2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
27 #include "exec-memory.h"
29 #include "qemu-error.h"
31 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
45 target_phys_addr_t base
;
48 BlockDriverState
*bdrv
;
49 BlockDriverState
*bdrv_cur
;
54 MemoryRegion mapped_ram
;
55 uint8_t current_direction
;
59 MemoryRegion container
;
85 ONEN_BUF_DEST_BLOCK
= 2,
86 ONEN_BUF_DEST_PAGE
= 3,
91 ONEN_ERR_CMD
= 1 << 10,
92 ONEN_ERR_ERASE
= 1 << 11,
93 ONEN_ERR_PROG
= 1 << 12,
94 ONEN_ERR_LOAD
= 1 << 13,
98 ONEN_INT_RESET
= 1 << 4,
99 ONEN_INT_ERASE
= 1 << 5,
100 ONEN_INT_PROG
= 1 << 6,
101 ONEN_INT_LOAD
= 1 << 7,
106 ONEN_LOCK_LOCKTIGHTEN
= 1 << 0,
107 ONEN_LOCK_LOCKED
= 1 << 1,
108 ONEN_LOCK_UNLOCKED
= 1 << 2,
111 static void onenand_mem_setup(OneNANDState
*s
)
113 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
114 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
115 * write boot commands. Also take note of the BWPS bit. */
116 memory_region_init(&s
->container
, "onenand", 0x10000 << s
->shift
);
117 memory_region_add_subregion(&s
->container
, 0, &s
->iomem
);
118 memory_region_init_alias(&s
->mapped_ram
, "onenand-mapped-ram",
119 &s
->ram
, 0x0200 << s
->shift
,
121 memory_region_add_subregion_overlap(&s
->container
,
127 static void onenand_intr_update(OneNANDState
*s
)
129 qemu_set_irq(s
->intr
, ((s
->intstatus
>> 15) ^ (~s
->config
[0] >> 6)) & 1);
132 static void onenand_pre_save(void *opaque
)
134 OneNANDState
*s
= opaque
;
135 if (s
->current
== s
->otp
) {
136 s
->current_direction
= 1;
137 } else if (s
->current
== s
->image
) {
138 s
->current_direction
= 2;
140 s
->current_direction
= 0;
144 static int onenand_post_load(void *opaque
, int version_id
)
146 OneNANDState
*s
= opaque
;
147 switch (s
->current_direction
) {
154 s
->current
= s
->image
;
159 onenand_intr_update(s
);
163 static const VMStateDescription vmstate_onenand
= {
166 .minimum_version_id
= 1,
167 .minimum_version_id_old
= 1,
168 .pre_save
= onenand_pre_save
,
169 .post_load
= onenand_post_load
,
170 .fields
= (VMStateField
[]) {
171 VMSTATE_UINT8(current_direction
, OneNANDState
),
172 VMSTATE_INT32(cycle
, OneNANDState
),
173 VMSTATE_INT32(otpmode
, OneNANDState
),
174 VMSTATE_UINT16_ARRAY(addr
, OneNANDState
, 8),
175 VMSTATE_UINT16_ARRAY(unladdr
, OneNANDState
, 8),
176 VMSTATE_INT32(bufaddr
, OneNANDState
),
177 VMSTATE_INT32(count
, OneNANDState
),
178 VMSTATE_UINT16(command
, OneNANDState
),
179 VMSTATE_UINT16_ARRAY(config
, OneNANDState
, 2),
180 VMSTATE_UINT16(status
, OneNANDState
),
181 VMSTATE_UINT16(intstatus
, OneNANDState
),
182 VMSTATE_UINT16(wpstatus
, OneNANDState
),
183 VMSTATE_INT32(secs_cur
, OneNANDState
),
184 VMSTATE_PARTIAL_VBUFFER(blockwp
, OneNANDState
, blocks
),
185 VMSTATE_UINT8(ecc
.cp
, OneNANDState
),
186 VMSTATE_UINT16_ARRAY(ecc
.lp
, OneNANDState
, 2),
187 VMSTATE_UINT16(ecc
.count
, OneNANDState
),
188 VMSTATE_BUFFER_UNSAFE(otp
, OneNANDState
, 0, ((64 + 2) << PAGE_SHIFT
)),
189 VMSTATE_END_OF_LIST()
193 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
194 static void onenand_reset(OneNANDState
*s
, int cold
)
196 memset(&s
->addr
, 0, sizeof(s
->addr
));
200 s
->config
[0] = 0x40c0;
201 s
->config
[1] = 0x0000;
202 onenand_intr_update(s
);
203 qemu_irq_raise(s
->rdy
);
205 s
->intstatus
= cold
? 0x8080 : 0x8010;
208 s
->wpstatus
= 0x0002;
211 s
->bdrv_cur
= s
->bdrv
;
212 s
->current
= s
->image
;
213 s
->secs_cur
= s
->secs
;
216 /* Lock the whole flash */
217 memset(s
->blockwp
, ONEN_LOCK_LOCKED
, s
->blocks
);
219 if (s
->bdrv_cur
&& bdrv_read(s
->bdrv_cur
, 0, s
->boot
[0], 8) < 0) {
220 hw_error("%s: Loading the BootRAM failed.\n", __func__
);
225 static void onenand_system_reset(DeviceState
*dev
)
227 onenand_reset(FROM_SYSBUS(OneNANDState
, sysbus_from_qdev(dev
)), 1);
230 static inline int onenand_load_main(OneNANDState
*s
, int sec
, int secn
,
234 return bdrv_read(s
->bdrv_cur
, sec
, dest
, secn
) < 0;
235 else if (sec
+ secn
> s
->secs_cur
)
238 memcpy(dest
, s
->current
+ (sec
<< 9), secn
<< 9);
243 static inline int onenand_prog_main(OneNANDState
*s
, int sec
, int secn
,
249 uint32_t size
= (uint32_t)secn
* 512;
250 const uint8_t *sp
= (const uint8_t *)src
;
254 if (!dp
|| bdrv_read(s
->bdrv_cur
, sec
, dp
, secn
) < 0) {
258 if (sec
+ secn
> s
->secs_cur
) {
261 dp
= (uint8_t *)s
->current
+ (sec
<< 9);
266 for (i
= 0; i
< size
; i
++) {
270 result
= bdrv_write(s
->bdrv_cur
, sec
, dp
, secn
) < 0;
273 if (dp
&& s
->bdrv_cur
) {
281 static inline int onenand_load_spare(OneNANDState
*s
, int sec
, int secn
,
287 if (bdrv_read(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0)
289 memcpy(dest
, buf
+ ((sec
& 31) << 4), secn
<< 4);
290 } else if (sec
+ secn
> s
->secs_cur
)
293 memcpy(dest
, s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4), secn
<< 4);
298 static inline int onenand_prog_spare(OneNANDState
*s
, int sec
, int secn
,
303 const uint8_t *sp
= (const uint8_t *)src
;
304 uint8_t *dp
= 0, *dpp
= 0;
307 if (!dp
|| bdrv_read(s
->bdrv_cur
,
308 s
->secs_cur
+ (sec
>> 5),
312 dpp
= dp
+ ((sec
& 31) << 4);
315 if (sec
+ secn
> s
->secs_cur
) {
318 dpp
= s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4);
323 for (i
= 0; i
< (secn
<< 4); i
++) {
327 result
= bdrv_write(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5),
338 static inline int onenand_erase(OneNANDState
*s
, int sec
, int num
)
340 uint8_t *blankbuf
, *tmpbuf
;
341 blankbuf
= g_malloc(512);
345 tmpbuf
= g_malloc(512);
350 memset(blankbuf
, 0xff, 512);
351 for (; num
> 0; num
--, sec
++) {
353 int erasesec
= s
->secs_cur
+ (sec
>> 5);
354 if (bdrv_write(s
->bdrv_cur
, sec
, blankbuf
, 1)) {
357 if (bdrv_read(s
->bdrv_cur
, erasesec
, tmpbuf
, 1) < 0) {
360 memcpy(tmpbuf
+ ((sec
& 31) << 4), blankbuf
, 1 << 4);
361 if (bdrv_write(s
->bdrv_cur
, erasesec
, tmpbuf
, 1) < 0) {
365 if (sec
+ 1 > s
->secs_cur
) {
368 memcpy(s
->current
+ (sec
<< 9), blankbuf
, 512);
369 memcpy(s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4),
384 static void onenand_command(OneNANDState
*s
)
389 #define SETADDR(block, page) \
390 sec = (s->addr[page] & 3) + \
391 ((((s->addr[page] >> 2) & 0x3f) + \
392 (((s->addr[block] & 0xfff) | \
393 (s->addr[block] >> 15 ? \
394 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
396 buf = (s->bufaddr & 8) ? \
397 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
398 buf += (s->bufaddr & 3) << 9;
400 buf = (s->bufaddr & 8) ? \
401 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
402 buf += (s->bufaddr & 3) << 4;
404 switch (s
->command
) {
405 case 0x00: /* Load single/multiple sector data unit into buffer */
406 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
409 if (onenand_load_main(s
, sec
, s
->count
, buf
))
410 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
414 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
415 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
418 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
419 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
420 * then we need two split the read/write into two chunks.
422 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
424 case 0x13: /* Load single/multiple spare sector into buffer */
425 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
428 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
429 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
431 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
432 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
433 * then we need two split the read/write into two chunks.
435 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
437 case 0x80: /* Program single/multiple sector data unit from buffer */
438 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
441 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
442 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
446 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
447 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
450 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
451 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
452 * then we need two split the read/write into two chunks.
454 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
456 case 0x1a: /* Program single/multiple spare area sector from buffer */
457 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
460 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
461 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
463 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
464 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
465 * then we need two split the read/write into two chunks.
467 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
469 case 0x1b: /* Copy-back program */
472 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
473 if (onenand_load_main(s
, sec
, s
->count
, buf
))
474 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
476 SETADDR(ONEN_BUF_DEST_BLOCK
, ONEN_BUF_DEST_PAGE
)
477 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
478 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
480 /* TODO: spare areas */
482 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
485 case 0x23: /* Unlock NAND array block(s) */
486 s
->intstatus
|= ONEN_INT
;
488 /* XXX the previous (?) area should be locked automatically */
489 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
490 if (b
>= s
->blocks
) {
491 s
->status
|= ONEN_ERR_CMD
;
494 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
497 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
500 case 0x27: /* Unlock All NAND array blocks */
501 s
->intstatus
|= ONEN_INT
;
503 for (b
= 0; b
< s
->blocks
; b
++) {
504 if (b
>= s
->blocks
) {
505 s
->status
|= ONEN_ERR_CMD
;
508 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
511 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
515 case 0x2a: /* Lock NAND array block(s) */
516 s
->intstatus
|= ONEN_INT
;
518 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
519 if (b
>= s
->blocks
) {
520 s
->status
|= ONEN_ERR_CMD
;
523 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
526 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKED
;
529 case 0x2c: /* Lock-tight NAND array block(s) */
530 s
->intstatus
|= ONEN_INT
;
532 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
533 if (b
>= s
->blocks
) {
534 s
->status
|= ONEN_ERR_CMD
;
537 if (s
->blockwp
[b
] == ONEN_LOCK_UNLOCKED
)
540 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKTIGHTEN
;
544 case 0x71: /* Erase-Verify-Read */
545 s
->intstatus
|= ONEN_INT
;
547 case 0x95: /* Multi-block erase */
548 qemu_irq_pulse(s
->intr
);
550 case 0x94: /* Block erase */
551 sec
= ((s
->addr
[ONEN_BUF_BLOCK
] & 0xfff) |
552 (s
->addr
[ONEN_BUF_BLOCK
] >> 15 ? s
->density_mask
: 0))
553 << (BLOCK_SHIFT
- 9);
554 if (onenand_erase(s
, sec
, 1 << (BLOCK_SHIFT
- 9)))
555 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_ERASE
;
557 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
559 case 0xb0: /* Erase suspend */
561 case 0x30: /* Erase resume */
562 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
565 case 0xf0: /* Reset NAND Flash core */
568 case 0xf3: /* Reset OneNAND */
572 case 0x65: /* OTP Access */
573 s
->intstatus
|= ONEN_INT
;
576 s
->secs_cur
= 1 << (BLOCK_SHIFT
- 9);
577 s
->addr
[ONEN_BUF_BLOCK
] = 0;
582 s
->status
|= ONEN_ERR_CMD
;
583 s
->intstatus
|= ONEN_INT
;
584 fprintf(stderr
, "%s: unknown OneNAND command %x\n",
585 __func__
, s
->command
);
588 onenand_intr_update(s
);
591 static uint64_t onenand_read(void *opaque
, target_phys_addr_t addr
,
594 OneNANDState
*s
= (OneNANDState
*) opaque
;
595 int offset
= addr
>> s
->shift
;
598 case 0x0000 ... 0xc000:
599 return lduw_le_p(s
->boot
[0] + addr
);
601 case 0xf000: /* Manufacturer ID */
603 case 0xf001: /* Device ID */
605 case 0xf002: /* Version ID */
607 /* TODO: get the following values from a real chip! */
608 case 0xf003: /* Data Buffer size */
609 return 1 << PAGE_SHIFT
;
610 case 0xf004: /* Boot Buffer size */
612 case 0xf005: /* Amount of buffers */
614 case 0xf006: /* Technology */
617 case 0xf100 ... 0xf107: /* Start addresses */
618 return s
->addr
[offset
- 0xf100];
620 case 0xf200: /* Start buffer */
621 return (s
->bufaddr
<< 8) | ((s
->count
- 1) & (1 << (PAGE_SHIFT
- 10)));
623 case 0xf220: /* Command */
625 case 0xf221: /* System Configuration 1 */
626 return s
->config
[0] & 0xffe0;
627 case 0xf222: /* System Configuration 2 */
630 case 0xf240: /* Controller Status */
632 case 0xf241: /* Interrupt */
634 case 0xf24c: /* Unlock Start Block Address */
635 return s
->unladdr
[0];
636 case 0xf24d: /* Unlock End Block Address */
637 return s
->unladdr
[1];
638 case 0xf24e: /* Write Protection Status */
641 case 0xff00: /* ECC Status */
643 case 0xff01: /* ECC Result of main area data */
644 case 0xff02: /* ECC Result of spare area data */
645 case 0xff03: /* ECC Result of main area data */
646 case 0xff04: /* ECC Result of spare area data */
647 hw_error("%s: imeplement ECC\n", __FUNCTION__
);
651 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
652 __FUNCTION__
, offset
);
656 static void onenand_write(void *opaque
, target_phys_addr_t addr
,
657 uint64_t value
, unsigned size
)
659 OneNANDState
*s
= (OneNANDState
*) opaque
;
660 int offset
= addr
>> s
->shift
;
664 case 0x0000 ... 0x01ff:
665 case 0x8000 ... 0x800f:
669 if (value
== 0x0000) {
670 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
671 onenand_load_main(s
, sec
,
672 1 << (PAGE_SHIFT
- 9), s
->data
[0][0]);
673 s
->addr
[ONEN_BUF_PAGE
] += 4;
674 s
->addr
[ONEN_BUF_PAGE
] &= 0xff;
680 case 0x00f0: /* Reset OneNAND */
684 case 0x00e0: /* Load Data into Buffer */
688 case 0x0090: /* Read Identification Data */
689 memset(s
->boot
[0], 0, 3 << s
->shift
);
690 s
->boot
[0][0 << s
->shift
] = s
->id
.man
& 0xff;
691 s
->boot
[0][1 << s
->shift
] = s
->id
.dev
& 0xff;
692 s
->boot
[0][2 << s
->shift
] = s
->wpstatus
& 0xff;
696 fprintf(stderr
, "%s: unknown OneNAND boot command %"PRIx64
"\n",
697 __FUNCTION__
, value
);
701 case 0xf100 ... 0xf107: /* Start addresses */
702 s
->addr
[offset
- 0xf100] = value
;
705 case 0xf200: /* Start buffer */
706 s
->bufaddr
= (value
>> 8) & 0xf;
707 if (PAGE_SHIFT
== 11)
708 s
->count
= (value
& 3) ?: 4;
709 else if (PAGE_SHIFT
== 10)
710 s
->count
= (value
& 1) ?: 2;
713 case 0xf220: /* Command */
714 if (s
->intstatus
& (1 << 15))
719 case 0xf221: /* System Configuration 1 */
720 s
->config
[0] = value
;
721 onenand_intr_update(s
);
722 qemu_set_irq(s
->rdy
, (s
->config
[0] >> 7) & 1);
724 case 0xf222: /* System Configuration 2 */
725 s
->config
[1] = value
;
728 case 0xf241: /* Interrupt */
729 s
->intstatus
&= value
;
730 if ((1 << 15) & ~s
->intstatus
)
731 s
->status
&= ~(ONEN_ERR_CMD
| ONEN_ERR_ERASE
|
732 ONEN_ERR_PROG
| ONEN_ERR_LOAD
);
733 onenand_intr_update(s
);
735 case 0xf24c: /* Unlock Start Block Address */
736 s
->unladdr
[0] = value
& (s
->blocks
- 1);
737 /* For some reason we have to set the end address to by default
738 * be same as start because the software forgets to write anything
740 s
->unladdr
[1] = value
& (s
->blocks
- 1);
742 case 0xf24d: /* Unlock End Block Address */
743 s
->unladdr
[1] = value
& (s
->blocks
- 1);
747 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
748 __FUNCTION__
, offset
);
752 static const MemoryRegionOps onenand_ops
= {
753 .read
= onenand_read
,
754 .write
= onenand_write
,
755 .endianness
= DEVICE_NATIVE_ENDIAN
,
758 static int onenand_initfn(SysBusDevice
*dev
)
760 OneNANDState
*s
= (OneNANDState
*)dev
;
761 uint32_t size
= 1 << (24 + ((s
->id
.dev
>> 4) & 7));
763 s
->base
= (target_phys_addr_t
)-1;
765 s
->blocks
= size
>> BLOCK_SHIFT
;
767 s
->blockwp
= g_malloc(s
->blocks
);
768 s
->density_mask
= (s
->id
.dev
& 0x08)
769 ? (1 << (6 + ((s
->id
.dev
>> 4) & 7))) : 0;
770 memory_region_init_io(&s
->iomem
, &onenand_ops
, s
, "onenand",
771 0x10000 << s
->shift
);
773 s
->image
= memset(g_malloc(size
+ (size
>> 5)),
774 0xff, size
+ (size
>> 5));
776 if (bdrv_is_read_only(s
->bdrv
)) {
777 error_report("Can't use a read-only drive");
780 s
->bdrv_cur
= s
->bdrv
;
782 s
->otp
= memset(g_malloc((64 + 2) << PAGE_SHIFT
),
783 0xff, (64 + 2) << PAGE_SHIFT
);
784 memory_region_init_ram(&s
->ram
, NULL
, "onenand.ram", 0xc000 << s
->shift
);
785 ram
= memory_region_get_ram_ptr(&s
->ram
);
786 s
->boot
[0] = ram
+ (0x0000 << s
->shift
);
787 s
->boot
[1] = ram
+ (0x8000 << s
->shift
);
788 s
->data
[0][0] = ram
+ ((0x0200 + (0 << (PAGE_SHIFT
- 1))) << s
->shift
);
789 s
->data
[0][1] = ram
+ ((0x8010 + (0 << (PAGE_SHIFT
- 6))) << s
->shift
);
790 s
->data
[1][0] = ram
+ ((0x0200 + (1 << (PAGE_SHIFT
- 1))) << s
->shift
);
791 s
->data
[1][1] = ram
+ ((0x8010 + (1 << (PAGE_SHIFT
- 6))) << s
->shift
);
792 onenand_mem_setup(s
);
793 sysbus_init_irq(dev
, &s
->intr
);
794 sysbus_init_mmio(dev
, &s
->container
);
795 vmstate_register(&dev
->qdev
,
796 ((s
->shift
& 0x7f) << 24)
797 | ((s
->id
.man
& 0xff) << 16)
798 | ((s
->id
.dev
& 0xff) << 8)
799 | (s
->id
.ver
& 0xff),
800 &vmstate_onenand
, s
);
804 static SysBusDeviceInfo onenand_info
= {
805 .init
= onenand_initfn
,
806 .qdev
.name
= "onenand",
807 .qdev
.size
= sizeof(OneNANDState
),
808 .qdev
.reset
= onenand_system_reset
,
809 .qdev
.props
= (Property
[]) {
810 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState
, id
.man
, 0),
811 DEFINE_PROP_UINT16("device_id", OneNANDState
, id
.dev
, 0),
812 DEFINE_PROP_UINT16("version_id", OneNANDState
, id
.ver
, 0),
813 DEFINE_PROP_INT32("shift", OneNANDState
, shift
, 0),
814 DEFINE_PROP_DRIVE("drive", OneNANDState
, bdrv
),
815 DEFINE_PROP_END_OF_LIST()
819 static void onenand_register_device(void)
821 sysbus_register_withprop(&onenand_info
);
824 void *onenand_raw_otp(DeviceState
*onenand_device
)
826 return FROM_SYSBUS(OneNANDState
, sysbus_from_qdev(onenand_device
))->otp
;
829 device_init(onenand_register_device
)