hw/arm: Model TCMs in the SSE-300, not the AN547
[qemu/ar7.git] / hw / arm / mps2-tz.c
blobe23830f4b7df05f52506ca101f33ddf9886112e2
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
19 * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524
20 * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547
22 * Links to the TRM for the board itself and to the various Application
23 * Notes which document the FPGA images can be found here:
24 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
26 * Board TRM:
27 * https://developer.arm.com/documentation/100112/latest/
28 * Application Note AN505:
29 * https://developer.arm.com/documentation/dai0505/latest/
30 * Application Note AN521:
31 * https://developer.arm.com/documentation/dai0521/latest/
32 * Application Note AN524:
33 * https://developer.arm.com/documentation/dai0524/latest/
34 * Application Note AN547:
35 * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf
37 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
38 * (ARM ECM0601256) for the details of some of the device layout:
39 * https://developer.arm.com/documentation/ecm0601256/latest
40 * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines
41 * most of the device layout:
42 * https://developer.arm.com/documentation/101104/latest/
43 * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM:
44 * https://developer.arm.com/documentation/101773/latest/
47 #include "qemu/osdep.h"
48 #include "qemu/units.h"
49 #include "qemu/cutils.h"
50 #include "qapi/error.h"
51 #include "qemu/error-report.h"
52 #include "hw/arm/boot.h"
53 #include "hw/arm/armv7m.h"
54 #include "hw/or-irq.h"
55 #include "hw/boards.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/sysemu.h"
58 #include "sysemu/reset.h"
59 #include "hw/misc/unimp.h"
60 #include "hw/char/cmsdk-apb-uart.h"
61 #include "hw/timer/cmsdk-apb-timer.h"
62 #include "hw/misc/mps2-scc.h"
63 #include "hw/misc/mps2-fpgaio.h"
64 #include "hw/misc/tz-mpc.h"
65 #include "hw/misc/tz-msc.h"
66 #include "hw/arm/armsse.h"
67 #include "hw/dma/pl080.h"
68 #include "hw/rtc/pl031.h"
69 #include "hw/ssi/pl022.h"
70 #include "hw/i2c/arm_sbcon_i2c.h"
71 #include "hw/net/lan9118.h"
72 #include "net/net.h"
73 #include "hw/core/split-irq.h"
74 #include "hw/qdev-clock.h"
75 #include "qom/object.h"
76 #include "hw/irq.h"
78 #define MPS2TZ_NUMIRQ_MAX 96
79 #define MPS2TZ_RAM_MAX 5
81 typedef enum MPS2TZFPGAType {
82 FPGA_AN505,
83 FPGA_AN521,
84 FPGA_AN524,
85 FPGA_AN547,
86 } MPS2TZFPGAType;
89 * Define the layout of RAM in a board, including which parts are
90 * behind which MPCs.
91 * mrindex specifies the index into mms->ram[] to use for the backing RAM;
92 * -1 means "use the system RAM".
94 typedef struct RAMInfo {
95 const char *name;
96 uint32_t base;
97 uint32_t size;
98 int mpc; /* MPC number, -1 for "not behind an MPC" */
99 int mrindex;
100 int flags;
101 } RAMInfo;
104 * Flag values:
105 * IS_ALIAS: this RAM area is an alias to the upstream end of the
106 * MPC specified by its .mpc value
107 * IS_ROM: this RAM area is read-only
109 #define IS_ALIAS 1
110 #define IS_ROM 2
112 struct MPS2TZMachineClass {
113 MachineClass parent;
114 MPS2TZFPGAType fpga_type;
115 uint32_t scc_id;
116 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
117 uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */
118 uint32_t len_oscclk;
119 const uint32_t *oscclk;
120 uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */
121 bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */
122 bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */
123 int numirq; /* Number of external interrupts */
124 int uart_overflow_irq; /* number of the combined UART overflow IRQ */
125 uint32_t init_svtor; /* init-svtor setting for SSE */
126 uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */
127 const RAMInfo *raminfo;
128 const char *armsse_type;
129 uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */
132 struct MPS2TZMachineState {
133 MachineState parent;
135 ARMSSE iotkit;
136 MemoryRegion ram[MPS2TZ_RAM_MAX];
137 MemoryRegion eth_usb_container;
139 MPS2SCC scc;
140 MPS2FPGAIO fpgaio;
141 TZPPC ppc[5];
142 TZMPC mpc[3];
143 PL022State spi[5];
144 ArmSbconI2CState i2c[5];
145 UnimplementedDeviceState i2s_audio;
146 UnimplementedDeviceState gpio[4];
147 UnimplementedDeviceState gfx;
148 UnimplementedDeviceState cldc;
149 UnimplementedDeviceState usb;
150 PL031State rtc;
151 PL080State dma[4];
152 TZMSC msc[4];
153 CMSDKAPBUART uart[6];
154 SplitIRQ sec_resp_splitter;
155 qemu_or_irq uart_irq_orgate;
156 DeviceState *lan9118;
157 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX];
158 Clock *sysclk;
159 Clock *s32kclk;
161 bool remap;
162 qemu_irq remap_irq;
165 #define TYPE_MPS2TZ_MACHINE "mps2tz"
166 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
167 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
168 #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524")
169 #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547")
171 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
173 /* Slow 32Khz S32KCLK frequency in Hz */
174 #define S32KCLK_FRQ (32 * 1000)
177 * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit
178 * emulation of that much guest RAM, so artificially make it smaller.
180 #if HOST_LONG_BITS == 32
181 #define MPS3_DDR_SIZE (1 * GiB)
182 #else
183 #define MPS3_DDR_SIZE (2 * GiB)
184 #endif
186 static const uint32_t an505_oscclk[] = {
187 40000000,
188 24580000,
189 25000000,
192 static const uint32_t an524_oscclk[] = {
193 24000000,
194 32000000,
195 50000000,
196 50000000,
197 24576000,
198 23750000,
201 static const RAMInfo an505_raminfo[] = { {
202 .name = "ssram-0",
203 .base = 0x00000000,
204 .size = 0x00400000,
205 .mpc = 0,
206 .mrindex = 0,
207 }, {
208 .name = "ssram-1",
209 .base = 0x28000000,
210 .size = 0x00200000,
211 .mpc = 1,
212 .mrindex = 1,
213 }, {
214 .name = "ssram-2",
215 .base = 0x28200000,
216 .size = 0x00200000,
217 .mpc = 2,
218 .mrindex = 2,
219 }, {
220 .name = "ssram-0-alias",
221 .base = 0x00400000,
222 .size = 0x00400000,
223 .mpc = 0,
224 .mrindex = 3,
225 .flags = IS_ALIAS,
226 }, {
227 /* Use the largest bit of contiguous RAM as our "system memory" */
228 .name = "mps.ram",
229 .base = 0x80000000,
230 .size = 16 * MiB,
231 .mpc = -1,
232 .mrindex = -1,
233 }, {
234 .name = NULL,
239 * Note that the addresses and MPC numbering here should match up
240 * with those used in remap_memory(), which can swap the BRAM and QSPI.
242 static const RAMInfo an524_raminfo[] = { {
243 .name = "bram",
244 .base = 0x00000000,
245 .size = 512 * KiB,
246 .mpc = 0,
247 .mrindex = 0,
248 }, {
249 /* We don't model QSPI flash yet; for now expose it as simple ROM */
250 .name = "QSPI",
251 .base = 0x28000000,
252 .size = 8 * MiB,
253 .mpc = 1,
254 .mrindex = 1,
255 .flags = IS_ROM,
256 }, {
257 .name = "DDR",
258 .base = 0x60000000,
259 .size = MPS3_DDR_SIZE,
260 .mpc = 2,
261 .mrindex = -1,
262 }, {
263 .name = NULL,
267 static const RAMInfo an547_raminfo[] = { {
268 .name = "sram",
269 .base = 0x01000000,
270 .size = 2 * MiB,
271 .mpc = 0,
272 .mrindex = 1,
273 }, {
274 .name = "sram 2",
275 .base = 0x21000000,
276 .size = 4 * MiB,
277 .mpc = -1,
278 .mrindex = 3,
279 }, {
280 /* We don't model QSPI flash yet; for now expose it as simple ROM */
281 .name = "QSPI",
282 .base = 0x28000000,
283 .size = 8 * MiB,
284 .mpc = 1,
285 .mrindex = 4,
286 .flags = IS_ROM,
287 }, {
288 .name = "DDR",
289 .base = 0x60000000,
290 .size = MPS3_DDR_SIZE,
291 .mpc = 2,
292 .mrindex = -1,
293 }, {
294 .name = NULL,
298 static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc)
300 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
301 const RAMInfo *p;
302 const RAMInfo *found = NULL;
304 for (p = mmc->raminfo; p->name; p++) {
305 if (p->mpc == mpc && !(p->flags & IS_ALIAS)) {
306 /* There should only be one entry in the array for this MPC */
307 g_assert(!found);
308 found = p;
311 /* if raminfo array doesn't have an entry for each MPC this is a bug */
312 assert(found);
313 return found;
316 static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms,
317 const RAMInfo *raminfo)
319 /* Return an initialized MemoryRegion for the RAMInfo. */
320 MemoryRegion *ram;
322 if (raminfo->mrindex < 0) {
323 /* Means this RAMInfo is for QEMU's "system memory" */
324 MachineState *machine = MACHINE(mms);
325 assert(!(raminfo->flags & IS_ROM));
326 return machine->ram;
329 assert(raminfo->mrindex < MPS2TZ_RAM_MAX);
330 ram = &mms->ram[raminfo->mrindex];
332 memory_region_init_ram(ram, NULL, raminfo->name,
333 raminfo->size, &error_fatal);
334 if (raminfo->flags & IS_ROM) {
335 memory_region_set_readonly(ram, true);
337 return ram;
340 /* Create an alias of an entire original MemoryRegion @orig
341 * located at @base in the memory map.
343 static void make_ram_alias(MemoryRegion *mr, const char *name,
344 MemoryRegion *orig, hwaddr base)
346 memory_region_init_alias(mr, NULL, name, orig, 0,
347 memory_region_size(orig));
348 memory_region_add_subregion(get_system_memory(), base, mr);
351 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
354 * Return a qemu_irq which will signal IRQ n to all CPUs in the
355 * SSE. The irqno should be as the CPU sees it, so the first
356 * external-to-the-SSE interrupt is 32.
358 MachineClass *mc = MACHINE_GET_CLASS(mms);
359 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
361 assert(irqno >= 32 && irqno < (mmc->numirq + 32));
364 * Convert from "CPU irq number" (as listed in the FPGA image
365 * documentation) to the SSE external-interrupt number.
367 irqno -= 32;
369 if (mc->max_cpus > 1) {
370 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
371 } else {
372 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
376 /* Most of the devices in the AN505 FPGA image sit behind
377 * Peripheral Protection Controllers. These data structures
378 * define the layout of which devices sit behind which PPCs.
379 * The devfn for each port is a function which creates, configures
380 * and initializes the device, returning the MemoryRegion which
381 * needs to be plugged into the downstream end of the PPC port.
383 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
384 const char *name, hwaddr size,
385 const int *irqs);
387 typedef struct PPCPortInfo {
388 const char *name;
389 MakeDevFn *devfn;
390 void *opaque;
391 hwaddr addr;
392 hwaddr size;
393 int irqs[3]; /* currently no device needs more IRQ lines than this */
394 } PPCPortInfo;
396 typedef struct PPCInfo {
397 const char *name;
398 PPCPortInfo ports[TZ_NUM_PORTS];
399 } PPCInfo;
401 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
402 void *opaque,
403 const char *name, hwaddr size,
404 const int *irqs)
406 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
407 * and return a pointer to its MemoryRegion.
409 UnimplementedDeviceState *uds = opaque;
411 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
412 qdev_prop_set_string(DEVICE(uds), "name", name);
413 qdev_prop_set_uint64(DEVICE(uds), "size", size);
414 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
415 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
418 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
419 const char *name, hwaddr size,
420 const int *irqs)
422 /* The irq[] array is tx, rx, combined, in that order */
423 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
424 CMSDKAPBUART *uart = opaque;
425 int i = uart - &mms->uart[0];
426 SysBusDevice *s;
427 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
429 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
430 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
431 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq);
432 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
433 s = SYS_BUS_DEVICE(uart);
434 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
435 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
436 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
437 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
438 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2]));
439 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
442 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
443 const char *name, hwaddr size,
444 const int *irqs)
446 MPS2SCC *scc = opaque;
447 DeviceState *sccdev;
448 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
449 uint32_t i;
451 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
452 sccdev = DEVICE(scc);
453 qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0);
454 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
455 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
456 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
457 qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk);
458 for (i = 0; i < mmc->len_oscclk; i++) {
459 g_autofree char *propname = g_strdup_printf("oscclk[%u]", i);
460 qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]);
462 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
463 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
466 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
467 const char *name, hwaddr size,
468 const int *irqs)
470 MPS2FPGAIO *fpgaio = opaque;
471 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
473 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
474 qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds);
475 qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches);
476 qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl);
477 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
478 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
481 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
482 const char *name, hwaddr size,
483 const int *irqs)
485 SysBusDevice *s;
486 NICInfo *nd = &nd_table[0];
488 /* In hardware this is a LAN9220; the LAN9118 is software compatible
489 * except that it doesn't support the checksum-offload feature.
491 qemu_check_nic_model(nd, "lan9118");
492 mms->lan9118 = qdev_new(TYPE_LAN9118);
493 qdev_set_nic_properties(mms->lan9118, nd);
495 s = SYS_BUS_DEVICE(mms->lan9118);
496 sysbus_realize_and_unref(s, &error_fatal);
497 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
498 return sysbus_mmio_get_region(s, 0);
501 static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque,
502 const char *name, hwaddr size,
503 const int *irqs)
506 * The AN524 makes the ethernet and USB share a PPC port.
507 * irqs[] is the ethernet IRQ.
509 SysBusDevice *s;
510 NICInfo *nd = &nd_table[0];
512 memory_region_init(&mms->eth_usb_container, OBJECT(mms),
513 "mps2-tz-eth-usb-container", 0x200000);
516 * In hardware this is a LAN9220; the LAN9118 is software compatible
517 * except that it doesn't support the checksum-offload feature.
519 qemu_check_nic_model(nd, "lan9118");
520 mms->lan9118 = qdev_new(TYPE_LAN9118);
521 qdev_set_nic_properties(mms->lan9118, nd);
523 s = SYS_BUS_DEVICE(mms->lan9118);
524 sysbus_realize_and_unref(s, &error_fatal);
525 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
527 memory_region_add_subregion(&mms->eth_usb_container,
528 0, sysbus_mmio_get_region(s, 0));
530 /* The USB OTG controller is an ISP1763; we don't have a model of it. */
531 object_initialize_child(OBJECT(mms), "usb-otg",
532 &mms->usb, TYPE_UNIMPLEMENTED_DEVICE);
533 qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg");
534 qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000);
535 s = SYS_BUS_DEVICE(&mms->usb);
536 sysbus_realize(s, &error_fatal);
538 memory_region_add_subregion(&mms->eth_usb_container,
539 0x100000, sysbus_mmio_get_region(s, 0));
541 return &mms->eth_usb_container;
544 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
545 const char *name, hwaddr size,
546 const int *irqs)
548 TZMPC *mpc = opaque;
549 int i = mpc - &mms->mpc[0];
550 MemoryRegion *upstream;
551 const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i);
552 MemoryRegion *ram = mr_for_raminfo(mms, raminfo);
554 object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC);
555 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram),
556 &error_fatal);
557 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
558 /* Map the upstream end of the MPC into system memory */
559 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
560 memory_region_add_subregion(get_system_memory(), raminfo->base, upstream);
561 /* and connect its interrupt to the IoTKit */
562 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
563 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
564 "mpcexp_status", i));
566 /* Return the register interface MR for our caller to map behind the PPC */
567 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
570 static hwaddr boot_mem_base(MPS2TZMachineState *mms)
573 * Return the canonical address of the block which will be mapped
574 * at address 0x0 (i.e. where the vector table is).
575 * This is usually 0, but if the AN524 alternate memory map is
576 * enabled it will be the base address of the QSPI block.
578 return mms->remap ? 0x28000000 : 0;
581 static void remap_memory(MPS2TZMachineState *mms, int map)
584 * Remap the memory for the AN524. 'map' is the value of
585 * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1
586 * for the "option 1" mapping where QSPI is at address 0.
588 * Effectively we need to swap around the "upstream" ends of
589 * MPC 0 and MPC 1.
591 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
592 int i;
594 if (mmc->fpga_type != FPGA_AN524) {
595 return;
598 memory_region_transaction_begin();
599 for (i = 0; i < 2; i++) {
600 TZMPC *mpc = &mms->mpc[i];
601 MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
602 hwaddr addr = (i ^ map) ? 0x28000000 : 0;
604 memory_region_set_address(upstream, addr);
606 memory_region_transaction_commit();
609 static void remap_irq_fn(void *opaque, int n, int level)
611 MPS2TZMachineState *mms = opaque;
613 remap_memory(mms, level);
616 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
617 const char *name, hwaddr size,
618 const int *irqs)
620 /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */
621 PL080State *dma = opaque;
622 int i = dma - &mms->dma[0];
623 SysBusDevice *s;
624 char *mscname = g_strdup_printf("%s-msc", name);
625 TZMSC *msc = &mms->msc[i];
626 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
627 MemoryRegion *msc_upstream;
628 MemoryRegion *msc_downstream;
631 * Each DMA device is a PL081 whose transaction master interface
632 * is guarded by a Master Security Controller. The downstream end of
633 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
634 * DMA devices can see all devices and memory that the CPU does.
636 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
637 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
638 object_property_set_link(OBJECT(msc), "downstream",
639 OBJECT(msc_downstream), &error_fatal);
640 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
641 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
643 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
644 qdev_get_gpio_in_named(iotkitdev,
645 "mscexp_status", i));
646 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
647 qdev_get_gpio_in_named(DEVICE(msc),
648 "irq_clear", 0));
649 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
650 qdev_get_gpio_in_named(DEVICE(msc),
651 "cfg_nonsec", 0));
652 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
653 ARRAY_SIZE(mms->ppc) + i,
654 qdev_get_gpio_in_named(DEVICE(msc),
655 "cfg_sec_resp", 0));
656 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
658 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
659 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
660 &error_fatal);
661 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
663 s = SYS_BUS_DEVICE(dma);
664 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
665 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
666 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1]));
667 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2]));
669 g_free(mscname);
670 return sysbus_mmio_get_region(s, 0);
673 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
674 const char *name, hwaddr size,
675 const int *irqs)
678 * The AN505 has five PL022 SPI controllers.
679 * One of these should have the LCD controller behind it; the others
680 * are connected only to the FPGA's "general purpose SPI connector"
681 * or "shield" expansion connectors.
682 * Note that if we do implement devices behind SPI, the chip select
683 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
685 PL022State *spi = opaque;
686 SysBusDevice *s;
688 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
689 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
690 s = SYS_BUS_DEVICE(spi);
691 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0]));
692 return sysbus_mmio_get_region(s, 0);
695 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
696 const char *name, hwaddr size,
697 const int *irqs)
699 ArmSbconI2CState *i2c = opaque;
700 SysBusDevice *s;
702 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
703 s = SYS_BUS_DEVICE(i2c);
704 sysbus_realize(s, &error_fatal);
705 return sysbus_mmio_get_region(s, 0);
708 static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque,
709 const char *name, hwaddr size,
710 const int *irqs)
712 PL031State *pl031 = opaque;
713 SysBusDevice *s;
715 object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031);
716 s = SYS_BUS_DEVICE(pl031);
717 sysbus_realize(s, &error_fatal);
719 * The board docs don't give an IRQ number for the PL031, so
720 * presumably it is not connected.
722 return sysbus_mmio_get_region(s, 0);
725 static void create_non_mpc_ram(MPS2TZMachineState *mms)
728 * Handle the RAMs which are either not behind MPCs or which are
729 * aliases to another MPC.
731 const RAMInfo *p;
732 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
734 for (p = mmc->raminfo; p->name; p++) {
735 if (p->flags & IS_ALIAS) {
736 SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]);
737 MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1);
738 make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base);
739 } else if (p->mpc == -1) {
740 /* RAM not behind an MPC */
741 MemoryRegion *mr = mr_for_raminfo(mms, p);
742 memory_region_add_subregion(get_system_memory(), p->base, mr);
747 static uint32_t boot_ram_size(MPS2TZMachineState *mms)
749 /* Return the size of the RAM block at guest address zero */
750 const RAMInfo *p;
751 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
754 * Use a per-board specification (for when the boot RAM is in
755 * the SSE and so doesn't have a RAMInfo list entry)
757 if (mmc->boot_ram_size) {
758 return mmc->boot_ram_size;
761 for (p = mmc->raminfo; p->name; p++) {
762 if (p->base == boot_mem_base(mms)) {
763 return p->size;
766 g_assert_not_reached();
769 static void mps2tz_common_init(MachineState *machine)
771 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
772 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
773 MachineClass *mc = MACHINE_GET_CLASS(machine);
774 MemoryRegion *system_memory = get_system_memory();
775 DeviceState *iotkitdev;
776 DeviceState *dev_splitter;
777 const PPCInfo *ppcs;
778 int num_ppcs;
779 int i;
781 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
782 error_report("This board can only be used with CPU %s",
783 mc->default_cpu_type);
784 exit(1);
787 if (machine->ram_size != mc->default_ram_size) {
788 char *sz = size_to_str(mc->default_ram_size);
789 error_report("Invalid RAM size, should be %s", sz);
790 g_free(sz);
791 exit(EXIT_FAILURE);
794 /* These clocks don't need migration because they are fixed-frequency */
795 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
796 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
797 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
798 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
800 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
801 mmc->armsse_type);
802 iotkitdev = DEVICE(&mms->iotkit);
803 object_property_set_link(OBJECT(&mms->iotkit), "memory",
804 OBJECT(system_memory), &error_abort);
805 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq);
806 qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor);
807 qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
808 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
809 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
810 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
813 * If this board has more than one CPU, then we need to create splitters
814 * to feed the IRQ inputs for each CPU in the SSE from each device in the
815 * board. If there is only one CPU, we can just wire the device IRQ
816 * directly to the SSE's IRQ input.
818 assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX);
819 if (mc->max_cpus > 1) {
820 for (i = 0; i < mmc->numirq; i++) {
821 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
822 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
824 object_initialize_child_with_props(OBJECT(machine), name,
825 splitter, sizeof(*splitter),
826 TYPE_SPLIT_IRQ, &error_fatal,
827 NULL);
828 g_free(name);
830 object_property_set_int(OBJECT(splitter), "num-lines", 2,
831 &error_fatal);
832 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
833 qdev_connect_gpio_out(DEVICE(splitter), 0,
834 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
835 "EXP_IRQ", i));
836 qdev_connect_gpio_out(DEVICE(splitter), 1,
837 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
838 "EXP_CPU1_IRQ", i));
842 /* The sec_resp_cfg output from the IoTKit must be split into multiple
843 * lines, one for each of the PPCs we create here, plus one per MSC.
845 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
846 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
847 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
848 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
849 &error_fatal);
850 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
851 dev_splitter = DEVICE(&mms->sec_resp_splitter);
852 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
853 qdev_get_gpio_in(dev_splitter, 0));
856 * The IoTKit sets up much of the memory layout, including
857 * the aliases between secure and non-secure regions in the
858 * address space, and also most of the devices in the system.
859 * The FPGA itself contains various RAMs and some additional devices.
860 * The FPGA images have an odd combination of different RAMs,
861 * because in hardware they are different implementations and
862 * connected to different buses, giving varying performance/size
863 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
864 * call the largest lump our "system memory".
868 * The overflow IRQs for all UARTs are ORed together.
869 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
870 * Create the OR gate for this: it has one input for the TX overflow
871 * and one for the RX overflow for each UART we might have.
872 * (If the board has fewer than the maximum possible number of UARTs
873 * those inputs are never wired up and are treated as always-zero.)
875 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
876 &mms->uart_irq_orgate, TYPE_OR_IRQ);
877 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines",
878 2 * ARRAY_SIZE(mms->uart),
879 &error_fatal);
880 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
881 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
882 get_sse_irq_in(mms, mmc->uart_overflow_irq));
884 /* Most of the devices in the FPGA are behind Peripheral Protection
885 * Controllers. The required order for initializing things is:
886 * + initialize the PPC
887 * + initialize, configure and realize downstream devices
888 * + connect downstream device MemoryRegions to the PPC
889 * + realize the PPC
890 * + map the PPC's MemoryRegions to the places in the address map
891 * where the downstream devices should appear
892 * + wire up the PPC's control lines to the IoTKit object
895 const PPCInfo an505_ppcs[] = { {
896 .name = "apb_ppcexp0",
897 .ports = {
898 { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
899 { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
900 { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
902 }, {
903 .name = "apb_ppcexp1",
904 .ports = {
905 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } },
906 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } },
907 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } },
908 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } },
909 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } },
910 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } },
911 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } },
912 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } },
913 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } },
914 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } },
915 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
916 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
917 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
918 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
920 }, {
921 .name = "apb_ppcexp2",
922 .ports = {
923 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
924 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
925 0x40301000, 0x1000 },
926 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
928 }, {
929 .name = "ahb_ppcexp0",
930 .ports = {
931 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
932 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
933 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
934 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
935 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
936 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } },
938 }, {
939 .name = "ahb_ppcexp1",
940 .ports = {
941 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } },
942 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } },
943 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } },
944 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } },
949 const PPCInfo an524_ppcs[] = { {
950 .name = "apb_ppcexp0",
951 .ports = {
952 { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 },
953 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 },
954 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 },
956 }, {
957 .name = "apb_ppcexp1",
958 .ports = {
959 { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 },
960 { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 },
961 { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } },
962 { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } },
963 { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } },
964 { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 },
965 { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 },
966 { /* port 7 reserved */ },
967 { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 },
969 }, {
970 .name = "apb_ppcexp2",
971 .ports = {
972 { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 },
973 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
974 0x41301000, 0x1000 },
975 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 },
976 { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } },
977 { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } },
978 { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } },
979 { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } },
980 { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } },
981 { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } },
983 { /* port 9 reserved */ },
984 { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 },
985 { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 },
987 }, {
988 .name = "ahb_ppcexp0",
989 .ports = {
990 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
991 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
992 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
993 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
994 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } },
999 const PPCInfo an547_ppcs[] = { {
1000 .name = "apb_ppcexp0",
1001 .ports = {
1002 { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 },
1003 { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 },
1004 { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 },
1006 }, {
1007 .name = "apb_ppcexp1",
1008 .ports = {
1009 { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 },
1010 { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 },
1011 { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } },
1012 { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } },
1013 { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } },
1014 { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 },
1015 { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 },
1016 { /* port 7 reserved */ },
1017 { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 },
1019 }, {
1020 .name = "apb_ppcexp2",
1021 .ports = {
1022 { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 },
1023 { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 },
1024 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 },
1025 { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } },
1026 { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } },
1027 { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } },
1028 { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } },
1029 { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } },
1030 { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } },
1032 { /* port 9 reserved */ },
1033 { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 },
1034 { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 },
1036 }, {
1037 .name = "ahb_ppcexp0",
1038 .ports = {
1039 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 },
1040 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 },
1041 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 },
1042 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 },
1043 { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } },
1048 switch (mmc->fpga_type) {
1049 case FPGA_AN505:
1050 case FPGA_AN521:
1051 ppcs = an505_ppcs;
1052 num_ppcs = ARRAY_SIZE(an505_ppcs);
1053 break;
1054 case FPGA_AN524:
1055 ppcs = an524_ppcs;
1056 num_ppcs = ARRAY_SIZE(an524_ppcs);
1057 break;
1058 case FPGA_AN547:
1059 ppcs = an547_ppcs;
1060 num_ppcs = ARRAY_SIZE(an547_ppcs);
1061 break;
1062 default:
1063 g_assert_not_reached();
1066 for (i = 0; i < num_ppcs; i++) {
1067 const PPCInfo *ppcinfo = &ppcs[i];
1068 TZPPC *ppc = &mms->ppc[i];
1069 DeviceState *ppcdev;
1070 int port;
1071 char *gpioname;
1073 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
1074 TYPE_TZ_PPC);
1075 ppcdev = DEVICE(ppc);
1077 for (port = 0; port < TZ_NUM_PORTS; port++) {
1078 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1079 MemoryRegion *mr;
1080 char *portname;
1082 if (!pinfo->devfn) {
1083 continue;
1086 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size,
1087 pinfo->irqs);
1088 portname = g_strdup_printf("port[%d]", port);
1089 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
1090 &error_fatal);
1091 g_free(portname);
1094 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
1096 for (port = 0; port < TZ_NUM_PORTS; port++) {
1097 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
1099 if (!pinfo->devfn) {
1100 continue;
1102 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
1104 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
1105 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1106 qdev_get_gpio_in_named(ppcdev,
1107 "cfg_nonsec",
1108 port));
1109 g_free(gpioname);
1110 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
1111 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
1112 qdev_get_gpio_in_named(ppcdev,
1113 "cfg_ap", port));
1114 g_free(gpioname);
1117 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
1118 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1119 qdev_get_gpio_in_named(ppcdev,
1120 "irq_enable", 0));
1121 g_free(gpioname);
1122 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
1123 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
1124 qdev_get_gpio_in_named(ppcdev,
1125 "irq_clear", 0));
1126 g_free(gpioname);
1127 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
1128 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
1129 qdev_get_gpio_in_named(iotkitdev,
1130 gpioname, 0));
1131 g_free(gpioname);
1133 qdev_connect_gpio_out(dev_splitter, i,
1134 qdev_get_gpio_in_named(ppcdev,
1135 "cfg_sec_resp", 0));
1138 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
1140 if (mmc->fpga_type == FPGA_AN547) {
1141 create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000);
1142 create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000);
1145 create_non_mpc_ram(mms);
1147 if (mmc->fpga_type == FPGA_AN524) {
1149 * Connect the line from the SCC so that we can remap when the
1150 * guest updates that register.
1152 mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0);
1153 qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0,
1154 mms->remap_irq);
1157 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename,
1158 boot_ram_size(mms));
1161 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
1162 int *iregion, bool *exempt, bool *ns, bool *nsc)
1165 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
1166 * the Master Security Controllers. Thes have the same logic as
1167 * is used by the IoTKit for the IDAU connected to the CPU, except
1168 * that MSCs don't care about the NSC attribute.
1170 int region = extract32(address, 28, 4);
1172 *ns = !(region & 1);
1173 *nsc = false;
1174 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1175 *exempt = (address & 0xeff00000) == 0xe0000000;
1176 *iregion = region;
1179 static char *mps2_get_remap(Object *obj, Error **errp)
1181 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1182 const char *val = mms->remap ? "QSPI" : "BRAM";
1183 return g_strdup(val);
1186 static void mps2_set_remap(Object *obj, const char *value, Error **errp)
1188 MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj);
1190 if (!strcmp(value, "BRAM")) {
1191 mms->remap = false;
1192 } else if (!strcmp(value, "QSPI")) {
1193 mms->remap = true;
1194 } else {
1195 error_setg(errp, "Invalid remap value");
1196 error_append_hint(errp, "Valid values are BRAM and QSPI.\n");
1200 static void mps2_machine_reset(MachineState *machine)
1202 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
1205 * Set the initial memory mapping before triggering the reset of
1206 * the rest of the system, so that the guest image loader and CPU
1207 * reset see the correct mapping.
1209 remap_memory(mms, mms->remap);
1210 qemu_devices_reset();
1213 static void mps2tz_class_init(ObjectClass *oc, void *data)
1215 MachineClass *mc = MACHINE_CLASS(oc);
1216 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
1218 mc->init = mps2tz_common_init;
1219 mc->reset = mps2_machine_reset;
1220 iic->check = mps2_tz_idau_check;
1223 static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc)
1226 * Set mc->default_ram_size and default_ram_id from the
1227 * information in mmc->raminfo.
1229 MachineClass *mc = MACHINE_CLASS(mmc);
1230 const RAMInfo *p;
1232 for (p = mmc->raminfo; p->name; p++) {
1233 if (p->mrindex < 0) {
1234 /* Found the entry for "system memory" */
1235 mc->default_ram_size = p->size;
1236 mc->default_ram_id = p->name;
1237 return;
1240 g_assert_not_reached();
1243 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
1245 MachineClass *mc = MACHINE_CLASS(oc);
1246 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1248 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
1249 mc->default_cpus = 1;
1250 mc->min_cpus = mc->default_cpus;
1251 mc->max_cpus = mc->default_cpus;
1252 mmc->fpga_type = FPGA_AN505;
1253 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1254 mmc->scc_id = 0x41045050;
1255 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1256 mmc->apb_periph_frq = mmc->sysclk_frq;
1257 mmc->oscclk = an505_oscclk;
1258 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1259 mmc->fpgaio_num_leds = 2;
1260 mmc->fpgaio_has_switches = false;
1261 mmc->fpgaio_has_dbgctrl = false;
1262 mmc->numirq = 92;
1263 mmc->uart_overflow_irq = 47;
1264 mmc->init_svtor = 0x10000000;
1265 mmc->sram_addr_width = 15;
1266 mmc->raminfo = an505_raminfo;
1267 mmc->armsse_type = TYPE_IOTKIT;
1268 mmc->boot_ram_size = 0;
1269 mps2tz_set_default_ram_info(mmc);
1272 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
1274 MachineClass *mc = MACHINE_CLASS(oc);
1275 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1277 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
1278 mc->default_cpus = 2;
1279 mc->min_cpus = mc->default_cpus;
1280 mc->max_cpus = mc->default_cpus;
1281 mmc->fpga_type = FPGA_AN521;
1282 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1283 mmc->scc_id = 0x41045210;
1284 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
1285 mmc->apb_periph_frq = mmc->sysclk_frq;
1286 mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */
1287 mmc->len_oscclk = ARRAY_SIZE(an505_oscclk);
1288 mmc->fpgaio_num_leds = 2;
1289 mmc->fpgaio_has_switches = false;
1290 mmc->fpgaio_has_dbgctrl = false;
1291 mmc->numirq = 92;
1292 mmc->uart_overflow_irq = 47;
1293 mmc->init_svtor = 0x10000000;
1294 mmc->sram_addr_width = 15;
1295 mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */
1296 mmc->armsse_type = TYPE_SSE200;
1297 mmc->boot_ram_size = 0;
1298 mps2tz_set_default_ram_info(mmc);
1301 static void mps3tz_an524_class_init(ObjectClass *oc, void *data)
1303 MachineClass *mc = MACHINE_CLASS(oc);
1304 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1306 mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33";
1307 mc->default_cpus = 2;
1308 mc->min_cpus = mc->default_cpus;
1309 mc->max_cpus = mc->default_cpus;
1310 mmc->fpga_type = FPGA_AN524;
1311 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
1312 mmc->scc_id = 0x41045240;
1313 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1314 mmc->apb_periph_frq = mmc->sysclk_frq;
1315 mmc->oscclk = an524_oscclk;
1316 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1317 mmc->fpgaio_num_leds = 10;
1318 mmc->fpgaio_has_switches = true;
1319 mmc->fpgaio_has_dbgctrl = false;
1320 mmc->numirq = 95;
1321 mmc->uart_overflow_irq = 47;
1322 mmc->init_svtor = 0x10000000;
1323 mmc->sram_addr_width = 15;
1324 mmc->raminfo = an524_raminfo;
1325 mmc->armsse_type = TYPE_SSE200;
1326 mmc->boot_ram_size = 0;
1327 mps2tz_set_default_ram_info(mmc);
1329 object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap);
1330 object_class_property_set_description(oc, "remap",
1331 "Set memory mapping. Valid values "
1332 "are BRAM (default) and QSPI.");
1335 static void mps3tz_an547_class_init(ObjectClass *oc, void *data)
1337 MachineClass *mc = MACHINE_CLASS(oc);
1338 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
1340 mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55";
1341 mc->default_cpus = 1;
1342 mc->min_cpus = mc->default_cpus;
1343 mc->max_cpus = mc->default_cpus;
1344 mmc->fpga_type = FPGA_AN547;
1345 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55");
1346 mmc->scc_id = 0x41055470;
1347 mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */
1348 mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */
1349 mmc->oscclk = an524_oscclk; /* same as AN524 */
1350 mmc->len_oscclk = ARRAY_SIZE(an524_oscclk);
1351 mmc->fpgaio_num_leds = 10;
1352 mmc->fpgaio_has_switches = true;
1353 mmc->fpgaio_has_dbgctrl = true;
1354 mmc->numirq = 96;
1355 mmc->uart_overflow_irq = 48;
1356 mmc->init_svtor = 0x00000000;
1357 mmc->sram_addr_width = 21;
1358 mmc->raminfo = an547_raminfo;
1359 mmc->armsse_type = TYPE_SSE300;
1360 mmc->boot_ram_size = 512 * KiB;
1361 mps2tz_set_default_ram_info(mmc);
1364 static const TypeInfo mps2tz_info = {
1365 .name = TYPE_MPS2TZ_MACHINE,
1366 .parent = TYPE_MACHINE,
1367 .abstract = true,
1368 .instance_size = sizeof(MPS2TZMachineState),
1369 .class_size = sizeof(MPS2TZMachineClass),
1370 .class_init = mps2tz_class_init,
1371 .interfaces = (InterfaceInfo[]) {
1372 { TYPE_IDAU_INTERFACE },
1377 static const TypeInfo mps2tz_an505_info = {
1378 .name = TYPE_MPS2TZ_AN505_MACHINE,
1379 .parent = TYPE_MPS2TZ_MACHINE,
1380 .class_init = mps2tz_an505_class_init,
1383 static const TypeInfo mps2tz_an521_info = {
1384 .name = TYPE_MPS2TZ_AN521_MACHINE,
1385 .parent = TYPE_MPS2TZ_MACHINE,
1386 .class_init = mps2tz_an521_class_init,
1389 static const TypeInfo mps3tz_an524_info = {
1390 .name = TYPE_MPS3TZ_AN524_MACHINE,
1391 .parent = TYPE_MPS2TZ_MACHINE,
1392 .class_init = mps3tz_an524_class_init,
1395 static const TypeInfo mps3tz_an547_info = {
1396 .name = TYPE_MPS3TZ_AN547_MACHINE,
1397 .parent = TYPE_MPS2TZ_MACHINE,
1398 .class_init = mps3tz_an547_class_init,
1401 static void mps2tz_machine_init(void)
1403 type_register_static(&mps2tz_info);
1404 type_register_static(&mps2tz_an505_info);
1405 type_register_static(&mps2tz_an521_info);
1406 type_register_static(&mps3tz_an524_info);
1407 type_register_static(&mps3tz_an547_info);
1410 type_init(mps2tz_machine_init);