1470 xinsn = OPC_RISC_LD;
1471 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1472 access_rs1 = 2;
1473 access_imm = GET_C_LDSP_IMM(insn);
1474 access_size = 8;
1476 break;
1477 case OPC_RISC_C_FUNC_FSDSP_SQSP:
1478 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1479 xinsn = OPC_RISC_FSD;
1480 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1481 access_rs1 = 2;
1482 access_imm = GET_C_SDSP_IMM(insn);
1483 access_size = 8;
1485 break;
1486 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1487 xinsn = OPC_RISC_SW;
1488 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1489 access_rs1 = 2;
1490 access_imm = GET_C_SWSP_IMM(insn);
1491 access_size = 4;
1492 break;
1493 case 7:
1494 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1495 xinsn = OPC_RISC_FSW;
1496 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1497 access_rs1 = 2;
1498 access_imm = GET_C_SWSP_IMM(insn);
1499 access_size = 4;
1500 } else { /* C.SDSP (RV64/RV128) */
1501 xinsn = OPC_RISC_SD;
1502 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1503 access_rs1 = 2;
1504 access_imm = GET_C_SDSP_IMM(insn);
1505 access_size = 8;
1507 break;
1508 default:
1509 break;
1511 break;
1512 default:
1513 break;
1517 * Clear Bit1 of transformed instruction to indicate that
1518 * original insruction was a 16bit instruction
1520 xinsn &= ~((target_ulong)0x2);
1521 } else {
1522 /* Transform 32bit (or wider) instructions */
1523 switch (MASK_OP_MAJOR(insn)) {
1524 case OPC_RISC_ATOMIC:
1525 xinsn = insn;
1526 access_rs1 = GET_RS1(insn);
1527 access_size = 1 << GET_FUNCT3(insn);
1528 break;
1529 case OPC_RISC_LOAD:
1530 case OPC_RISC_FP_LOAD:
1531 xinsn = SET_I_IMM(insn, 0);
1532 access_rs1 = GET_RS1(insn);
1533 access_imm = GET_IMM(insn);
1534 access_size = 1 << GET_FUNCT3(insn);
1535 break;
1536 case OPC_RISC_STORE:
1537 case OPC_RISC_FP_STORE:
1538 xinsn = SET_S_IMM(insn, 0);
1539 access_rs1 = GET_RS1(insn);
1540 access_imm = GET_STORE_IMM(insn);
1541 access_size = 1 << GET_FUNCT3(insn);
1542 break;
1543 case OPC_RISC_SYSTEM:
1544 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1545 xinsn = insn;
1546 access_rs1 = GET_RS1(insn);
1547 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1548 access_size = 1 << access_size;
1550 break;
1551 default:
1552 break;
1556 if (access_size) {
1557 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1558 (access_size - 1));
1561 return xinsn;
1563 #endif /* !CONFIG_USER_ONLY */
1566 * Handle Traps
1568 * Adapted from Spike's processor_t::take_trap.
1571 void riscv_cpu_do_interrupt(CPUState *cs)
1573 #if !defined(CONFIG_USER_ONLY)
1575 RISCVCPU *cpu = RISCV_CPU(cs);
1576 CPURISCVState *env = &cpu->env;
1577 bool write_gva = false;
1578 uint64_t s;
1580 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1581 * so we mask off the MSB and separate into trap type and cause.
1583 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1584 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1585 uint64_t deleg = async ? env->mideleg : env->medeleg;
1586 target_ulong tval = 0;
1587 target_ulong tinst = 0;
1588 target_ulong htval = 0;
1589 target_ulong mtval2 = 0;
1591 if (cause == RISCV_EXCP_SEMIHOST) {
1592 do_common_semihosting(cs);
1593 env->pc += 4;
1594 return;
1597 if (!async) {
1598 /* set tval to badaddr for traps with address information */
1599 switch (cause) {
1600 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1601 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1602 case RISCV_EXCP_LOAD_ADDR_MIS:
1603 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1604 case RISCV_EXCP_LOAD_ACCESS_FAULT:
1605 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1606 case RISCV_EXCP_LOAD_PAGE_FAULT:
1607 case RISCV_EXCP_STORE_PAGE_FAULT:
1608 write_gva = env->two_stage_lookup;
1609 tval = env->badaddr;
1610 if (env->two_stage_indirect_lookup) {
1612 * special pseudoinstruction for G-stage fault taken while
1613 * doing VS-stage page table walk.
1615 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1616 } else {
1618 * The "Addr. Offset" field in transformed instruction is
1619 * non-zero only for misaligned access.
1621 tinst = riscv_transformed_insn(env, env->bins, tval);
1623 break;
1624 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1625 case RISCV_EXCP_INST_ADDR_MIS:
1626 case RISCV_EXCP_INST_ACCESS_FAULT:
1627 case RISCV_EXCP_INST_PAGE_FAULT:
1628 write_gva = env->two_stage_lookup;
1629 tval = env->badaddr;
1630 if (env->two_stage_indirect_lookup) {
1632 * special pseudoinstruction for G-stage fault taken while
1633 * doing VS-stage page table walk.
1635 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1637 break;
1638 case RISCV_EXCP_ILLEGAL_INST:
1639 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1640 tval = env->bins;
1641 break;
1642 default:
1643 break;
1645 /* ecall is dispatched as one cause so translate based on mode */
1646 if (cause == RISCV_EXCP_U_ECALL) {
1647 assert(env->priv <= 3);
1649 if (env->priv == PRV_M) {
1650 cause = RISCV_EXCP_M_ECALL;
1651 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
1652 cause = RISCV_EXCP_VS_ECALL;
1653 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
1654 cause = RISCV_EXCP_S_ECALL;
1655 } else if (env->priv == PRV_U) {
1656 cause = RISCV_EXCP_U_ECALL;
1661 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1662 riscv_cpu_get_trap_name(cause, async));
1664 qemu_log_mask(CPU_LOG_INT,
1665 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1666 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1667 __func__, env->mhartid, async, cause, env->pc, tval,
1668 riscv_cpu_get_trap_name(cause, async));
1670 if (env->priv <= PRV_S &&
1671 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
1672 /* handle the trap in S-mode */
1673 if (riscv_has_ext(env, RVH)) {
1674 uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1676 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
1677 /* Trap to VS mode */
1679 * See if we need to adjust cause. Yes if its VS mode interrupt
1680 * no if hypervisor has delegated one of hs mode's interrupt
1682 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1683 cause == IRQ_VS_EXT) {
1684 cause = cause - 1;
1686 write_gva = false;
1687 } else if (riscv_cpu_virt_enabled(env)) {
1688 /* Trap into HS mode, from virt */
1689 riscv_cpu_swap_hypervisor_regs(env);
1690 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1691 env->priv);
1692 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1693 riscv_cpu_virt_enabled(env));
1696 htval = env->guest_phys_fault_addr;
1698 riscv_cpu_set_virt_enabled(env, 0);
1699 } else {
1700 /* Trap into HS mode */
1701 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1702 htval = env->guest_phys_fault_addr;
1704 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
1707 s = env->mstatus;
1708 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1709 s = set_field(s, MSTATUS_SPP, env->priv);
1710 s = set_field(s, MSTATUS_SIE, 0);
1711 env->mstatus = s;
1712 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1713 env->sepc = env->pc;
1714 env->stval = tval;
1715 env->htval = htval;
1716 env->htinst = tinst;
1717 env->pc = (env->stvec >> 2 << 2) +
1718 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1719 riscv_cpu_set_mode(env, PRV_S);
1720 } else {
1721 /* handle the trap in M-mode */
1722 if (riscv_has_ext(env, RVH)) {
1723 if (riscv_cpu_virt_enabled(env)) {
1724 riscv_cpu_swap_hypervisor_regs(env);
1726 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1727 riscv_cpu_virt_enabled(env));
1728 if (riscv_cpu_virt_enabled(env) && tval) {
1729 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1732 mtval2 = env->guest_phys_fault_addr;
1734 /* Trapping to M mode, virt is disabled */
1735 riscv_cpu_set_virt_enabled(env, 0);
1738 s = env->mstatus;
1739 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1740 s = set_field(s, MSTATUS_MPP, env->priv);
1741 s = set_field(s, MSTATUS_MIE, 0);
1742 env->mstatus = s;
1743 env->mcause = cause | ~(((target_ulong)-1) >> async);
1744 env->mepc = env->pc;
1745 env->mtval = tval;
1746 env->mtval2 = mtval2;
1747 env->mtinst = tinst;
1748 env->pc = (env->mtvec >> 2 << 2) +
1749 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1750 riscv_cpu_set_mode(env, PRV_M);
1753 /* NOTE: it is not necessary to yield load reservations here. It is only
1754 * necessary for an SC from "another hart" to cause a load reservation
1755 * to be yielded. Refer to the memory consistency model section of the
1756 * RISC-V ISA Specification.
1759 env->two_stage_lookup = false;
1760 env->two_stage_indirect_lookup = false;
1761 #endif
1762 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */