target/arm: Set VFP-related MVFR0 fields for arm926 and arm1026
[qemu/ar7.git] / target / arm / cpu.c
blob1959467fdc82c3401c9273d4c1638fafc2f0b910
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
45 ARMCPU *cpu = ARM_CPU(cs);
46 CPUARMState *env = &cpu->env;
48 if (is_a64(env)) {
49 env->pc = value;
50 env->thumb = 0;
51 } else {
52 env->regs[15] = value & ~1;
53 env->thumb = value & 1;
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
59 ARMCPU *cpu = ARM_CPU(cs);
60 CPUARMState *env = &cpu->env;
63 * It's OK to look at env for the current mode here, because it's
64 * never possible for an AArch64 TB to chain to an AArch32 TB.
66 if (is_a64(env)) {
67 env->pc = tb->pc;
68 } else {
69 env->regs[15] = tb->pc;
73 static bool arm_cpu_has_work(CPUState *cs)
75 ARMCPU *cpu = ARM_CPU(cs);
77 return (cpu->power_state != PSCI_OFF)
78 && cs->interrupt_request &
79 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81 | CPU_INTERRUPT_EXITTB);
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 void *opaque)
87 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
89 entry->hook = hook;
90 entry->opaque = opaque;
92 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 void *opaque)
98 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
100 entry->hook = hook;
101 entry->opaque = opaque;
103 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
108 /* Reset a single ARMCPRegInfo register */
109 ARMCPRegInfo *ri = value;
110 ARMCPU *cpu = opaque;
112 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113 return;
116 if (ri->resetfn) {
117 ri->resetfn(&cpu->env, ri);
118 return;
121 /* A zero offset is never possible as it would be regs[0]
122 * so we use it to indicate that reset is being handled elsewhere.
123 * This is basically only used for fields in non-core coprocessors
124 * (like the pxa2xx ones).
126 if (!ri->fieldoffset) {
127 return;
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132 } else {
133 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
137 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
139 /* Purely an assertion check: we've already done reset once,
140 * so now check that running the reset for the cpreg doesn't
141 * change its value. This traps bugs where two different cpregs
142 * both try to reset the same state field but to different values.
144 ARMCPRegInfo *ri = value;
145 ARMCPU *cpu = opaque;
146 uint64_t oldvalue, newvalue;
148 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149 return;
152 oldvalue = read_raw_cp_reg(&cpu->env, ri);
153 cp_reg_reset(key, value, opaque);
154 newvalue = read_raw_cp_reg(&cpu->env, ri);
155 assert(oldvalue == newvalue);
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
161 ARMCPU *cpu = ARM_CPU(s);
162 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163 CPUARMState *env = &cpu->env;
165 acc->parent_reset(s);
167 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
169 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
172 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
177 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178 s->halted = cpu->start_powered_off;
180 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185 /* 64 bit CPUs always start in 64 bit mode */
186 env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188 env->pstate = PSTATE_MODE_EL0t;
189 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191 /* Enable all PAC keys. */
192 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193 SCTLR_EnDA | SCTLR_EnDB);
194 /* Enable all PAC instructions */
195 env->cp15.hcr_el2 |= HCR_API;
196 env->cp15.scr_el3 |= SCR_API;
197 /* and to the FP/Neon instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199 /* and to the SVE instructions */
200 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201 env->cp15.cptr_el[3] |= CPTR_EZ;
202 /* with maximum vector length */
203 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
207 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
208 * turning on both here will produce smaller code and otherwise
209 * make no difference to the user-level emulation.
211 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213 /* Reset into the highest available EL */
214 if (arm_feature(env, ARM_FEATURE_EL3)) {
215 env->pstate = PSTATE_MODE_EL3h;
216 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217 env->pstate = PSTATE_MODE_EL2h;
218 } else {
219 env->pstate = PSTATE_MODE_EL1h;
221 env->pc = cpu->rvbar;
222 #endif
223 } else {
224 #if defined(CONFIG_USER_ONLY)
225 /* Userspace expects access to cp10 and cp11 for FP/Neon */
226 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
230 #if defined(CONFIG_USER_ONLY)
231 env->uncached_cpsr = ARM_CPU_MODE_USR;
232 /* For user mode we must enable access to coprocessors */
233 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235 env->cp15.c15_cpar = 3;
236 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237 env->cp15.c15_cpar = 1;
239 #else
242 * If the highest available EL is EL2, AArch32 will start in Hyp
243 * mode; otherwise it starts in SVC. Note that if we start in
244 * AArch64 then these values in the uncached_cpsr will be ignored.
246 if (arm_feature(env, ARM_FEATURE_EL2) &&
247 !arm_feature(env, ARM_FEATURE_EL3)) {
248 env->uncached_cpsr = ARM_CPU_MODE_HYP;
249 } else {
250 env->uncached_cpsr = ARM_CPU_MODE_SVC;
252 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
254 if (arm_feature(env, ARM_FEATURE_M)) {
255 uint32_t initial_msp; /* Loaded from 0x0 */
256 uint32_t initial_pc; /* Loaded from 0x4 */
257 uint8_t *rom;
258 uint32_t vecbase;
260 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261 env->v7m.secure = true;
262 } else {
263 /* This bit resets to 0 if security is supported, but 1 if
264 * it is not. The bit is not present in v7M, but we set it
265 * here so we can avoid having to make checks on it conditional
266 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
268 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
271 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
272 * that it resets to 1, so QEMU always does that rather than making
273 * it dependent on CPU model. In v8M it is RES1.
275 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
276 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
277 if (arm_feature(env, ARM_FEATURE_V8)) {
278 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
279 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
282 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
283 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
284 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
287 if (arm_feature(env, ARM_FEATURE_VFP)) {
288 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
289 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
290 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
292 /* Unlike A/R profile, M profile defines the reset LR value */
293 env->regs[14] = 0xffffffff;
295 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
297 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
298 vecbase = env->v7m.vecbase[env->v7m.secure];
299 rom = rom_ptr(vecbase, 8);
300 if (rom) {
301 /* Address zero is covered by ROM which hasn't yet been
302 * copied into physical memory.
304 initial_msp = ldl_p(rom);
305 initial_pc = ldl_p(rom + 4);
306 } else {
307 /* Address zero not covered by a ROM blob, or the ROM blob
308 * is in non-modifiable memory and this is a second reset after
309 * it got copied into memory. In the latter case, rom_ptr
310 * will return a NULL pointer and we should use ldl_phys instead.
312 initial_msp = ldl_phys(s->as, vecbase);
313 initial_pc = ldl_phys(s->as, vecbase + 4);
316 env->regs[13] = initial_msp & 0xFFFFFFFC;
317 env->regs[15] = initial_pc & ~1;
318 env->thumb = initial_pc & 1;
321 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
322 * executing as AArch32 then check if highvecs are enabled and
323 * adjust the PC accordingly.
325 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
326 env->regs[15] = 0xFFFF0000;
329 /* M profile requires that reset clears the exclusive monitor;
330 * A profile does not, but clearing it makes more sense than having it
331 * set with an exclusive access on address zero.
333 arm_clear_exclusive(env);
335 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
336 #endif
338 if (arm_feature(env, ARM_FEATURE_PMSA)) {
339 if (cpu->pmsav7_dregion > 0) {
340 if (arm_feature(env, ARM_FEATURE_V8)) {
341 memset(env->pmsav8.rbar[M_REG_NS], 0,
342 sizeof(*env->pmsav8.rbar[M_REG_NS])
343 * cpu->pmsav7_dregion);
344 memset(env->pmsav8.rlar[M_REG_NS], 0,
345 sizeof(*env->pmsav8.rlar[M_REG_NS])
346 * cpu->pmsav7_dregion);
347 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
348 memset(env->pmsav8.rbar[M_REG_S], 0,
349 sizeof(*env->pmsav8.rbar[M_REG_S])
350 * cpu->pmsav7_dregion);
351 memset(env->pmsav8.rlar[M_REG_S], 0,
352 sizeof(*env->pmsav8.rlar[M_REG_S])
353 * cpu->pmsav7_dregion);
355 } else if (arm_feature(env, ARM_FEATURE_V7)) {
356 memset(env->pmsav7.drbar, 0,
357 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
358 memset(env->pmsav7.drsr, 0,
359 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
360 memset(env->pmsav7.dracr, 0,
361 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
364 env->pmsav7.rnr[M_REG_NS] = 0;
365 env->pmsav7.rnr[M_REG_S] = 0;
366 env->pmsav8.mair0[M_REG_NS] = 0;
367 env->pmsav8.mair0[M_REG_S] = 0;
368 env->pmsav8.mair1[M_REG_NS] = 0;
369 env->pmsav8.mair1[M_REG_S] = 0;
372 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
373 if (cpu->sau_sregion > 0) {
374 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
375 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
377 env->sau.rnr = 0;
378 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
379 * the Cortex-M33 does.
381 env->sau.ctrl = 0;
384 set_flush_to_zero(1, &env->vfp.standard_fp_status);
385 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
386 set_default_nan_mode(1, &env->vfp.standard_fp_status);
387 set_float_detect_tininess(float_tininess_before_rounding,
388 &env->vfp.fp_status);
389 set_float_detect_tininess(float_tininess_before_rounding,
390 &env->vfp.standard_fp_status);
391 set_float_detect_tininess(float_tininess_before_rounding,
392 &env->vfp.fp_status_f16);
393 #ifndef CONFIG_USER_ONLY
394 if (kvm_enabled()) {
395 kvm_arm_reset_vcpu(cpu);
397 #endif
399 hw_breakpoint_update_all(cpu);
400 hw_watchpoint_update_all(cpu);
403 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
405 CPUClass *cc = CPU_GET_CLASS(cs);
406 CPUARMState *env = cs->env_ptr;
407 uint32_t cur_el = arm_current_el(env);
408 bool secure = arm_is_secure(env);
409 uint32_t target_el;
410 uint32_t excp_idx;
411 bool ret = false;
413 if (interrupt_request & CPU_INTERRUPT_FIQ) {
414 excp_idx = EXCP_FIQ;
415 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
416 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
417 cs->exception_index = excp_idx;
418 env->exception.target_el = target_el;
419 cc->do_interrupt(cs);
420 ret = true;
423 if (interrupt_request & CPU_INTERRUPT_HARD) {
424 excp_idx = EXCP_IRQ;
425 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
426 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
427 cs->exception_index = excp_idx;
428 env->exception.target_el = target_el;
429 cc->do_interrupt(cs);
430 ret = true;
433 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
434 excp_idx = EXCP_VIRQ;
435 target_el = 1;
436 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
437 cs->exception_index = excp_idx;
438 env->exception.target_el = target_el;
439 cc->do_interrupt(cs);
440 ret = true;
443 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
444 excp_idx = EXCP_VFIQ;
445 target_el = 1;
446 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
447 cs->exception_index = excp_idx;
448 env->exception.target_el = target_el;
449 cc->do_interrupt(cs);
450 ret = true;
454 return ret;
457 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
458 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
460 CPUClass *cc = CPU_GET_CLASS(cs);
461 ARMCPU *cpu = ARM_CPU(cs);
462 CPUARMState *env = &cpu->env;
463 bool ret = false;
465 /* ARMv7-M interrupt masking works differently than -A or -R.
466 * There is no FIQ/IRQ distinction. Instead of I and F bits
467 * masking FIQ and IRQ interrupts, an exception is taken only
468 * if it is higher priority than the current execution priority
469 * (which depends on state like BASEPRI, FAULTMASK and the
470 * currently active exception).
472 if (interrupt_request & CPU_INTERRUPT_HARD
473 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
474 cs->exception_index = EXCP_IRQ;
475 cc->do_interrupt(cs);
476 ret = true;
478 return ret;
480 #endif
482 void arm_cpu_update_virq(ARMCPU *cpu)
485 * Update the interrupt level for VIRQ, which is the logical OR of
486 * the HCR_EL2.VI bit and the input line level from the GIC.
488 CPUARMState *env = &cpu->env;
489 CPUState *cs = CPU(cpu);
491 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
492 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
494 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
495 if (new_state) {
496 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
497 } else {
498 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
503 void arm_cpu_update_vfiq(ARMCPU *cpu)
506 * Update the interrupt level for VFIQ, which is the logical OR of
507 * the HCR_EL2.VF bit and the input line level from the GIC.
509 CPUARMState *env = &cpu->env;
510 CPUState *cs = CPU(cpu);
512 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
513 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
515 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
516 if (new_state) {
517 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
518 } else {
519 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
524 #ifndef CONFIG_USER_ONLY
525 static void arm_cpu_set_irq(void *opaque, int irq, int level)
527 ARMCPU *cpu = opaque;
528 CPUARMState *env = &cpu->env;
529 CPUState *cs = CPU(cpu);
530 static const int mask[] = {
531 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
532 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
533 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
534 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
537 if (level) {
538 env->irq_line_state |= mask[irq];
539 } else {
540 env->irq_line_state &= ~mask[irq];
543 switch (irq) {
544 case ARM_CPU_VIRQ:
545 assert(arm_feature(env, ARM_FEATURE_EL2));
546 arm_cpu_update_virq(cpu);
547 break;
548 case ARM_CPU_VFIQ:
549 assert(arm_feature(env, ARM_FEATURE_EL2));
550 arm_cpu_update_vfiq(cpu);
551 break;
552 case ARM_CPU_IRQ:
553 case ARM_CPU_FIQ:
554 if (level) {
555 cpu_interrupt(cs, mask[irq]);
556 } else {
557 cpu_reset_interrupt(cs, mask[irq]);
559 break;
560 default:
561 g_assert_not_reached();
565 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
567 #ifdef CONFIG_KVM
568 ARMCPU *cpu = opaque;
569 CPUARMState *env = &cpu->env;
570 CPUState *cs = CPU(cpu);
571 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
572 uint32_t linestate_bit;
574 switch (irq) {
575 case ARM_CPU_IRQ:
576 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
577 linestate_bit = CPU_INTERRUPT_HARD;
578 break;
579 case ARM_CPU_FIQ:
580 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
581 linestate_bit = CPU_INTERRUPT_FIQ;
582 break;
583 default:
584 g_assert_not_reached();
587 if (level) {
588 env->irq_line_state |= linestate_bit;
589 } else {
590 env->irq_line_state &= ~linestate_bit;
593 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
594 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
595 #endif
598 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
600 ARMCPU *cpu = ARM_CPU(cs);
601 CPUARMState *env = &cpu->env;
603 cpu_synchronize_state(cs);
604 return arm_cpu_data_is_big_endian(env);
607 #endif
609 static inline void set_feature(CPUARMState *env, int feature)
611 env->features |= 1ULL << feature;
614 static inline void unset_feature(CPUARMState *env, int feature)
616 env->features &= ~(1ULL << feature);
619 static int
620 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
622 return print_insn_arm(pc | 1, info);
625 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
627 ARMCPU *ac = ARM_CPU(cpu);
628 CPUARMState *env = &ac->env;
629 bool sctlr_b;
631 if (is_a64(env)) {
632 /* We might not be compiled with the A64 disassembler
633 * because it needs a C++ compiler. Leave print_insn
634 * unset in this case to use the caller default behaviour.
636 #if defined(CONFIG_ARM_A64_DIS)
637 info->print_insn = print_insn_arm_a64;
638 #endif
639 info->cap_arch = CS_ARCH_ARM64;
640 info->cap_insn_unit = 4;
641 info->cap_insn_split = 4;
642 } else {
643 int cap_mode;
644 if (env->thumb) {
645 info->print_insn = print_insn_thumb1;
646 info->cap_insn_unit = 2;
647 info->cap_insn_split = 4;
648 cap_mode = CS_MODE_THUMB;
649 } else {
650 info->print_insn = print_insn_arm;
651 info->cap_insn_unit = 4;
652 info->cap_insn_split = 4;
653 cap_mode = CS_MODE_ARM;
655 if (arm_feature(env, ARM_FEATURE_V8)) {
656 cap_mode |= CS_MODE_V8;
658 if (arm_feature(env, ARM_FEATURE_M)) {
659 cap_mode |= CS_MODE_MCLASS;
661 info->cap_arch = CS_ARCH_ARM;
662 info->cap_mode = cap_mode;
665 sctlr_b = arm_sctlr_b(env);
666 if (bswap_code(sctlr_b)) {
667 #ifdef TARGET_WORDS_BIGENDIAN
668 info->endian = BFD_ENDIAN_LITTLE;
669 #else
670 info->endian = BFD_ENDIAN_BIG;
671 #endif
673 info->flags &= ~INSN_ARM_BE32;
674 #ifndef CONFIG_USER_ONLY
675 if (sctlr_b) {
676 info->flags |= INSN_ARM_BE32;
678 #endif
681 #ifdef TARGET_AARCH64
683 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
685 ARMCPU *cpu = ARM_CPU(cs);
686 CPUARMState *env = &cpu->env;
687 uint32_t psr = pstate_read(env);
688 int i;
689 int el = arm_current_el(env);
690 const char *ns_status;
692 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
693 for (i = 0; i < 32; i++) {
694 if (i == 31) {
695 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
696 } else {
697 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
698 (i + 2) % 3 ? " " : "\n");
702 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
703 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
704 } else {
705 ns_status = "";
707 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
708 psr,
709 psr & PSTATE_N ? 'N' : '-',
710 psr & PSTATE_Z ? 'Z' : '-',
711 psr & PSTATE_C ? 'C' : '-',
712 psr & PSTATE_V ? 'V' : '-',
713 ns_status,
715 psr & PSTATE_SP ? 'h' : 't');
717 if (cpu_isar_feature(aa64_bti, cpu)) {
718 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
720 if (!(flags & CPU_DUMP_FPU)) {
721 qemu_fprintf(f, "\n");
722 return;
724 if (fp_exception_el(env, el) != 0) {
725 qemu_fprintf(f, " FPU disabled\n");
726 return;
728 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
729 vfp_get_fpcr(env), vfp_get_fpsr(env));
731 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
732 int j, zcr_len = sve_zcr_len_for_el(env, el);
734 for (i = 0; i <= FFR_PRED_NUM; i++) {
735 bool eol;
736 if (i == FFR_PRED_NUM) {
737 qemu_fprintf(f, "FFR=");
738 /* It's last, so end the line. */
739 eol = true;
740 } else {
741 qemu_fprintf(f, "P%02d=", i);
742 switch (zcr_len) {
743 case 0:
744 eol = i % 8 == 7;
745 break;
746 case 1:
747 eol = i % 6 == 5;
748 break;
749 case 2:
750 case 3:
751 eol = i % 3 == 2;
752 break;
753 default:
754 /* More than one quadword per predicate. */
755 eol = true;
756 break;
759 for (j = zcr_len / 4; j >= 0; j--) {
760 int digits;
761 if (j * 4 + 4 <= zcr_len + 1) {
762 digits = 16;
763 } else {
764 digits = (zcr_len % 4 + 1) * 4;
766 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
767 env->vfp.pregs[i].p[j],
768 j ? ":" : eol ? "\n" : " ");
772 for (i = 0; i < 32; i++) {
773 if (zcr_len == 0) {
774 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
775 i, env->vfp.zregs[i].d[1],
776 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
777 } else if (zcr_len == 1) {
778 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
779 ":%016" PRIx64 ":%016" PRIx64 "\n",
780 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
781 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
782 } else {
783 for (j = zcr_len; j >= 0; j--) {
784 bool odd = (zcr_len - j) % 2 != 0;
785 if (j == zcr_len) {
786 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
787 } else if (!odd) {
788 if (j > 0) {
789 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
790 } else {
791 qemu_fprintf(f, " [%x]=", j);
794 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
795 env->vfp.zregs[i].d[j * 2 + 1],
796 env->vfp.zregs[i].d[j * 2],
797 odd || j == 0 ? "\n" : ":");
801 } else {
802 for (i = 0; i < 32; i++) {
803 uint64_t *q = aa64_vfp_qreg(env, i);
804 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
805 i, q[1], q[0], (i & 1 ? "\n" : " "));
810 #else
812 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
814 g_assert_not_reached();
817 #endif
819 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
821 ARMCPU *cpu = ARM_CPU(cs);
822 CPUARMState *env = &cpu->env;
823 int i;
825 if (is_a64(env)) {
826 aarch64_cpu_dump_state(cs, f, flags);
827 return;
830 for (i = 0; i < 16; i++) {
831 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
832 if ((i % 4) == 3) {
833 qemu_fprintf(f, "\n");
834 } else {
835 qemu_fprintf(f, " ");
839 if (arm_feature(env, ARM_FEATURE_M)) {
840 uint32_t xpsr = xpsr_read(env);
841 const char *mode;
842 const char *ns_status = "";
844 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
845 ns_status = env->v7m.secure ? "S " : "NS ";
848 if (xpsr & XPSR_EXCP) {
849 mode = "handler";
850 } else {
851 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
852 mode = "unpriv-thread";
853 } else {
854 mode = "priv-thread";
858 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
859 xpsr,
860 xpsr & XPSR_N ? 'N' : '-',
861 xpsr & XPSR_Z ? 'Z' : '-',
862 xpsr & XPSR_C ? 'C' : '-',
863 xpsr & XPSR_V ? 'V' : '-',
864 xpsr & XPSR_T ? 'T' : 'A',
865 ns_status,
866 mode);
867 } else {
868 uint32_t psr = cpsr_read(env);
869 const char *ns_status = "";
871 if (arm_feature(env, ARM_FEATURE_EL3) &&
872 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
873 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
876 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
877 psr,
878 psr & CPSR_N ? 'N' : '-',
879 psr & CPSR_Z ? 'Z' : '-',
880 psr & CPSR_C ? 'C' : '-',
881 psr & CPSR_V ? 'V' : '-',
882 psr & CPSR_T ? 'T' : 'A',
883 ns_status,
884 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
887 if (flags & CPU_DUMP_FPU) {
888 int numvfpregs = 0;
889 if (arm_feature(env, ARM_FEATURE_VFP)) {
890 numvfpregs += 16;
892 if (arm_feature(env, ARM_FEATURE_VFP3)) {
893 numvfpregs += 16;
895 for (i = 0; i < numvfpregs; i++) {
896 uint64_t v = *aa32_vfp_dreg(env, i);
897 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
898 i * 2, (uint32_t)v,
899 i * 2 + 1, (uint32_t)(v >> 32),
900 i, v);
902 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
906 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
908 uint32_t Aff1 = idx / clustersz;
909 uint32_t Aff0 = idx % clustersz;
910 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
913 static void cpreg_hashtable_data_destroy(gpointer data)
916 * Destroy function for cpu->cp_regs hashtable data entries.
917 * We must free the name string because it was g_strdup()ed in
918 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
919 * from r->name because we know we definitely allocated it.
921 ARMCPRegInfo *r = data;
923 g_free((void *)r->name);
924 g_free(r);
927 static void arm_cpu_initfn(Object *obj)
929 ARMCPU *cpu = ARM_CPU(obj);
931 cpu_set_cpustate_pointers(cpu);
932 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
933 g_free, cpreg_hashtable_data_destroy);
935 QLIST_INIT(&cpu->pre_el_change_hooks);
936 QLIST_INIT(&cpu->el_change_hooks);
938 #ifndef CONFIG_USER_ONLY
939 /* Our inbound IRQ and FIQ lines */
940 if (kvm_enabled()) {
941 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
942 * the same interface as non-KVM CPUs.
944 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
945 } else {
946 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
949 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
950 ARRAY_SIZE(cpu->gt_timer_outputs));
952 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
953 "gicv3-maintenance-interrupt", 1);
954 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
955 "pmu-interrupt", 1);
956 #endif
958 /* DTB consumers generally don't in fact care what the 'compatible'
959 * string is, so always provide some string and trust that a hypothetical
960 * picky DTB consumer will also provide a helpful error message.
962 cpu->dtb_compatible = "qemu,unknown";
963 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
964 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
966 if (tcg_enabled()) {
967 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
971 static Property arm_cpu_reset_cbar_property =
972 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
974 static Property arm_cpu_reset_hivecs_property =
975 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
977 static Property arm_cpu_rvbar_property =
978 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
980 static Property arm_cpu_has_el2_property =
981 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
983 static Property arm_cpu_has_el3_property =
984 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
986 static Property arm_cpu_cfgend_property =
987 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
989 /* use property name "pmu" to match other archs and virt tools */
990 static Property arm_cpu_has_pmu_property =
991 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
993 static Property arm_cpu_has_vfp_property =
994 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
996 static Property arm_cpu_has_neon_property =
997 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
999 static Property arm_cpu_has_dsp_property =
1000 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1002 static Property arm_cpu_has_mpu_property =
1003 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1005 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1006 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1007 * the right value for that particular CPU type, and we don't want
1008 * to override that with an incorrect constant value.
1010 static Property arm_cpu_pmsav7_dregion_property =
1011 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1012 pmsav7_dregion,
1013 qdev_prop_uint32, uint32_t);
1015 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1016 void *opaque, Error **errp)
1018 ARMCPU *cpu = ARM_CPU(obj);
1020 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1023 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1024 void *opaque, Error **errp)
1026 ARMCPU *cpu = ARM_CPU(obj);
1028 visit_type_uint32(v, name, &cpu->init_svtor, errp);
1031 void arm_cpu_post_init(Object *obj)
1033 ARMCPU *cpu = ARM_CPU(obj);
1035 /* M profile implies PMSA. We have to do this here rather than
1036 * in realize with the other feature-implication checks because
1037 * we look at the PMSA bit to see if we should add some properties.
1039 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1040 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1042 /* Similarly for the VFP feature bits */
1043 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1044 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1046 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1047 set_feature(&cpu->env, ARM_FEATURE_VFP);
1050 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1051 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1052 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1053 &error_abort);
1056 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1057 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1058 &error_abort);
1061 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1062 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1063 &error_abort);
1066 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1067 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1068 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1070 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1071 &error_abort);
1073 #ifndef CONFIG_USER_ONLY
1074 object_property_add_link(obj, "secure-memory",
1075 TYPE_MEMORY_REGION,
1076 (Object **)&cpu->secure_memory,
1077 qdev_prop_allow_set_link_before_realize,
1078 OBJ_PROP_LINK_STRONG,
1079 &error_abort);
1080 #endif
1083 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1084 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1085 &error_abort);
1088 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1089 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
1090 &error_abort);
1094 * Allow user to turn off VFP and Neon support, but only for TCG --
1095 * KVM does not currently allow us to lie to the guest about its
1096 * ID/feature registers, so the guest always sees what the host has.
1098 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1099 cpu->has_vfp = true;
1100 if (!kvm_enabled()) {
1101 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1102 &error_abort);
1106 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1107 cpu->has_neon = true;
1108 if (!kvm_enabled()) {
1109 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1110 &error_abort);
1114 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1115 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1116 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1117 &error_abort);
1120 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1121 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1122 &error_abort);
1123 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1124 qdev_property_add_static(DEVICE(obj),
1125 &arm_cpu_pmsav7_dregion_property,
1126 &error_abort);
1130 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1131 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1132 qdev_prop_allow_set_link_before_realize,
1133 OBJ_PROP_LINK_STRONG,
1134 &error_abort);
1136 * M profile: initial value of the Secure VTOR. We can't just use
1137 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1138 * the property to be set after realize.
1140 object_property_add(obj, "init-svtor", "uint32",
1141 arm_get_init_svtor, arm_set_init_svtor,
1142 NULL, NULL, &error_abort);
1145 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1146 &error_abort);
1149 static void arm_cpu_finalizefn(Object *obj)
1151 ARMCPU *cpu = ARM_CPU(obj);
1152 ARMELChangeHook *hook, *next;
1154 g_hash_table_destroy(cpu->cp_regs);
1156 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1157 QLIST_REMOVE(hook, node);
1158 g_free(hook);
1160 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1161 QLIST_REMOVE(hook, node);
1162 g_free(hook);
1164 #ifndef CONFIG_USER_ONLY
1165 if (cpu->pmu_timer) {
1166 timer_del(cpu->pmu_timer);
1167 timer_deinit(cpu->pmu_timer);
1168 timer_free(cpu->pmu_timer);
1170 #endif
1173 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1175 CPUState *cs = CPU(dev);
1176 ARMCPU *cpu = ARM_CPU(dev);
1177 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1178 CPUARMState *env = &cpu->env;
1179 int pagebits;
1180 Error *local_err = NULL;
1181 bool no_aa32 = false;
1183 /* If we needed to query the host kernel for the CPU features
1184 * then it's possible that might have failed in the initfn, but
1185 * this is the first point where we can report it.
1187 if (cpu->host_cpu_probe_failed) {
1188 if (!kvm_enabled()) {
1189 error_setg(errp, "The 'host' CPU type can only be used with KVM");
1190 } else {
1191 error_setg(errp, "Failed to retrieve host CPU features");
1193 return;
1196 #ifndef CONFIG_USER_ONLY
1197 /* The NVIC and M-profile CPU are two halves of a single piece of
1198 * hardware; trying to use one without the other is a command line
1199 * error and will result in segfaults if not caught here.
1201 if (arm_feature(env, ARM_FEATURE_M)) {
1202 if (!env->nvic) {
1203 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1204 return;
1206 } else {
1207 if (env->nvic) {
1208 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1209 return;
1213 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1214 arm_gt_ptimer_cb, cpu);
1215 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1216 arm_gt_vtimer_cb, cpu);
1217 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1218 arm_gt_htimer_cb, cpu);
1219 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1220 arm_gt_stimer_cb, cpu);
1221 #endif
1223 cpu_exec_realizefn(cs, &local_err);
1224 if (local_err != NULL) {
1225 error_propagate(errp, local_err);
1226 return;
1229 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1230 cpu->has_vfp != cpu->has_neon) {
1232 * This is an architectural requirement for AArch64; AArch32 is
1233 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1235 error_setg(errp,
1236 "AArch64 CPUs must have both VFP and Neon or neither");
1237 return;
1240 if (!cpu->has_vfp) {
1241 uint64_t t;
1242 uint32_t u;
1244 unset_feature(env, ARM_FEATURE_VFP);
1245 unset_feature(env, ARM_FEATURE_VFP3);
1246 unset_feature(env, ARM_FEATURE_VFP4);
1248 t = cpu->isar.id_aa64isar1;
1249 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1250 cpu->isar.id_aa64isar1 = t;
1252 t = cpu->isar.id_aa64pfr0;
1253 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1254 cpu->isar.id_aa64pfr0 = t;
1256 u = cpu->isar.id_isar6;
1257 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1258 cpu->isar.id_isar6 = u;
1260 u = cpu->isar.mvfr0;
1261 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1262 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1263 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1264 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1265 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1266 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1267 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1268 cpu->isar.mvfr0 = u;
1270 u = cpu->isar.mvfr1;
1271 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1272 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1273 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1274 cpu->isar.mvfr1 = u;
1276 u = cpu->isar.mvfr2;
1277 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1278 cpu->isar.mvfr2 = u;
1281 if (!cpu->has_neon) {
1282 uint64_t t;
1283 uint32_t u;
1285 unset_feature(env, ARM_FEATURE_NEON);
1287 t = cpu->isar.id_aa64isar0;
1288 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1289 cpu->isar.id_aa64isar0 = t;
1291 t = cpu->isar.id_aa64isar1;
1292 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1293 cpu->isar.id_aa64isar1 = t;
1295 t = cpu->isar.id_aa64pfr0;
1296 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1297 cpu->isar.id_aa64pfr0 = t;
1299 u = cpu->isar.id_isar5;
1300 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1301 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1302 cpu->isar.id_isar5 = u;
1304 u = cpu->isar.id_isar6;
1305 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1306 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1307 cpu->isar.id_isar6 = u;
1309 u = cpu->isar.mvfr1;
1310 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1311 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1312 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1313 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1314 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1315 cpu->isar.mvfr1 = u;
1317 u = cpu->isar.mvfr2;
1318 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1319 cpu->isar.mvfr2 = u;
1322 if (!cpu->has_neon && !cpu->has_vfp) {
1323 uint64_t t;
1324 uint32_t u;
1326 t = cpu->isar.id_aa64isar0;
1327 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1328 cpu->isar.id_aa64isar0 = t;
1330 t = cpu->isar.id_aa64isar1;
1331 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1332 cpu->isar.id_aa64isar1 = t;
1334 u = cpu->isar.mvfr0;
1335 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1336 cpu->isar.mvfr0 = u;
1339 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1340 uint32_t u;
1342 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1344 u = cpu->isar.id_isar1;
1345 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1346 cpu->isar.id_isar1 = u;
1348 u = cpu->isar.id_isar2;
1349 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1350 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1351 cpu->isar.id_isar2 = u;
1353 u = cpu->isar.id_isar3;
1354 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1355 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1356 cpu->isar.id_isar3 = u;
1359 /* Some features automatically imply others: */
1360 if (arm_feature(env, ARM_FEATURE_V8)) {
1361 if (arm_feature(env, ARM_FEATURE_M)) {
1362 set_feature(env, ARM_FEATURE_V7);
1363 } else {
1364 set_feature(env, ARM_FEATURE_V7VE);
1369 * There exist AArch64 cpus without AArch32 support. When KVM
1370 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1371 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1373 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1374 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1377 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1378 /* v7 Virtualization Extensions. In real hardware this implies
1379 * EL2 and also the presence of the Security Extensions.
1380 * For QEMU, for backwards-compatibility we implement some
1381 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1382 * include the various other features that V7VE implies.
1383 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1384 * Security Extensions is ARM_FEATURE_EL3.
1386 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1387 set_feature(env, ARM_FEATURE_LPAE);
1388 set_feature(env, ARM_FEATURE_V7);
1390 if (arm_feature(env, ARM_FEATURE_V7)) {
1391 set_feature(env, ARM_FEATURE_VAPA);
1392 set_feature(env, ARM_FEATURE_THUMB2);
1393 set_feature(env, ARM_FEATURE_MPIDR);
1394 if (!arm_feature(env, ARM_FEATURE_M)) {
1395 set_feature(env, ARM_FEATURE_V6K);
1396 } else {
1397 set_feature(env, ARM_FEATURE_V6);
1400 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1401 * non-EL3 configs. This is needed by some legacy boards.
1403 set_feature(env, ARM_FEATURE_VBAR);
1405 if (arm_feature(env, ARM_FEATURE_V6K)) {
1406 set_feature(env, ARM_FEATURE_V6);
1407 set_feature(env, ARM_FEATURE_MVFR);
1409 if (arm_feature(env, ARM_FEATURE_V6)) {
1410 set_feature(env, ARM_FEATURE_V5);
1411 if (!arm_feature(env, ARM_FEATURE_M)) {
1412 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1413 set_feature(env, ARM_FEATURE_AUXCR);
1416 if (arm_feature(env, ARM_FEATURE_V5)) {
1417 set_feature(env, ARM_FEATURE_V4T);
1419 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1420 set_feature(env, ARM_FEATURE_V7MP);
1421 set_feature(env, ARM_FEATURE_PXN);
1423 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1424 set_feature(env, ARM_FEATURE_CBAR);
1426 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1427 !arm_feature(env, ARM_FEATURE_M)) {
1428 set_feature(env, ARM_FEATURE_THUMB_DSP);
1432 * We rely on no XScale CPU having VFP so we can use the same bits in the
1433 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1435 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1436 arm_feature(env, ARM_FEATURE_XSCALE)));
1438 if (arm_feature(env, ARM_FEATURE_V7) &&
1439 !arm_feature(env, ARM_FEATURE_M) &&
1440 !arm_feature(env, ARM_FEATURE_PMSA)) {
1441 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1442 * can use 4K pages.
1444 pagebits = 12;
1445 } else {
1446 /* For CPUs which might have tiny 1K pages, or which have an
1447 * MPU and might have small region sizes, stick with 1K pages.
1449 pagebits = 10;
1451 if (!set_preferred_target_page_bits(pagebits)) {
1452 /* This can only ever happen for hotplugging a CPU, or if
1453 * the board code incorrectly creates a CPU which it has
1454 * promised via minimum_page_size that it will not.
1456 error_setg(errp, "This CPU requires a smaller page size than the "
1457 "system is using");
1458 return;
1461 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1462 * We don't support setting cluster ID ([16..23]) (known as Aff2
1463 * in later ARM ARM versions), or any of the higher affinity level fields,
1464 * so these bits always RAZ.
1466 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1467 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1468 ARM_DEFAULT_CPUS_PER_CLUSTER);
1471 if (cpu->reset_hivecs) {
1472 cpu->reset_sctlr |= (1 << 13);
1475 if (cpu->cfgend) {
1476 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1477 cpu->reset_sctlr |= SCTLR_EE;
1478 } else {
1479 cpu->reset_sctlr |= SCTLR_B;
1483 if (!cpu->has_el3) {
1484 /* If the has_el3 CPU property is disabled then we need to disable the
1485 * feature.
1487 unset_feature(env, ARM_FEATURE_EL3);
1489 /* Disable the security extension feature bits in the processor feature
1490 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1492 cpu->id_pfr1 &= ~0xf0;
1493 cpu->isar.id_aa64pfr0 &= ~0xf000;
1496 if (!cpu->has_el2) {
1497 unset_feature(env, ARM_FEATURE_EL2);
1500 if (!cpu->has_pmu) {
1501 unset_feature(env, ARM_FEATURE_PMU);
1503 if (arm_feature(env, ARM_FEATURE_PMU)) {
1504 pmu_init(cpu);
1506 if (!kvm_enabled()) {
1507 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1508 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1511 #ifndef CONFIG_USER_ONLY
1512 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1513 cpu);
1514 #endif
1515 } else {
1516 cpu->id_aa64dfr0 &= ~0xf00;
1517 cpu->id_dfr0 &= ~(0xf << 24);
1518 cpu->pmceid0 = 0;
1519 cpu->pmceid1 = 0;
1522 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1523 /* Disable the hypervisor feature bits in the processor feature
1524 * registers if we don't have EL2. These are id_pfr1[15:12] and
1525 * id_aa64pfr0_el1[11:8].
1527 cpu->isar.id_aa64pfr0 &= ~0xf00;
1528 cpu->id_pfr1 &= ~0xf000;
1531 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1532 * to false or by setting pmsav7-dregion to 0.
1534 if (!cpu->has_mpu) {
1535 cpu->pmsav7_dregion = 0;
1537 if (cpu->pmsav7_dregion == 0) {
1538 cpu->has_mpu = false;
1541 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1542 arm_feature(env, ARM_FEATURE_V7)) {
1543 uint32_t nr = cpu->pmsav7_dregion;
1545 if (nr > 0xff) {
1546 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1547 return;
1550 if (nr) {
1551 if (arm_feature(env, ARM_FEATURE_V8)) {
1552 /* PMSAv8 */
1553 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1554 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1555 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1556 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1557 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1559 } else {
1560 env->pmsav7.drbar = g_new0(uint32_t, nr);
1561 env->pmsav7.drsr = g_new0(uint32_t, nr);
1562 env->pmsav7.dracr = g_new0(uint32_t, nr);
1567 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1568 uint32_t nr = cpu->sau_sregion;
1570 if (nr > 0xff) {
1571 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1572 return;
1575 if (nr) {
1576 env->sau.rbar = g_new0(uint32_t, nr);
1577 env->sau.rlar = g_new0(uint32_t, nr);
1581 if (arm_feature(env, ARM_FEATURE_EL3)) {
1582 set_feature(env, ARM_FEATURE_VBAR);
1585 register_cp_regs_for_features(cpu);
1586 arm_cpu_register_gdb_regs_for_features(cpu);
1588 init_cpreg_list(cpu);
1590 #ifndef CONFIG_USER_ONLY
1591 MachineState *ms = MACHINE(qdev_get_machine());
1592 unsigned int smp_cpus = ms->smp.cpus;
1594 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1595 cs->num_ases = 2;
1597 if (!cpu->secure_memory) {
1598 cpu->secure_memory = cs->memory;
1600 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1601 cpu->secure_memory);
1602 } else {
1603 cs->num_ases = 1;
1605 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1607 /* No core_count specified, default to smp_cpus. */
1608 if (cpu->core_count == -1) {
1609 cpu->core_count = smp_cpus;
1611 #endif
1613 qemu_init_vcpu(cs);
1614 cpu_reset(cs);
1616 acc->parent_realize(dev, errp);
1619 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1621 ObjectClass *oc;
1622 char *typename;
1623 char **cpuname;
1624 const char *cpunamestr;
1626 cpuname = g_strsplit(cpu_model, ",", 1);
1627 cpunamestr = cpuname[0];
1628 #ifdef CONFIG_USER_ONLY
1629 /* For backwards compatibility usermode emulation allows "-cpu any",
1630 * which has the same semantics as "-cpu max".
1632 if (!strcmp(cpunamestr, "any")) {
1633 cpunamestr = "max";
1635 #endif
1636 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1637 oc = object_class_by_name(typename);
1638 g_strfreev(cpuname);
1639 g_free(typename);
1640 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1641 object_class_is_abstract(oc)) {
1642 return NULL;
1644 return oc;
1647 /* CPU models. These are not needed for the AArch64 linux-user build. */
1648 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1650 static void arm926_initfn(Object *obj)
1652 ARMCPU *cpu = ARM_CPU(obj);
1654 cpu->dtb_compatible = "arm,arm926";
1655 set_feature(&cpu->env, ARM_FEATURE_V5);
1656 set_feature(&cpu->env, ARM_FEATURE_VFP);
1657 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1658 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1659 cpu->midr = 0x41069265;
1660 cpu->reset_fpsid = 0x41011090;
1661 cpu->ctr = 0x1dd20d2;
1662 cpu->reset_sctlr = 0x00090078;
1665 * ARMv5 does not have the ID_ISAR registers, but we can still
1666 * set the field to indicate Jazelle support within QEMU.
1668 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1670 * Similarly, we need to set MVFR0 fields to enable double precision
1671 * and short vector support even though ARMv5 doesn't have this register.
1673 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1674 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1677 static void arm946_initfn(Object *obj)
1679 ARMCPU *cpu = ARM_CPU(obj);
1681 cpu->dtb_compatible = "arm,arm946";
1682 set_feature(&cpu->env, ARM_FEATURE_V5);
1683 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1684 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1685 cpu->midr = 0x41059461;
1686 cpu->ctr = 0x0f004006;
1687 cpu->reset_sctlr = 0x00000078;
1690 static void arm1026_initfn(Object *obj)
1692 ARMCPU *cpu = ARM_CPU(obj);
1694 cpu->dtb_compatible = "arm,arm1026";
1695 set_feature(&cpu->env, ARM_FEATURE_V5);
1696 set_feature(&cpu->env, ARM_FEATURE_VFP);
1697 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1698 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1699 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1700 cpu->midr = 0x4106a262;
1701 cpu->reset_fpsid = 0x410110a0;
1702 cpu->ctr = 0x1dd20d2;
1703 cpu->reset_sctlr = 0x00090078;
1704 cpu->reset_auxcr = 1;
1707 * ARMv5 does not have the ID_ISAR registers, but we can still
1708 * set the field to indicate Jazelle support within QEMU.
1710 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1712 * Similarly, we need to set MVFR0 fields to enable double precision
1713 * and short vector support even though ARMv5 doesn't have this register.
1715 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1716 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1719 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1720 ARMCPRegInfo ifar = {
1721 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1722 .access = PL1_RW,
1723 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1724 .resetvalue = 0
1726 define_one_arm_cp_reg(cpu, &ifar);
1730 static void arm1136_r2_initfn(Object *obj)
1732 ARMCPU *cpu = ARM_CPU(obj);
1733 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1734 * older core than plain "arm1136". In particular this does not
1735 * have the v6K features.
1736 * These ID register values are correct for 1136 but may be wrong
1737 * for 1136_r2 (in particular r0p2 does not actually implement most
1738 * of the ID registers).
1741 cpu->dtb_compatible = "arm,arm1136";
1742 set_feature(&cpu->env, ARM_FEATURE_V6);
1743 set_feature(&cpu->env, ARM_FEATURE_VFP);
1744 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1746 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1747 cpu->midr = 0x4107b362;
1748 cpu->reset_fpsid = 0x410120b4;
1749 cpu->isar.mvfr0 = 0x11111111;
1750 cpu->isar.mvfr1 = 0x00000000;
1751 cpu->ctr = 0x1dd20d2;
1752 cpu->reset_sctlr = 0x00050078;
1753 cpu->id_pfr0 = 0x111;
1754 cpu->id_pfr1 = 0x1;
1755 cpu->id_dfr0 = 0x2;
1756 cpu->id_afr0 = 0x3;
1757 cpu->id_mmfr0 = 0x01130003;
1758 cpu->id_mmfr1 = 0x10030302;
1759 cpu->id_mmfr2 = 0x01222110;
1760 cpu->isar.id_isar0 = 0x00140011;
1761 cpu->isar.id_isar1 = 0x12002111;
1762 cpu->isar.id_isar2 = 0x11231111;
1763 cpu->isar.id_isar3 = 0x01102131;
1764 cpu->isar.id_isar4 = 0x141;
1765 cpu->reset_auxcr = 7;
1768 static void arm1136_initfn(Object *obj)
1770 ARMCPU *cpu = ARM_CPU(obj);
1772 cpu->dtb_compatible = "arm,arm1136";
1773 set_feature(&cpu->env, ARM_FEATURE_V6K);
1774 set_feature(&cpu->env, ARM_FEATURE_V6);
1775 set_feature(&cpu->env, ARM_FEATURE_VFP);
1776 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1777 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1778 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1779 cpu->midr = 0x4117b363;
1780 cpu->reset_fpsid = 0x410120b4;
1781 cpu->isar.mvfr0 = 0x11111111;
1782 cpu->isar.mvfr1 = 0x00000000;
1783 cpu->ctr = 0x1dd20d2;
1784 cpu->reset_sctlr = 0x00050078;
1785 cpu->id_pfr0 = 0x111;
1786 cpu->id_pfr1 = 0x1;
1787 cpu->id_dfr0 = 0x2;
1788 cpu->id_afr0 = 0x3;
1789 cpu->id_mmfr0 = 0x01130003;
1790 cpu->id_mmfr1 = 0x10030302;
1791 cpu->id_mmfr2 = 0x01222110;
1792 cpu->isar.id_isar0 = 0x00140011;
1793 cpu->isar.id_isar1 = 0x12002111;
1794 cpu->isar.id_isar2 = 0x11231111;
1795 cpu->isar.id_isar3 = 0x01102131;
1796 cpu->isar.id_isar4 = 0x141;
1797 cpu->reset_auxcr = 7;
1800 static void arm1176_initfn(Object *obj)
1802 ARMCPU *cpu = ARM_CPU(obj);
1804 cpu->dtb_compatible = "arm,arm1176";
1805 set_feature(&cpu->env, ARM_FEATURE_V6K);
1806 set_feature(&cpu->env, ARM_FEATURE_VFP);
1807 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1808 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1809 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1810 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1811 set_feature(&cpu->env, ARM_FEATURE_EL3);
1812 cpu->midr = 0x410fb767;
1813 cpu->reset_fpsid = 0x410120b5;
1814 cpu->isar.mvfr0 = 0x11111111;
1815 cpu->isar.mvfr1 = 0x00000000;
1816 cpu->ctr = 0x1dd20d2;
1817 cpu->reset_sctlr = 0x00050078;
1818 cpu->id_pfr0 = 0x111;
1819 cpu->id_pfr1 = 0x11;
1820 cpu->id_dfr0 = 0x33;
1821 cpu->id_afr0 = 0;
1822 cpu->id_mmfr0 = 0x01130003;
1823 cpu->id_mmfr1 = 0x10030302;
1824 cpu->id_mmfr2 = 0x01222100;
1825 cpu->isar.id_isar0 = 0x0140011;
1826 cpu->isar.id_isar1 = 0x12002111;
1827 cpu->isar.id_isar2 = 0x11231121;
1828 cpu->isar.id_isar3 = 0x01102131;
1829 cpu->isar.id_isar4 = 0x01141;
1830 cpu->reset_auxcr = 7;
1833 static void arm11mpcore_initfn(Object *obj)
1835 ARMCPU *cpu = ARM_CPU(obj);
1837 cpu->dtb_compatible = "arm,arm11mpcore";
1838 set_feature(&cpu->env, ARM_FEATURE_V6K);
1839 set_feature(&cpu->env, ARM_FEATURE_VFP);
1840 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1841 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1842 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1843 cpu->midr = 0x410fb022;
1844 cpu->reset_fpsid = 0x410120b4;
1845 cpu->isar.mvfr0 = 0x11111111;
1846 cpu->isar.mvfr1 = 0x00000000;
1847 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1848 cpu->id_pfr0 = 0x111;
1849 cpu->id_pfr1 = 0x1;
1850 cpu->id_dfr0 = 0;
1851 cpu->id_afr0 = 0x2;
1852 cpu->id_mmfr0 = 0x01100103;
1853 cpu->id_mmfr1 = 0x10020302;
1854 cpu->id_mmfr2 = 0x01222000;
1855 cpu->isar.id_isar0 = 0x00100011;
1856 cpu->isar.id_isar1 = 0x12002111;
1857 cpu->isar.id_isar2 = 0x11221011;
1858 cpu->isar.id_isar3 = 0x01102131;
1859 cpu->isar.id_isar4 = 0x141;
1860 cpu->reset_auxcr = 1;
1863 static void cortex_m0_initfn(Object *obj)
1865 ARMCPU *cpu = ARM_CPU(obj);
1866 set_feature(&cpu->env, ARM_FEATURE_V6);
1867 set_feature(&cpu->env, ARM_FEATURE_M);
1869 cpu->midr = 0x410cc200;
1872 static void cortex_m3_initfn(Object *obj)
1874 ARMCPU *cpu = ARM_CPU(obj);
1875 set_feature(&cpu->env, ARM_FEATURE_V7);
1876 set_feature(&cpu->env, ARM_FEATURE_M);
1877 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1878 cpu->midr = 0x410fc231;
1879 cpu->pmsav7_dregion = 8;
1880 cpu->id_pfr0 = 0x00000030;
1881 cpu->id_pfr1 = 0x00000200;
1882 cpu->id_dfr0 = 0x00100000;
1883 cpu->id_afr0 = 0x00000000;
1884 cpu->id_mmfr0 = 0x00000030;
1885 cpu->id_mmfr1 = 0x00000000;
1886 cpu->id_mmfr2 = 0x00000000;
1887 cpu->id_mmfr3 = 0x00000000;
1888 cpu->isar.id_isar0 = 0x01141110;
1889 cpu->isar.id_isar1 = 0x02111000;
1890 cpu->isar.id_isar2 = 0x21112231;
1891 cpu->isar.id_isar3 = 0x01111110;
1892 cpu->isar.id_isar4 = 0x01310102;
1893 cpu->isar.id_isar5 = 0x00000000;
1894 cpu->isar.id_isar6 = 0x00000000;
1897 static void cortex_m4_initfn(Object *obj)
1899 ARMCPU *cpu = ARM_CPU(obj);
1901 set_feature(&cpu->env, ARM_FEATURE_V7);
1902 set_feature(&cpu->env, ARM_FEATURE_M);
1903 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1904 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1905 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1906 cpu->midr = 0x410fc240; /* r0p0 */
1907 cpu->pmsav7_dregion = 8;
1908 cpu->isar.mvfr0 = 0x10110021;
1909 cpu->isar.mvfr1 = 0x11000011;
1910 cpu->isar.mvfr2 = 0x00000000;
1911 cpu->id_pfr0 = 0x00000030;
1912 cpu->id_pfr1 = 0x00000200;
1913 cpu->id_dfr0 = 0x00100000;
1914 cpu->id_afr0 = 0x00000000;
1915 cpu->id_mmfr0 = 0x00000030;
1916 cpu->id_mmfr1 = 0x00000000;
1917 cpu->id_mmfr2 = 0x00000000;
1918 cpu->id_mmfr3 = 0x00000000;
1919 cpu->isar.id_isar0 = 0x01141110;
1920 cpu->isar.id_isar1 = 0x02111000;
1921 cpu->isar.id_isar2 = 0x21112231;
1922 cpu->isar.id_isar3 = 0x01111110;
1923 cpu->isar.id_isar4 = 0x01310102;
1924 cpu->isar.id_isar5 = 0x00000000;
1925 cpu->isar.id_isar6 = 0x00000000;
1928 static void cortex_m33_initfn(Object *obj)
1930 ARMCPU *cpu = ARM_CPU(obj);
1932 set_feature(&cpu->env, ARM_FEATURE_V8);
1933 set_feature(&cpu->env, ARM_FEATURE_M);
1934 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1935 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1936 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1937 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1938 cpu->midr = 0x410fd213; /* r0p3 */
1939 cpu->pmsav7_dregion = 16;
1940 cpu->sau_sregion = 8;
1941 cpu->isar.mvfr0 = 0x10110021;
1942 cpu->isar.mvfr1 = 0x11000011;
1943 cpu->isar.mvfr2 = 0x00000040;
1944 cpu->id_pfr0 = 0x00000030;
1945 cpu->id_pfr1 = 0x00000210;
1946 cpu->id_dfr0 = 0x00200000;
1947 cpu->id_afr0 = 0x00000000;
1948 cpu->id_mmfr0 = 0x00101F40;
1949 cpu->id_mmfr1 = 0x00000000;
1950 cpu->id_mmfr2 = 0x01000000;
1951 cpu->id_mmfr3 = 0x00000000;
1952 cpu->isar.id_isar0 = 0x01101110;
1953 cpu->isar.id_isar1 = 0x02212000;
1954 cpu->isar.id_isar2 = 0x20232232;
1955 cpu->isar.id_isar3 = 0x01111131;
1956 cpu->isar.id_isar4 = 0x01310132;
1957 cpu->isar.id_isar5 = 0x00000000;
1958 cpu->isar.id_isar6 = 0x00000000;
1959 cpu->clidr = 0x00000000;
1960 cpu->ctr = 0x8000c000;
1963 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1965 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1966 CPUClass *cc = CPU_CLASS(oc);
1968 acc->info = data;
1969 #ifndef CONFIG_USER_ONLY
1970 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1971 #endif
1973 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1976 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1977 /* Dummy the TCM region regs for the moment */
1978 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1979 .access = PL1_RW, .type = ARM_CP_CONST },
1980 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1981 .access = PL1_RW, .type = ARM_CP_CONST },
1982 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1983 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1984 REGINFO_SENTINEL
1987 static void cortex_r5_initfn(Object *obj)
1989 ARMCPU *cpu = ARM_CPU(obj);
1991 set_feature(&cpu->env, ARM_FEATURE_V7);
1992 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1993 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1994 cpu->midr = 0x411fc153; /* r1p3 */
1995 cpu->id_pfr0 = 0x0131;
1996 cpu->id_pfr1 = 0x001;
1997 cpu->id_dfr0 = 0x010400;
1998 cpu->id_afr0 = 0x0;
1999 cpu->id_mmfr0 = 0x0210030;
2000 cpu->id_mmfr1 = 0x00000000;
2001 cpu->id_mmfr2 = 0x01200000;
2002 cpu->id_mmfr3 = 0x0211;
2003 cpu->isar.id_isar0 = 0x02101111;
2004 cpu->isar.id_isar1 = 0x13112111;
2005 cpu->isar.id_isar2 = 0x21232141;
2006 cpu->isar.id_isar3 = 0x01112131;
2007 cpu->isar.id_isar4 = 0x0010142;
2008 cpu->isar.id_isar5 = 0x0;
2009 cpu->isar.id_isar6 = 0x0;
2010 cpu->mp_is_up = true;
2011 cpu->pmsav7_dregion = 16;
2012 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2015 static void cortex_r5f_initfn(Object *obj)
2017 ARMCPU *cpu = ARM_CPU(obj);
2019 cortex_r5_initfn(obj);
2020 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2021 cpu->isar.mvfr0 = 0x10110221;
2022 cpu->isar.mvfr1 = 0x00000011;
2025 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2026 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2027 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2028 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2029 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2030 REGINFO_SENTINEL
2033 static void cortex_a8_initfn(Object *obj)
2035 ARMCPU *cpu = ARM_CPU(obj);
2037 cpu->dtb_compatible = "arm,cortex-a8";
2038 set_feature(&cpu->env, ARM_FEATURE_V7);
2039 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2040 set_feature(&cpu->env, ARM_FEATURE_NEON);
2041 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2042 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2043 set_feature(&cpu->env, ARM_FEATURE_EL3);
2044 cpu->midr = 0x410fc080;
2045 cpu->reset_fpsid = 0x410330c0;
2046 cpu->isar.mvfr0 = 0x11110222;
2047 cpu->isar.mvfr1 = 0x00011111;
2048 cpu->ctr = 0x82048004;
2049 cpu->reset_sctlr = 0x00c50078;
2050 cpu->id_pfr0 = 0x1031;
2051 cpu->id_pfr1 = 0x11;
2052 cpu->id_dfr0 = 0x400;
2053 cpu->id_afr0 = 0;
2054 cpu->id_mmfr0 = 0x31100003;
2055 cpu->id_mmfr1 = 0x20000000;
2056 cpu->id_mmfr2 = 0x01202000;
2057 cpu->id_mmfr3 = 0x11;
2058 cpu->isar.id_isar0 = 0x00101111;
2059 cpu->isar.id_isar1 = 0x12112111;
2060 cpu->isar.id_isar2 = 0x21232031;
2061 cpu->isar.id_isar3 = 0x11112131;
2062 cpu->isar.id_isar4 = 0x00111142;
2063 cpu->dbgdidr = 0x15141000;
2064 cpu->clidr = (1 << 27) | (2 << 24) | 3;
2065 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2066 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2067 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2068 cpu->reset_auxcr = 2;
2069 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2072 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2073 /* power_control should be set to maximum latency. Again,
2074 * default to 0 and set by private hook
2076 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2077 .access = PL1_RW, .resetvalue = 0,
2078 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2079 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2080 .access = PL1_RW, .resetvalue = 0,
2081 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2082 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2083 .access = PL1_RW, .resetvalue = 0,
2084 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2085 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2086 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2087 /* TLB lockdown control */
2088 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2089 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2090 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2091 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2092 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2093 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2094 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2095 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2096 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2097 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2098 REGINFO_SENTINEL
2101 static void cortex_a9_initfn(Object *obj)
2103 ARMCPU *cpu = ARM_CPU(obj);
2105 cpu->dtb_compatible = "arm,cortex-a9";
2106 set_feature(&cpu->env, ARM_FEATURE_V7);
2107 set_feature(&cpu->env, ARM_FEATURE_VFP3);
2108 set_feature(&cpu->env, ARM_FEATURE_NEON);
2109 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2110 set_feature(&cpu->env, ARM_FEATURE_EL3);
2111 /* Note that A9 supports the MP extensions even for
2112 * A9UP and single-core A9MP (which are both different
2113 * and valid configurations; we don't model A9UP).
2115 set_feature(&cpu->env, ARM_FEATURE_V7MP);
2116 set_feature(&cpu->env, ARM_FEATURE_CBAR);
2117 cpu->midr = 0x410fc090;
2118 cpu->reset_fpsid = 0x41033090;
2119 cpu->isar.mvfr0 = 0x11110222;
2120 cpu->isar.mvfr1 = 0x01111111;
2121 cpu->ctr = 0x80038003;
2122 cpu->reset_sctlr = 0x00c50078;
2123 cpu->id_pfr0 = 0x1031;
2124 cpu->id_pfr1 = 0x11;
2125 cpu->id_dfr0 = 0x000;
2126 cpu->id_afr0 = 0;
2127 cpu->id_mmfr0 = 0x00100103;
2128 cpu->id_mmfr1 = 0x20000000;
2129 cpu->id_mmfr2 = 0x01230000;
2130 cpu->id_mmfr3 = 0x00002111;
2131 cpu->isar.id_isar0 = 0x00101111;
2132 cpu->isar.id_isar1 = 0x13112111;
2133 cpu->isar.id_isar2 = 0x21232041;
2134 cpu->isar.id_isar3 = 0x11112131;
2135 cpu->isar.id_isar4 = 0x00111142;
2136 cpu->dbgdidr = 0x35141000;
2137 cpu->clidr = (1 << 27) | (1 << 24) | 3;
2138 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2139 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2140 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2143 #ifndef CONFIG_USER_ONLY
2144 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2146 MachineState *ms = MACHINE(qdev_get_machine());
2148 /* Linux wants the number of processors from here.
2149 * Might as well set the interrupt-controller bit too.
2151 return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2153 #endif
2155 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2156 #ifndef CONFIG_USER_ONLY
2157 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2158 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2159 .writefn = arm_cp_write_ignore, },
2160 #endif
2161 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2162 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2163 REGINFO_SENTINEL
2166 static void cortex_a7_initfn(Object *obj)
2168 ARMCPU *cpu = ARM_CPU(obj);
2170 cpu->dtb_compatible = "arm,cortex-a7";
2171 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2172 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2173 set_feature(&cpu->env, ARM_FEATURE_NEON);
2174 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2175 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2176 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2177 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2178 set_feature(&cpu->env, ARM_FEATURE_EL2);
2179 set_feature(&cpu->env, ARM_FEATURE_EL3);
2180 set_feature(&cpu->env, ARM_FEATURE_PMU);
2181 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2182 cpu->midr = 0x410fc075;
2183 cpu->reset_fpsid = 0x41023075;
2184 cpu->isar.mvfr0 = 0x10110222;
2185 cpu->isar.mvfr1 = 0x11111111;
2186 cpu->ctr = 0x84448003;
2187 cpu->reset_sctlr = 0x00c50078;
2188 cpu->id_pfr0 = 0x00001131;
2189 cpu->id_pfr1 = 0x00011011;
2190 cpu->id_dfr0 = 0x02010555;
2191 cpu->id_afr0 = 0x00000000;
2192 cpu->id_mmfr0 = 0x10101105;
2193 cpu->id_mmfr1 = 0x40000000;
2194 cpu->id_mmfr2 = 0x01240000;
2195 cpu->id_mmfr3 = 0x02102211;
2196 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2197 * table 4-41 gives 0x02101110, which includes the arm div insns.
2199 cpu->isar.id_isar0 = 0x02101110;
2200 cpu->isar.id_isar1 = 0x13112111;
2201 cpu->isar.id_isar2 = 0x21232041;
2202 cpu->isar.id_isar3 = 0x11112131;
2203 cpu->isar.id_isar4 = 0x10011142;
2204 cpu->dbgdidr = 0x3515f005;
2205 cpu->clidr = 0x0a200023;
2206 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2207 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2208 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2209 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2212 static void cortex_a15_initfn(Object *obj)
2214 ARMCPU *cpu = ARM_CPU(obj);
2216 cpu->dtb_compatible = "arm,cortex-a15";
2217 set_feature(&cpu->env, ARM_FEATURE_V7VE);
2218 set_feature(&cpu->env, ARM_FEATURE_VFP4);
2219 set_feature(&cpu->env, ARM_FEATURE_NEON);
2220 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2221 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2222 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2223 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2224 set_feature(&cpu->env, ARM_FEATURE_EL2);
2225 set_feature(&cpu->env, ARM_FEATURE_EL3);
2226 set_feature(&cpu->env, ARM_FEATURE_PMU);
2227 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2228 cpu->midr = 0x412fc0f1;
2229 cpu->reset_fpsid = 0x410430f0;
2230 cpu->isar.mvfr0 = 0x10110222;
2231 cpu->isar.mvfr1 = 0x11111111;
2232 cpu->ctr = 0x8444c004;
2233 cpu->reset_sctlr = 0x00c50078;
2234 cpu->id_pfr0 = 0x00001131;
2235 cpu->id_pfr1 = 0x00011011;
2236 cpu->id_dfr0 = 0x02010555;
2237 cpu->id_afr0 = 0x00000000;
2238 cpu->id_mmfr0 = 0x10201105;
2239 cpu->id_mmfr1 = 0x20000000;
2240 cpu->id_mmfr2 = 0x01240000;
2241 cpu->id_mmfr3 = 0x02102211;
2242 cpu->isar.id_isar0 = 0x02101110;
2243 cpu->isar.id_isar1 = 0x13112111;
2244 cpu->isar.id_isar2 = 0x21232041;
2245 cpu->isar.id_isar3 = 0x11112131;
2246 cpu->isar.id_isar4 = 0x10011142;
2247 cpu->dbgdidr = 0x3515f021;
2248 cpu->clidr = 0x0a200023;
2249 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2250 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2251 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2252 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2255 static void ti925t_initfn(Object *obj)
2257 ARMCPU *cpu = ARM_CPU(obj);
2258 set_feature(&cpu->env, ARM_FEATURE_V4T);
2259 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2260 cpu->midr = ARM_CPUID_TI925T;
2261 cpu->ctr = 0x5109149;
2262 cpu->reset_sctlr = 0x00000070;
2265 static void sa1100_initfn(Object *obj)
2267 ARMCPU *cpu = ARM_CPU(obj);
2269 cpu->dtb_compatible = "intel,sa1100";
2270 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2271 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2272 cpu->midr = 0x4401A11B;
2273 cpu->reset_sctlr = 0x00000070;
2276 static void sa1110_initfn(Object *obj)
2278 ARMCPU *cpu = ARM_CPU(obj);
2279 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2280 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2281 cpu->midr = 0x6901B119;
2282 cpu->reset_sctlr = 0x00000070;
2285 static void pxa250_initfn(Object *obj)
2287 ARMCPU *cpu = ARM_CPU(obj);
2289 cpu->dtb_compatible = "marvell,xscale";
2290 set_feature(&cpu->env, ARM_FEATURE_V5);
2291 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2292 cpu->midr = 0x69052100;
2293 cpu->ctr = 0xd172172;
2294 cpu->reset_sctlr = 0x00000078;
2297 static void pxa255_initfn(Object *obj)
2299 ARMCPU *cpu = ARM_CPU(obj);
2301 cpu->dtb_compatible = "marvell,xscale";
2302 set_feature(&cpu->env, ARM_FEATURE_V5);
2303 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2304 cpu->midr = 0x69052d00;
2305 cpu->ctr = 0xd172172;
2306 cpu->reset_sctlr = 0x00000078;
2309 static void pxa260_initfn(Object *obj)
2311 ARMCPU *cpu = ARM_CPU(obj);
2313 cpu->dtb_compatible = "marvell,xscale";
2314 set_feature(&cpu->env, ARM_FEATURE_V5);
2315 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2316 cpu->midr = 0x69052903;
2317 cpu->ctr = 0xd172172;
2318 cpu->reset_sctlr = 0x00000078;
2321 static void pxa261_initfn(Object *obj)
2323 ARMCPU *cpu = ARM_CPU(obj);
2325 cpu->dtb_compatible = "marvell,xscale";
2326 set_feature(&cpu->env, ARM_FEATURE_V5);
2327 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2328 cpu->midr = 0x69052d05;
2329 cpu->ctr = 0xd172172;
2330 cpu->reset_sctlr = 0x00000078;
2333 static void pxa262_initfn(Object *obj)
2335 ARMCPU *cpu = ARM_CPU(obj);
2337 cpu->dtb_compatible = "marvell,xscale";
2338 set_feature(&cpu->env, ARM_FEATURE_V5);
2339 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2340 cpu->midr = 0x69052d06;
2341 cpu->ctr = 0xd172172;
2342 cpu->reset_sctlr = 0x00000078;
2345 static void pxa270a0_initfn(Object *obj)
2347 ARMCPU *cpu = ARM_CPU(obj);
2349 cpu->dtb_compatible = "marvell,xscale";
2350 set_feature(&cpu->env, ARM_FEATURE_V5);
2351 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2352 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2353 cpu->midr = 0x69054110;
2354 cpu->ctr = 0xd172172;
2355 cpu->reset_sctlr = 0x00000078;
2358 static void pxa270a1_initfn(Object *obj)
2360 ARMCPU *cpu = ARM_CPU(obj);
2362 cpu->dtb_compatible = "marvell,xscale";
2363 set_feature(&cpu->env, ARM_FEATURE_V5);
2364 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2365 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2366 cpu->midr = 0x69054111;
2367 cpu->ctr = 0xd172172;
2368 cpu->reset_sctlr = 0x00000078;
2371 static void pxa270b0_initfn(Object *obj)
2373 ARMCPU *cpu = ARM_CPU(obj);
2375 cpu->dtb_compatible = "marvell,xscale";
2376 set_feature(&cpu->env, ARM_FEATURE_V5);
2377 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2378 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2379 cpu->midr = 0x69054112;
2380 cpu->ctr = 0xd172172;
2381 cpu->reset_sctlr = 0x00000078;
2384 static void pxa270b1_initfn(Object *obj)
2386 ARMCPU *cpu = ARM_CPU(obj);
2388 cpu->dtb_compatible = "marvell,xscale";
2389 set_feature(&cpu->env, ARM_FEATURE_V5);
2390 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2391 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2392 cpu->midr = 0x69054113;
2393 cpu->ctr = 0xd172172;
2394 cpu->reset_sctlr = 0x00000078;
2397 static void pxa270c0_initfn(Object *obj)
2399 ARMCPU *cpu = ARM_CPU(obj);
2401 cpu->dtb_compatible = "marvell,xscale";
2402 set_feature(&cpu->env, ARM_FEATURE_V5);
2403 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2404 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2405 cpu->midr = 0x69054114;
2406 cpu->ctr = 0xd172172;
2407 cpu->reset_sctlr = 0x00000078;
2410 static void pxa270c5_initfn(Object *obj)
2412 ARMCPU *cpu = ARM_CPU(obj);
2414 cpu->dtb_compatible = "marvell,xscale";
2415 set_feature(&cpu->env, ARM_FEATURE_V5);
2416 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2417 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2418 cpu->midr = 0x69054117;
2419 cpu->ctr = 0xd172172;
2420 cpu->reset_sctlr = 0x00000078;
2423 #ifndef TARGET_AARCH64
2424 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2425 * otherwise, a CPU with as many features enabled as our emulation supports.
2426 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2427 * this only needs to handle 32 bits.
2429 static void arm_max_initfn(Object *obj)
2431 ARMCPU *cpu = ARM_CPU(obj);
2433 if (kvm_enabled()) {
2434 kvm_arm_set_cpu_features_from_host(cpu);
2435 } else {
2436 cortex_a15_initfn(obj);
2438 /* old-style VFP short-vector support */
2439 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2441 #ifdef CONFIG_USER_ONLY
2442 /* We don't set these in system emulation mode for the moment,
2443 * since we don't correctly set (all of) the ID registers to
2444 * advertise them.
2446 set_feature(&cpu->env, ARM_FEATURE_V8);
2448 uint32_t t;
2450 t = cpu->isar.id_isar5;
2451 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2452 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2453 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2454 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2455 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2456 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2457 cpu->isar.id_isar5 = t;
2459 t = cpu->isar.id_isar6;
2460 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2461 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2462 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2463 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2464 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2465 cpu->isar.id_isar6 = t;
2467 t = cpu->isar.mvfr1;
2468 t = FIELD_DP32(t, MVFR1, FPHP, 2); /* v8.0 FP support */
2469 cpu->isar.mvfr1 = t;
2471 t = cpu->isar.mvfr2;
2472 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2473 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2474 cpu->isar.mvfr2 = t;
2476 t = cpu->id_mmfr4;
2477 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2478 cpu->id_mmfr4 = t;
2480 #endif
2483 #endif
2485 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2487 struct ARMCPUInfo {
2488 const char *name;
2489 void (*initfn)(Object *obj);
2490 void (*class_init)(ObjectClass *oc, void *data);
2493 static const ARMCPUInfo arm_cpus[] = {
2494 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2495 { .name = "arm926", .initfn = arm926_initfn },
2496 { .name = "arm946", .initfn = arm946_initfn },
2497 { .name = "arm1026", .initfn = arm1026_initfn },
2498 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2499 * older core than plain "arm1136". In particular this does not
2500 * have the v6K features.
2502 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2503 { .name = "arm1136", .initfn = arm1136_initfn },
2504 { .name = "arm1176", .initfn = arm1176_initfn },
2505 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2506 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2507 .class_init = arm_v7m_class_init },
2508 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2509 .class_init = arm_v7m_class_init },
2510 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2511 .class_init = arm_v7m_class_init },
2512 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2513 .class_init = arm_v7m_class_init },
2514 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2515 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2516 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2517 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2518 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2519 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2520 { .name = "ti925t", .initfn = ti925t_initfn },
2521 { .name = "sa1100", .initfn = sa1100_initfn },
2522 { .name = "sa1110", .initfn = sa1110_initfn },
2523 { .name = "pxa250", .initfn = pxa250_initfn },
2524 { .name = "pxa255", .initfn = pxa255_initfn },
2525 { .name = "pxa260", .initfn = pxa260_initfn },
2526 { .name = "pxa261", .initfn = pxa261_initfn },
2527 { .name = "pxa262", .initfn = pxa262_initfn },
2528 /* "pxa270" is an alias for "pxa270-a0" */
2529 { .name = "pxa270", .initfn = pxa270a0_initfn },
2530 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2531 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2532 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2533 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2534 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2535 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2536 #ifndef TARGET_AARCH64
2537 { .name = "max", .initfn = arm_max_initfn },
2538 #endif
2539 #ifdef CONFIG_USER_ONLY
2540 { .name = "any", .initfn = arm_max_initfn },
2541 #endif
2542 #endif
2543 { .name = NULL }
2546 static Property arm_cpu_properties[] = {
2547 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2548 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2549 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2550 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2551 mp_affinity, ARM64_AFFINITY_INVALID),
2552 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2553 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2554 DEFINE_PROP_END_OF_LIST()
2557 static gchar *arm_gdb_arch_name(CPUState *cs)
2559 ARMCPU *cpu = ARM_CPU(cs);
2560 CPUARMState *env = &cpu->env;
2562 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2563 return g_strdup("iwmmxt");
2565 return g_strdup("arm");
2568 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2570 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2571 CPUClass *cc = CPU_CLASS(acc);
2572 DeviceClass *dc = DEVICE_CLASS(oc);
2574 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2575 &acc->parent_realize);
2576 dc->props = arm_cpu_properties;
2578 acc->parent_reset = cc->reset;
2579 cc->reset = arm_cpu_reset;
2581 cc->class_by_name = arm_cpu_class_by_name;
2582 cc->has_work = arm_cpu_has_work;
2583 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2584 cc->dump_state = arm_cpu_dump_state;
2585 cc->set_pc = arm_cpu_set_pc;
2586 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2587 cc->gdb_read_register = arm_cpu_gdb_read_register;
2588 cc->gdb_write_register = arm_cpu_gdb_write_register;
2589 #ifndef CONFIG_USER_ONLY
2590 cc->do_interrupt = arm_cpu_do_interrupt;
2591 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2592 cc->asidx_from_attrs = arm_asidx_from_attrs;
2593 cc->vmsd = &vmstate_arm_cpu;
2594 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2595 cc->write_elf64_note = arm_cpu_write_elf64_note;
2596 cc->write_elf32_note = arm_cpu_write_elf32_note;
2597 #endif
2598 cc->gdb_num_core_regs = 26;
2599 cc->gdb_core_xml_file = "arm-core.xml";
2600 cc->gdb_arch_name = arm_gdb_arch_name;
2601 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2602 cc->gdb_stop_before_watchpoint = true;
2603 cc->disas_set_info = arm_disas_set_info;
2604 #ifdef CONFIG_TCG
2605 cc->tcg_initialize = arm_translate_init;
2606 cc->tlb_fill = arm_cpu_tlb_fill;
2607 cc->debug_excp_handler = arm_debug_excp_handler;
2608 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2609 #if !defined(CONFIG_USER_ONLY)
2610 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2611 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2612 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2613 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2614 #endif
2617 #ifdef CONFIG_KVM
2618 static void arm_host_initfn(Object *obj)
2620 ARMCPU *cpu = ARM_CPU(obj);
2622 kvm_arm_set_cpu_features_from_host(cpu);
2623 arm_cpu_post_init(obj);
2626 static const TypeInfo host_arm_cpu_type_info = {
2627 .name = TYPE_ARM_HOST_CPU,
2628 #ifdef TARGET_AARCH64
2629 .parent = TYPE_AARCH64_CPU,
2630 #else
2631 .parent = TYPE_ARM_CPU,
2632 #endif
2633 .instance_init = arm_host_initfn,
2636 #endif
2638 static void arm_cpu_instance_init(Object *obj)
2640 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2642 acc->info->initfn(obj);
2643 arm_cpu_post_init(obj);
2646 static void cpu_register_class_init(ObjectClass *oc, void *data)
2648 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2650 acc->info = data;
2653 static void cpu_register(const ARMCPUInfo *info)
2655 TypeInfo type_info = {
2656 .parent = TYPE_ARM_CPU,
2657 .instance_size = sizeof(ARMCPU),
2658 .instance_init = arm_cpu_instance_init,
2659 .class_size = sizeof(ARMCPUClass),
2660 .class_init = info->class_init ?: cpu_register_class_init,
2661 .class_data = (void *)info,
2664 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2665 type_register(&type_info);
2666 g_free((void *)type_info.name);
2669 static const TypeInfo arm_cpu_type_info = {
2670 .name = TYPE_ARM_CPU,
2671 .parent = TYPE_CPU,
2672 .instance_size = sizeof(ARMCPU),
2673 .instance_init = arm_cpu_initfn,
2674 .instance_finalize = arm_cpu_finalizefn,
2675 .abstract = true,
2676 .class_size = sizeof(ARMCPUClass),
2677 .class_init = arm_cpu_class_init,
2680 static const TypeInfo idau_interface_type_info = {
2681 .name = TYPE_IDAU_INTERFACE,
2682 .parent = TYPE_INTERFACE,
2683 .class_size = sizeof(IDAUInterfaceClass),
2686 static void arm_cpu_register_types(void)
2688 const ARMCPUInfo *info = arm_cpus;
2690 type_register_static(&arm_cpu_type_info);
2691 type_register_static(&idau_interface_type_info);
2693 while (info->name) {
2694 cpu_register(info);
2695 info++;
2698 #ifdef CONFIG_KVM
2699 type_register_static(&host_arm_cpu_type_info);
2700 #endif
2703 type_init(arm_cpu_register_types)