2 * IMX6UL Clock Control Module
4 * Copyright (c) 2018 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
13 #include "qemu/osdep.h"
14 #include "hw/registerfields.h"
15 #include "hw/misc/imx6ul_ccm.h"
20 static const char *imx6ul_ccm_reg_name(uint32_t reg
)
22 static char unknown
[20];
88 sprintf(unknown
, "%d ?", reg
);
93 static const char *imx6ul_analog_reg_name(uint32_t reg
)
95 static char unknown
[20];
98 case CCM_ANALOG_PLL_ARM
:
100 case CCM_ANALOG_PLL_ARM_SET
:
101 return "PLL_ARM_SET";
102 case CCM_ANALOG_PLL_ARM_CLR
:
103 return "PLL_ARM_CLR";
104 case CCM_ANALOG_PLL_ARM_TOG
:
105 return "PLL_ARM_TOG";
106 case CCM_ANALOG_PLL_USB1
:
108 case CCM_ANALOG_PLL_USB1_SET
:
109 return "PLL_USB1_SET";
110 case CCM_ANALOG_PLL_USB1_CLR
:
111 return "PLL_USB1_CLR";
112 case CCM_ANALOG_PLL_USB1_TOG
:
113 return "PLL_USB1_TOG";
114 case CCM_ANALOG_PLL_USB2
:
116 case CCM_ANALOG_PLL_USB2_SET
:
117 return "PLL_USB2_SET";
118 case CCM_ANALOG_PLL_USB2_CLR
:
119 return "PLL_USB2_CLR";
120 case CCM_ANALOG_PLL_USB2_TOG
:
121 return "PLL_USB2_TOG";
122 case CCM_ANALOG_PLL_SYS
:
124 case CCM_ANALOG_PLL_SYS_SET
:
125 return "PLL_SYS_SET";
126 case CCM_ANALOG_PLL_SYS_CLR
:
127 return "PLL_SYS_CLR";
128 case CCM_ANALOG_PLL_SYS_TOG
:
129 return "PLL_SYS_TOG";
130 case CCM_ANALOG_PLL_SYS_SS
:
132 case CCM_ANALOG_PLL_SYS_NUM
:
133 return "PLL_SYS_NUM";
134 case CCM_ANALOG_PLL_SYS_DENOM
:
135 return "PLL_SYS_DENOM";
136 case CCM_ANALOG_PLL_AUDIO
:
138 case CCM_ANALOG_PLL_AUDIO_SET
:
139 return "PLL_AUDIO_SET";
140 case CCM_ANALOG_PLL_AUDIO_CLR
:
141 return "PLL_AUDIO_CLR";
142 case CCM_ANALOG_PLL_AUDIO_TOG
:
143 return "PLL_AUDIO_TOG";
144 case CCM_ANALOG_PLL_AUDIO_NUM
:
145 return "PLL_AUDIO_NUM";
146 case CCM_ANALOG_PLL_AUDIO_DENOM
:
147 return "PLL_AUDIO_DENOM";
148 case CCM_ANALOG_PLL_VIDEO
:
150 case CCM_ANALOG_PLL_VIDEO_SET
:
151 return "PLL_VIDEO_SET";
152 case CCM_ANALOG_PLL_VIDEO_CLR
:
153 return "PLL_VIDEO_CLR";
154 case CCM_ANALOG_PLL_VIDEO_TOG
:
155 return "PLL_VIDEO_TOG";
156 case CCM_ANALOG_PLL_VIDEO_NUM
:
157 return "PLL_VIDEO_NUM";
158 case CCM_ANALOG_PLL_VIDEO_DENOM
:
159 return "PLL_VIDEO_DENOM";
160 case CCM_ANALOG_PLL_ENET
:
162 case CCM_ANALOG_PLL_ENET_SET
:
163 return "PLL_ENET_SET";
164 case CCM_ANALOG_PLL_ENET_CLR
:
165 return "PLL_ENET_CLR";
166 case CCM_ANALOG_PLL_ENET_TOG
:
167 return "PLL_ENET_TOG";
168 case CCM_ANALOG_PFD_480
:
170 case CCM_ANALOG_PFD_480_SET
:
171 return "PFD_480_SET";
172 case CCM_ANALOG_PFD_480_CLR
:
173 return "PFD_480_CLR";
174 case CCM_ANALOG_PFD_480_TOG
:
175 return "PFD_480_TOG";
176 case CCM_ANALOG_PFD_528
:
178 case CCM_ANALOG_PFD_528_SET
:
179 return "PFD_528_SET";
180 case CCM_ANALOG_PFD_528_CLR
:
181 return "PFD_528_CLR";
182 case CCM_ANALOG_PFD_528_TOG
:
183 return "PFD_528_TOG";
184 case CCM_ANALOG_MISC0
:
186 case CCM_ANALOG_MISC0_SET
:
188 case CCM_ANALOG_MISC0_CLR
:
190 case CCM_ANALOG_MISC0_TOG
:
192 case CCM_ANALOG_MISC2
:
194 case CCM_ANALOG_MISC2_SET
:
196 case CCM_ANALOG_MISC2_CLR
:
198 case CCM_ANALOG_MISC2_TOG
:
201 return "PMU_REG_1P1";
203 return "PMU_REG_3P0";
205 return "PMU_REG_2P5";
207 return "PMU_REG_CORE";
211 return "PMU_MISC1_SET";
213 return "PMU_MISC1_CLR";
215 return "PMU_MISC1_TOG";
216 case USB_ANALOG_DIGPROG
:
217 return "USB_ANALOG_DIGPROG";
219 sprintf(unknown
, "%d ?", reg
);
224 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
226 static const VMStateDescription vmstate_imx6ul_ccm
= {
227 .name
= TYPE_IMX6UL_CCM
,
229 .minimum_version_id
= 1,
230 .fields
= (VMStateField
[]) {
231 VMSTATE_UINT32_ARRAY(ccm
, IMX6ULCCMState
, CCM_MAX
),
232 VMSTATE_UINT32_ARRAY(analog
, IMX6ULCCMState
, CCM_ANALOG_MAX
),
233 VMSTATE_END_OF_LIST()
237 static uint64_t imx6ul_analog_get_osc_clk(IMX6ULCCMState
*dev
)
239 uint64_t freq
= CKIH_FREQ
;
241 trace_ccm_freq((uint32_t)freq
);
246 static uint64_t imx6ul_analog_get_pll2_clk(IMX6ULCCMState
*dev
)
248 uint64_t freq
= imx6ul_analog_get_osc_clk(dev
);
250 if (FIELD_EX32(dev
->analog
[CCM_ANALOG_PLL_SYS
],
251 ANALOG_PLL_SYS
, DIV_SELECT
)) {
257 trace_ccm_freq((uint32_t)freq
);
262 static uint64_t imx6ul_analog_get_pll3_clk(IMX6ULCCMState
*dev
)
264 uint64_t freq
= imx6ul_analog_get_osc_clk(dev
) * 20;
266 trace_ccm_freq((uint32_t)freq
);
271 static uint64_t imx6ul_analog_get_pll2_pfd0_clk(IMX6ULCCMState
*dev
)
275 freq
= imx6ul_analog_get_pll2_clk(dev
) * 18
276 / FIELD_EX32(dev
->analog
[CCM_ANALOG_PFD_528
],
277 ANALOG_PFD_528
, PFD0_FRAC
);
279 trace_ccm_freq((uint32_t)freq
);
284 static uint64_t imx6ul_analog_get_pll2_pfd2_clk(IMX6ULCCMState
*dev
)
288 freq
= imx6ul_analog_get_pll2_clk(dev
) * 18
289 / FIELD_EX32(dev
->analog
[CCM_ANALOG_PFD_528
],
290 ANALOG_PFD_528
, PFD2_FRAC
);
292 trace_ccm_freq((uint32_t)freq
);
297 static uint64_t imx6ul_analog_pll2_bypass_clk(IMX6ULCCMState
*dev
)
301 trace_ccm_freq((uint32_t)freq
);
306 static uint64_t imx6ul_ccm_get_periph_clk2_sel_clk(IMX6ULCCMState
*dev
)
310 switch (FIELD_EX32(dev
->ccm
[CCM_CBCMR
], CBCMR
, PERIPH_CLK2_SEL
)) {
312 freq
= imx6ul_analog_get_pll3_clk(dev
);
315 freq
= imx6ul_analog_get_osc_clk(dev
);
318 freq
= imx6ul_analog_pll2_bypass_clk(dev
);
321 /* We should never get there as 3 is a reserved value */
322 qemu_log_mask(LOG_GUEST_ERROR
,
323 "[%s]%s: unsupported PERIPH_CLK2_SEL value 3\n",
324 TYPE_IMX6UL_CCM
, __func__
);
325 /* freq is set to 0 as we don't know what it should be */
328 g_assert_not_reached();
331 trace_ccm_freq((uint32_t)freq
);
336 static uint64_t imx6ul_ccm_get_periph_clk_sel_clk(IMX6ULCCMState
*dev
)
340 switch (FIELD_EX32(dev
->ccm
[CCM_CBCMR
], CBCMR
, PRE_PERIPH_CLK_SEL
)) {
342 freq
= imx6ul_analog_get_pll2_clk(dev
);
345 freq
= imx6ul_analog_get_pll2_pfd2_clk(dev
);
348 freq
= imx6ul_analog_get_pll2_pfd0_clk(dev
);
351 freq
= imx6ul_analog_get_pll2_pfd2_clk(dev
) / 2;
354 g_assert_not_reached();
357 trace_ccm_freq((uint32_t)freq
);
362 static uint64_t imx6ul_ccm_get_periph_clk2_clk(IMX6ULCCMState
*dev
)
366 freq
= imx6ul_ccm_get_periph_clk2_sel_clk(dev
)
367 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, PERIPH_CLK2_PODF
));
369 trace_ccm_freq((uint32_t)freq
);
374 static uint64_t imx6ul_ccm_get_periph_sel_clk(IMX6ULCCMState
*dev
)
378 switch (FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, PERIPH_CLK_SEL
)) {
380 freq
= imx6ul_ccm_get_periph_clk_sel_clk(dev
);
383 freq
= imx6ul_ccm_get_periph_clk2_clk(dev
);
386 g_assert_not_reached();
389 trace_ccm_freq((uint32_t)freq
);
394 static uint64_t imx6ul_ccm_get_ahb_clk(IMX6ULCCMState
*dev
)
398 freq
= imx6ul_ccm_get_periph_sel_clk(dev
)
399 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, AHB_PODF
));
401 trace_ccm_freq((uint32_t)freq
);
406 static uint64_t imx6ul_ccm_get_ipg_clk(IMX6ULCCMState
*dev
)
410 freq
= imx6ul_ccm_get_ahb_clk(dev
)
411 / (1 + FIELD_EX32(dev
->ccm
[CCM_CBCDR
], CBCDR
, IPG_PODF
));
413 trace_ccm_freq((uint32_t)freq
);
418 static uint64_t imx6ul_ccm_get_per_sel_clk(IMX6ULCCMState
*dev
)
422 switch (FIELD_EX32(dev
->ccm
[CCM_CSCMR1
], CSCMR1
, PERCLK_CLK_SEL
)) {
424 freq
= imx6ul_ccm_get_ipg_clk(dev
);
427 freq
= imx6ul_analog_get_osc_clk(dev
);
430 g_assert_not_reached();
433 trace_ccm_freq((uint32_t)freq
);
438 static uint64_t imx6ul_ccm_get_per_clk(IMX6ULCCMState
*dev
)
442 freq
= imx6ul_ccm_get_per_sel_clk(dev
)
443 / (1 + FIELD_EX32(dev
->ccm
[CCM_CSCMR1
], CSCMR1
, PERCLK_PODF
));
445 trace_ccm_freq((uint32_t)freq
);
450 static uint32_t imx6ul_ccm_get_clock_frequency(IMXCCMState
*dev
, IMXClk clock
)
453 IMX6ULCCMState
*s
= IMX6UL_CCM(dev
);
459 freq
= imx6ul_ccm_get_ipg_clk(s
);
462 freq
= imx6ul_ccm_get_per_clk(s
);
471 freq
= CKIH_FREQ
/ 8;
474 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: unsupported clock %d\n",
475 TYPE_IMX6UL_CCM
, __func__
, clock
);
479 trace_ccm_clock_freq(clock
, freq
);
484 static void imx6ul_ccm_reset(DeviceState
*dev
)
486 IMX6ULCCMState
*s
= IMX6UL_CCM(dev
);
490 s
->ccm
[CCM_CCR
] = 0x0401167F;
491 s
->ccm
[CCM_CCDR
] = 0x00000000;
492 s
->ccm
[CCM_CSR
] = 0x00000010;
493 s
->ccm
[CCM_CCSR
] = 0x00000100;
494 s
->ccm
[CCM_CACRR
] = 0x00000000;
495 s
->ccm
[CCM_CBCDR
] = 0x00018D00;
496 s
->ccm
[CCM_CBCMR
] = 0x24860324;
497 s
->ccm
[CCM_CSCMR1
] = 0x04900080;
498 s
->ccm
[CCM_CSCMR2
] = 0x03192F06;
499 s
->ccm
[CCM_CSCDR1
] = 0x00490B00;
500 s
->ccm
[CCM_CS1CDR
] = 0x0EC102C1;
501 s
->ccm
[CCM_CS2CDR
] = 0x000336C1;
502 s
->ccm
[CCM_CDCDR
] = 0x33F71F92;
503 s
->ccm
[CCM_CHSCCDR
] = 0x000248A4;
504 s
->ccm
[CCM_CSCDR2
] = 0x00029B48;
505 s
->ccm
[CCM_CSCDR3
] = 0x00014841;
506 s
->ccm
[CCM_CDHIPR
] = 0x00000000;
507 s
->ccm
[CCM_CTOR
] = 0x00000000;
508 s
->ccm
[CCM_CLPCR
] = 0x00000079;
509 s
->ccm
[CCM_CISR
] = 0x00000000;
510 s
->ccm
[CCM_CIMR
] = 0xFFFFFFFF;
511 s
->ccm
[CCM_CCOSR
] = 0x000A0001;
512 s
->ccm
[CCM_CGPR
] = 0x0000FE62;
513 s
->ccm
[CCM_CCGR0
] = 0xFFFFFFFF;
514 s
->ccm
[CCM_CCGR1
] = 0xFFFFFFFF;
515 s
->ccm
[CCM_CCGR2
] = 0xFC3FFFFF;
516 s
->ccm
[CCM_CCGR3
] = 0xFFFFFFFF;
517 s
->ccm
[CCM_CCGR4
] = 0xFFFFFFFF;
518 s
->ccm
[CCM_CCGR5
] = 0xFFFFFFFF;
519 s
->ccm
[CCM_CCGR6
] = 0xFFFFFFFF;
520 s
->ccm
[CCM_CMEOR
] = 0xFFFFFFFF;
522 s
->analog
[CCM_ANALOG_PLL_ARM
] = 0x00013063;
523 s
->analog
[CCM_ANALOG_PLL_USB1
] = 0x00012000;
524 s
->analog
[CCM_ANALOG_PLL_USB2
] = 0x00012000;
525 s
->analog
[CCM_ANALOG_PLL_SYS
] = 0x00013001;
526 s
->analog
[CCM_ANALOG_PLL_SYS_SS
] = 0x00000000;
527 s
->analog
[CCM_ANALOG_PLL_SYS_NUM
] = 0x00000000;
528 s
->analog
[CCM_ANALOG_PLL_SYS_DENOM
] = 0x00000012;
529 s
->analog
[CCM_ANALOG_PLL_AUDIO
] = 0x00011006;
530 s
->analog
[CCM_ANALOG_PLL_AUDIO_NUM
] = 0x05F5E100;
531 s
->analog
[CCM_ANALOG_PLL_AUDIO_DENOM
] = 0x2964619C;
532 s
->analog
[CCM_ANALOG_PLL_VIDEO
] = 0x0001100C;
533 s
->analog
[CCM_ANALOG_PLL_VIDEO_NUM
] = 0x05F5E100;
534 s
->analog
[CCM_ANALOG_PLL_VIDEO_DENOM
] = 0x10A24447;
535 s
->analog
[CCM_ANALOG_PLL_ENET
] = 0x00011001;
536 s
->analog
[CCM_ANALOG_PFD_480
] = 0x1311100C;
537 s
->analog
[CCM_ANALOG_PFD_528
] = 0x1018101B;
539 s
->analog
[PMU_REG_1P1
] = 0x00001073;
540 s
->analog
[PMU_REG_3P0
] = 0x00000F74;
541 s
->analog
[PMU_REG_2P5
] = 0x00001073;
542 s
->analog
[PMU_REG_CORE
] = 0x00482012;
543 s
->analog
[PMU_MISC0
] = 0x04000000;
544 s
->analog
[PMU_MISC1
] = 0x00000000;
545 s
->analog
[PMU_MISC2
] = 0x00272727;
546 s
->analog
[PMU_LOWPWR_CTRL
] = 0x00004009;
548 s
->analog
[USB_ANALOG_USB1_VBUS_DETECT
] = 0x01000004;
549 s
->analog
[USB_ANALOG_USB1_CHRG_DETECT
] = 0x00000000;
550 s
->analog
[USB_ANALOG_USB1_VBUS_DETECT_STAT
] = 0x00000000;
551 s
->analog
[USB_ANALOG_USB1_CHRG_DETECT_STAT
] = 0x00000000;
552 s
->analog
[USB_ANALOG_USB1_MISC
] = 0x00000002;
553 s
->analog
[USB_ANALOG_USB2_VBUS_DETECT
] = 0x01000004;
554 s
->analog
[USB_ANALOG_USB2_CHRG_DETECT
] = 0x00000000;
555 s
->analog
[USB_ANALOG_USB2_MISC
] = 0x00000002;
556 s
->analog
[USB_ANALOG_DIGPROG
] = 0x00640000;
558 /* all PLLs need to be locked */
559 s
->analog
[CCM_ANALOG_PLL_ARM
] |= CCM_ANALOG_PLL_LOCK
;
560 s
->analog
[CCM_ANALOG_PLL_USB1
] |= CCM_ANALOG_PLL_LOCK
;
561 s
->analog
[CCM_ANALOG_PLL_USB2
] |= CCM_ANALOG_PLL_LOCK
;
562 s
->analog
[CCM_ANALOG_PLL_SYS
] |= CCM_ANALOG_PLL_LOCK
;
563 s
->analog
[CCM_ANALOG_PLL_AUDIO
] |= CCM_ANALOG_PLL_LOCK
;
564 s
->analog
[CCM_ANALOG_PLL_VIDEO
] |= CCM_ANALOG_PLL_LOCK
;
565 s
->analog
[CCM_ANALOG_PLL_ENET
] |= CCM_ANALOG_PLL_LOCK
;
567 s
->analog
[TEMPMON_TEMPSENSE0
] = 0x00000001;
568 s
->analog
[TEMPMON_TEMPSENSE1
] = 0x00000001;
569 s
->analog
[TEMPMON_TEMPSENSE2
] = 0x00000000;
572 static uint64_t imx6ul_ccm_read(void *opaque
, hwaddr offset
, unsigned size
)
575 uint32_t index
= offset
>> 2;
576 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
578 assert(index
< CCM_MAX
);
580 value
= s
->ccm
[index
];
582 trace_ccm_read_reg(imx6ul_ccm_reg_name(index
), (uint32_t)value
);
584 return (uint64_t)value
;
587 static void imx6ul_ccm_write(void *opaque
, hwaddr offset
, uint64_t value
,
590 uint32_t index
= offset
>> 2;
591 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
593 assert(index
< CCM_MAX
);
595 trace_ccm_write_reg(imx6ul_ccm_reg_name(index
), (uint32_t)value
);
598 * We will do a better implementation later. In particular some bits
599 * cannot be written to.
601 s
->ccm
[index
] = (uint32_t)value
;
604 static uint64_t imx6ul_analog_read(void *opaque
, hwaddr offset
, unsigned size
)
607 uint32_t index
= offset
>> 2;
608 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
610 assert(index
< CCM_ANALOG_MAX
);
613 case CCM_ANALOG_PLL_ARM_SET
:
614 case CCM_ANALOG_PLL_USB1_SET
:
615 case CCM_ANALOG_PLL_USB2_SET
:
616 case CCM_ANALOG_PLL_SYS_SET
:
617 case CCM_ANALOG_PLL_AUDIO_SET
:
618 case CCM_ANALOG_PLL_VIDEO_SET
:
619 case CCM_ANALOG_PLL_ENET_SET
:
620 case CCM_ANALOG_PFD_480_SET
:
621 case CCM_ANALOG_PFD_528_SET
:
622 case CCM_ANALOG_MISC0_SET
:
624 case CCM_ANALOG_MISC2_SET
:
625 case USB_ANALOG_USB1_VBUS_DETECT_SET
:
626 case USB_ANALOG_USB1_CHRG_DETECT_SET
:
627 case USB_ANALOG_USB1_MISC_SET
:
628 case USB_ANALOG_USB2_VBUS_DETECT_SET
:
629 case USB_ANALOG_USB2_CHRG_DETECT_SET
:
630 case USB_ANALOG_USB2_MISC_SET
:
631 case TEMPMON_TEMPSENSE0_SET
:
632 case TEMPMON_TEMPSENSE1_SET
:
633 case TEMPMON_TEMPSENSE2_SET
:
635 * All REG_NAME_SET register access are in fact targeting
636 * the REG_NAME register.
638 value
= s
->analog
[index
- 1];
640 case CCM_ANALOG_PLL_ARM_CLR
:
641 case CCM_ANALOG_PLL_USB1_CLR
:
642 case CCM_ANALOG_PLL_USB2_CLR
:
643 case CCM_ANALOG_PLL_SYS_CLR
:
644 case CCM_ANALOG_PLL_AUDIO_CLR
:
645 case CCM_ANALOG_PLL_VIDEO_CLR
:
646 case CCM_ANALOG_PLL_ENET_CLR
:
647 case CCM_ANALOG_PFD_480_CLR
:
648 case CCM_ANALOG_PFD_528_CLR
:
649 case CCM_ANALOG_MISC0_CLR
:
651 case CCM_ANALOG_MISC2_CLR
:
652 case USB_ANALOG_USB1_VBUS_DETECT_CLR
:
653 case USB_ANALOG_USB1_CHRG_DETECT_CLR
:
654 case USB_ANALOG_USB1_MISC_CLR
:
655 case USB_ANALOG_USB2_VBUS_DETECT_CLR
:
656 case USB_ANALOG_USB2_CHRG_DETECT_CLR
:
657 case USB_ANALOG_USB2_MISC_CLR
:
658 case TEMPMON_TEMPSENSE0_CLR
:
659 case TEMPMON_TEMPSENSE1_CLR
:
660 case TEMPMON_TEMPSENSE2_CLR
:
662 * All REG_NAME_CLR register access are in fact targeting
663 * the REG_NAME register.
665 value
= s
->analog
[index
- 2];
667 case CCM_ANALOG_PLL_ARM_TOG
:
668 case CCM_ANALOG_PLL_USB1_TOG
:
669 case CCM_ANALOG_PLL_USB2_TOG
:
670 case CCM_ANALOG_PLL_SYS_TOG
:
671 case CCM_ANALOG_PLL_AUDIO_TOG
:
672 case CCM_ANALOG_PLL_VIDEO_TOG
:
673 case CCM_ANALOG_PLL_ENET_TOG
:
674 case CCM_ANALOG_PFD_480_TOG
:
675 case CCM_ANALOG_PFD_528_TOG
:
676 case CCM_ANALOG_MISC0_TOG
:
678 case CCM_ANALOG_MISC2_TOG
:
679 case USB_ANALOG_USB1_VBUS_DETECT_TOG
:
680 case USB_ANALOG_USB1_CHRG_DETECT_TOG
:
681 case USB_ANALOG_USB1_MISC_TOG
:
682 case USB_ANALOG_USB2_VBUS_DETECT_TOG
:
683 case USB_ANALOG_USB2_CHRG_DETECT_TOG
:
684 case USB_ANALOG_USB2_MISC_TOG
:
685 case TEMPMON_TEMPSENSE0_TOG
:
686 case TEMPMON_TEMPSENSE1_TOG
:
687 case TEMPMON_TEMPSENSE2_TOG
:
689 * All REG_NAME_TOG register access are in fact targeting
690 * the REG_NAME register.
692 value
= s
->analog
[index
- 3];
695 value
= s
->analog
[index
];
699 trace_ccm_read_reg(imx6ul_analog_reg_name(index
), (uint32_t)value
);
701 return (uint64_t)value
;
704 static void imx6ul_analog_write(void *opaque
, hwaddr offset
, uint64_t value
,
707 uint32_t index
= offset
>> 2;
708 IMX6ULCCMState
*s
= (IMX6ULCCMState
*)opaque
;
710 assert(index
< CCM_ANALOG_MAX
);
712 trace_ccm_write_reg(imx6ul_analog_reg_name(index
), (uint32_t)value
);
715 case CCM_ANALOG_PLL_ARM_SET
:
716 case CCM_ANALOG_PLL_USB1_SET
:
717 case CCM_ANALOG_PLL_USB2_SET
:
718 case CCM_ANALOG_PLL_SYS_SET
:
719 case CCM_ANALOG_PLL_AUDIO_SET
:
720 case CCM_ANALOG_PLL_VIDEO_SET
:
721 case CCM_ANALOG_PLL_ENET_SET
:
722 case CCM_ANALOG_PFD_480_SET
:
723 case CCM_ANALOG_PFD_528_SET
:
724 case CCM_ANALOG_MISC0_SET
:
726 case CCM_ANALOG_MISC2_SET
:
727 case USB_ANALOG_USB1_VBUS_DETECT_SET
:
728 case USB_ANALOG_USB1_CHRG_DETECT_SET
:
729 case USB_ANALOG_USB1_MISC_SET
:
730 case USB_ANALOG_USB2_VBUS_DETECT_SET
:
731 case USB_ANALOG_USB2_CHRG_DETECT_SET
:
732 case USB_ANALOG_USB2_MISC_SET
:
734 * All REG_NAME_SET register access are in fact targeting
735 * the REG_NAME register. So we change the value of the
736 * REG_NAME register, setting bits passed in the value.
738 s
->analog
[index
- 1] |= value
;
740 case CCM_ANALOG_PLL_ARM_CLR
:
741 case CCM_ANALOG_PLL_USB1_CLR
:
742 case CCM_ANALOG_PLL_USB2_CLR
:
743 case CCM_ANALOG_PLL_SYS_CLR
:
744 case CCM_ANALOG_PLL_AUDIO_CLR
:
745 case CCM_ANALOG_PLL_VIDEO_CLR
:
746 case CCM_ANALOG_PLL_ENET_CLR
:
747 case CCM_ANALOG_PFD_480_CLR
:
748 case CCM_ANALOG_PFD_528_CLR
:
749 case CCM_ANALOG_MISC0_CLR
:
751 case CCM_ANALOG_MISC2_CLR
:
752 case USB_ANALOG_USB1_VBUS_DETECT_CLR
:
753 case USB_ANALOG_USB1_CHRG_DETECT_CLR
:
754 case USB_ANALOG_USB1_MISC_CLR
:
755 case USB_ANALOG_USB2_VBUS_DETECT_CLR
:
756 case USB_ANALOG_USB2_CHRG_DETECT_CLR
:
757 case USB_ANALOG_USB2_MISC_CLR
:
759 * All REG_NAME_CLR register access are in fact targeting
760 * the REG_NAME register. So we change the value of the
761 * REG_NAME register, unsetting bits passed in the value.
763 s
->analog
[index
- 2] &= ~value
;
765 case CCM_ANALOG_PLL_ARM_TOG
:
766 case CCM_ANALOG_PLL_USB1_TOG
:
767 case CCM_ANALOG_PLL_USB2_TOG
:
768 case CCM_ANALOG_PLL_SYS_TOG
:
769 case CCM_ANALOG_PLL_AUDIO_TOG
:
770 case CCM_ANALOG_PLL_VIDEO_TOG
:
771 case CCM_ANALOG_PLL_ENET_TOG
:
772 case CCM_ANALOG_PFD_480_TOG
:
773 case CCM_ANALOG_PFD_528_TOG
:
774 case CCM_ANALOG_MISC0_TOG
:
776 case CCM_ANALOG_MISC2_TOG
:
777 case USB_ANALOG_USB1_VBUS_DETECT_TOG
:
778 case USB_ANALOG_USB1_CHRG_DETECT_TOG
:
779 case USB_ANALOG_USB1_MISC_TOG
:
780 case USB_ANALOG_USB2_VBUS_DETECT_TOG
:
781 case USB_ANALOG_USB2_CHRG_DETECT_TOG
:
782 case USB_ANALOG_USB2_MISC_TOG
:
784 * All REG_NAME_TOG register access are in fact targeting
785 * the REG_NAME register. So we change the value of the
786 * REG_NAME register, toggling bits passed in the value.
788 s
->analog
[index
- 3] ^= value
;
792 * We will do a better implementation later. In particular some bits
793 * cannot be written to.
795 s
->analog
[index
] = value
;
800 static const struct MemoryRegionOps imx6ul_ccm_ops
= {
801 .read
= imx6ul_ccm_read
,
802 .write
= imx6ul_ccm_write
,
803 .endianness
= DEVICE_NATIVE_ENDIAN
,
806 * Our device would not work correctly if the guest was doing
807 * unaligned access. This might not be a limitation on the real
808 * device but in practice there is no reason for a guest to access
809 * this device unaligned.
811 .min_access_size
= 4,
812 .max_access_size
= 4,
817 static const struct MemoryRegionOps imx6ul_analog_ops
= {
818 .read
= imx6ul_analog_read
,
819 .write
= imx6ul_analog_write
,
820 .endianness
= DEVICE_NATIVE_ENDIAN
,
823 * Our device would not work correctly if the guest was doing
824 * unaligned access. This might not be a limitation on the real
825 * device but in practice there is no reason for a guest to access
826 * this device unaligned.
828 .min_access_size
= 4,
829 .max_access_size
= 4,
834 static void imx6ul_ccm_init(Object
*obj
)
836 DeviceState
*dev
= DEVICE(obj
);
837 SysBusDevice
*sd
= SYS_BUS_DEVICE(obj
);
838 IMX6ULCCMState
*s
= IMX6UL_CCM(obj
);
840 /* initialize a container for the all memory range */
841 memory_region_init(&s
->container
, OBJECT(dev
), TYPE_IMX6UL_CCM
, 0x8000);
843 /* We initialize an IO memory region for the CCM part */
844 memory_region_init_io(&s
->ioccm
, OBJECT(dev
), &imx6ul_ccm_ops
, s
,
845 TYPE_IMX6UL_CCM
".ccm", CCM_MAX
* sizeof(uint32_t));
847 /* Add the CCM as a subregion at offset 0 */
848 memory_region_add_subregion(&s
->container
, 0, &s
->ioccm
);
850 /* We initialize an IO memory region for the ANALOG part */
851 memory_region_init_io(&s
->ioanalog
, OBJECT(dev
), &imx6ul_analog_ops
, s
,
852 TYPE_IMX6UL_CCM
".analog",
853 CCM_ANALOG_MAX
* sizeof(uint32_t));
855 /* Add the ANALOG as a subregion at offset 0x4000 */
856 memory_region_add_subregion(&s
->container
, 0x4000, &s
->ioanalog
);
858 sysbus_init_mmio(sd
, &s
->container
);
861 static void imx6ul_ccm_class_init(ObjectClass
*klass
, void *data
)
863 DeviceClass
*dc
= DEVICE_CLASS(klass
);
864 IMXCCMClass
*ccm
= IMX_CCM_CLASS(klass
);
866 dc
->reset
= imx6ul_ccm_reset
;
867 dc
->vmsd
= &vmstate_imx6ul_ccm
;
868 dc
->desc
= "i.MX6UL Clock Control Module";
870 ccm
->get_clock_frequency
= imx6ul_ccm_get_clock_frequency
;
873 static const TypeInfo imx6ul_ccm_info
= {
874 .name
= TYPE_IMX6UL_CCM
,
875 .parent
= TYPE_IMX_CCM
,
876 .instance_size
= sizeof(IMX6ULCCMState
),
877 .instance_init
= imx6ul_ccm_init
,
878 .class_init
= imx6ul_ccm_class_init
,
881 static void imx6ul_ccm_register_types(void)
883 type_register_static(&imx6ul_ccm_info
);
886 type_init(imx6ul_ccm_register_types
)