tcg: Add guest load/store primitives for TCGv_i128
[qemu/ar7.git] / accel / tcg / cputlb.c
blob4812d83961624829f16e1d4c6958d820f60cbb5d
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 # define DEBUG_TLB_LOG_GATE 1
52 # else
53 # define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
60 #define tlb_debug(fmt, ...) do { \
61 if (DEBUG_TLB_LOG_GATE) { \
62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63 ## __VA_ARGS__); \
64 } else if (DEBUG_TLB_GATE) { \
65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66 } \
67 } while (0)
69 #define assert_cpu_is_self(cpu) do { \
70 if (DEBUG_TLB_GATE) { \
71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \
72 } \
73 } while (0)
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76 * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95 size_t max_entries)
97 desc->window_begin_ns = ns;
98 desc->window_max_entries = max_entries;
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
103 CPUJumpCache *jc = cpu->tb_jmp_cache;
104 int i, i0;
106 if (unlikely(!jc)) {
107 return;
110 i0 = tb_jmp_cache_hash_page(page_addr);
111 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
112 qatomic_set(&jc->array[i0 + i].tb, NULL);
117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
118 * @desc: The CPUTLBDesc portion of the TLB
119 * @fast: The CPUTLBDescFast portion of the same TLB
121 * Called with tlb_lock_held.
123 * We have two main constraints when resizing a TLB: (1) we only resize it
124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
125 * the array or unnecessarily flushing it), which means we do not control how
126 * frequently the resizing can occur; (2) we don't have access to the guest's
127 * future scheduling decisions, and therefore have to decide the magnitude of
128 * the resize based on past observations.
130 * In general, a memory-hungry process can benefit greatly from an appropriately
131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
132 * we just have to make the TLB as large as possible; while an oversized TLB
133 * results in minimal TLB miss rates, it also takes longer to be flushed
134 * (flushes can be _very_ frequent), and the reduced locality can also hurt
135 * performance.
137 * To achieve near-optimal performance for all kinds of workloads, we:
139 * 1. Aggressively increase the size of the TLB when the use rate of the
140 * TLB being flushed is high, since it is likely that in the near future this
141 * memory-hungry process will execute again, and its memory hungriness will
142 * probably be similar.
144 * 2. Slowly reduce the size of the TLB as the use rate declines over a
145 * reasonably large time window. The rationale is that if in such a time window
146 * we have not observed a high TLB use rate, it is likely that we won't observe
147 * it in the near future. In that case, once a time window expires we downsize
148 * the TLB to match the maximum use rate observed in the window.
150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
151 * since in that range performance is likely near-optimal. Recall that the TLB
152 * is direct mapped, so we want the use rate to be low (or at least not too
153 * high), since otherwise we are likely to have a significant amount of
154 * conflict misses.
156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
157 int64_t now)
159 size_t old_size = tlb_n_entries(fast);
160 size_t rate;
161 size_t new_size = old_size;
162 int64_t window_len_ms = 100;
163 int64_t window_len_ns = window_len_ms * 1000 * 1000;
164 bool window_expired = now > desc->window_begin_ns + window_len_ns;
166 if (desc->n_used_entries > desc->window_max_entries) {
167 desc->window_max_entries = desc->n_used_entries;
169 rate = desc->window_max_entries * 100 / old_size;
171 if (rate > 70) {
172 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
173 } else if (rate < 30 && window_expired) {
174 size_t ceil = pow2ceil(desc->window_max_entries);
175 size_t expected_rate = desc->window_max_entries * 100 / ceil;
178 * Avoid undersizing when the max number of entries seen is just below
179 * a pow2. For instance, if max_entries == 1025, the expected use rate
180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
182 * later. Thus, make sure that the expected use rate remains below 70%.
183 * (and since we double the size, that means the lowest rate we'd
184 * expect to get is 35%, which is still in the 30-70% range where
185 * we consider that the size is appropriate.)
187 if (expected_rate > 70) {
188 ceil *= 2;
190 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
193 if (new_size == old_size) {
194 if (window_expired) {
195 tlb_window_reset(desc, now, desc->n_used_entries);
197 return;
200 g_free(fast->table);
201 g_free(desc->fulltlb);
203 tlb_window_reset(desc, now, 0);
204 /* desc->n_used_entries is cleared by the caller */
205 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
206 fast->table = g_try_new(CPUTLBEntry, new_size);
207 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
210 * If the allocations fail, try smaller sizes. We just freed some
211 * memory, so going back to half of new_size has a good chance of working.
212 * Increased memory pressure elsewhere in the system might cause the
213 * allocations to fail though, so we progressively reduce the allocation
214 * size, aborting if we cannot even allocate the smallest TLB we support.
216 while (fast->table == NULL || desc->fulltlb == NULL) {
217 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
218 error_report("%s: %s", __func__, strerror(errno));
219 abort();
221 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
222 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224 g_free(fast->table);
225 g_free(desc->fulltlb);
226 fast->table = g_try_new(CPUTLBEntry, new_size);
227 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 desc->n_used_entries = 0;
234 desc->large_page_addr = -1;
235 desc->large_page_mask = -1;
236 desc->vindex = 0;
237 memset(fast->table, -1, sizeof_tlb(fast));
238 memset(desc->vtable, -1, sizeof(desc->vtable));
241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
242 int64_t now)
244 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
245 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247 tlb_mmu_resize_locked(desc, fast, now);
248 tlb_mmu_flush_locked(desc, fast);
251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255 tlb_window_reset(desc, now, 0);
256 desc->n_used_entries = 0;
257 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
258 fast->table = g_new(CPUTLBEntry, n_entries);
259 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
260 tlb_mmu_flush_locked(desc, fast);
263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 env_tlb(env)->d[mmu_idx].n_used_entries++;
268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 env_tlb(env)->d[mmu_idx].n_used_entries--;
273 void tlb_init(CPUState *cpu)
275 CPUArchState *env = cpu->env_ptr;
276 int64_t now = get_clock_realtime();
277 int i;
279 qemu_spin_init(&env_tlb(env)->c.lock);
281 /* All tlbs are initialized flushed. */
282 env_tlb(env)->c.dirty = 0;
284 for (i = 0; i < NB_MMU_MODES; i++) {
285 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
289 void tlb_destroy(CPUState *cpu)
291 CPUArchState *env = cpu->env_ptr;
292 int i;
294 qemu_spin_destroy(&env_tlb(env)->c.lock);
295 for (i = 0; i < NB_MMU_MODES; i++) {
296 CPUTLBDesc *desc = &env_tlb(env)->d[i];
297 CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299 g_free(fast->table);
300 g_free(desc->fulltlb);
304 /* flush_all_helper: run fn across all cpus
306 * If the wait flag is set then the src cpu's helper will be queued as
307 * "safe" work and the loop exited creating a synchronisation point
308 * where all queued work will be finished before execution starts
309 * again.
311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
312 run_on_cpu_data d)
314 CPUState *cpu;
316 CPU_FOREACH(cpu) {
317 if (cpu != src) {
318 async_run_on_cpu(cpu, fn, d);
323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 CPUState *cpu;
326 size_t full = 0, part = 0, elide = 0;
328 CPU_FOREACH(cpu) {
329 CPUArchState *env = cpu->env_ptr;
331 full += qatomic_read(&env_tlb(env)->c.full_flush_count);
332 part += qatomic_read(&env_tlb(env)->c.part_flush_count);
333 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335 *pfull = full;
336 *ppart = part;
337 *pelide = elide;
340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 CPUArchState *env = cpu->env_ptr;
343 uint16_t asked = data.host_int;
344 uint16_t all_dirty, work, to_clean;
345 int64_t now = get_clock_realtime();
347 assert_cpu_is_self(cpu);
349 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351 qemu_spin_lock(&env_tlb(env)->c.lock);
353 all_dirty = env_tlb(env)->c.dirty;
354 to_clean = asked & all_dirty;
355 all_dirty &= ~to_clean;
356 env_tlb(env)->c.dirty = all_dirty;
358 for (work = to_clean; work != 0; work &= work - 1) {
359 int mmu_idx = ctz32(work);
360 tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
363 qemu_spin_unlock(&env_tlb(env)->c.lock);
365 tcg_flush_jmp_cache(cpu);
367 if (to_clean == ALL_MMUIDX_BITS) {
368 qatomic_set(&env_tlb(env)->c.full_flush_count,
369 env_tlb(env)->c.full_flush_count + 1);
370 } else {
371 qatomic_set(&env_tlb(env)->c.part_flush_count,
372 env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
373 if (to_clean != asked) {
374 qatomic_set(&env_tlb(env)->c.elide_flush_count,
375 env_tlb(env)->c.elide_flush_count +
376 ctpop16(asked & ~to_clean));
381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385 if (cpu->created && !qemu_cpu_is_self(cpu)) {
386 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
387 RUN_ON_CPU_HOST_INT(idxmap));
388 } else {
389 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
393 void tlb_flush(CPUState *cpu)
395 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
405 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
408 void tlb_flush_all_cpus(CPUState *src_cpu)
410 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
420 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
423 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
429 target_ulong page, target_ulong mask)
431 page &= mask;
432 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434 return (page == (tlb_entry->addr_read & mask) ||
435 page == (tlb_addr_write(tlb_entry) & mask) ||
436 page == (tlb_entry->addr_code & mask));
439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
440 target_ulong page)
442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
446 * tlb_entry_is_empty - return true if the entry is not in use
447 * @te: pointer to CPUTLBEntry
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456 target_ulong page,
457 target_ulong mask)
459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460 memset(tlb_entry, -1, sizeof(*tlb_entry));
461 return true;
463 return false;
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
467 target_ulong page)
469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474 target_ulong page,
475 target_ulong mask)
477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478 int k;
480 assert_cpu_is_self(env_cpu(env));
481 for (k = 0; k < CPU_VTLB_SIZE; k++) {
482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483 tlb_n_used_entries_dec(env, mmu_idx);
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489 target_ulong page)
491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
494 static void tlb_flush_page_locked(CPUArchState *env, int midx,
495 target_ulong page)
497 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
498 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
500 /* Check if we need to flush due to large pages. */
501 if ((page & lp_mask) == lp_addr) {
502 tlb_debug("forcing full flush midx %d ("
503 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
504 midx, lp_addr, lp_mask);
505 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
506 } else {
507 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
508 tlb_n_used_entries_dec(env, midx);
510 tlb_flush_vtlb_page_locked(env, midx, page);
515 * tlb_flush_page_by_mmuidx_async_0:
516 * @cpu: cpu on which to flush
517 * @addr: page of virtual address to flush
518 * @idxmap: set of mmu_idx to flush
520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
521 * at @addr from the tlbs indicated by @idxmap from @cpu.
523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
524 target_ulong addr,
525 uint16_t idxmap)
527 CPUArchState *env = cpu->env_ptr;
528 int mmu_idx;
530 assert_cpu_is_self(cpu);
532 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
534 qemu_spin_lock(&env_tlb(env)->c.lock);
535 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
536 if ((idxmap >> mmu_idx) & 1) {
537 tlb_flush_page_locked(env, mmu_idx, addr);
540 qemu_spin_unlock(&env_tlb(env)->c.lock);
543 * Discard jump cache entries for any tb which might potentially
544 * overlap the flushed page, which includes the previous.
546 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
547 tb_jmp_cache_clear_page(cpu, addr);
551 * tlb_flush_page_by_mmuidx_async_1:
552 * @cpu: cpu on which to flush
553 * @data: encoded addr + idxmap
555 * Helper for tlb_flush_page_by_mmuidx and friends, called through
556 * async_run_on_cpu. The idxmap parameter is encoded in the page
557 * offset of the target_ptr field. This limits the set of mmu_idx
558 * that can be passed via this method.
560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
561 run_on_cpu_data data)
563 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
564 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
565 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
567 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
570 typedef struct {
571 target_ulong addr;
572 uint16_t idxmap;
573 } TLBFlushPageByMMUIdxData;
576 * tlb_flush_page_by_mmuidx_async_2:
577 * @cpu: cpu on which to flush
578 * @data: allocated addr + idxmap
580 * Helper for tlb_flush_page_by_mmuidx and friends, called through
581 * async_run_on_cpu. The addr+idxmap parameters are stored in a
582 * TLBFlushPageByMMUIdxData structure that has been allocated
583 * specifically for this helper. Free the structure when done.
585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
586 run_on_cpu_data data)
588 TLBFlushPageByMMUIdxData *d = data.host_ptr;
590 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
591 g_free(d);
594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
596 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
598 /* This should already be page aligned */
599 addr &= TARGET_PAGE_MASK;
601 if (qemu_cpu_is_self(cpu)) {
602 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
603 } else if (idxmap < TARGET_PAGE_SIZE) {
605 * Most targets have only a few mmu_idx. In the case where
606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
607 * allocating memory for this operation.
609 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
610 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
611 } else {
612 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
614 /* Otherwise allocate a structure, freed by the worker. */
615 d->addr = addr;
616 d->idxmap = idxmap;
617 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
618 RUN_ON_CPU_HOST_PTR(d));
622 void tlb_flush_page(CPUState *cpu, target_ulong addr)
624 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
628 uint16_t idxmap)
630 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
632 /* This should already be page aligned */
633 addr &= TARGET_PAGE_MASK;
636 * Allocate memory to hold addr+idxmap only when needed.
637 * See tlb_flush_page_by_mmuidx for details.
639 if (idxmap < TARGET_PAGE_SIZE) {
640 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
641 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
642 } else {
643 CPUState *dst_cpu;
645 /* Allocate a separate data block for each destination cpu. */
646 CPU_FOREACH(dst_cpu) {
647 if (dst_cpu != src_cpu) {
648 TLBFlushPageByMMUIdxData *d
649 = g_new(TLBFlushPageByMMUIdxData, 1);
651 d->addr = addr;
652 d->idxmap = idxmap;
653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
654 RUN_ON_CPU_HOST_PTR(d));
659 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
664 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
668 target_ulong addr,
669 uint16_t idxmap)
671 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
673 /* This should already be page aligned */
674 addr &= TARGET_PAGE_MASK;
677 * Allocate memory to hold addr+idxmap only when needed.
678 * See tlb_flush_page_by_mmuidx for details.
680 if (idxmap < TARGET_PAGE_SIZE) {
681 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
684 RUN_ON_CPU_TARGET_PTR(addr | idxmap));
685 } else {
686 CPUState *dst_cpu;
687 TLBFlushPageByMMUIdxData *d;
689 /* Allocate a separate data block for each destination cpu. */
690 CPU_FOREACH(dst_cpu) {
691 if (dst_cpu != src_cpu) {
692 d = g_new(TLBFlushPageByMMUIdxData, 1);
693 d->addr = addr;
694 d->idxmap = idxmap;
695 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
696 RUN_ON_CPU_HOST_PTR(d));
700 d = g_new(TLBFlushPageByMMUIdxData, 1);
701 d->addr = addr;
702 d->idxmap = idxmap;
703 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
704 RUN_ON_CPU_HOST_PTR(d));
708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
710 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
713 static void tlb_flush_range_locked(CPUArchState *env, int midx,
714 target_ulong addr, target_ulong len,
715 unsigned bits)
717 CPUTLBDesc *d = &env_tlb(env)->d[midx];
718 CPUTLBDescFast *f = &env_tlb(env)->f[midx];
719 target_ulong mask = MAKE_64BIT_MASK(0, bits);
722 * If @bits is smaller than the tlb size, there may be multiple entries
723 * within the TLB; otherwise all addresses that match under @mask hit
724 * the same TLB entry.
725 * TODO: Perhaps allow bits to be a few bits less than the size.
726 * For now, just flush the entire TLB.
728 * If @len is larger than the tlb size, then it will take longer to
729 * test all of the entries in the TLB than it will to flush it all.
731 if (mask < f->mask || len > f->mask) {
732 tlb_debug("forcing full flush midx %d ("
733 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
734 midx, addr, mask, len);
735 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
736 return;
740 * Check if we need to flush due to large pages.
741 * Because large_page_mask contains all 1's from the msb,
742 * we only need to test the end of the range.
744 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
745 tlb_debug("forcing full flush midx %d ("
746 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
747 midx, d->large_page_addr, d->large_page_mask);
748 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
749 return;
752 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
753 target_ulong page = addr + i;
754 CPUTLBEntry *entry = tlb_entry(env, midx, page);
756 if (tlb_flush_entry_mask_locked(entry, page, mask)) {
757 tlb_n_used_entries_dec(env, midx);
759 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
763 typedef struct {
764 target_ulong addr;
765 target_ulong len;
766 uint16_t idxmap;
767 uint16_t bits;
768 } TLBFlushRangeData;
770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
771 TLBFlushRangeData d)
773 CPUArchState *env = cpu->env_ptr;
774 int mmu_idx;
776 assert_cpu_is_self(cpu);
778 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
779 d.addr, d.bits, d.len, d.idxmap);
781 qemu_spin_lock(&env_tlb(env)->c.lock);
782 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
783 if ((d.idxmap >> mmu_idx) & 1) {
784 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
787 qemu_spin_unlock(&env_tlb(env)->c.lock);
790 * If the length is larger than the jump cache size, then it will take
791 * longer to clear each entry individually than it will to clear it all.
793 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
794 tcg_flush_jmp_cache(cpu);
795 return;
799 * Discard jump cache entries for any tb which might potentially
800 * overlap the flushed pages, which includes the previous.
802 d.addr -= TARGET_PAGE_SIZE;
803 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
804 tb_jmp_cache_clear_page(cpu, d.addr);
805 d.addr += TARGET_PAGE_SIZE;
809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
810 run_on_cpu_data data)
812 TLBFlushRangeData *d = data.host_ptr;
813 tlb_flush_range_by_mmuidx_async_0(cpu, *d);
814 g_free(d);
817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
818 target_ulong len, uint16_t idxmap,
819 unsigned bits)
821 TLBFlushRangeData d;
824 * If all bits are significant, and len is small,
825 * this devolves to tlb_flush_page.
827 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
828 tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
829 return;
831 /* If no page bits are significant, this devolves to tlb_flush. */
832 if (bits < TARGET_PAGE_BITS) {
833 tlb_flush_by_mmuidx(cpu, idxmap);
834 return;
837 /* This should already be page aligned */
838 d.addr = addr & TARGET_PAGE_MASK;
839 d.len = len;
840 d.idxmap = idxmap;
841 d.bits = bits;
843 if (qemu_cpu_is_self(cpu)) {
844 tlb_flush_range_by_mmuidx_async_0(cpu, d);
845 } else {
846 /* Otherwise allocate a structure, freed by the worker. */
847 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
848 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
849 RUN_ON_CPU_HOST_PTR(p));
853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
854 uint16_t idxmap, unsigned bits)
856 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
860 target_ulong addr, target_ulong len,
861 uint16_t idxmap, unsigned bits)
863 TLBFlushRangeData d;
864 CPUState *dst_cpu;
867 * If all bits are significant, and len is small,
868 * this devolves to tlb_flush_page.
870 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
872 return;
874 /* If no page bits are significant, this devolves to tlb_flush. */
875 if (bits < TARGET_PAGE_BITS) {
876 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
877 return;
880 /* This should already be page aligned */
881 d.addr = addr & TARGET_PAGE_MASK;
882 d.len = len;
883 d.idxmap = idxmap;
884 d.bits = bits;
886 /* Allocate a separate data block for each destination cpu. */
887 CPU_FOREACH(dst_cpu) {
888 if (dst_cpu != src_cpu) {
889 TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
890 async_run_on_cpu(dst_cpu,
891 tlb_flush_range_by_mmuidx_async_1,
892 RUN_ON_CPU_HOST_PTR(p));
896 tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
900 target_ulong addr,
901 uint16_t idxmap, unsigned bits)
903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
904 idxmap, bits);
907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
908 target_ulong addr,
909 target_ulong len,
910 uint16_t idxmap,
911 unsigned bits)
913 TLBFlushRangeData d, *p;
914 CPUState *dst_cpu;
917 * If all bits are significant, and len is small,
918 * this devolves to tlb_flush_page.
920 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
922 return;
924 /* If no page bits are significant, this devolves to tlb_flush. */
925 if (bits < TARGET_PAGE_BITS) {
926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
927 return;
930 /* This should already be page aligned */
931 d.addr = addr & TARGET_PAGE_MASK;
932 d.len = len;
933 d.idxmap = idxmap;
934 d.bits = bits;
936 /* Allocate a separate data block for each destination cpu. */
937 CPU_FOREACH(dst_cpu) {
938 if (dst_cpu != src_cpu) {
939 p = g_memdup(&d, sizeof(d));
940 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
941 RUN_ON_CPU_HOST_PTR(p));
945 p = g_memdup(&d, sizeof(d));
946 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
947 RUN_ON_CPU_HOST_PTR(p));
950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
951 target_ulong addr,
952 uint16_t idxmap,
953 unsigned bits)
955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
956 idxmap, bits);
959 /* update the TLBs so that writes to code in the virtual page 'addr'
960 can be detected */
961 void tlb_protect_code(ram_addr_t ram_addr)
963 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
964 TARGET_PAGE_SIZE,
965 DIRTY_MEMORY_CODE);
968 /* update the TLB so that writes in physical page 'phys_addr' are no longer
969 tested for self modifying code */
970 void tlb_unprotect_code(ram_addr_t ram_addr)
972 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
977 * Dirty write flag handling
979 * When the TCG code writes to a location it looks up the address in
980 * the TLB and uses that data to compute the final address. If any of
981 * the lower bits of the address are set then the slow path is forced.
982 * There are a number of reasons to do this but for normal RAM the
983 * most usual is detecting writes to code regions which may invalidate
984 * generated code.
986 * Other vCPUs might be reading their TLBs during guest execution, so we update
987 * te->addr_write with qatomic_set. We don't need to worry about this for
988 * oversized guests as MTTCG is disabled for them.
990 * Called with tlb_c.lock held.
992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
993 uintptr_t start, uintptr_t length)
995 uintptr_t addr = tlb_entry->addr_write;
997 if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
998 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
999 addr &= TARGET_PAGE_MASK;
1000 addr += tlb_entry->addend;
1001 if ((addr - start) < length) {
1002 #if TCG_OVERSIZED_GUEST
1003 tlb_entry->addr_write |= TLB_NOTDIRTY;
1004 #else
1005 qatomic_set(&tlb_entry->addr_write,
1006 tlb_entry->addr_write | TLB_NOTDIRTY);
1007 #endif
1013 * Called with tlb_c.lock held.
1014 * Called only from the vCPU context, i.e. the TLB's owner thread.
1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1018 *d = *s;
1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1022 * the target vCPU).
1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1024 * thing actually updated is the target TLB entry ->addr_write flags.
1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1028 CPUArchState *env;
1030 int mmu_idx;
1032 env = cpu->env_ptr;
1033 qemu_spin_lock(&env_tlb(env)->c.lock);
1034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1035 unsigned int i;
1036 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1038 for (i = 0; i < n; i++) {
1039 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1040 start1, length);
1043 for (i = 0; i < CPU_VTLB_SIZE; i++) {
1044 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1045 start1, length);
1048 qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 /* Called with tlb_c.lock held */
1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1053 target_ulong vaddr)
1055 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1056 tlb_entry->addr_write = vaddr;
1060 /* update the TLB corresponding to virtual page vaddr
1061 so that it is no longer dirty */
1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1064 CPUArchState *env = cpu->env_ptr;
1065 int mmu_idx;
1067 assert_cpu_is_self(cpu);
1069 vaddr &= TARGET_PAGE_MASK;
1070 qemu_spin_lock(&env_tlb(env)->c.lock);
1071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1072 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1075 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1076 int k;
1077 for (k = 0; k < CPU_VTLB_SIZE; k++) {
1078 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1081 qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 /* Our TLB does not support large pages, so remember the area covered by
1085 large pages and trigger a full TLB flush if these are invalidated. */
1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1087 target_ulong vaddr, target_ulong size)
1089 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1090 target_ulong lp_mask = ~(size - 1);
1092 if (lp_addr == (target_ulong)-1) {
1093 /* No previous large page. */
1094 lp_addr = vaddr;
1095 } else {
1096 /* Extend the existing region to include the new page.
1097 This is a compromise between unnecessary flushes and
1098 the cost of maintaining a full variable size TLB. */
1099 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1100 while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1101 lp_mask <<= 1;
1104 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1105 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1109 * Add a new TLB entry. At most one entry for a given virtual address
1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1111 * supplied size is only used by tlb_flush_page.
1113 * Called from TCG-generated code, which is under an RCU read-side
1114 * critical section.
1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1117 target_ulong vaddr, CPUTLBEntryFull *full)
1119 CPUArchState *env = cpu->env_ptr;
1120 CPUTLB *tlb = env_tlb(env);
1121 CPUTLBDesc *desc = &tlb->d[mmu_idx];
1122 MemoryRegionSection *section;
1123 unsigned int index;
1124 target_ulong address;
1125 target_ulong write_address;
1126 uintptr_t addend;
1127 CPUTLBEntry *te, tn;
1128 hwaddr iotlb, xlat, sz, paddr_page;
1129 target_ulong vaddr_page;
1130 int asidx, wp_flags, prot;
1131 bool is_ram, is_romd;
1133 assert_cpu_is_self(cpu);
1135 if (full->lg_page_size <= TARGET_PAGE_BITS) {
1136 sz = TARGET_PAGE_SIZE;
1137 } else {
1138 sz = (hwaddr)1 << full->lg_page_size;
1139 tlb_add_large_page(env, mmu_idx, vaddr, sz);
1141 vaddr_page = vaddr & TARGET_PAGE_MASK;
1142 paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1144 prot = full->prot;
1145 asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1146 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1147 &xlat, &sz, full->attrs, &prot);
1148 assert(sz >= TARGET_PAGE_SIZE);
1150 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1151 " prot=%x idx=%d\n",
1152 vaddr, full->phys_addr, prot, mmu_idx);
1154 address = vaddr_page;
1155 if (full->lg_page_size < TARGET_PAGE_BITS) {
1156 /* Repeat the MMU check and TLB fill on every access. */
1157 address |= TLB_INVALID_MASK;
1159 if (full->attrs.byte_swap) {
1160 address |= TLB_BSWAP;
1163 is_ram = memory_region_is_ram(section->mr);
1164 is_romd = memory_region_is_romd(section->mr);
1166 if (is_ram || is_romd) {
1167 /* RAM and ROMD both have associated host memory. */
1168 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1169 } else {
1170 /* I/O does not; force the host address to NULL. */
1171 addend = 0;
1174 write_address = address;
1175 if (is_ram) {
1176 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1178 * Computing is_clean is expensive; avoid all that unless
1179 * the page is actually writable.
1181 if (prot & PAGE_WRITE) {
1182 if (section->readonly) {
1183 write_address |= TLB_DISCARD_WRITE;
1184 } else if (cpu_physical_memory_is_clean(iotlb)) {
1185 write_address |= TLB_NOTDIRTY;
1188 } else {
1189 /* I/O or ROMD */
1190 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1192 * Writes to romd devices must go through MMIO to enable write.
1193 * Reads to romd devices go through the ram_ptr found above,
1194 * but of course reads to I/O must go through MMIO.
1196 write_address |= TLB_MMIO;
1197 if (!is_romd) {
1198 address = write_address;
1202 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1203 TARGET_PAGE_SIZE);
1205 index = tlb_index(env, mmu_idx, vaddr_page);
1206 te = tlb_entry(env, mmu_idx, vaddr_page);
1209 * Hold the TLB lock for the rest of the function. We could acquire/release
1210 * the lock several times in the function, but it is faster to amortize the
1211 * acquisition cost by acquiring it just once. Note that this leads to
1212 * a longer critical section, but this is not a concern since the TLB lock
1213 * is unlikely to be contended.
1215 qemu_spin_lock(&tlb->c.lock);
1217 /* Note that the tlb is no longer clean. */
1218 tlb->c.dirty |= 1 << mmu_idx;
1220 /* Make sure there's no cached translation for the new page. */
1221 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1224 * Only evict the old entry to the victim tlb if it's for a
1225 * different page; otherwise just overwrite the stale data.
1227 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1228 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1229 CPUTLBEntry *tv = &desc->vtable[vidx];
1231 /* Evict the old entry into the victim tlb. */
1232 copy_tlb_helper_locked(tv, te);
1233 desc->vfulltlb[vidx] = desc->fulltlb[index];
1234 tlb_n_used_entries_dec(env, mmu_idx);
1237 /* refill the tlb */
1239 * At this point iotlb contains a physical section number in the lower
1240 * TARGET_PAGE_BITS, and either
1241 * + the ram_addr_t of the page base of the target RAM (RAM)
1242 * + the offset within section->mr of the page base (I/O, ROMD)
1243 * We subtract the vaddr_page (which is page aligned and thus won't
1244 * disturb the low bits) to give an offset which can be added to the
1245 * (non-page-aligned) vaddr of the eventual memory access to get
1246 * the MemoryRegion offset for the access. Note that the vaddr we
1247 * subtract here is that of the page base, and not the same as the
1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1250 desc->fulltlb[index] = *full;
1251 desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1252 desc->fulltlb[index].phys_addr = paddr_page;
1253 desc->fulltlb[index].prot = prot;
1255 /* Now calculate the new entry */
1256 tn.addend = addend - vaddr_page;
1257 if (prot & PAGE_READ) {
1258 tn.addr_read = address;
1259 if (wp_flags & BP_MEM_READ) {
1260 tn.addr_read |= TLB_WATCHPOINT;
1262 } else {
1263 tn.addr_read = -1;
1266 if (prot & PAGE_EXEC) {
1267 tn.addr_code = address;
1268 } else {
1269 tn.addr_code = -1;
1272 tn.addr_write = -1;
1273 if (prot & PAGE_WRITE) {
1274 tn.addr_write = write_address;
1275 if (prot & PAGE_WRITE_INV) {
1276 tn.addr_write |= TLB_INVALID_MASK;
1278 if (wp_flags & BP_MEM_WRITE) {
1279 tn.addr_write |= TLB_WATCHPOINT;
1283 copy_tlb_helper_locked(te, &tn);
1284 tlb_n_used_entries_inc(env, mmu_idx);
1285 qemu_spin_unlock(&tlb->c.lock);
1288 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1289 hwaddr paddr, MemTxAttrs attrs, int prot,
1290 int mmu_idx, target_ulong size)
1292 CPUTLBEntryFull full = {
1293 .phys_addr = paddr,
1294 .attrs = attrs,
1295 .prot = prot,
1296 .lg_page_size = ctz64(size)
1299 assert(is_power_of_2(size));
1300 tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1303 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1304 hwaddr paddr, int prot,
1305 int mmu_idx, target_ulong size)
1307 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1308 prot, mmu_idx, size);
1312 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1313 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1314 * be discarded and looked up again (e.g. via tlb_entry()).
1316 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1317 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1319 bool ok;
1322 * This is not a probe, so only valid return is success; failure
1323 * should result in exception + longjmp to the cpu loop.
1325 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1326 access_type, mmu_idx, false, retaddr);
1327 assert(ok);
1330 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1331 MMUAccessType access_type,
1332 int mmu_idx, uintptr_t retaddr)
1334 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1335 mmu_idx, retaddr);
1338 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1339 vaddr addr, unsigned size,
1340 MMUAccessType access_type,
1341 int mmu_idx, MemTxAttrs attrs,
1342 MemTxResult response,
1343 uintptr_t retaddr)
1345 CPUClass *cc = CPU_GET_CLASS(cpu);
1347 if (!cpu->ignore_memory_transaction_failures &&
1348 cc->tcg_ops->do_transaction_failed) {
1349 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1350 access_type, mmu_idx, attrs,
1351 response, retaddr);
1355 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1356 int mmu_idx, target_ulong addr, uintptr_t retaddr,
1357 MMUAccessType access_type, MemOp op)
1359 CPUState *cpu = env_cpu(env);
1360 hwaddr mr_offset;
1361 MemoryRegionSection *section;
1362 MemoryRegion *mr;
1363 uint64_t val;
1364 MemTxResult r;
1366 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1367 mr = section->mr;
1368 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1369 cpu->mem_io_pc = retaddr;
1370 if (!cpu->can_do_io) {
1371 cpu_io_recompile(cpu, retaddr);
1375 QEMU_IOTHREAD_LOCK_GUARD();
1376 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1379 if (r != MEMTX_OK) {
1380 hwaddr physaddr = mr_offset +
1381 section->offset_within_address_space -
1382 section->offset_within_region;
1384 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1385 mmu_idx, full->attrs, r, retaddr);
1387 return val;
1391 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1392 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1393 * because of the side effect of io_writex changing memory layout.
1395 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1396 hwaddr mr_offset)
1398 #ifdef CONFIG_PLUGIN
1399 SavedIOTLB *saved = &cs->saved_iotlb;
1400 saved->section = section;
1401 saved->mr_offset = mr_offset;
1402 #endif
1405 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1406 int mmu_idx, uint64_t val, target_ulong addr,
1407 uintptr_t retaddr, MemOp op)
1409 CPUState *cpu = env_cpu(env);
1410 hwaddr mr_offset;
1411 MemoryRegionSection *section;
1412 MemoryRegion *mr;
1413 MemTxResult r;
1415 section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1416 mr = section->mr;
1417 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1418 if (!cpu->can_do_io) {
1419 cpu_io_recompile(cpu, retaddr);
1421 cpu->mem_io_pc = retaddr;
1424 * The memory_region_dispatch may trigger a flush/resize
1425 * so for plugins we save the iotlb_data just in case.
1427 save_iotlb_data(cpu, section, mr_offset);
1430 QEMU_IOTHREAD_LOCK_GUARD();
1431 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1434 if (r != MEMTX_OK) {
1435 hwaddr physaddr = mr_offset +
1436 section->offset_within_address_space -
1437 section->offset_within_region;
1439 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1440 MMU_DATA_STORE, mmu_idx, full->attrs, r,
1441 retaddr);
1445 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
1447 #if TCG_OVERSIZED_GUEST
1448 return *(target_ulong *)((uintptr_t)entry + ofs);
1449 #else
1450 /* ofs might correspond to .addr_write, so use qatomic_read */
1451 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
1452 #endif
1455 /* Return true if ADDR is present in the victim tlb, and has been copied
1456 back to the main tlb. */
1457 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1458 size_t elt_ofs, target_ulong page)
1460 size_t vidx;
1462 assert_cpu_is_self(env_cpu(env));
1463 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1464 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1465 target_ulong cmp;
1467 /* elt_ofs might correspond to .addr_write, so use qatomic_read */
1468 #if TCG_OVERSIZED_GUEST
1469 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1470 #else
1471 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1472 #endif
1474 if (cmp == page) {
1475 /* Found entry in victim tlb, swap tlb and iotlb. */
1476 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1478 qemu_spin_lock(&env_tlb(env)->c.lock);
1479 copy_tlb_helper_locked(&tmptlb, tlb);
1480 copy_tlb_helper_locked(tlb, vtlb);
1481 copy_tlb_helper_locked(vtlb, &tmptlb);
1482 qemu_spin_unlock(&env_tlb(env)->c.lock);
1484 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1485 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1486 CPUTLBEntryFull tmpf;
1487 tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1488 return true;
1491 return false;
1494 /* Macro to call the above, with local variables from the use context. */
1495 #define VICTIM_TLB_HIT(TY, ADDR) \
1496 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1497 (ADDR) & TARGET_PAGE_MASK)
1499 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1500 CPUTLBEntryFull *full, uintptr_t retaddr)
1502 ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1504 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1506 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1507 tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1511 * Set both VGA and migration bits for simplicity and to remove
1512 * the notdirty callback faster.
1514 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1516 /* We remove the notdirty callback only if the code has been flushed. */
1517 if (!cpu_physical_memory_is_clean(ram_addr)) {
1518 trace_memory_notdirty_set_dirty(mem_vaddr);
1519 tlb_set_dirty(cpu, mem_vaddr);
1523 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1524 int fault_size, MMUAccessType access_type,
1525 int mmu_idx, bool nonfault,
1526 void **phost, CPUTLBEntryFull **pfull,
1527 uintptr_t retaddr)
1529 uintptr_t index = tlb_index(env, mmu_idx, addr);
1530 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1531 target_ulong tlb_addr, page_addr;
1532 size_t elt_ofs;
1533 int flags;
1535 switch (access_type) {
1536 case MMU_DATA_LOAD:
1537 elt_ofs = offsetof(CPUTLBEntry, addr_read);
1538 break;
1539 case MMU_DATA_STORE:
1540 elt_ofs = offsetof(CPUTLBEntry, addr_write);
1541 break;
1542 case MMU_INST_FETCH:
1543 elt_ofs = offsetof(CPUTLBEntry, addr_code);
1544 break;
1545 default:
1546 g_assert_not_reached();
1548 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1550 flags = TLB_FLAGS_MASK;
1551 page_addr = addr & TARGET_PAGE_MASK;
1552 if (!tlb_hit_page(tlb_addr, page_addr)) {
1553 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
1554 CPUState *cs = env_cpu(env);
1556 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1557 mmu_idx, nonfault, retaddr)) {
1558 /* Non-faulting page table read failed. */
1559 *phost = NULL;
1560 *pfull = NULL;
1561 return TLB_INVALID_MASK;
1564 /* TLB resize via tlb_fill may have moved the entry. */
1565 index = tlb_index(env, mmu_idx, addr);
1566 entry = tlb_entry(env, mmu_idx, addr);
1569 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1570 * to force the next access through tlb_fill. We've just
1571 * called tlb_fill, so we know that this entry *is* valid.
1573 flags &= ~TLB_INVALID_MASK;
1575 tlb_addr = tlb_read_ofs(entry, elt_ofs);
1577 flags &= tlb_addr;
1579 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1581 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */
1582 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1583 *phost = NULL;
1584 return TLB_MMIO;
1587 /* Everything else is RAM. */
1588 *phost = (void *)((uintptr_t)addr + entry->addend);
1589 return flags;
1592 int probe_access_full(CPUArchState *env, target_ulong addr,
1593 MMUAccessType access_type, int mmu_idx,
1594 bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1595 uintptr_t retaddr)
1597 int flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
1598 nonfault, phost, pfull, retaddr);
1600 /* Handle clean RAM pages. */
1601 if (unlikely(flags & TLB_NOTDIRTY)) {
1602 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1603 flags &= ~TLB_NOTDIRTY;
1606 return flags;
1609 int probe_access_flags(CPUArchState *env, target_ulong addr,
1610 MMUAccessType access_type, int mmu_idx,
1611 bool nonfault, void **phost, uintptr_t retaddr)
1613 CPUTLBEntryFull *full;
1615 return probe_access_full(env, addr, access_type, mmu_idx,
1616 nonfault, phost, &full, retaddr);
1619 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1620 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1622 CPUTLBEntryFull *full;
1623 void *host;
1624 int flags;
1626 g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1628 flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1629 false, &host, &full, retaddr);
1631 /* Per the interface, size == 0 merely faults the access. */
1632 if (size == 0) {
1633 return NULL;
1636 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1637 /* Handle watchpoints. */
1638 if (flags & TLB_WATCHPOINT) {
1639 int wp_access = (access_type == MMU_DATA_STORE
1640 ? BP_MEM_WRITE : BP_MEM_READ);
1641 cpu_check_watchpoint(env_cpu(env), addr, size,
1642 full->attrs, wp_access, retaddr);
1645 /* Handle clean RAM pages. */
1646 if (flags & TLB_NOTDIRTY) {
1647 notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1651 return host;
1654 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1655 MMUAccessType access_type, int mmu_idx)
1657 CPUTLBEntryFull *full;
1658 void *host;
1659 int flags;
1661 flags = probe_access_internal(env, addr, 0, access_type,
1662 mmu_idx, true, &host, &full, 0);
1664 /* No combination of flags are expected by the caller. */
1665 return flags ? NULL : host;
1669 * Return a ram_addr_t for the virtual address for execution.
1671 * Return -1 if we can't translate and execute from an entire page
1672 * of RAM. This will force us to execute by loading and translating
1673 * one insn at a time, without caching.
1675 * NOTE: This function will trigger an exception if the page is
1676 * not executable.
1678 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1679 void **hostp)
1681 CPUTLBEntryFull *full;
1682 void *p;
1684 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1685 cpu_mmu_index(env, true), false, &p, &full, 0);
1686 if (p == NULL) {
1687 return -1;
1689 if (hostp) {
1690 *hostp = p;
1692 return qemu_ram_addr_from_host_nofail(p);
1695 #ifdef CONFIG_PLUGIN
1697 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1698 * This should be a hot path as we will have just looked this path up
1699 * in the softmmu lookup code (or helper). We don't handle re-fills or
1700 * checking the victim table. This is purely informational.
1702 * This almost never fails as the memory access being instrumented
1703 * should have just filled the TLB. The one corner case is io_writex
1704 * which can cause TLB flushes and potential resizing of the TLBs
1705 * losing the information we need. In those cases we need to recover
1706 * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1707 * from the same thread (which a mem callback will be) this is safe.
1710 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1711 bool is_store, struct qemu_plugin_hwaddr *data)
1713 CPUArchState *env = cpu->env_ptr;
1714 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1715 uintptr_t index = tlb_index(env, mmu_idx, addr);
1716 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1718 if (likely(tlb_hit(tlb_addr, addr))) {
1719 /* We must have an iotlb entry for MMIO */
1720 if (tlb_addr & TLB_MMIO) {
1721 CPUTLBEntryFull *full;
1722 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1723 data->is_io = true;
1724 data->v.io.section =
1725 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1726 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1727 } else {
1728 data->is_io = false;
1729 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1731 return true;
1732 } else {
1733 SavedIOTLB *saved = &cpu->saved_iotlb;
1734 data->is_io = true;
1735 data->v.io.section = saved->section;
1736 data->v.io.offset = saved->mr_offset;
1737 return true;
1741 #endif
1744 * Probe for an atomic operation. Do not allow unaligned operations,
1745 * or io operations to proceed. Return the host address.
1747 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1749 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1750 MemOpIdx oi, int size, int prot,
1751 uintptr_t retaddr)
1753 uintptr_t mmu_idx = get_mmuidx(oi);
1754 MemOp mop = get_memop(oi);
1755 int a_bits = get_alignment_bits(mop);
1756 uintptr_t index;
1757 CPUTLBEntry *tlbe;
1758 target_ulong tlb_addr;
1759 void *hostaddr;
1761 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1763 /* Adjust the given return address. */
1764 retaddr -= GETPC_ADJ;
1766 /* Enforce guest required alignment. */
1767 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1768 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1769 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1770 mmu_idx, retaddr);
1773 /* Enforce qemu required alignment. */
1774 if (unlikely(addr & (size - 1))) {
1775 /* We get here if guest alignment was not requested,
1776 or was not enforced by cpu_unaligned_access above.
1777 We might widen the access and emulate, but for now
1778 mark an exception and exit the cpu loop. */
1779 goto stop_the_world;
1782 index = tlb_index(env, mmu_idx, addr);
1783 tlbe = tlb_entry(env, mmu_idx, addr);
1785 /* Check TLB entry and enforce page permissions. */
1786 if (prot & PAGE_WRITE) {
1787 tlb_addr = tlb_addr_write(tlbe);
1788 if (!tlb_hit(tlb_addr, addr)) {
1789 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1790 tlb_fill(env_cpu(env), addr, size,
1791 MMU_DATA_STORE, mmu_idx, retaddr);
1792 index = tlb_index(env, mmu_idx, addr);
1793 tlbe = tlb_entry(env, mmu_idx, addr);
1795 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1798 /* Let the guest notice RMW on a write-only page. */
1799 if ((prot & PAGE_READ) &&
1800 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1801 tlb_fill(env_cpu(env), addr, size,
1802 MMU_DATA_LOAD, mmu_idx, retaddr);
1804 * Since we don't support reads and writes to different addresses,
1805 * and we do have the proper page loaded for write, this shouldn't
1806 * ever return. But just in case, handle via stop-the-world.
1808 goto stop_the_world;
1810 } else /* if (prot & PAGE_READ) */ {
1811 tlb_addr = tlbe->addr_read;
1812 if (!tlb_hit(tlb_addr, addr)) {
1813 if (!VICTIM_TLB_HIT(addr_write, addr)) {
1814 tlb_fill(env_cpu(env), addr, size,
1815 MMU_DATA_LOAD, mmu_idx, retaddr);
1816 index = tlb_index(env, mmu_idx, addr);
1817 tlbe = tlb_entry(env, mmu_idx, addr);
1819 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1823 /* Notice an IO access or a needs-MMU-lookup access */
1824 if (unlikely(tlb_addr & TLB_MMIO)) {
1825 /* There's really nothing that can be done to
1826 support this apart from stop-the-world. */
1827 goto stop_the_world;
1830 hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1832 if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1833 notdirty_write(env_cpu(env), addr, size,
1834 &env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr);
1837 return hostaddr;
1839 stop_the_world:
1840 cpu_loop_exit_atomic(env_cpu(env), retaddr);
1844 * Verify that we have passed the correct MemOp to the correct function.
1846 * In the case of the helper_*_mmu functions, we will have done this by
1847 * using the MemOp to look up the helper during code generation.
1849 * In the case of the cpu_*_mmu functions, this is up to the caller.
1850 * We could present one function to target code, and dispatch based on
1851 * the MemOp, but so far we have worked hard to avoid an indirect function
1852 * call along the memory path.
1854 static void validate_memop(MemOpIdx oi, MemOp expected)
1856 #ifdef CONFIG_DEBUG_TCG
1857 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP);
1858 assert(have == expected);
1859 #endif
1863 * Load Helpers
1865 * We support two different access types. SOFTMMU_CODE_ACCESS is
1866 * specifically for reading instructions from system memory. It is
1867 * called by the translation loop and in some helpers where the code
1868 * is disassembled. It shouldn't be called directly by guest code.
1871 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1872 MemOpIdx oi, uintptr_t retaddr);
1874 static inline uint64_t QEMU_ALWAYS_INLINE
1875 load_memop(const void *haddr, MemOp op)
1877 switch (op) {
1878 case MO_UB:
1879 return ldub_p(haddr);
1880 case MO_BEUW:
1881 return lduw_be_p(haddr);
1882 case MO_LEUW:
1883 return lduw_le_p(haddr);
1884 case MO_BEUL:
1885 return (uint32_t)ldl_be_p(haddr);
1886 case MO_LEUL:
1887 return (uint32_t)ldl_le_p(haddr);
1888 case MO_BEUQ:
1889 return ldq_be_p(haddr);
1890 case MO_LEUQ:
1891 return ldq_le_p(haddr);
1892 default:
1893 qemu_build_not_reached();
1897 static inline uint64_t QEMU_ALWAYS_INLINE
1898 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1899 uintptr_t retaddr, MemOp op, bool code_read,
1900 FullLoadHelper *full_load)
1902 const size_t tlb_off = code_read ?
1903 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1904 const MMUAccessType access_type =
1905 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1906 const unsigned a_bits = get_alignment_bits(get_memop(oi));
1907 const size_t size = memop_size(op);
1908 uintptr_t mmu_idx = get_mmuidx(oi);
1909 uintptr_t index;
1910 CPUTLBEntry *entry;
1911 target_ulong tlb_addr;
1912 void *haddr;
1913 uint64_t res;
1915 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1917 /* Handle CPU specific unaligned behaviour */
1918 if (addr & ((1 << a_bits) - 1)) {
1919 cpu_unaligned_access(env_cpu(env), addr, access_type,
1920 mmu_idx, retaddr);
1923 index = tlb_index(env, mmu_idx, addr);
1924 entry = tlb_entry(env, mmu_idx, addr);
1925 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1927 /* If the TLB entry is for a different page, reload and try again. */
1928 if (!tlb_hit(tlb_addr, addr)) {
1929 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1930 addr & TARGET_PAGE_MASK)) {
1931 tlb_fill(env_cpu(env), addr, size,
1932 access_type, mmu_idx, retaddr);
1933 index = tlb_index(env, mmu_idx, addr);
1934 entry = tlb_entry(env, mmu_idx, addr);
1936 tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1937 tlb_addr &= ~TLB_INVALID_MASK;
1940 /* Handle anything that isn't just a straight memory access. */
1941 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1942 CPUTLBEntryFull *full;
1943 bool need_swap;
1945 /* For anything that is unaligned, recurse through full_load. */
1946 if ((addr & (size - 1)) != 0) {
1947 goto do_unaligned_access;
1950 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1952 /* Handle watchpoints. */
1953 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1954 /* On watchpoint hit, this will longjmp out. */
1955 cpu_check_watchpoint(env_cpu(env), addr, size,
1956 full->attrs, BP_MEM_READ, retaddr);
1959 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
1961 /* Handle I/O access. */
1962 if (likely(tlb_addr & TLB_MMIO)) {
1963 return io_readx(env, full, mmu_idx, addr, retaddr,
1964 access_type, op ^ (need_swap * MO_BSWAP));
1967 haddr = (void *)((uintptr_t)addr + entry->addend);
1970 * Keep these two load_memop separate to ensure that the compiler
1971 * is able to fold the entire function to a single instruction.
1972 * There is a build-time assert inside to remind you of this. ;-)
1974 if (unlikely(need_swap)) {
1975 return load_memop(haddr, op ^ MO_BSWAP);
1977 return load_memop(haddr, op);
1980 /* Handle slow unaligned access (it spans two pages or IO). */
1981 if (size > 1
1982 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1983 >= TARGET_PAGE_SIZE)) {
1984 target_ulong addr1, addr2;
1985 uint64_t r1, r2;
1986 unsigned shift;
1987 do_unaligned_access:
1988 addr1 = addr & ~((target_ulong)size - 1);
1989 addr2 = addr1 + size;
1990 r1 = full_load(env, addr1, oi, retaddr);
1991 r2 = full_load(env, addr2, oi, retaddr);
1992 shift = (addr & (size - 1)) * 8;
1994 if (memop_big_endian(op)) {
1995 /* Big-endian combine. */
1996 res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1997 } else {
1998 /* Little-endian combine. */
1999 res = (r1 >> shift) | (r2 << ((size * 8) - shift));
2001 return res & MAKE_64BIT_MASK(0, size * 8);
2004 haddr = (void *)((uintptr_t)addr + entry->addend);
2005 return load_memop(haddr, op);
2009 * For the benefit of TCG generated code, we want to avoid the
2010 * complication of ABI-specific return type promotion and always
2011 * return a value extended to the register size of the host. This is
2012 * tcg_target_long, except in the case of a 32-bit host and 64-bit
2013 * data, and for that we always have uint64_t.
2015 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2018 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
2019 MemOpIdx oi, uintptr_t retaddr)
2021 validate_memop(oi, MO_UB);
2022 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
2025 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
2026 MemOpIdx oi, uintptr_t retaddr)
2028 return full_ldub_mmu(env, addr, oi, retaddr);
2031 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2032 MemOpIdx oi, uintptr_t retaddr)
2034 validate_memop(oi, MO_LEUW);
2035 return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
2036 full_le_lduw_mmu);
2039 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
2040 MemOpIdx oi, uintptr_t retaddr)
2042 return full_le_lduw_mmu(env, addr, oi, retaddr);
2045 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2046 MemOpIdx oi, uintptr_t retaddr)
2048 validate_memop(oi, MO_BEUW);
2049 return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
2050 full_be_lduw_mmu);
2053 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
2054 MemOpIdx oi, uintptr_t retaddr)
2056 return full_be_lduw_mmu(env, addr, oi, retaddr);
2059 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2060 MemOpIdx oi, uintptr_t retaddr)
2062 validate_memop(oi, MO_LEUL);
2063 return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
2064 full_le_ldul_mmu);
2067 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
2068 MemOpIdx oi, uintptr_t retaddr)
2070 return full_le_ldul_mmu(env, addr, oi, retaddr);
2073 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2074 MemOpIdx oi, uintptr_t retaddr)
2076 validate_memop(oi, MO_BEUL);
2077 return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
2078 full_be_ldul_mmu);
2081 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
2082 MemOpIdx oi, uintptr_t retaddr)
2084 return full_be_ldul_mmu(env, addr, oi, retaddr);
2087 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
2088 MemOpIdx oi, uintptr_t retaddr)
2090 validate_memop(oi, MO_LEUQ);
2091 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false,
2092 helper_le_ldq_mmu);
2095 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
2096 MemOpIdx oi, uintptr_t retaddr)
2098 validate_memop(oi, MO_BEUQ);
2099 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false,
2100 helper_be_ldq_mmu);
2104 * Provide signed versions of the load routines as well. We can of course
2105 * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2109 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
2110 MemOpIdx oi, uintptr_t retaddr)
2112 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
2115 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
2116 MemOpIdx oi, uintptr_t retaddr)
2118 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
2121 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
2122 MemOpIdx oi, uintptr_t retaddr)
2124 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
2127 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
2128 MemOpIdx oi, uintptr_t retaddr)
2130 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
2133 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
2134 MemOpIdx oi, uintptr_t retaddr)
2136 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
2140 * Load helpers for cpu_ldst.h.
2143 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
2144 MemOpIdx oi, uintptr_t retaddr,
2145 FullLoadHelper *full_load)
2147 uint64_t ret;
2149 ret = full_load(env, addr, oi, retaddr);
2150 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2151 return ret;
2154 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2156 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu);
2159 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2160 MemOpIdx oi, uintptr_t ra)
2162 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu);
2165 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2166 MemOpIdx oi, uintptr_t ra)
2168 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu);
2171 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2172 MemOpIdx oi, uintptr_t ra)
2174 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu);
2177 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2178 MemOpIdx oi, uintptr_t ra)
2180 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu);
2183 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2184 MemOpIdx oi, uintptr_t ra)
2186 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu);
2189 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2190 MemOpIdx oi, uintptr_t ra)
2192 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu);
2195 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,
2196 MemOpIdx oi, uintptr_t ra)
2198 MemOp mop = get_memop(oi);
2199 int mmu_idx = get_mmuidx(oi);
2200 MemOpIdx new_oi;
2201 unsigned a_bits;
2202 uint64_t h, l;
2204 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2205 a_bits = get_alignment_bits(mop);
2207 /* Handle CPU specific unaligned behaviour */
2208 if (addr & ((1 << a_bits) - 1)) {
2209 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2210 mmu_idx, ra);
2213 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2214 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2215 new_oi = make_memop_idx(mop, mmu_idx);
2217 h = helper_be_ldq_mmu(env, addr, new_oi, ra);
2218 l = helper_be_ldq_mmu(env, addr + 8, new_oi, ra);
2220 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2221 return int128_make128(l, h);
2224 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr,
2225 MemOpIdx oi, uintptr_t ra)
2227 MemOp mop = get_memop(oi);
2228 int mmu_idx = get_mmuidx(oi);
2229 MemOpIdx new_oi;
2230 unsigned a_bits;
2231 uint64_t h, l;
2233 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2234 a_bits = get_alignment_bits(mop);
2236 /* Handle CPU specific unaligned behaviour */
2237 if (addr & ((1 << a_bits) - 1)) {
2238 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2239 mmu_idx, ra);
2242 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2243 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2244 new_oi = make_memop_idx(mop, mmu_idx);
2246 l = helper_le_ldq_mmu(env, addr, new_oi, ra);
2247 h = helper_le_ldq_mmu(env, addr + 8, new_oi, ra);
2249 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2250 return int128_make128(l, h);
2254 * Store Helpers
2257 static inline void QEMU_ALWAYS_INLINE
2258 store_memop(void *haddr, uint64_t val, MemOp op)
2260 switch (op) {
2261 case MO_UB:
2262 stb_p(haddr, val);
2263 break;
2264 case MO_BEUW:
2265 stw_be_p(haddr, val);
2266 break;
2267 case MO_LEUW:
2268 stw_le_p(haddr, val);
2269 break;
2270 case MO_BEUL:
2271 stl_be_p(haddr, val);
2272 break;
2273 case MO_LEUL:
2274 stl_le_p(haddr, val);
2275 break;
2276 case MO_BEUQ:
2277 stq_be_p(haddr, val);
2278 break;
2279 case MO_LEUQ:
2280 stq_le_p(haddr, val);
2281 break;
2282 default:
2283 qemu_build_not_reached();
2287 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2288 MemOpIdx oi, uintptr_t retaddr);
2290 static void __attribute__((noinline))
2291 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
2292 uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
2293 bool big_endian)
2295 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2296 uintptr_t index, index2;
2297 CPUTLBEntry *entry, *entry2;
2298 target_ulong page1, page2, tlb_addr, tlb_addr2;
2299 MemOpIdx oi;
2300 size_t size2;
2301 int i;
2304 * Ensure the second page is in the TLB. Note that the first page
2305 * is already guaranteed to be filled, and that the second page
2306 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV
2307 * handling: the first page could have evicted itself.
2309 page1 = addr & TARGET_PAGE_MASK;
2310 page2 = (addr + size) & TARGET_PAGE_MASK;
2311 size2 = (addr + size) & ~TARGET_PAGE_MASK;
2312 index2 = tlb_index(env, mmu_idx, page2);
2313 entry2 = tlb_entry(env, mmu_idx, page2);
2315 tlb_addr2 = tlb_addr_write(entry2);
2316 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) {
2317 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
2318 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
2319 mmu_idx, retaddr);
2320 index2 = tlb_index(env, mmu_idx, page2);
2321 entry2 = tlb_entry(env, mmu_idx, page2);
2323 tlb_addr2 = tlb_addr_write(entry2);
2326 index = tlb_index(env, mmu_idx, addr);
2327 entry = tlb_entry(env, mmu_idx, addr);
2328 tlb_addr = tlb_addr_write(entry);
2331 * Handle watchpoints. Since this may trap, all checks
2332 * must happen before any store.
2334 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2335 cpu_check_watchpoint(env_cpu(env), addr, size - size2,
2336 env_tlb(env)->d[mmu_idx].fulltlb[index].attrs,
2337 BP_MEM_WRITE, retaddr);
2339 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
2340 cpu_check_watchpoint(env_cpu(env), page2, size2,
2341 env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs,
2342 BP_MEM_WRITE, retaddr);
2346 * XXX: not efficient, but simple.
2347 * This loop must go in the forward direction to avoid issues
2348 * with self-modifying code in Windows 64-bit.
2350 oi = make_memop_idx(MO_UB, mmu_idx);
2351 if (big_endian) {
2352 for (i = 0; i < size; ++i) {
2353 /* Big-endian extract. */
2354 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
2355 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2357 } else {
2358 for (i = 0; i < size; ++i) {
2359 /* Little-endian extract. */
2360 uint8_t val8 = val >> (i * 8);
2361 full_stb_mmu(env, addr + i, val8, oi, retaddr);
2366 static inline void QEMU_ALWAYS_INLINE
2367 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
2368 MemOpIdx oi, uintptr_t retaddr, MemOp op)
2370 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
2371 const unsigned a_bits = get_alignment_bits(get_memop(oi));
2372 const size_t size = memop_size(op);
2373 uintptr_t mmu_idx = get_mmuidx(oi);
2374 uintptr_t index;
2375 CPUTLBEntry *entry;
2376 target_ulong tlb_addr;
2377 void *haddr;
2379 tcg_debug_assert(mmu_idx < NB_MMU_MODES);
2381 /* Handle CPU specific unaligned behaviour */
2382 if (addr & ((1 << a_bits) - 1)) {
2383 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2384 mmu_idx, retaddr);
2387 index = tlb_index(env, mmu_idx, addr);
2388 entry = tlb_entry(env, mmu_idx, addr);
2389 tlb_addr = tlb_addr_write(entry);
2391 /* If the TLB entry is for a different page, reload and try again. */
2392 if (!tlb_hit(tlb_addr, addr)) {
2393 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
2394 addr & TARGET_PAGE_MASK)) {
2395 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
2396 mmu_idx, retaddr);
2397 index = tlb_index(env, mmu_idx, addr);
2398 entry = tlb_entry(env, mmu_idx, addr);
2400 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
2403 /* Handle anything that isn't just a straight memory access. */
2404 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
2405 CPUTLBEntryFull *full;
2406 bool need_swap;
2408 /* For anything that is unaligned, recurse through byte stores. */
2409 if ((addr & (size - 1)) != 0) {
2410 goto do_unaligned_access;
2413 full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
2415 /* Handle watchpoints. */
2416 if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2417 /* On watchpoint hit, this will longjmp out. */
2418 cpu_check_watchpoint(env_cpu(env), addr, size,
2419 full->attrs, BP_MEM_WRITE, retaddr);
2422 need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
2424 /* Handle I/O access. */
2425 if (tlb_addr & TLB_MMIO) {
2426 io_writex(env, full, mmu_idx, val, addr, retaddr,
2427 op ^ (need_swap * MO_BSWAP));
2428 return;
2431 /* Ignore writes to ROM. */
2432 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
2433 return;
2436 /* Handle clean RAM pages. */
2437 if (tlb_addr & TLB_NOTDIRTY) {
2438 notdirty_write(env_cpu(env), addr, size, full, retaddr);
2441 haddr = (void *)((uintptr_t)addr + entry->addend);
2444 * Keep these two store_memop separate to ensure that the compiler
2445 * is able to fold the entire function to a single instruction.
2446 * There is a build-time assert inside to remind you of this. ;-)
2448 if (unlikely(need_swap)) {
2449 store_memop(haddr, val, op ^ MO_BSWAP);
2450 } else {
2451 store_memop(haddr, val, op);
2453 return;
2456 /* Handle slow unaligned access (it spans two pages or IO). */
2457 if (size > 1
2458 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
2459 >= TARGET_PAGE_SIZE)) {
2460 do_unaligned_access:
2461 store_helper_unaligned(env, addr, val, retaddr, size,
2462 mmu_idx, memop_big_endian(op));
2463 return;
2466 haddr = (void *)((uintptr_t)addr + entry->addend);
2467 store_memop(haddr, val, op);
2470 static void __attribute__((noinline))
2471 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2472 MemOpIdx oi, uintptr_t retaddr)
2474 validate_memop(oi, MO_UB);
2475 store_helper(env, addr, val, oi, retaddr, MO_UB);
2478 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2479 MemOpIdx oi, uintptr_t retaddr)
2481 full_stb_mmu(env, addr, val, oi, retaddr);
2484 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2485 MemOpIdx oi, uintptr_t retaddr)
2487 validate_memop(oi, MO_LEUW);
2488 store_helper(env, addr, val, oi, retaddr, MO_LEUW);
2491 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2492 MemOpIdx oi, uintptr_t retaddr)
2494 full_le_stw_mmu(env, addr, val, oi, retaddr);
2497 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2498 MemOpIdx oi, uintptr_t retaddr)
2500 validate_memop(oi, MO_BEUW);
2501 store_helper(env, addr, val, oi, retaddr, MO_BEUW);
2504 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2505 MemOpIdx oi, uintptr_t retaddr)
2507 full_be_stw_mmu(env, addr, val, oi, retaddr);
2510 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2511 MemOpIdx oi, uintptr_t retaddr)
2513 validate_memop(oi, MO_LEUL);
2514 store_helper(env, addr, val, oi, retaddr, MO_LEUL);
2517 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2518 MemOpIdx oi, uintptr_t retaddr)
2520 full_le_stl_mmu(env, addr, val, oi, retaddr);
2523 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2524 MemOpIdx oi, uintptr_t retaddr)
2526 validate_memop(oi, MO_BEUL);
2527 store_helper(env, addr, val, oi, retaddr, MO_BEUL);
2530 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2531 MemOpIdx oi, uintptr_t retaddr)
2533 full_be_stl_mmu(env, addr, val, oi, retaddr);
2536 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2537 MemOpIdx oi, uintptr_t retaddr)
2539 validate_memop(oi, MO_LEUQ);
2540 store_helper(env, addr, val, oi, retaddr, MO_LEUQ);
2543 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2544 MemOpIdx oi, uintptr_t retaddr)
2546 validate_memop(oi, MO_BEUQ);
2547 store_helper(env, addr, val, oi, retaddr, MO_BEUQ);
2551 * Store Helpers for cpu_ldst.h
2554 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr,
2555 uint64_t val, MemOpIdx oi, uintptr_t retaddr);
2557 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr,
2558 uint64_t val, MemOpIdx oi, uintptr_t ra,
2559 FullStoreHelper *full_store)
2561 full_store(env, addr, val, oi, ra);
2562 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2565 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2566 MemOpIdx oi, uintptr_t retaddr)
2568 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu);
2571 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2572 MemOpIdx oi, uintptr_t retaddr)
2574 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu);
2577 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2578 MemOpIdx oi, uintptr_t retaddr)
2580 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu);
2583 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2584 MemOpIdx oi, uintptr_t retaddr)
2586 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu);
2589 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2590 MemOpIdx oi, uintptr_t retaddr)
2592 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu);
2595 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2596 MemOpIdx oi, uintptr_t retaddr)
2598 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu);
2601 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2602 MemOpIdx oi, uintptr_t retaddr)
2604 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu);
2607 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2608 MemOpIdx oi, uintptr_t ra)
2610 MemOp mop = get_memop(oi);
2611 int mmu_idx = get_mmuidx(oi);
2612 MemOpIdx new_oi;
2613 unsigned a_bits;
2615 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2616 a_bits = get_alignment_bits(mop);
2618 /* Handle CPU specific unaligned behaviour */
2619 if (addr & ((1 << a_bits) - 1)) {
2620 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2621 mmu_idx, ra);
2624 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2625 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2626 new_oi = make_memop_idx(mop, mmu_idx);
2628 helper_be_stq_mmu(env, addr, int128_gethi(val), new_oi, ra);
2629 helper_be_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra);
2631 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2634 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2635 MemOpIdx oi, uintptr_t ra)
2637 MemOp mop = get_memop(oi);
2638 int mmu_idx = get_mmuidx(oi);
2639 MemOpIdx new_oi;
2640 unsigned a_bits;
2642 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2643 a_bits = get_alignment_bits(mop);
2645 /* Handle CPU specific unaligned behaviour */
2646 if (addr & ((1 << a_bits) - 1)) {
2647 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2648 mmu_idx, ra);
2651 /* Construct an unaligned 64-bit replacement MemOpIdx. */
2652 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2653 new_oi = make_memop_idx(mop, mmu_idx);
2655 helper_le_stq_mmu(env, addr, int128_getlo(val), new_oi, ra);
2656 helper_le_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra);
2658 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2661 #include "ldst_common.c.inc"
2664 * First set of functions passes in OI and RETADDR.
2665 * This makes them callable from other helpers.
2668 #define ATOMIC_NAME(X) \
2669 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2671 #define ATOMIC_MMU_CLEANUP
2673 #include "atomic_common.c.inc"
2675 #define DATA_SIZE 1
2676 #include "atomic_template.h"
2678 #define DATA_SIZE 2
2679 #include "atomic_template.h"
2681 #define DATA_SIZE 4
2682 #include "atomic_template.h"
2684 #ifdef CONFIG_ATOMIC64
2685 #define DATA_SIZE 8
2686 #include "atomic_template.h"
2687 #endif
2689 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2690 #define DATA_SIZE 16
2691 #include "atomic_template.h"
2692 #endif
2694 /* Code access functions. */
2696 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
2697 MemOpIdx oi, uintptr_t retaddr)
2699 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
2702 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2704 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2705 return full_ldub_code(env, addr, oi, 0);
2708 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
2709 MemOpIdx oi, uintptr_t retaddr)
2711 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
2714 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2716 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2717 return full_lduw_code(env, addr, oi, 0);
2720 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
2721 MemOpIdx oi, uintptr_t retaddr)
2723 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
2726 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2728 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2729 return full_ldl_code(env, addr, oi, 0);
2732 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
2733 MemOpIdx oi, uintptr_t retaddr)
2735 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code);
2738 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2740 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2741 return full_ldq_code(env, addr, oi, 0);