block: convert more bdrv_is_allocated* and bdrv_block_status* calls to coroutine...
[qemu/ar7.git] / target / s390x / kvm / kvm.c
blobbc5c56a3055056f36eec1b90b03172aafc6bcfe9
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
27 #include "cpu.h"
28 #include "s390x-internal.h"
29 #include "kvm_s390x.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "target/s390x/kvm/pv.h"
55 #define kvm_vm_check_mem_attr(s, attr) \
56 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
58 #define IPA0_DIAG 0x8300
59 #define IPA0_SIGP 0xae00
60 #define IPA0_B2 0xb200
61 #define IPA0_B9 0xb900
62 #define IPA0_EB 0xeb00
63 #define IPA0_E3 0xe300
65 #define PRIV_B2_SCLP_CALL 0x20
66 #define PRIV_B2_CSCH 0x30
67 #define PRIV_B2_HSCH 0x31
68 #define PRIV_B2_MSCH 0x32
69 #define PRIV_B2_SSCH 0x33
70 #define PRIV_B2_STSCH 0x34
71 #define PRIV_B2_TSCH 0x35
72 #define PRIV_B2_TPI 0x36
73 #define PRIV_B2_SAL 0x37
74 #define PRIV_B2_RSCH 0x38
75 #define PRIV_B2_STCRW 0x39
76 #define PRIV_B2_STCPS 0x3a
77 #define PRIV_B2_RCHP 0x3b
78 #define PRIV_B2_SCHM 0x3c
79 #define PRIV_B2_CHSC 0x5f
80 #define PRIV_B2_SIGA 0x74
81 #define PRIV_B2_XSCH 0x76
83 #define PRIV_EB_SQBS 0x8a
84 #define PRIV_EB_PCISTB 0xd0
85 #define PRIV_EB_SIC 0xd1
87 #define PRIV_B9_EQBS 0x9c
88 #define PRIV_B9_CLP 0xa0
89 #define PRIV_B9_PCISTG 0xd0
90 #define PRIV_B9_PCILG 0xd2
91 #define PRIV_B9_RPCIT 0xd3
93 #define PRIV_E3_MPCIFC 0xd0
94 #define PRIV_E3_STPCIFC 0xd4
96 #define DIAG_TIMEREVENT 0x288
97 #define DIAG_IPL 0x308
98 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318
99 #define DIAG_KVM_HYPERCALL 0x500
100 #define DIAG_KVM_BREAKPOINT 0x501
102 #define ICPT_INSTRUCTION 0x04
103 #define ICPT_PROGRAM 0x08
104 #define ICPT_EXT_INT 0x14
105 #define ICPT_WAITPSW 0x1c
106 #define ICPT_SOFT_INTERCEPT 0x24
107 #define ICPT_CPU_STOP 0x28
108 #define ICPT_OPEREXC 0x2c
109 #define ICPT_IO 0x40
110 #define ICPT_PV_INSTR 0x68
111 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
113 #define NR_LOCAL_IRQS 32
115 * Needs to be big enough to contain max_cpus emergency signals
116 * and in addition NR_LOCAL_IRQS interrupts
118 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
119 (max_cpus + NR_LOCAL_IRQS))
121 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
122 * as the dirty bitmap must be managed by bitops that take an int as
123 * position indicator. This would end at an unaligned address
124 * (0x7fffff00000). As future variants might provide larger pages
125 * and to make all addresses properly aligned, let us split at 4TB.
127 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
129 static CPUWatchpoint hw_watchpoint;
131 * We don't use a list because this structure is also used to transmit the
132 * hardware breakpoints to the kernel.
134 static struct kvm_hw_breakpoint *hw_breakpoints;
135 static int nb_hw_breakpoints;
137 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
138 KVM_CAP_LAST_INFO
141 static int cap_sync_regs;
142 static int cap_async_pf;
143 static int cap_mem_op;
144 static int cap_mem_op_extension;
145 static int cap_s390_irq;
146 static int cap_ri;
147 static int cap_hpage_1m;
148 static int cap_vcpu_resets;
149 static int cap_protected;
150 static int cap_zpci_op;
151 static int cap_protected_dump;
153 static bool mem_op_storage_key_support;
155 static int active_cmma;
157 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
159 struct kvm_device_attr attr = {
160 .group = KVM_S390_VM_MEM_CTRL,
161 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
162 .addr = (uint64_t) memory_limit,
165 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
168 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
170 int rc;
172 struct kvm_device_attr attr = {
173 .group = KVM_S390_VM_MEM_CTRL,
174 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
175 .addr = (uint64_t) &new_limit,
178 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
179 return 0;
182 rc = kvm_s390_query_mem_limit(hw_limit);
183 if (rc) {
184 return rc;
185 } else if (*hw_limit < new_limit) {
186 return -E2BIG;
189 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
192 int kvm_s390_cmma_active(void)
194 return active_cmma;
197 static bool kvm_s390_cmma_available(void)
199 static bool initialized, value;
201 if (!initialized) {
202 initialized = true;
203 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
204 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
206 return value;
209 void kvm_s390_cmma_reset(void)
211 int rc;
212 struct kvm_device_attr attr = {
213 .group = KVM_S390_VM_MEM_CTRL,
214 .attr = KVM_S390_VM_MEM_CLR_CMMA,
217 if (!kvm_s390_cmma_active()) {
218 return;
221 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
222 trace_kvm_clear_cmma(rc);
225 static void kvm_s390_enable_cmma(void)
227 int rc;
228 struct kvm_device_attr attr = {
229 .group = KVM_S390_VM_MEM_CTRL,
230 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
233 if (cap_hpage_1m) {
234 warn_report("CMM will not be enabled because it is not "
235 "compatible with huge memory backings.");
236 return;
238 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
239 active_cmma = !rc;
240 trace_kvm_enable_cmma(rc);
243 static void kvm_s390_set_crypto_attr(uint64_t attr)
245 struct kvm_device_attr attribute = {
246 .group = KVM_S390_VM_CRYPTO,
247 .attr = attr,
250 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
252 if (ret) {
253 error_report("Failed to set crypto device attribute %lu: %s",
254 attr, strerror(-ret));
258 static void kvm_s390_init_aes_kw(void)
260 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
262 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
263 NULL)) {
264 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
267 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
268 kvm_s390_set_crypto_attr(attr);
272 static void kvm_s390_init_dea_kw(void)
274 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
276 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
277 NULL)) {
278 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
281 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
282 kvm_s390_set_crypto_attr(attr);
286 void kvm_s390_crypto_reset(void)
288 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
289 kvm_s390_init_aes_kw();
290 kvm_s390_init_dea_kw();
294 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
296 if (pagesize == 4 * KiB) {
297 return;
300 if (!hpage_1m_allowed()) {
301 error_setg(errp, "This QEMU machine does not support huge page "
302 "mappings");
303 return;
306 if (pagesize != 1 * MiB) {
307 error_setg(errp, "Memory backing with 2G pages was specified, "
308 "but KVM does not support this memory backing");
309 return;
312 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
313 error_setg(errp, "Memory backing with 1M pages was specified, "
314 "but KVM does not support this memory backing");
315 return;
318 cap_hpage_1m = 1;
321 int kvm_s390_get_hpage_1m(void)
323 return cap_hpage_1m;
326 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
328 MachineClass *mc = MACHINE_CLASS(oc);
330 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
333 int kvm_arch_get_default_type(MachineState *ms)
335 return 0;
338 int kvm_arch_init(MachineState *ms, KVMState *s)
340 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
341 false, NULL);
343 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
344 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
345 "please use kernel 3.15 or newer");
346 return -1;
348 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) {
349 error_report("KVM is missing capability KVM_CAP_S390_COW - "
350 "unsupported environment");
351 return -1;
354 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
355 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
356 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
357 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION);
358 mem_op_storage_key_support = cap_mem_op_extension > 0;
359 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
360 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
361 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
362 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP);
363 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP);
365 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
366 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
367 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
368 if (ri_allowed()) {
369 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
370 cap_ri = 1;
373 if (cpu_model_allowed()) {
374 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0);
378 * The migration interface for ais was introduced with kernel 4.13
379 * but the capability itself had been active since 4.12. As migration
380 * support is considered necessary, we only try to enable this for
381 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
383 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
384 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
385 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
388 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
389 return 0;
392 int kvm_arch_irqchip_create(KVMState *s)
394 return 0;
397 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
399 return cpu->cpu_index;
402 int kvm_arch_init_vcpu(CPUState *cs)
404 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
405 S390CPU *cpu = S390_CPU(cs);
406 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
407 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
408 return 0;
411 int kvm_arch_destroy_vcpu(CPUState *cs)
413 S390CPU *cpu = S390_CPU(cs);
415 g_free(cpu->irqstate);
416 cpu->irqstate = NULL;
418 return 0;
421 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
423 CPUState *cs = CPU(cpu);
426 * The reset call is needed here to reset in-kernel vcpu data that
427 * we can't access directly from QEMU (i.e. with older kernels
428 * which don't support sync_regs/ONE_REG). Before this ioctl
429 * cpu_synchronize_state() is called in common kvm code
430 * (kvm-all).
432 if (kvm_vcpu_ioctl(cs, type)) {
433 error_report("CPU reset failed on CPU %i type %lx",
434 cs->cpu_index, type);
438 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
440 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
443 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
445 if (cap_vcpu_resets) {
446 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
447 } else {
448 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
452 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
454 if (cap_vcpu_resets) {
455 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
459 static int can_sync_regs(CPUState *cs, int regs)
461 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
464 int kvm_arch_put_registers(CPUState *cs, int level)
466 S390CPU *cpu = S390_CPU(cs);
467 CPUS390XState *env = &cpu->env;
468 struct kvm_sregs sregs;
469 struct kvm_regs regs;
470 struct kvm_fpu fpu = {};
471 int r;
472 int i;
474 /* always save the PSW and the GPRS*/
475 cs->kvm_run->psw_addr = env->psw.addr;
476 cs->kvm_run->psw_mask = env->psw.mask;
478 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
479 for (i = 0; i < 16; i++) {
480 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
481 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
483 } else {
484 for (i = 0; i < 16; i++) {
485 regs.gprs[i] = env->regs[i];
487 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
488 if (r < 0) {
489 return r;
493 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
494 for (i = 0; i < 32; i++) {
495 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
496 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
498 cs->kvm_run->s.regs.fpc = env->fpc;
499 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
500 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
501 for (i = 0; i < 16; i++) {
502 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
504 cs->kvm_run->s.regs.fpc = env->fpc;
505 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
506 } else {
507 /* Floating point */
508 for (i = 0; i < 16; i++) {
509 fpu.fprs[i] = *get_freg(env, i);
511 fpu.fpc = env->fpc;
513 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
514 if (r < 0) {
515 return r;
519 /* Do we need to save more than that? */
520 if (level == KVM_PUT_RUNTIME_STATE) {
521 return 0;
524 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
525 cs->kvm_run->s.regs.cputm = env->cputm;
526 cs->kvm_run->s.regs.ckc = env->ckc;
527 cs->kvm_run->s.regs.todpr = env->todpr;
528 cs->kvm_run->s.regs.gbea = env->gbea;
529 cs->kvm_run->s.regs.pp = env->pp;
530 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
531 } else {
533 * These ONE_REGS are not protected by a capability. As they are only
534 * necessary for migration we just trace a possible error, but don't
535 * return with an error return code.
537 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
538 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
539 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
540 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
541 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
544 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
545 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
546 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
549 /* pfault parameters */
550 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
551 cs->kvm_run->s.regs.pft = env->pfault_token;
552 cs->kvm_run->s.regs.pfs = env->pfault_select;
553 cs->kvm_run->s.regs.pfc = env->pfault_compare;
554 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
555 } else if (cap_async_pf) {
556 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
557 if (r < 0) {
558 return r;
560 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
561 if (r < 0) {
562 return r;
564 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
565 if (r < 0) {
566 return r;
570 /* access registers and control registers*/
571 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
572 for (i = 0; i < 16; i++) {
573 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
574 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
576 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
577 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
578 } else {
579 for (i = 0; i < 16; i++) {
580 sregs.acrs[i] = env->aregs[i];
581 sregs.crs[i] = env->cregs[i];
583 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
584 if (r < 0) {
585 return r;
589 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
590 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
591 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
594 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
595 cs->kvm_run->s.regs.bpbc = env->bpbc;
596 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
599 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
600 cs->kvm_run->s.regs.etoken = env->etoken;
601 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
602 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
605 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
606 cs->kvm_run->s.regs.diag318 = env->diag318_info;
607 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
610 /* Finally the prefix */
611 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
612 cs->kvm_run->s.regs.prefix = env->psa;
613 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
614 } else {
615 /* prefix is only supported via sync regs */
617 return 0;
620 int kvm_arch_get_registers(CPUState *cs)
622 S390CPU *cpu = S390_CPU(cs);
623 CPUS390XState *env = &cpu->env;
624 struct kvm_sregs sregs;
625 struct kvm_regs regs;
626 struct kvm_fpu fpu;
627 int i, r;
629 /* get the PSW */
630 env->psw.addr = cs->kvm_run->psw_addr;
631 env->psw.mask = cs->kvm_run->psw_mask;
633 /* the GPRS */
634 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
635 for (i = 0; i < 16; i++) {
636 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
638 } else {
639 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
640 if (r < 0) {
641 return r;
643 for (i = 0; i < 16; i++) {
644 env->regs[i] = regs.gprs[i];
648 /* The ACRS and CRS */
649 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
650 for (i = 0; i < 16; i++) {
651 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
652 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
654 } else {
655 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
656 if (r < 0) {
657 return r;
659 for (i = 0; i < 16; i++) {
660 env->aregs[i] = sregs.acrs[i];
661 env->cregs[i] = sregs.crs[i];
665 /* Floating point and vector registers */
666 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
667 for (i = 0; i < 32; i++) {
668 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
669 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
671 env->fpc = cs->kvm_run->s.regs.fpc;
672 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
673 for (i = 0; i < 16; i++) {
674 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
676 env->fpc = cs->kvm_run->s.regs.fpc;
677 } else {
678 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
679 if (r < 0) {
680 return r;
682 for (i = 0; i < 16; i++) {
683 *get_freg(env, i) = fpu.fprs[i];
685 env->fpc = fpu.fpc;
688 /* The prefix */
689 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
690 env->psa = cs->kvm_run->s.regs.prefix;
693 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
694 env->cputm = cs->kvm_run->s.regs.cputm;
695 env->ckc = cs->kvm_run->s.regs.ckc;
696 env->todpr = cs->kvm_run->s.regs.todpr;
697 env->gbea = cs->kvm_run->s.regs.gbea;
698 env->pp = cs->kvm_run->s.regs.pp;
699 } else {
701 * These ONE_REGS are not protected by a capability. As they are only
702 * necessary for migration we just trace a possible error, but don't
703 * return with an error return code.
705 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
706 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
707 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
708 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
709 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
712 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
713 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
716 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
717 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
720 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
721 env->bpbc = cs->kvm_run->s.regs.bpbc;
724 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
725 env->etoken = cs->kvm_run->s.regs.etoken;
726 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
729 /* pfault parameters */
730 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
731 env->pfault_token = cs->kvm_run->s.regs.pft;
732 env->pfault_select = cs->kvm_run->s.regs.pfs;
733 env->pfault_compare = cs->kvm_run->s.regs.pfc;
734 } else if (cap_async_pf) {
735 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
736 if (r < 0) {
737 return r;
739 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
740 if (r < 0) {
741 return r;
743 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
744 if (r < 0) {
745 return r;
749 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
750 env->diag318_info = cs->kvm_run->s.regs.diag318;
753 return 0;
756 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
758 int r;
759 struct kvm_device_attr attr = {
760 .group = KVM_S390_VM_TOD,
761 .attr = KVM_S390_VM_TOD_LOW,
762 .addr = (uint64_t)tod_low,
765 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
766 if (r) {
767 return r;
770 attr.attr = KVM_S390_VM_TOD_HIGH;
771 attr.addr = (uint64_t)tod_high;
772 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
775 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
777 int r;
778 struct kvm_s390_vm_tod_clock gtod;
779 struct kvm_device_attr attr = {
780 .group = KVM_S390_VM_TOD,
781 .attr = KVM_S390_VM_TOD_EXT,
782 .addr = (uint64_t)&gtod,
785 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
786 *tod_high = gtod.epoch_idx;
787 *tod_low = gtod.tod;
789 return r;
792 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
794 int r;
795 struct kvm_device_attr attr = {
796 .group = KVM_S390_VM_TOD,
797 .attr = KVM_S390_VM_TOD_LOW,
798 .addr = (uint64_t)&tod_low,
801 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
802 if (r) {
803 return r;
806 attr.attr = KVM_S390_VM_TOD_HIGH;
807 attr.addr = (uint64_t)&tod_high;
808 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
811 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
813 struct kvm_s390_vm_tod_clock gtod = {
814 .epoch_idx = tod_high,
815 .tod = tod_low,
817 struct kvm_device_attr attr = {
818 .group = KVM_S390_VM_TOD,
819 .attr = KVM_S390_VM_TOD_EXT,
820 .addr = (uint64_t)&gtod,
823 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
827 * kvm_s390_mem_op:
828 * @addr: the logical start address in guest memory
829 * @ar: the access register number
830 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
831 * @len: length that should be transferred
832 * @is_write: true = write, false = read
833 * Returns: 0 on success, non-zero if an exception or error occurred
835 * Use KVM ioctl to read/write from/to guest memory. An access exception
836 * is injected into the vCPU in case of translation errors.
838 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
839 int len, bool is_write)
841 struct kvm_s390_mem_op mem_op = {
842 .gaddr = addr,
843 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
844 .size = len,
845 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
846 : KVM_S390_MEMOP_LOGICAL_READ,
847 .buf = (uint64_t)hostbuf,
848 .ar = ar,
849 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY,
851 int ret;
853 if (!cap_mem_op) {
854 return -ENOSYS;
856 if (!hostbuf) {
857 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
859 if (mem_op_storage_key_support) {
860 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
863 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
864 if (ret < 0) {
865 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
867 return ret;
870 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
871 int len, bool is_write)
873 struct kvm_s390_mem_op mem_op = {
874 .sida_offset = offset,
875 .size = len,
876 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
877 : KVM_S390_MEMOP_SIDA_READ,
878 .buf = (uint64_t)hostbuf,
880 int ret;
882 if (!cap_mem_op || !cap_protected) {
883 return -ENOSYS;
886 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
887 if (ret < 0) {
888 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
889 abort();
891 return ret;
894 static uint8_t const *sw_bp_inst;
895 static uint8_t sw_bp_ilen;
897 static void determine_sw_breakpoint_instr(void)
899 /* DIAG 501 is used for sw breakpoints with old kernels */
900 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
901 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
902 static const uint8_t instr_0x0000[] = {0x00, 0x00};
904 if (sw_bp_inst) {
905 return;
907 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
908 sw_bp_inst = diag_501;
909 sw_bp_ilen = sizeof(diag_501);
910 trace_kvm_sw_breakpoint(4);
911 } else {
912 sw_bp_inst = instr_0x0000;
913 sw_bp_ilen = sizeof(instr_0x0000);
914 trace_kvm_sw_breakpoint(2);
918 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
920 determine_sw_breakpoint_instr();
922 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
923 sw_bp_ilen, 0) ||
924 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
925 return -EINVAL;
927 return 0;
930 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
932 uint8_t t[MAX_ILEN];
934 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
935 return -EINVAL;
936 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
937 return -EINVAL;
938 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
939 sw_bp_ilen, 1)) {
940 return -EINVAL;
943 return 0;
946 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
947 int len, int type)
949 int n;
951 for (n = 0; n < nb_hw_breakpoints; n++) {
952 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
953 (hw_breakpoints[n].len == len || len == -1)) {
954 return &hw_breakpoints[n];
958 return NULL;
961 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
963 int size;
965 if (find_hw_breakpoint(addr, len, type)) {
966 return -EEXIST;
969 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
971 if (!hw_breakpoints) {
972 nb_hw_breakpoints = 0;
973 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
974 } else {
975 hw_breakpoints =
976 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
979 if (!hw_breakpoints) {
980 nb_hw_breakpoints = 0;
981 return -ENOMEM;
984 hw_breakpoints[nb_hw_breakpoints].addr = addr;
985 hw_breakpoints[nb_hw_breakpoints].len = len;
986 hw_breakpoints[nb_hw_breakpoints].type = type;
988 nb_hw_breakpoints++;
990 return 0;
993 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
995 switch (type) {
996 case GDB_BREAKPOINT_HW:
997 type = KVM_HW_BP;
998 break;
999 case GDB_WATCHPOINT_WRITE:
1000 if (len < 1) {
1001 return -EINVAL;
1003 type = KVM_HW_WP_WRITE;
1004 break;
1005 default:
1006 return -ENOSYS;
1008 return insert_hw_breakpoint(addr, len, type);
1011 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1013 int size;
1014 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1016 if (bp == NULL) {
1017 return -ENOENT;
1020 nb_hw_breakpoints--;
1021 if (nb_hw_breakpoints > 0) {
1023 * In order to trim the array, move the last element to the position to
1024 * be removed - if necessary.
1026 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1027 *bp = hw_breakpoints[nb_hw_breakpoints];
1029 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1030 hw_breakpoints =
1031 g_realloc(hw_breakpoints, size);
1032 } else {
1033 g_free(hw_breakpoints);
1034 hw_breakpoints = NULL;
1037 return 0;
1040 void kvm_arch_remove_all_hw_breakpoints(void)
1042 nb_hw_breakpoints = 0;
1043 g_free(hw_breakpoints);
1044 hw_breakpoints = NULL;
1047 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1049 int i;
1051 if (nb_hw_breakpoints > 0) {
1052 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1053 dbg->arch.hw_bp = hw_breakpoints;
1055 for (i = 0; i < nb_hw_breakpoints; ++i) {
1056 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1057 hw_breakpoints[i].addr);
1059 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1060 } else {
1061 dbg->arch.nr_hw_bp = 0;
1062 dbg->arch.hw_bp = NULL;
1066 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1070 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1072 return MEMTXATTRS_UNSPECIFIED;
1075 int kvm_arch_process_async_events(CPUState *cs)
1077 return cs->halted;
1080 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1081 struct kvm_s390_interrupt *interrupt)
1083 int r = 0;
1085 interrupt->type = irq->type;
1086 switch (irq->type) {
1087 case KVM_S390_INT_VIRTIO:
1088 interrupt->parm = irq->u.ext.ext_params;
1089 /* fall through */
1090 case KVM_S390_INT_PFAULT_INIT:
1091 case KVM_S390_INT_PFAULT_DONE:
1092 interrupt->parm64 = irq->u.ext.ext_params2;
1093 break;
1094 case KVM_S390_PROGRAM_INT:
1095 interrupt->parm = irq->u.pgm.code;
1096 break;
1097 case KVM_S390_SIGP_SET_PREFIX:
1098 interrupt->parm = irq->u.prefix.address;
1099 break;
1100 case KVM_S390_INT_SERVICE:
1101 interrupt->parm = irq->u.ext.ext_params;
1102 break;
1103 case KVM_S390_MCHK:
1104 interrupt->parm = irq->u.mchk.cr14;
1105 interrupt->parm64 = irq->u.mchk.mcic;
1106 break;
1107 case KVM_S390_INT_EXTERNAL_CALL:
1108 interrupt->parm = irq->u.extcall.code;
1109 break;
1110 case KVM_S390_INT_EMERGENCY:
1111 interrupt->parm = irq->u.emerg.code;
1112 break;
1113 case KVM_S390_SIGP_STOP:
1114 case KVM_S390_RESTART:
1115 break; /* These types have no parameters */
1116 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1117 interrupt->parm = irq->u.io.subchannel_id << 16;
1118 interrupt->parm |= irq->u.io.subchannel_nr;
1119 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1120 interrupt->parm64 |= irq->u.io.io_int_word;
1121 break;
1122 default:
1123 r = -EINVAL;
1124 break;
1126 return r;
1129 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1131 struct kvm_s390_interrupt kvmint = {};
1132 int r;
1134 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1135 if (r < 0) {
1136 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1137 exit(1);
1140 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1141 if (r < 0) {
1142 fprintf(stderr, "KVM failed to inject interrupt\n");
1143 exit(1);
1147 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1149 CPUState *cs = CPU(cpu);
1150 int r;
1152 if (cap_s390_irq) {
1153 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1154 if (!r) {
1155 return;
1157 error_report("KVM failed to inject interrupt %llx", irq->type);
1158 exit(1);
1161 inject_vcpu_irq_legacy(cs, irq);
1164 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1166 struct kvm_s390_interrupt kvmint = {};
1167 int r;
1169 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1170 if (r < 0) {
1171 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1172 exit(1);
1175 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1176 if (r < 0) {
1177 fprintf(stderr, "KVM failed to inject interrupt\n");
1178 exit(1);
1182 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1184 struct kvm_s390_irq irq = {
1185 .type = KVM_S390_PROGRAM_INT,
1186 .u.pgm.code = code,
1188 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1189 cpu->env.psw.addr);
1190 kvm_s390_vcpu_interrupt(cpu, &irq);
1193 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1195 struct kvm_s390_irq irq = {
1196 .type = KVM_S390_PROGRAM_INT,
1197 .u.pgm.code = code,
1198 .u.pgm.trans_exc_code = te_code,
1199 .u.pgm.exc_access_id = te_code & 3,
1202 kvm_s390_vcpu_interrupt(cpu, &irq);
1205 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1206 uint16_t ipbh0)
1208 CPUS390XState *env = &cpu->env;
1209 uint64_t sccb;
1210 uint32_t code;
1211 int r;
1213 sccb = env->regs[ipbh0 & 0xf];
1214 code = env->regs[(ipbh0 & 0xf0) >> 4];
1216 switch (run->s390_sieic.icptcode) {
1217 case ICPT_PV_INSTR_NOTIFICATION:
1218 g_assert(s390_is_pv());
1219 /* The notification intercepts are currently handled by KVM */
1220 error_report("unexpected SCLP PV notification");
1221 exit(1);
1222 break;
1223 case ICPT_PV_INSTR:
1224 g_assert(s390_is_pv());
1225 sclp_service_call_protected(env, sccb, code);
1226 /* Setting the CC is done by the Ultravisor. */
1227 break;
1228 case ICPT_INSTRUCTION:
1229 g_assert(!s390_is_pv());
1230 r = sclp_service_call(env, sccb, code);
1231 if (r < 0) {
1232 kvm_s390_program_interrupt(cpu, -r);
1233 return;
1235 setcc(cpu, r);
1239 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1241 CPUS390XState *env = &cpu->env;
1242 int rc = 0;
1243 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1245 switch (ipa1) {
1246 case PRIV_B2_XSCH:
1247 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1248 break;
1249 case PRIV_B2_CSCH:
1250 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1251 break;
1252 case PRIV_B2_HSCH:
1253 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1254 break;
1255 case PRIV_B2_MSCH:
1256 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1257 break;
1258 case PRIV_B2_SSCH:
1259 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1260 break;
1261 case PRIV_B2_STCRW:
1262 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1263 break;
1264 case PRIV_B2_STSCH:
1265 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1266 break;
1267 case PRIV_B2_TSCH:
1268 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1269 fprintf(stderr, "Spurious tsch intercept\n");
1270 break;
1271 case PRIV_B2_CHSC:
1272 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1273 break;
1274 case PRIV_B2_TPI:
1275 /* This should have been handled by kvm already. */
1276 fprintf(stderr, "Spurious tpi intercept\n");
1277 break;
1278 case PRIV_B2_SCHM:
1279 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1280 run->s390_sieic.ipb, RA_IGNORED);
1281 break;
1282 case PRIV_B2_RSCH:
1283 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1284 break;
1285 case PRIV_B2_RCHP:
1286 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1287 break;
1288 case PRIV_B2_STCPS:
1289 /* We do not provide this instruction, it is suppressed. */
1290 break;
1291 case PRIV_B2_SAL:
1292 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1293 break;
1294 case PRIV_B2_SIGA:
1295 /* Not provided, set CC = 3 for subchannel not operational */
1296 setcc(cpu, 3);
1297 break;
1298 case PRIV_B2_SCLP_CALL:
1299 kvm_sclp_service_call(cpu, run, ipbh0);
1300 break;
1301 default:
1302 rc = -1;
1303 trace_kvm_insn_unhandled_priv(ipa1);
1304 break;
1307 return rc;
1310 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1311 uint8_t *ar)
1313 CPUS390XState *env = &cpu->env;
1314 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1315 uint32_t base2 = run->s390_sieic.ipb >> 28;
1316 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1317 ((run->s390_sieic.ipb & 0xff00) << 4);
1319 if (disp2 & 0x80000) {
1320 disp2 += 0xfff00000;
1322 if (ar) {
1323 *ar = base2;
1326 return (base2 ? env->regs[base2] : 0) +
1327 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1330 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1331 uint8_t *ar)
1333 CPUS390XState *env = &cpu->env;
1334 uint32_t base2 = run->s390_sieic.ipb >> 28;
1335 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1336 ((run->s390_sieic.ipb & 0xff00) << 4);
1338 if (disp2 & 0x80000) {
1339 disp2 += 0xfff00000;
1341 if (ar) {
1342 *ar = base2;
1345 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1348 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1350 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1352 if (s390_has_feat(S390_FEAT_ZPCI)) {
1353 return clp_service_call(cpu, r2, RA_IGNORED);
1354 } else {
1355 return -1;
1359 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1361 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1362 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1364 if (s390_has_feat(S390_FEAT_ZPCI)) {
1365 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1366 } else {
1367 return -1;
1371 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1373 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1374 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1376 if (s390_has_feat(S390_FEAT_ZPCI)) {
1377 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1378 } else {
1379 return -1;
1383 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1385 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1386 uint64_t fiba;
1387 uint8_t ar;
1389 if (s390_has_feat(S390_FEAT_ZPCI)) {
1390 fiba = get_base_disp_rxy(cpu, run, &ar);
1392 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1393 } else {
1394 return -1;
1398 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1400 CPUS390XState *env = &cpu->env;
1401 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1402 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1403 uint8_t isc;
1404 uint16_t mode;
1405 int r;
1407 mode = env->regs[r1] & 0xffff;
1408 isc = (env->regs[r3] >> 27) & 0x7;
1409 r = css_do_sic(env, isc, mode);
1410 if (r) {
1411 kvm_s390_program_interrupt(cpu, -r);
1414 return 0;
1417 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1419 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1420 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1422 if (s390_has_feat(S390_FEAT_ZPCI)) {
1423 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1424 } else {
1425 return -1;
1429 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1431 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1432 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1433 uint64_t gaddr;
1434 uint8_t ar;
1436 if (s390_has_feat(S390_FEAT_ZPCI)) {
1437 gaddr = get_base_disp_rsy(cpu, run, &ar);
1439 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1440 } else {
1441 return -1;
1445 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1447 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1448 uint64_t fiba;
1449 uint8_t ar;
1451 if (s390_has_feat(S390_FEAT_ZPCI)) {
1452 fiba = get_base_disp_rxy(cpu, run, &ar);
1454 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1455 } else {
1456 return -1;
1460 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1462 int r = 0;
1464 switch (ipa1) {
1465 case PRIV_B9_CLP:
1466 r = kvm_clp_service_call(cpu, run);
1467 break;
1468 case PRIV_B9_PCISTG:
1469 r = kvm_pcistg_service_call(cpu, run);
1470 break;
1471 case PRIV_B9_PCILG:
1472 r = kvm_pcilg_service_call(cpu, run);
1473 break;
1474 case PRIV_B9_RPCIT:
1475 r = kvm_rpcit_service_call(cpu, run);
1476 break;
1477 case PRIV_B9_EQBS:
1478 /* just inject exception */
1479 r = -1;
1480 break;
1481 default:
1482 r = -1;
1483 trace_kvm_insn_unhandled_priv(ipa1);
1484 break;
1487 return r;
1490 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1492 int r = 0;
1494 switch (ipbl) {
1495 case PRIV_EB_PCISTB:
1496 r = kvm_pcistb_service_call(cpu, run);
1497 break;
1498 case PRIV_EB_SIC:
1499 r = kvm_sic_service_call(cpu, run);
1500 break;
1501 case PRIV_EB_SQBS:
1502 /* just inject exception */
1503 r = -1;
1504 break;
1505 default:
1506 r = -1;
1507 trace_kvm_insn_unhandled_priv(ipbl);
1508 break;
1511 return r;
1514 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1516 int r = 0;
1518 switch (ipbl) {
1519 case PRIV_E3_MPCIFC:
1520 r = kvm_mpcifc_service_call(cpu, run);
1521 break;
1522 case PRIV_E3_STPCIFC:
1523 r = kvm_stpcifc_service_call(cpu, run);
1524 break;
1525 default:
1526 r = -1;
1527 trace_kvm_insn_unhandled_priv(ipbl);
1528 break;
1531 return r;
1534 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1536 CPUS390XState *env = &cpu->env;
1537 int ret;
1539 ret = s390_virtio_hypercall(env);
1540 if (ret == -EINVAL) {
1541 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1542 return 0;
1545 return ret;
1548 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1550 uint64_t r1, r3;
1551 int rc;
1553 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1554 r3 = run->s390_sieic.ipa & 0x000f;
1555 rc = handle_diag_288(&cpu->env, r1, r3);
1556 if (rc) {
1557 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1561 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1563 uint64_t r1, r3;
1565 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1566 r3 = run->s390_sieic.ipa & 0x000f;
1567 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1570 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1572 CPUS390XState *env = &cpu->env;
1573 unsigned long pc;
1575 pc = env->psw.addr - sw_bp_ilen;
1576 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1577 env->psw.addr = pc;
1578 return EXCP_DEBUG;
1581 return -ENOENT;
1584 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1586 CPUS390XState *env = &S390_CPU(cs)->env;
1588 /* Feat bit is set only if KVM supports sync for diag318 */
1589 if (s390_has_feat(S390_FEAT_DIAG_318)) {
1590 env->diag318_info = diag318_info;
1591 cs->kvm_run->s.regs.diag318 = diag318_info;
1592 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1594 * diag 318 info is zeroed during a clear reset and
1595 * diag 308 IPL subcodes.
1600 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1602 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1603 uint64_t diag318_info = run->s.regs.gprs[reg];
1604 CPUState *t;
1607 * DIAG 318 can only be enabled with KVM support. As such, let's
1608 * ensure a guest cannot execute this instruction erroneously.
1610 if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1611 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1612 return;
1615 CPU_FOREACH(t) {
1616 run_on_cpu(t, s390_do_cpu_set_diag318,
1617 RUN_ON_CPU_HOST_ULONG(diag318_info));
1621 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1623 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1625 int r = 0;
1626 uint16_t func_code;
1629 * For any diagnose call we support, bits 48-63 of the resulting
1630 * address specify the function code; the remainder is ignored.
1632 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1633 switch (func_code) {
1634 case DIAG_TIMEREVENT:
1635 kvm_handle_diag_288(cpu, run);
1636 break;
1637 case DIAG_IPL:
1638 kvm_handle_diag_308(cpu, run);
1639 break;
1640 case DIAG_SET_CONTROL_PROGRAM_CODES:
1641 handle_diag_318(cpu, run);
1642 break;
1643 case DIAG_KVM_HYPERCALL:
1644 r = handle_hypercall(cpu, run);
1645 break;
1646 case DIAG_KVM_BREAKPOINT:
1647 r = handle_sw_breakpoint(cpu, run);
1648 break;
1649 default:
1650 trace_kvm_insn_diag(func_code);
1651 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1652 break;
1655 return r;
1658 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1660 CPUS390XState *env = &cpu->env;
1661 const uint8_t r1 = ipa1 >> 4;
1662 const uint8_t r3 = ipa1 & 0x0f;
1663 int ret;
1664 uint8_t order;
1666 /* get order code */
1667 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1669 ret = handle_sigp(env, order, r1, r3);
1670 setcc(cpu, ret);
1671 return 0;
1674 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1676 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1677 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1678 int r = -1;
1680 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb);
1681 switch (ipa0) {
1682 case IPA0_B2:
1683 r = handle_b2(cpu, run, ipa1);
1684 break;
1685 case IPA0_B9:
1686 r = handle_b9(cpu, run, ipa1);
1687 break;
1688 case IPA0_EB:
1689 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1690 break;
1691 case IPA0_E3:
1692 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1693 break;
1694 case IPA0_DIAG:
1695 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1696 break;
1697 case IPA0_SIGP:
1698 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1699 break;
1702 if (r < 0) {
1703 r = 0;
1704 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1707 return r;
1710 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1711 int pswoffset)
1713 CPUState *cs = CPU(cpu);
1715 s390_cpu_halt(cpu);
1716 cpu->env.crash_reason = reason;
1717 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1720 /* try to detect pgm check loops */
1721 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1723 CPUState *cs = CPU(cpu);
1724 PSW oldpsw, newpsw;
1726 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1727 offsetof(LowCore, program_new_psw));
1728 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1729 offsetof(LowCore, program_new_psw) + 8);
1730 oldpsw.mask = run->psw_mask;
1731 oldpsw.addr = run->psw_addr;
1733 * Avoid endless loops of operation exceptions, if the pgm new
1734 * PSW will cause a new operation exception.
1735 * The heuristic checks if the pgm new psw is within 6 bytes before
1736 * the faulting psw address (with same DAT, AS settings) and the
1737 * new psw is not a wait psw and the fault was not triggered by
1738 * problem state. In that case go into crashed state.
1741 if (oldpsw.addr - newpsw.addr <= 6 &&
1742 !(newpsw.mask & PSW_MASK_WAIT) &&
1743 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1744 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1745 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1746 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1747 offsetof(LowCore, program_new_psw));
1748 return EXCP_HALTED;
1750 return 0;
1753 static int handle_intercept(S390CPU *cpu)
1755 CPUState *cs = CPU(cpu);
1756 struct kvm_run *run = cs->kvm_run;
1757 int icpt_code = run->s390_sieic.icptcode;
1758 int r = 0;
1760 trace_kvm_intercept(icpt_code, (long)run->psw_addr);
1761 switch (icpt_code) {
1762 case ICPT_INSTRUCTION:
1763 case ICPT_PV_INSTR:
1764 case ICPT_PV_INSTR_NOTIFICATION:
1765 r = handle_instruction(cpu, run);
1766 break;
1767 case ICPT_PROGRAM:
1768 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1769 offsetof(LowCore, program_new_psw));
1770 r = EXCP_HALTED;
1771 break;
1772 case ICPT_EXT_INT:
1773 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1774 offsetof(LowCore, external_new_psw));
1775 r = EXCP_HALTED;
1776 break;
1777 case ICPT_WAITPSW:
1778 /* disabled wait, since enabled wait is handled in kernel */
1779 s390_handle_wait(cpu);
1780 r = EXCP_HALTED;
1781 break;
1782 case ICPT_CPU_STOP:
1783 do_stop_interrupt(&cpu->env);
1784 r = EXCP_HALTED;
1785 break;
1786 case ICPT_OPEREXC:
1787 /* check for break points */
1788 r = handle_sw_breakpoint(cpu, run);
1789 if (r == -ENOENT) {
1790 /* Then check for potential pgm check loops */
1791 r = handle_oper_loop(cpu, run);
1792 if (r == 0) {
1793 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1796 break;
1797 case ICPT_SOFT_INTERCEPT:
1798 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1799 exit(1);
1800 break;
1801 case ICPT_IO:
1802 fprintf(stderr, "KVM unimplemented icpt IO\n");
1803 exit(1);
1804 break;
1805 default:
1806 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1807 exit(1);
1808 break;
1811 return r;
1814 static int handle_tsch(S390CPU *cpu)
1816 CPUState *cs = CPU(cpu);
1817 struct kvm_run *run = cs->kvm_run;
1818 int ret;
1820 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1821 RA_IGNORED);
1822 if (ret < 0) {
1824 * Failure.
1825 * If an I/O interrupt had been dequeued, we have to reinject it.
1827 if (run->s390_tsch.dequeued) {
1828 s390_io_interrupt(run->s390_tsch.subchannel_id,
1829 run->s390_tsch.subchannel_nr,
1830 run->s390_tsch.io_int_parm,
1831 run->s390_tsch.io_int_word);
1833 ret = 0;
1835 return ret;
1838 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1840 const MachineState *ms = MACHINE(qdev_get_machine());
1841 uint16_t conf_cpus = 0, reserved_cpus = 0;
1842 SysIB_322 sysib;
1843 int del, i;
1845 if (s390_is_pv()) {
1846 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1847 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1848 return;
1850 /* Shift the stack of Extended Names to prepare for our own data */
1851 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1852 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1853 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1854 * assumed it's not capable of managing Extended Names for lower levels.
1856 for (del = 1; del < sysib.count; del++) {
1857 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1858 break;
1861 if (del < sysib.count) {
1862 memset(sysib.ext_names[del], 0,
1863 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1866 /* count the cpus and split them into configured and reserved ones */
1867 for (i = 0; i < ms->possible_cpus->len; i++) {
1868 if (ms->possible_cpus->cpus[i].cpu) {
1869 conf_cpus++;
1870 } else {
1871 reserved_cpus++;
1874 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1875 sysib.vm[0].conf_cpus = conf_cpus;
1876 sysib.vm[0].reserved_cpus = reserved_cpus;
1878 /* Insert short machine name in EBCDIC, padded with blanks */
1879 if (qemu_name) {
1880 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1881 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1882 strlen(qemu_name)));
1884 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1885 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1886 * considered by s390 as not capable of providing any Extended Name.
1887 * Therefore if no name was specified on qemu invocation, we go with the
1888 * same "KVMguest" default, which KVM has filled into short name field.
1890 strpadcpy((char *)sysib.ext_names[0],
1891 sizeof(sysib.ext_names[0]),
1892 qemu_name ?: "KVMguest", '\0');
1894 /* Insert UUID */
1895 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1897 if (s390_is_pv()) {
1898 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1899 } else {
1900 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1904 static int handle_stsi(S390CPU *cpu)
1906 CPUState *cs = CPU(cpu);
1907 struct kvm_run *run = cs->kvm_run;
1909 switch (run->s390_stsi.fc) {
1910 case 3:
1911 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1912 return 0;
1914 /* Only sysib 3.2.2 needs post-handling for now. */
1915 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1916 return 0;
1917 default:
1918 return 0;
1922 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1924 CPUState *cs = CPU(cpu);
1925 struct kvm_run *run = cs->kvm_run;
1927 int ret = 0;
1928 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1930 switch (arch_info->type) {
1931 case KVM_HW_WP_WRITE:
1932 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1933 cs->watchpoint_hit = &hw_watchpoint;
1934 hw_watchpoint.vaddr = arch_info->addr;
1935 hw_watchpoint.flags = BP_MEM_WRITE;
1936 ret = EXCP_DEBUG;
1938 break;
1939 case KVM_HW_BP:
1940 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1941 ret = EXCP_DEBUG;
1943 break;
1944 case KVM_SINGLESTEP:
1945 if (cs->singlestep_enabled) {
1946 ret = EXCP_DEBUG;
1948 break;
1949 default:
1950 ret = -ENOSYS;
1953 return ret;
1956 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1958 S390CPU *cpu = S390_CPU(cs);
1959 int ret = 0;
1961 qemu_mutex_lock_iothread();
1963 kvm_cpu_synchronize_state(cs);
1965 switch (run->exit_reason) {
1966 case KVM_EXIT_S390_SIEIC:
1967 ret = handle_intercept(cpu);
1968 break;
1969 case KVM_EXIT_S390_RESET:
1970 s390_ipl_reset_request(cs, S390_RESET_REIPL);
1971 break;
1972 case KVM_EXIT_S390_TSCH:
1973 ret = handle_tsch(cpu);
1974 break;
1975 case KVM_EXIT_S390_STSI:
1976 ret = handle_stsi(cpu);
1977 break;
1978 case KVM_EXIT_DEBUG:
1979 ret = kvm_arch_handle_debug_exit(cpu);
1980 break;
1981 default:
1982 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1983 break;
1985 qemu_mutex_unlock_iothread();
1987 if (ret == 0) {
1988 ret = EXCP_INTERRUPT;
1990 return ret;
1993 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1995 return true;
1998 void kvm_s390_enable_css_support(S390CPU *cpu)
2000 int r;
2002 /* Activate host kernel channel subsystem support. */
2003 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2004 assert(r == 0);
2007 void kvm_arch_init_irq_routing(KVMState *s)
2010 * Note that while irqchip capabilities generally imply that cpustates
2011 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2012 * have to override the common code kvm_halt_in_kernel_allowed setting.
2014 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2015 kvm_gsi_routing_allowed = true;
2016 kvm_halt_in_kernel_allowed = false;
2020 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2021 int vq, bool assign)
2023 struct kvm_ioeventfd kick = {
2024 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2025 KVM_IOEVENTFD_FLAG_DATAMATCH,
2026 .fd = event_notifier_get_fd(notifier),
2027 .datamatch = vq,
2028 .addr = sch,
2029 .len = 8,
2031 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2032 kick.datamatch);
2033 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2034 return -ENOSYS;
2036 if (!assign) {
2037 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2039 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2042 int kvm_s390_get_protected_dump(void)
2044 return cap_protected_dump;
2047 int kvm_s390_get_ri(void)
2049 return cap_ri;
2052 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2054 struct kvm_mp_state mp_state = {};
2055 int ret;
2057 /* the kvm part might not have been initialized yet */
2058 if (CPU(cpu)->kvm_state == NULL) {
2059 return 0;
2062 switch (cpu_state) {
2063 case S390_CPU_STATE_STOPPED:
2064 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2065 break;
2066 case S390_CPU_STATE_CHECK_STOP:
2067 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2068 break;
2069 case S390_CPU_STATE_OPERATING:
2070 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2071 break;
2072 case S390_CPU_STATE_LOAD:
2073 mp_state.mp_state = KVM_MP_STATE_LOAD;
2074 break;
2075 default:
2076 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2077 cpu_state);
2078 exit(1);
2081 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2082 if (ret) {
2083 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2084 strerror(-ret));
2087 return ret;
2090 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2092 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2093 struct kvm_s390_irq_state irq_state = {
2094 .buf = (uint64_t) cpu->irqstate,
2095 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2097 CPUState *cs = CPU(cpu);
2098 int32_t bytes;
2100 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2101 return;
2104 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2105 if (bytes < 0) {
2106 cpu->irqstate_saved_size = 0;
2107 error_report("Migration of interrupt state failed");
2108 return;
2111 cpu->irqstate_saved_size = bytes;
2114 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2116 CPUState *cs = CPU(cpu);
2117 struct kvm_s390_irq_state irq_state = {
2118 .buf = (uint64_t) cpu->irqstate,
2119 .len = cpu->irqstate_saved_size,
2121 int r;
2123 if (cpu->irqstate_saved_size == 0) {
2124 return 0;
2127 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2128 return -ENOSYS;
2131 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2132 if (r) {
2133 error_report("Setting interrupt state failed %d", r);
2135 return r;
2138 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2139 uint64_t address, uint32_t data, PCIDevice *dev)
2141 S390PCIBusDevice *pbdev;
2142 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2144 if (!dev) {
2145 trace_kvm_msi_route_fixup("no pci device");
2146 return -ENODEV;
2149 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2150 if (!pbdev) {
2151 trace_kvm_msi_route_fixup("no zpci device");
2152 return -ENODEV;
2155 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2156 route->flags = 0;
2157 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2158 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2159 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2160 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2161 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2162 return 0;
2165 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2166 int vector, PCIDevice *dev)
2168 return 0;
2171 int kvm_arch_release_virq_post(int virq)
2173 return 0;
2176 int kvm_arch_msi_data_to_gsi(uint32_t data)
2178 abort();
2181 static int query_cpu_subfunc(S390FeatBitmap features)
2183 struct kvm_s390_vm_cpu_subfunc prop = {};
2184 struct kvm_device_attr attr = {
2185 .group = KVM_S390_VM_CPU_MODEL,
2186 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2187 .addr = (uint64_t) &prop,
2189 int rc;
2191 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2192 if (rc) {
2193 return rc;
2197 * We're going to add all subfunctions now, if the corresponding feature
2198 * is available that unlocks the query functions.
2200 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2201 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2202 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2204 if (test_bit(S390_FEAT_MSA, features)) {
2205 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2206 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2207 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2208 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2209 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2211 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2212 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2214 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2215 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2216 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2217 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2218 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2220 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2221 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2223 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2224 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2226 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2227 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2229 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2230 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2232 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2233 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2235 return 0;
2238 static int configure_cpu_subfunc(const S390FeatBitmap features)
2240 struct kvm_s390_vm_cpu_subfunc prop = {};
2241 struct kvm_device_attr attr = {
2242 .group = KVM_S390_VM_CPU_MODEL,
2243 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2244 .addr = (uint64_t) &prop,
2247 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2248 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2249 /* hardware support might be missing, IBC will handle most of this */
2250 return 0;
2253 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2254 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2255 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2257 if (test_bit(S390_FEAT_MSA, features)) {
2258 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2259 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2260 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2261 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2262 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2264 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2265 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2267 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2268 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2269 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2270 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2271 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2273 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2274 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2276 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2277 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2279 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2280 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2282 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2283 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2285 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2286 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2288 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2291 static bool ap_available(void)
2293 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2294 KVM_S390_VM_CRYPTO_ENABLE_APIE);
2297 static bool ap_enabled(const S390FeatBitmap features)
2299 return test_bit(S390_FEAT_AP, features);
2302 static bool uv_feat_supported(void)
2304 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2305 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST);
2308 static int query_uv_feat_guest(S390FeatBitmap features)
2310 struct kvm_s390_vm_cpu_uv_feat prop = {};
2311 struct kvm_device_attr attr = {
2312 .group = KVM_S390_VM_CPU_MODEL,
2313 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST,
2314 .addr = (uint64_t) &prop,
2316 int rc;
2318 /* AP support check is currently the only user of the UV feature test */
2319 if (!(uv_feat_supported() && ap_available())) {
2320 return 0;
2323 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2324 if (rc) {
2325 return rc;
2328 if (prop.ap) {
2329 set_bit(S390_FEAT_UV_FEAT_AP, features);
2331 if (prop.ap_intr) {
2332 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features);
2335 return 0;
2338 static int kvm_to_feat[][2] = {
2339 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2340 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2341 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2342 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2343 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2344 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2345 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2346 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2347 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2348 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2349 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2350 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2351 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2352 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2355 static int query_cpu_feat(S390FeatBitmap features)
2357 struct kvm_s390_vm_cpu_feat prop = {};
2358 struct kvm_device_attr attr = {
2359 .group = KVM_S390_VM_CPU_MODEL,
2360 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2361 .addr = (uint64_t) &prop,
2363 int rc;
2364 int i;
2366 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2367 if (rc) {
2368 return rc;
2371 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2372 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2373 set_bit(kvm_to_feat[i][1], features);
2376 return 0;
2379 static int configure_cpu_feat(const S390FeatBitmap features)
2381 struct kvm_s390_vm_cpu_feat prop = {};
2382 struct kvm_device_attr attr = {
2383 .group = KVM_S390_VM_CPU_MODEL,
2384 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2385 .addr = (uint64_t) &prop,
2387 int i;
2389 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2390 if (test_bit(kvm_to_feat[i][1], features)) {
2391 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2394 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2397 bool kvm_s390_cpu_models_supported(void)
2399 if (!cpu_model_allowed()) {
2400 /* compatibility machines interfere with the cpu model */
2401 return false;
2403 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2404 KVM_S390_VM_CPU_MACHINE) &&
2405 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2406 KVM_S390_VM_CPU_PROCESSOR) &&
2407 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2408 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2409 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2410 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2411 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2412 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2415 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2417 struct kvm_s390_vm_cpu_machine prop = {};
2418 struct kvm_device_attr attr = {
2419 .group = KVM_S390_VM_CPU_MODEL,
2420 .attr = KVM_S390_VM_CPU_MACHINE,
2421 .addr = (uint64_t) &prop,
2423 uint16_t unblocked_ibc = 0, cpu_type = 0;
2424 int rc;
2426 memset(model, 0, sizeof(*model));
2428 if (!kvm_s390_cpu_models_supported()) {
2429 error_setg(errp, "KVM doesn't support CPU models");
2430 return;
2433 /* query the basic cpu model properties */
2434 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2435 if (rc) {
2436 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2437 return;
2440 cpu_type = cpuid_type(prop.cpuid);
2441 if (has_ibc(prop.ibc)) {
2442 model->lowest_ibc = lowest_ibc(prop.ibc);
2443 unblocked_ibc = unblocked_ibc(prop.ibc);
2445 model->cpu_id = cpuid_id(prop.cpuid);
2446 model->cpu_id_format = cpuid_format(prop.cpuid);
2447 model->cpu_ver = 0xff;
2449 /* get supported cpu features indicated via STFL(E) */
2450 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2451 (uint8_t *) prop.fac_mask);
2452 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2453 if (test_bit(S390_FEAT_STFLE, model->features)) {
2454 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2456 /* get supported cpu features indicated e.g. via SCLP */
2457 rc = query_cpu_feat(model->features);
2458 if (rc) {
2459 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2460 return;
2462 /* get supported cpu subfunctions indicated via query / test bit */
2463 rc = query_cpu_subfunc(model->features);
2464 if (rc) {
2465 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2466 return;
2469 /* PTFF subfunctions might be indicated although kernel support missing */
2470 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2471 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2472 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2473 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2474 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2477 /* with cpu model support, CMM is only indicated if really available */
2478 if (kvm_s390_cmma_available()) {
2479 set_bit(S390_FEAT_CMM, model->features);
2480 } else {
2481 /* no cmm -> no cmm nt */
2482 clear_bit(S390_FEAT_CMM_NT, model->features);
2485 /* bpb needs kernel support for migration, VSIE and reset */
2486 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2487 clear_bit(S390_FEAT_BPB, model->features);
2491 * If we have support for protected virtualization, indicate
2492 * the protected virtualization IPL unpack facility.
2494 if (cap_protected) {
2495 set_bit(S390_FEAT_UNPACK, model->features);
2498 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2499 set_bit(S390_FEAT_ZPCI, model->features);
2500 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2502 if (s390_known_cpu_type(cpu_type)) {
2503 /* we want the exact model, even if some features are missing */
2504 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2505 ibc_ec_ga(unblocked_ibc), NULL);
2506 } else {
2507 /* model unknown, e.g. too new - search using features */
2508 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2509 ibc_ec_ga(unblocked_ibc),
2510 model->features);
2512 if (!model->def) {
2513 error_setg(errp, "KVM: host CPU model could not be identified");
2514 return;
2516 /* for now, we can only provide the AP feature with HW support */
2517 if (ap_available()) {
2518 set_bit(S390_FEAT_AP, model->features);
2522 * Extended-Length SCCB is handled entirely within QEMU.
2523 * For PV guests this is completely fenced by the Ultravisor, as Service
2524 * Call error checking and STFLE interpretation are handled via SIE.
2526 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2528 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2529 set_bit(S390_FEAT_DIAG_318, model->features);
2532 /* Test for Ultravisor features that influence secure guest behavior */
2533 query_uv_feat_guest(model->features);
2535 /* strip of features that are not part of the maximum model */
2536 bitmap_and(model->features, model->features, model->def->full_feat,
2537 S390_FEAT_MAX);
2540 static int configure_uv_feat_guest(const S390FeatBitmap features)
2542 struct kvm_s390_vm_cpu_uv_feat uv_feat = {};
2543 struct kvm_device_attr attribute = {
2544 .group = KVM_S390_VM_CPU_MODEL,
2545 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST,
2546 .addr = (__u64) &uv_feat,
2549 /* AP support check is currently the only user of the UV feature test */
2550 if (!(uv_feat_supported() && ap_enabled(features))) {
2551 return 0;
2554 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) {
2555 uv_feat.ap = 1;
2557 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) {
2558 uv_feat.ap_intr = 1;
2561 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
2564 static void kvm_s390_configure_apie(bool interpret)
2566 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2567 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2569 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2570 kvm_s390_set_crypto_attr(attr);
2574 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2576 struct kvm_s390_vm_cpu_processor prop = {
2577 .fac_list = { 0 },
2579 struct kvm_device_attr attr = {
2580 .group = KVM_S390_VM_CPU_MODEL,
2581 .attr = KVM_S390_VM_CPU_PROCESSOR,
2582 .addr = (uint64_t) &prop,
2584 int rc;
2586 if (!model) {
2587 /* compatibility handling if cpu models are disabled */
2588 if (kvm_s390_cmma_available()) {
2589 kvm_s390_enable_cmma();
2591 return;
2593 if (!kvm_s390_cpu_models_supported()) {
2594 error_setg(errp, "KVM doesn't support CPU models");
2595 return;
2597 prop.cpuid = s390_cpuid_from_cpu_model(model);
2598 prop.ibc = s390_ibc_from_cpu_model(model);
2599 /* configure cpu features indicated via STFL(e) */
2600 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2601 (uint8_t *) prop.fac_list);
2602 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2603 if (rc) {
2604 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2605 return;
2607 /* configure cpu features indicated e.g. via SCLP */
2608 rc = configure_cpu_feat(model->features);
2609 if (rc) {
2610 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2611 return;
2613 /* configure cpu subfunctions indicated via query / test bit */
2614 rc = configure_cpu_subfunc(model->features);
2615 if (rc) {
2616 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2617 return;
2619 /* enable CMM via CMMA */
2620 if (test_bit(S390_FEAT_CMM, model->features)) {
2621 kvm_s390_enable_cmma();
2624 if (ap_enabled(model->features)) {
2625 kvm_s390_configure_apie(true);
2628 /* configure UV-features for the guest indicated via query / test_bit */
2629 rc = configure_uv_feat_guest(model->features);
2630 if (rc) {
2631 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc);
2632 return;
2636 void kvm_s390_restart_interrupt(S390CPU *cpu)
2638 struct kvm_s390_irq irq = {
2639 .type = KVM_S390_RESTART,
2642 kvm_s390_vcpu_interrupt(cpu, &irq);
2645 void kvm_s390_stop_interrupt(S390CPU *cpu)
2647 struct kvm_s390_irq irq = {
2648 .type = KVM_S390_SIGP_STOP,
2651 kvm_s390_vcpu_interrupt(cpu, &irq);
2654 bool kvm_arch_cpu_check_are_resettable(void)
2656 return true;
2659 int kvm_s390_get_zpci_op(void)
2661 return cap_zpci_op;
2664 void kvm_arch_accel_class_init(ObjectClass *oc)