4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
108 /* RAM can be migrated */
109 #define RAM_MIGRATABLE (1 << 4)
112 #ifdef TARGET_PAGE_BITS_VARY
113 int target_page_bits
;
114 bool target_page_bits_decided
;
117 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
118 /* current CPU in the current thread. It is only valid inside
120 __thread CPUState
*current_cpu
;
121 /* 0 = Do not count executed instructions.
122 1 = Precise instruction counting.
123 2 = Adaptive rate instruction counting. */
126 uintptr_t qemu_host_page_size
;
127 intptr_t qemu_host_page_mask
;
129 bool set_preferred_target_page_bits(int bits
)
131 /* The target page size is the lowest common denominator for all
132 * the CPUs in the system, so we can only make it smaller, never
133 * larger. And we can't make it smaller once we've committed to
136 #ifdef TARGET_PAGE_BITS_VARY
137 assert(bits
>= TARGET_PAGE_BITS_MIN
);
138 if (target_page_bits
== 0 || target_page_bits
> bits
) {
139 if (target_page_bits_decided
) {
142 target_page_bits
= bits
;
148 #if !defined(CONFIG_USER_ONLY)
150 static void finalize_target_page_bits(void)
152 #ifdef TARGET_PAGE_BITS_VARY
153 if (target_page_bits
== 0) {
154 target_page_bits
= TARGET_PAGE_BITS_MIN
;
156 target_page_bits_decided
= true;
160 typedef struct PhysPageEntry PhysPageEntry
;
162 struct PhysPageEntry
{
163 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
165 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
169 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
171 /* Size of the L2 (and L3, etc) page tables. */
172 #define ADDR_SPACE_BITS 64
175 #define P_L2_SIZE (1 << P_L2_BITS)
177 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
179 typedef PhysPageEntry Node
[P_L2_SIZE
];
181 typedef struct PhysPageMap
{
184 unsigned sections_nb
;
185 unsigned sections_nb_alloc
;
187 unsigned nodes_nb_alloc
;
189 MemoryRegionSection
*sections
;
192 struct AddressSpaceDispatch
{
193 MemoryRegionSection
*mru_section
;
194 /* This is a multi-level map on the physical address space.
195 * The bottom level has pointers to MemoryRegionSections.
197 PhysPageEntry phys_map
;
201 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
202 typedef struct subpage_t
{
206 uint16_t sub_section
[];
209 #define PHYS_SECTION_UNASSIGNED 0
210 #define PHYS_SECTION_NOTDIRTY 1
211 #define PHYS_SECTION_ROM 2
212 #define PHYS_SECTION_WATCH 3
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216 static void tcg_commit(MemoryListener
*listener
);
218 static MemoryRegion io_mem_watch
;
221 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
222 * @cpu: the CPU whose AddressSpace this is
223 * @as: the AddressSpace itself
224 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
225 * @tcg_as_listener: listener for tracking changes to the AddressSpace
227 struct CPUAddressSpace
{
230 struct AddressSpaceDispatch
*memory_dispatch
;
231 MemoryListener tcg_as_listener
;
234 struct DirtyBitmapSnapshot
{
237 unsigned long dirty
[];
242 #if !defined(CONFIG_USER_ONLY)
244 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
246 static unsigned alloc_hint
= 16;
247 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
248 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
249 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
250 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
251 alloc_hint
= map
->nodes_nb_alloc
;
255 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
262 ret
= map
->nodes_nb
++;
264 assert(ret
!= PHYS_MAP_NODE_NIL
);
265 assert(ret
!= map
->nodes_nb_alloc
);
267 e
.skip
= leaf
? 0 : 1;
268 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
269 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
270 memcpy(&p
[i
], &e
, sizeof(e
));
275 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
276 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
280 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
282 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
283 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
285 p
= map
->nodes
[lp
->ptr
];
286 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
288 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
289 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
295 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
301 static void phys_page_set(AddressSpaceDispatch
*d
,
302 hwaddr index
, hwaddr nb
,
305 /* Wildly overreserve - it doesn't matter much. */
306 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
308 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
311 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
312 * and update our entry so we can skip it and go directly to the destination.
314 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
316 unsigned valid_ptr
= P_L2_SIZE
;
321 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
326 for (i
= 0; i
< P_L2_SIZE
; i
++) {
327 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
334 phys_page_compact(&p
[i
], nodes
);
338 /* We can only compress if there's only one child. */
343 assert(valid_ptr
< P_L2_SIZE
);
345 /* Don't compress if it won't fit in the # of bits we have. */
346 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
350 lp
->ptr
= p
[valid_ptr
].ptr
;
351 if (!p
[valid_ptr
].skip
) {
352 /* If our only child is a leaf, make this a leaf. */
353 /* By design, we should have made this node a leaf to begin with so we
354 * should never reach here.
355 * But since it's so simple to handle this, let's do it just in case we
360 lp
->skip
+= p
[valid_ptr
].skip
;
364 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
366 if (d
->phys_map
.skip
) {
367 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
371 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
374 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
375 * the section must cover the entire address space.
377 return int128_gethi(section
->size
) ||
378 range_covers_byte(section
->offset_within_address_space
,
379 int128_getlo(section
->size
), addr
);
382 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
384 PhysPageEntry lp
= d
->phys_map
, *p
;
385 Node
*nodes
= d
->map
.nodes
;
386 MemoryRegionSection
*sections
= d
->map
.sections
;
387 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
390 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
391 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
392 return §ions
[PHYS_SECTION_UNASSIGNED
];
395 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
398 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
399 return §ions
[lp
.ptr
];
401 return §ions
[PHYS_SECTION_UNASSIGNED
];
405 bool memory_region_is_unassigned(MemoryRegion
*mr
)
407 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
408 && mr
!= &io_mem_watch
;
411 /* Called from RCU critical section */
412 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
414 bool resolve_subpage
)
416 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
419 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
420 !section_covers_addr(section
, addr
)) {
421 section
= phys_page_find(d
, addr
);
422 atomic_set(&d
->mru_section
, section
);
424 if (resolve_subpage
&& section
->mr
->subpage
) {
425 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
426 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
431 /* Called from RCU critical section */
432 static MemoryRegionSection
*
433 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
434 hwaddr
*plen
, bool resolve_subpage
)
436 MemoryRegionSection
*section
;
440 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
441 /* Compute offset within MemoryRegionSection */
442 addr
-= section
->offset_within_address_space
;
444 /* Compute offset within MemoryRegion */
445 *xlat
= addr
+ section
->offset_within_region
;
449 /* MMIO registers can be expected to perform full-width accesses based only
450 * on their address, without considering adjacent registers that could
451 * decode to completely different MemoryRegions. When such registers
452 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
453 * regions overlap wildly. For this reason we cannot clamp the accesses
456 * If the length is small (as is the case for address_space_ldl/stl),
457 * everything works fine. If the incoming length is large, however,
458 * the caller really has to do the clamping through memory_access_size.
460 if (memory_region_is_ram(mr
)) {
461 diff
= int128_sub(section
->size
, int128_make64(addr
));
462 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
468 * address_space_translate_iommu - translate an address through an IOMMU
469 * memory region and then through the target address space.
471 * @iommu_mr: the IOMMU memory region that we start the translation from
472 * @addr: the address to be translated through the MMU
473 * @xlat: the translated address offset within the destination memory region.
474 * It cannot be %NULL.
475 * @plen_out: valid read/write length of the translated address. It
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be %NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 * @target_as: the address space targeted by the IOMMU
484 * @attrs: transaction attributes
486 * This function is called from RCU critical section. It is the common
487 * part of flatview_do_translate and address_space_translate_cached.
489 static MemoryRegionSection
address_space_translate_iommu(IOMMUMemoryRegion
*iommu_mr
,
492 hwaddr
*page_mask_out
,
495 AddressSpace
**target_as
,
498 MemoryRegionSection
*section
;
499 hwaddr page_mask
= (hwaddr
)-1;
503 IOMMUMemoryRegionClass
*imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
504 IOMMUTLBEntry iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
505 IOMMU_WO
: IOMMU_RO
);
507 if (!(iotlb
.perm
& (1 << is_write
))) {
511 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
512 | (addr
& iotlb
.addr_mask
));
513 page_mask
&= iotlb
.addr_mask
;
514 *plen_out
= MIN(*plen_out
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
515 *target_as
= iotlb
.target_as
;
517 section
= address_space_translate_internal(
518 address_space_to_dispatch(iotlb
.target_as
), addr
, xlat
,
521 iommu_mr
= memory_region_get_iommu(section
->mr
);
522 } while (unlikely(iommu_mr
));
525 *page_mask_out
= page_mask
;
530 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
534 * flatview_do_translate - translate an address in FlatView
536 * @fv: the flat view that we want to translate on
537 * @addr: the address to be translated in above address space
538 * @xlat: the translated address offset within memory region. It
540 * @plen_out: valid read/write length of the translated address. It
541 * can be @NULL when we don't care about it.
542 * @page_mask_out: page mask for the translated address. This
543 * should only be meaningful for IOMMU translated
544 * addresses, since there may be huge pages that this bit
545 * would tell. It can be @NULL if we don't care about it.
546 * @is_write: whether the translation operation is for write
547 * @is_mmio: whether this can be MMIO, set true if it can
548 * @target_as: the address space targeted by the IOMMU
549 * @attrs: memory transaction attributes
551 * This function is called from RCU critical section
553 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
557 hwaddr
*page_mask_out
,
560 AddressSpace
**target_as
,
563 MemoryRegionSection
*section
;
564 IOMMUMemoryRegion
*iommu_mr
;
565 hwaddr plen
= (hwaddr
)(-1);
571 section
= address_space_translate_internal(
572 flatview_to_dispatch(fv
), addr
, xlat
,
575 iommu_mr
= memory_region_get_iommu(section
->mr
);
576 if (unlikely(iommu_mr
)) {
577 return address_space_translate_iommu(iommu_mr
, xlat
,
578 plen_out
, page_mask_out
,
583 /* Not behind an IOMMU, use default page size. */
584 *page_mask_out
= ~TARGET_PAGE_MASK
;
590 /* Called from RCU critical section */
591 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
592 bool is_write
, MemTxAttrs attrs
)
594 MemoryRegionSection section
;
595 hwaddr xlat
, page_mask
;
598 * This can never be MMIO, and we don't really care about plen,
601 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
602 NULL
, &page_mask
, is_write
, false, &as
,
605 /* Illegal translation */
606 if (section
.mr
== &io_mem_unassigned
) {
610 /* Convert memory region offset into address space offset */
611 xlat
+= section
.offset_within_address_space
-
612 section
.offset_within_region
;
614 return (IOMMUTLBEntry
) {
616 .iova
= addr
& ~page_mask
,
617 .translated_addr
= xlat
& ~page_mask
,
618 .addr_mask
= page_mask
,
619 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
624 return (IOMMUTLBEntry
) {0};
627 /* Called from RCU critical section */
628 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
629 hwaddr
*plen
, bool is_write
,
633 MemoryRegionSection section
;
634 AddressSpace
*as
= NULL
;
636 /* This can be MMIO, so setup MMIO bit. */
637 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
638 is_write
, true, &as
, attrs
);
641 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
642 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
643 *plen
= MIN(page
, *plen
);
649 /* Called from RCU critical section */
650 MemoryRegionSection
*
651 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
652 hwaddr
*xlat
, hwaddr
*plen
)
654 MemoryRegionSection
*section
;
655 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
657 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
659 assert(!memory_region_is_iommu(section
->mr
));
664 #if !defined(CONFIG_USER_ONLY)
666 static int cpu_common_post_load(void *opaque
, int version_id
)
668 CPUState
*cpu
= opaque
;
670 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
671 version_id is increased. */
672 cpu
->interrupt_request
&= ~0x01;
675 /* loadvm has just updated the content of RAM, bypassing the
676 * usual mechanisms that ensure we flush TBs for writes to
677 * memory we've translated code from. So we must flush all TBs,
678 * which will now be stale.
685 static int cpu_common_pre_load(void *opaque
)
687 CPUState
*cpu
= opaque
;
689 cpu
->exception_index
= -1;
694 static bool cpu_common_exception_index_needed(void *opaque
)
696 CPUState
*cpu
= opaque
;
698 return tcg_enabled() && cpu
->exception_index
!= -1;
701 static const VMStateDescription vmstate_cpu_common_exception_index
= {
702 .name
= "cpu_common/exception_index",
704 .minimum_version_id
= 1,
705 .needed
= cpu_common_exception_index_needed
,
706 .fields
= (VMStateField
[]) {
707 VMSTATE_INT32(exception_index
, CPUState
),
708 VMSTATE_END_OF_LIST()
712 static bool cpu_common_crash_occurred_needed(void *opaque
)
714 CPUState
*cpu
= opaque
;
716 return cpu
->crash_occurred
;
719 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
720 .name
= "cpu_common/crash_occurred",
722 .minimum_version_id
= 1,
723 .needed
= cpu_common_crash_occurred_needed
,
724 .fields
= (VMStateField
[]) {
725 VMSTATE_BOOL(crash_occurred
, CPUState
),
726 VMSTATE_END_OF_LIST()
730 const VMStateDescription vmstate_cpu_common
= {
731 .name
= "cpu_common",
733 .minimum_version_id
= 1,
734 .pre_load
= cpu_common_pre_load
,
735 .post_load
= cpu_common_post_load
,
736 .fields
= (VMStateField
[]) {
737 VMSTATE_UINT32(halted
, CPUState
),
738 VMSTATE_UINT32(interrupt_request
, CPUState
),
739 VMSTATE_END_OF_LIST()
741 .subsections
= (const VMStateDescription
*[]) {
742 &vmstate_cpu_common_exception_index
,
743 &vmstate_cpu_common_crash_occurred
,
750 CPUState
*qemu_get_cpu(int index
)
755 if (cpu
->cpu_index
== index
) {
763 #if !defined(CONFIG_USER_ONLY)
764 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
765 const char *prefix
, MemoryRegion
*mr
)
767 CPUAddressSpace
*newas
;
768 AddressSpace
*as
= g_new0(AddressSpace
, 1);
772 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
773 address_space_init(as
, mr
, as_name
);
776 /* Target code should have set num_ases before calling us */
777 assert(asidx
< cpu
->num_ases
);
780 /* address space 0 gets the convenience alias */
784 /* KVM cannot currently support multiple address spaces. */
785 assert(asidx
== 0 || !kvm_enabled());
787 if (!cpu
->cpu_ases
) {
788 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
791 newas
= &cpu
->cpu_ases
[asidx
];
795 newas
->tcg_as_listener
.commit
= tcg_commit
;
796 memory_listener_register(&newas
->tcg_as_listener
, as
);
800 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
802 /* Return the AddressSpace corresponding to the specified index */
803 return cpu
->cpu_ases
[asidx
].as
;
807 void cpu_exec_unrealizefn(CPUState
*cpu
)
809 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
811 cpu_list_remove(cpu
);
813 if (cc
->vmsd
!= NULL
) {
814 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
816 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
817 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
821 Property cpu_common_props
[] = {
822 #ifndef CONFIG_USER_ONLY
823 /* Create a memory property for softmmu CPU object,
824 * so users can wire up its memory. (This can't go in qom/cpu.c
825 * because that file is compiled only once for both user-mode
826 * and system builds.) The default if no link is set up is to use
827 * the system address space.
829 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
832 DEFINE_PROP_END_OF_LIST(),
835 void cpu_exec_initfn(CPUState
*cpu
)
840 #ifndef CONFIG_USER_ONLY
841 cpu
->thread_id
= qemu_get_thread_id();
842 cpu
->memory
= system_memory
;
843 object_ref(OBJECT(cpu
->memory
));
847 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
849 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
850 static bool tcg_target_initialized
;
854 if (tcg_enabled() && !tcg_target_initialized
) {
855 tcg_target_initialized
= true;
856 cc
->tcg_initialize();
859 #ifndef CONFIG_USER_ONLY
860 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
861 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
863 if (cc
->vmsd
!= NULL
) {
864 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
869 const char *parse_cpu_model(const char *cpu_model
)
873 gchar
**model_pieces
;
874 const char *cpu_type
;
876 model_pieces
= g_strsplit(cpu_model
, ",", 2);
878 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
880 error_report("unable to find CPU model '%s'", model_pieces
[0]);
881 g_strfreev(model_pieces
);
885 cpu_type
= object_class_get_name(oc
);
887 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
888 g_strfreev(model_pieces
);
892 #if defined(CONFIG_USER_ONLY)
893 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
897 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
902 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
905 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
906 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
908 /* Locks grabbed by tb_invalidate_phys_addr */
909 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
910 phys
| (pc
& ~TARGET_PAGE_MASK
), attrs
);
915 #if defined(CONFIG_USER_ONLY)
916 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
921 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
927 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
931 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
932 int flags
, CPUWatchpoint
**watchpoint
)
937 /* Add a watchpoint. */
938 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
939 int flags
, CPUWatchpoint
**watchpoint
)
943 /* forbid ranges which are empty or run off the end of the address space */
944 if (len
== 0 || (addr
+ len
- 1) < addr
) {
945 error_report("tried to set invalid watchpoint at %"
946 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
949 wp
= g_malloc(sizeof(*wp
));
955 /* keep all GDB-injected watchpoints in front */
956 if (flags
& BP_GDB
) {
957 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
959 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
962 tlb_flush_page(cpu
, addr
);
969 /* Remove a specific watchpoint. */
970 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
975 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
976 if (addr
== wp
->vaddr
&& len
== wp
->len
977 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
978 cpu_watchpoint_remove_by_ref(cpu
, wp
);
985 /* Remove a specific watchpoint by reference. */
986 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
988 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
990 tlb_flush_page(cpu
, watchpoint
->vaddr
);
995 /* Remove all matching watchpoints. */
996 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
998 CPUWatchpoint
*wp
, *next
;
1000 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
1001 if (wp
->flags
& mask
) {
1002 cpu_watchpoint_remove_by_ref(cpu
, wp
);
1007 /* Return true if this watchpoint address matches the specified
1008 * access (ie the address range covered by the watchpoint overlaps
1009 * partially or completely with the address range covered by the
1012 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
1016 /* We know the lengths are non-zero, but a little caution is
1017 * required to avoid errors in the case where the range ends
1018 * exactly at the top of the address space and so addr + len
1019 * wraps round to zero.
1021 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
1022 vaddr addrend
= addr
+ len
- 1;
1024 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
1029 /* Add a breakpoint. */
1030 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
1031 CPUBreakpoint
**breakpoint
)
1035 bp
= g_malloc(sizeof(*bp
));
1040 /* keep all GDB-injected breakpoints in front */
1041 if (flags
& BP_GDB
) {
1042 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1044 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1047 breakpoint_invalidate(cpu
, pc
);
1055 /* Remove a specific breakpoint. */
1056 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1060 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1061 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1062 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1069 /* Remove a specific breakpoint by reference. */
1070 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1072 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1074 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1079 /* Remove all matching breakpoints. */
1080 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1082 CPUBreakpoint
*bp
, *next
;
1084 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1085 if (bp
->flags
& mask
) {
1086 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1091 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1092 CPU loop after each instruction */
1093 void cpu_single_step(CPUState
*cpu
, int enabled
)
1095 if (cpu
->singlestep_enabled
!= enabled
) {
1096 cpu
->singlestep_enabled
= enabled
;
1097 if (kvm_enabled()) {
1098 kvm_update_guest_debug(cpu
, 0);
1100 /* must flush all the translated code to avoid inconsistencies */
1101 /* XXX: only flush what is necessary */
1107 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1114 fprintf(stderr
, "qemu: fatal: ");
1115 vfprintf(stderr
, fmt
, ap
);
1116 fprintf(stderr
, "\n");
1117 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1118 if (qemu_log_separate()) {
1120 qemu_log("qemu: fatal: ");
1121 qemu_log_vprintf(fmt
, ap2
);
1123 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1131 #if defined(CONFIG_USER_ONLY)
1133 struct sigaction act
;
1134 sigfillset(&act
.sa_mask
);
1135 act
.sa_handler
= SIG_DFL
;
1137 sigaction(SIGABRT
, &act
, NULL
);
1143 #if !defined(CONFIG_USER_ONLY)
1144 /* Called from RCU critical section */
1145 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1149 block
= atomic_rcu_read(&ram_list
.mru_block
);
1150 if (block
&& addr
- block
->offset
< block
->max_length
) {
1153 RAMBLOCK_FOREACH(block
) {
1154 if (addr
- block
->offset
< block
->max_length
) {
1159 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1163 /* It is safe to write mru_block outside the iothread lock. This
1168 * xxx removed from list
1172 * call_rcu(reclaim_ramblock, xxx);
1175 * atomic_rcu_set is not needed here. The block was already published
1176 * when it was placed into the list. Here we're just making an extra
1177 * copy of the pointer.
1179 ram_list
.mru_block
= block
;
1183 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1190 end
= TARGET_PAGE_ALIGN(start
+ length
);
1191 start
&= TARGET_PAGE_MASK
;
1194 block
= qemu_get_ram_block(start
);
1195 assert(block
== qemu_get_ram_block(end
- 1));
1196 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1198 tlb_reset_dirty(cpu
, start1
, length
);
1203 /* Note: start and end must be within the same ram block. */
1204 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1208 DirtyMemoryBlocks
*blocks
;
1209 unsigned long end
, page
;
1216 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1217 page
= start
>> TARGET_PAGE_BITS
;
1221 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1223 while (page
< end
) {
1224 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1225 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1226 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1228 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1235 if (dirty
&& tcg_enabled()) {
1236 tlb_reset_dirty_range_all(start
, length
);
1242 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1243 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1245 DirtyMemoryBlocks
*blocks
;
1246 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1247 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1248 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1249 DirtyBitmapSnapshot
*snap
;
1250 unsigned long page
, end
, dest
;
1252 snap
= g_malloc0(sizeof(*snap
) +
1253 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1254 snap
->start
= first
;
1257 page
= first
>> TARGET_PAGE_BITS
;
1258 end
= last
>> TARGET_PAGE_BITS
;
1263 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1265 while (page
< end
) {
1266 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1267 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1268 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1270 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1271 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1272 offset
>>= BITS_PER_LEVEL
;
1274 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1275 blocks
->blocks
[idx
] + offset
,
1278 dest
+= num
>> BITS_PER_LEVEL
;
1283 if (tcg_enabled()) {
1284 tlb_reset_dirty_range_all(start
, length
);
1290 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1294 unsigned long page
, end
;
1296 assert(start
>= snap
->start
);
1297 assert(start
+ length
<= snap
->end
);
1299 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1300 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1302 while (page
< end
) {
1303 if (test_bit(page
, snap
->dirty
)) {
1311 /* Called from RCU critical section */
1312 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1313 MemoryRegionSection
*section
,
1315 hwaddr paddr
, hwaddr xlat
,
1317 target_ulong
*address
)
1322 if (memory_region_is_ram(section
->mr
)) {
1324 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1325 if (!section
->readonly
) {
1326 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1328 iotlb
|= PHYS_SECTION_ROM
;
1331 AddressSpaceDispatch
*d
;
1333 d
= flatview_to_dispatch(section
->fv
);
1334 iotlb
= section
- d
->map
.sections
;
1338 /* Make accesses to pages with watchpoints go via the
1339 watchpoint trap routines. */
1340 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1341 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1342 /* Avoid trapping reads of pages with a write breakpoint. */
1343 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1344 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1345 *address
|= TLB_MMIO
;
1353 #endif /* defined(CONFIG_USER_ONLY) */
1355 #if !defined(CONFIG_USER_ONLY)
1357 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1359 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1361 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1362 qemu_anon_ram_alloc
;
1365 * Set a custom physical guest memory alloator.
1366 * Accelerators with unusual needs may need this. Hopefully, we can
1367 * get rid of it eventually.
1369 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1371 phys_mem_alloc
= alloc
;
1374 static uint16_t phys_section_add(PhysPageMap
*map
,
1375 MemoryRegionSection
*section
)
1377 /* The physical section number is ORed with a page-aligned
1378 * pointer to produce the iotlb entries. Thus it should
1379 * never overflow into the page-aligned value.
1381 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1383 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1384 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1385 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1386 map
->sections_nb_alloc
);
1388 map
->sections
[map
->sections_nb
] = *section
;
1389 memory_region_ref(section
->mr
);
1390 return map
->sections_nb
++;
1393 static void phys_section_destroy(MemoryRegion
*mr
)
1395 bool have_sub_page
= mr
->subpage
;
1397 memory_region_unref(mr
);
1399 if (have_sub_page
) {
1400 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1401 object_unref(OBJECT(&subpage
->iomem
));
1406 static void phys_sections_free(PhysPageMap
*map
)
1408 while (map
->sections_nb
> 0) {
1409 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1410 phys_section_destroy(section
->mr
);
1412 g_free(map
->sections
);
1416 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1418 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1420 hwaddr base
= section
->offset_within_address_space
1422 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1423 MemoryRegionSection subsection
= {
1424 .offset_within_address_space
= base
,
1425 .size
= int128_make64(TARGET_PAGE_SIZE
),
1429 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1431 if (!(existing
->mr
->subpage
)) {
1432 subpage
= subpage_init(fv
, base
);
1434 subsection
.mr
= &subpage
->iomem
;
1435 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1436 phys_section_add(&d
->map
, &subsection
));
1438 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1440 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1441 end
= start
+ int128_get64(section
->size
) - 1;
1442 subpage_register(subpage
, start
, end
,
1443 phys_section_add(&d
->map
, section
));
1447 static void register_multipage(FlatView
*fv
,
1448 MemoryRegionSection
*section
)
1450 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1451 hwaddr start_addr
= section
->offset_within_address_space
;
1452 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1453 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1457 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1460 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1462 MemoryRegionSection now
= *section
, remain
= *section
;
1463 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1465 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1466 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1467 - now
.offset_within_address_space
;
1469 now
.size
= int128_min(int128_make64(left
), now
.size
);
1470 register_subpage(fv
, &now
);
1472 now
.size
= int128_zero();
1474 while (int128_ne(remain
.size
, now
.size
)) {
1475 remain
.size
= int128_sub(remain
.size
, now
.size
);
1476 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1477 remain
.offset_within_region
+= int128_get64(now
.size
);
1479 if (int128_lt(remain
.size
, page_size
)) {
1480 register_subpage(fv
, &now
);
1481 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1482 now
.size
= page_size
;
1483 register_subpage(fv
, &now
);
1485 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1486 register_multipage(fv
, &now
);
1491 void qemu_flush_coalesced_mmio_buffer(void)
1494 kvm_flush_coalesced_mmio_buffer();
1497 void qemu_mutex_lock_ramlist(void)
1499 qemu_mutex_lock(&ram_list
.mutex
);
1502 void qemu_mutex_unlock_ramlist(void)
1504 qemu_mutex_unlock(&ram_list
.mutex
);
1507 void ram_block_dump(Monitor
*mon
)
1513 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1514 "Block Name", "PSize", "Offset", "Used", "Total");
1515 RAMBLOCK_FOREACH(block
) {
1516 psize
= size_to_str(block
->page_size
);
1517 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1518 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1519 (uint64_t)block
->offset
,
1520 (uint64_t)block
->used_length
,
1521 (uint64_t)block
->max_length
);
1529 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1530 * may or may not name the same files / on the same filesystem now as
1531 * when we actually open and map them. Iterate over the file
1532 * descriptors instead, and use qemu_fd_getpagesize().
1534 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1536 long *hpsize_min
= opaque
;
1538 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1539 long hpsize
= host_memory_backend_pagesize(MEMORY_BACKEND(obj
));
1541 if (hpsize
< *hpsize_min
) {
1542 *hpsize_min
= hpsize
;
1549 long qemu_getrampagesize(void)
1551 long hpsize
= LONG_MAX
;
1552 long mainrampagesize
;
1553 Object
*memdev_root
;
1555 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1557 /* it's possible we have memory-backend objects with
1558 * hugepage-backed RAM. these may get mapped into system
1559 * address space via -numa parameters or memory hotplug
1560 * hooks. we want to take these into account, but we
1561 * also want to make sure these supported hugepage
1562 * sizes are applicable across the entire range of memory
1563 * we may boot from, so we take the min across all
1564 * backends, and assume normal pages in cases where a
1565 * backend isn't backed by hugepages.
1567 memdev_root
= object_resolve_path("/objects", NULL
);
1569 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1571 if (hpsize
== LONG_MAX
) {
1572 /* No additional memory regions found ==> Report main RAM page size */
1573 return mainrampagesize
;
1576 /* If NUMA is disabled or the NUMA nodes are not backed with a
1577 * memory-backend, then there is at least one node using "normal" RAM,
1578 * so if its page size is smaller we have got to report that size instead.
1580 if (hpsize
> mainrampagesize
&&
1581 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1584 error_report("Huge page support disabled (n/a for main memory).");
1587 return mainrampagesize
;
1593 long qemu_getrampagesize(void)
1595 return getpagesize();
1600 static int64_t get_file_size(int fd
)
1602 int64_t size
= lseek(fd
, 0, SEEK_END
);
1609 static int file_ram_open(const char *path
,
1610 const char *region_name
,
1615 char *sanitized_name
;
1621 fd
= open(path
, O_RDWR
);
1623 /* @path names an existing file, use it */
1626 if (errno
== ENOENT
) {
1627 /* @path names a file that doesn't exist, create it */
1628 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1633 } else if (errno
== EISDIR
) {
1634 /* @path names a directory, create a file there */
1635 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1636 sanitized_name
= g_strdup(region_name
);
1637 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1643 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1645 g_free(sanitized_name
);
1647 fd
= mkstemp(filename
);
1655 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1656 error_setg_errno(errp
, errno
,
1657 "can't open backing store %s for guest RAM",
1662 * Try again on EINTR and EEXIST. The latter happens when
1663 * something else creates the file between our two open().
1670 static void *file_ram_alloc(RAMBlock
*block
,
1678 block
->page_size
= qemu_fd_getpagesize(fd
);
1679 if (block
->mr
->align
% block
->page_size
) {
1680 error_setg(errp
, "alignment 0x%" PRIx64
1681 " must be multiples of page size 0x%zx",
1682 block
->mr
->align
, block
->page_size
);
1685 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1686 #if defined(__s390x__)
1687 if (kvm_enabled()) {
1688 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1692 if (memory
< block
->page_size
) {
1693 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1694 "or larger than page size 0x%zx",
1695 memory
, block
->page_size
);
1699 memory
= ROUND_UP(memory
, block
->page_size
);
1702 * ftruncate is not supported by hugetlbfs in older
1703 * hosts, so don't bother bailing out on errors.
1704 * If anything goes wrong with it under other filesystems,
1707 * Do not truncate the non-empty backend file to avoid corrupting
1708 * the existing data in the file. Disabling shrinking is not
1709 * enough. For example, the current vNVDIMM implementation stores
1710 * the guest NVDIMM labels at the end of the backend file. If the
1711 * backend file is later extended, QEMU will not be able to find
1712 * those labels. Therefore, extending the non-empty backend file
1713 * is disabled as well.
1715 if (truncate
&& ftruncate(fd
, memory
)) {
1716 perror("ftruncate");
1719 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1720 block
->flags
& RAM_SHARED
);
1721 if (area
== MAP_FAILED
) {
1722 error_setg_errno(errp
, errno
,
1723 "unable to map backing store for guest RAM");
1728 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1729 if (errp
&& *errp
) {
1730 qemu_ram_munmap(area
, memory
);
1740 /* Allocate space within the ram_addr_t space that governs the
1742 * Called with the ramlist lock held.
1744 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1746 RAMBlock
*block
, *next_block
;
1747 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1749 assert(size
!= 0); /* it would hand out same offset multiple times */
1751 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1755 RAMBLOCK_FOREACH(block
) {
1756 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1758 /* Align blocks to start on a 'long' in the bitmap
1759 * which makes the bitmap sync'ing take the fast path.
1761 candidate
= block
->offset
+ block
->max_length
;
1762 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1764 /* Search for the closest following block
1767 RAMBLOCK_FOREACH(next_block
) {
1768 if (next_block
->offset
>= candidate
) {
1769 next
= MIN(next
, next_block
->offset
);
1773 /* If it fits remember our place and remember the size
1774 * of gap, but keep going so that we might find a smaller
1775 * gap to fill so avoiding fragmentation.
1777 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1779 mingap
= next
- candidate
;
1782 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1785 if (offset
== RAM_ADDR_MAX
) {
1786 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1791 trace_find_ram_offset(size
, offset
);
1796 unsigned long last_ram_page(void)
1799 ram_addr_t last
= 0;
1802 RAMBLOCK_FOREACH(block
) {
1803 last
= MAX(last
, block
->offset
+ block
->max_length
);
1806 return last
>> TARGET_PAGE_BITS
;
1809 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1813 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1814 if (!machine_dump_guest_core(current_machine
)) {
1815 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1817 perror("qemu_madvise");
1818 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1819 "but dump_guest_core=off specified\n");
1824 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1829 bool qemu_ram_is_shared(RAMBlock
*rb
)
1831 return rb
->flags
& RAM_SHARED
;
1834 /* Note: Only set at the start of postcopy */
1835 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1837 return rb
->flags
& RAM_UF_ZEROPAGE
;
1840 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1842 rb
->flags
|= RAM_UF_ZEROPAGE
;
1845 bool qemu_ram_is_migratable(RAMBlock
*rb
)
1847 return rb
->flags
& RAM_MIGRATABLE
;
1850 void qemu_ram_set_migratable(RAMBlock
*rb
)
1852 rb
->flags
|= RAM_MIGRATABLE
;
1855 void qemu_ram_unset_migratable(RAMBlock
*rb
)
1857 rb
->flags
&= ~RAM_MIGRATABLE
;
1860 /* Called with iothread lock held. */
1861 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1866 assert(!new_block
->idstr
[0]);
1869 char *id
= qdev_get_dev_path(dev
);
1871 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1875 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1878 RAMBLOCK_FOREACH(block
) {
1879 if (block
!= new_block
&&
1880 !strcmp(block
->idstr
, new_block
->idstr
)) {
1881 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1889 /* Called with iothread lock held. */
1890 void qemu_ram_unset_idstr(RAMBlock
*block
)
1892 /* FIXME: arch_init.c assumes that this is not called throughout
1893 * migration. Ignore the problem since hot-unplug during migration
1894 * does not work anyway.
1897 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1901 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1903 return rb
->page_size
;
1906 /* Returns the largest size of page in use */
1907 size_t qemu_ram_pagesize_largest(void)
1912 RAMBLOCK_FOREACH(block
) {
1913 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1919 static int memory_try_enable_merging(void *addr
, size_t len
)
1921 if (!machine_mem_merge(current_machine
)) {
1922 /* disabled by the user */
1926 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1929 /* Only legal before guest might have detected the memory size: e.g. on
1930 * incoming migration, or right after reset.
1932 * As memory core doesn't know how is memory accessed, it is up to
1933 * resize callback to update device state and/or add assertions to detect
1934 * misuse, if necessary.
1936 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1940 newsize
= HOST_PAGE_ALIGN(newsize
);
1942 if (block
->used_length
== newsize
) {
1946 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1947 error_setg_errno(errp
, EINVAL
,
1948 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1949 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1950 newsize
, block
->used_length
);
1954 if (block
->max_length
< newsize
) {
1955 error_setg_errno(errp
, EINVAL
,
1956 "Length too large: %s: 0x" RAM_ADDR_FMT
1957 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1958 newsize
, block
->max_length
);
1962 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1963 block
->used_length
= newsize
;
1964 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1966 memory_region_set_size(block
->mr
, newsize
);
1967 if (block
->resized
) {
1968 block
->resized(block
->idstr
, newsize
, block
->host
);
1973 /* Called with ram_list.mutex held */
1974 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1975 ram_addr_t new_ram_size
)
1977 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1978 DIRTY_MEMORY_BLOCK_SIZE
);
1979 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1980 DIRTY_MEMORY_BLOCK_SIZE
);
1983 /* Only need to extend if block count increased */
1984 if (new_num_blocks
<= old_num_blocks
) {
1988 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1989 DirtyMemoryBlocks
*old_blocks
;
1990 DirtyMemoryBlocks
*new_blocks
;
1993 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1994 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1995 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1997 if (old_num_blocks
) {
1998 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1999 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
2002 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
2003 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
2006 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
2009 g_free_rcu(old_blocks
, rcu
);
2014 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
2017 RAMBlock
*last_block
= NULL
;
2018 ram_addr_t old_ram_size
, new_ram_size
;
2021 old_ram_size
= last_ram_page();
2023 qemu_mutex_lock_ramlist();
2024 new_block
->offset
= find_ram_offset(new_block
->max_length
);
2026 if (!new_block
->host
) {
2027 if (xen_enabled()) {
2028 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
2029 new_block
->mr
, &err
);
2031 error_propagate(errp
, err
);
2032 qemu_mutex_unlock_ramlist();
2036 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
2037 &new_block
->mr
->align
, shared
);
2038 if (!new_block
->host
) {
2039 error_setg_errno(errp
, errno
,
2040 "cannot set up guest memory '%s'",
2041 memory_region_name(new_block
->mr
));
2042 qemu_mutex_unlock_ramlist();
2045 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
2049 new_ram_size
= MAX(old_ram_size
,
2050 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2051 if (new_ram_size
> old_ram_size
) {
2052 dirty_memory_extend(old_ram_size
, new_ram_size
);
2054 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2055 * QLIST (which has an RCU-friendly variant) does not have insertion at
2056 * tail, so save the last element in last_block.
2058 RAMBLOCK_FOREACH(block
) {
2060 if (block
->max_length
< new_block
->max_length
) {
2065 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2066 } else if (last_block
) {
2067 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2068 } else { /* list is empty */
2069 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2071 ram_list
.mru_block
= NULL
;
2073 /* Write list before version */
2076 qemu_mutex_unlock_ramlist();
2078 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2079 new_block
->used_length
,
2082 if (new_block
->host
) {
2083 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2084 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2085 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2086 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2087 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2092 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2096 RAMBlock
*new_block
;
2097 Error
*local_err
= NULL
;
2100 if (xen_enabled()) {
2101 error_setg(errp
, "-mem-path not supported with Xen");
2105 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2107 "host lacks kvm mmu notifiers, -mem-path unsupported");
2111 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2113 * file_ram_alloc() needs to allocate just like
2114 * phys_mem_alloc, but we haven't bothered to provide
2118 "-mem-path not supported with this accelerator");
2122 size
= HOST_PAGE_ALIGN(size
);
2123 file_size
= get_file_size(fd
);
2124 if (file_size
> 0 && file_size
< size
) {
2125 error_setg(errp
, "backing store %s size 0x%" PRIx64
2126 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2127 mem_path
, file_size
, size
);
2131 new_block
= g_malloc0(sizeof(*new_block
));
2133 new_block
->used_length
= size
;
2134 new_block
->max_length
= size
;
2135 new_block
->flags
= share
? RAM_SHARED
: 0;
2136 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2137 if (!new_block
->host
) {
2142 ram_block_add(new_block
, &local_err
, share
);
2145 error_propagate(errp
, local_err
);
2153 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2154 bool share
, const char *mem_path
,
2161 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2166 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2180 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2181 void (*resized
)(const char*,
2184 void *host
, bool resizeable
, bool share
,
2185 MemoryRegion
*mr
, Error
**errp
)
2187 RAMBlock
*new_block
;
2188 Error
*local_err
= NULL
;
2190 size
= HOST_PAGE_ALIGN(size
);
2191 max_size
= HOST_PAGE_ALIGN(max_size
);
2192 new_block
= g_malloc0(sizeof(*new_block
));
2194 new_block
->resized
= resized
;
2195 new_block
->used_length
= size
;
2196 new_block
->max_length
= max_size
;
2197 assert(max_size
>= size
);
2199 new_block
->page_size
= getpagesize();
2200 new_block
->host
= host
;
2202 new_block
->flags
|= RAM_PREALLOC
;
2205 new_block
->flags
|= RAM_RESIZEABLE
;
2207 ram_block_add(new_block
, &local_err
, share
);
2210 error_propagate(errp
, local_err
);
2216 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2217 MemoryRegion
*mr
, Error
**errp
)
2219 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2223 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2224 MemoryRegion
*mr
, Error
**errp
)
2226 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2230 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2231 void (*resized
)(const char*,
2234 MemoryRegion
*mr
, Error
**errp
)
2236 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2240 static void reclaim_ramblock(RAMBlock
*block
)
2242 if (block
->flags
& RAM_PREALLOC
) {
2244 } else if (xen_enabled()) {
2245 xen_invalidate_map_cache_entry(block
->host
);
2247 } else if (block
->fd
>= 0) {
2248 qemu_ram_munmap(block
->host
, block
->max_length
);
2252 qemu_anon_ram_free(block
->host
, block
->max_length
);
2257 void qemu_ram_free(RAMBlock
*block
)
2264 ram_block_notify_remove(block
->host
, block
->max_length
);
2267 qemu_mutex_lock_ramlist();
2268 QLIST_REMOVE_RCU(block
, next
);
2269 ram_list
.mru_block
= NULL
;
2270 /* Write list before version */
2273 call_rcu(block
, reclaim_ramblock
, rcu
);
2274 qemu_mutex_unlock_ramlist();
2278 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2285 RAMBLOCK_FOREACH(block
) {
2286 offset
= addr
- block
->offset
;
2287 if (offset
< block
->max_length
) {
2288 vaddr
= ramblock_ptr(block
, offset
);
2289 if (block
->flags
& RAM_PREALLOC
) {
2291 } else if (xen_enabled()) {
2295 if (block
->fd
>= 0) {
2296 flags
|= (block
->flags
& RAM_SHARED
?
2297 MAP_SHARED
: MAP_PRIVATE
);
2298 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2299 flags
, block
->fd
, offset
);
2302 * Remap needs to match alloc. Accelerators that
2303 * set phys_mem_alloc never remap. If they did,
2304 * we'd need a remap hook here.
2306 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2308 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2309 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2312 if (area
!= vaddr
) {
2313 error_report("Could not remap addr: "
2314 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2318 memory_try_enable_merging(vaddr
, length
);
2319 qemu_ram_setup_dump(vaddr
, length
);
2324 #endif /* !_WIN32 */
2326 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2327 * This should not be used for general purpose DMA. Use address_space_map
2328 * or address_space_rw instead. For local memory (e.g. video ram) that the
2329 * device owns, use memory_region_get_ram_ptr.
2331 * Called within RCU critical section.
2333 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2335 RAMBlock
*block
= ram_block
;
2337 if (block
== NULL
) {
2338 block
= qemu_get_ram_block(addr
);
2339 addr
-= block
->offset
;
2342 if (xen_enabled() && block
->host
== NULL
) {
2343 /* We need to check if the requested address is in the RAM
2344 * because we don't want to map the entire memory in QEMU.
2345 * In that case just map until the end of the page.
2347 if (block
->offset
== 0) {
2348 return xen_map_cache(addr
, 0, 0, false);
2351 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2353 return ramblock_ptr(block
, addr
);
2356 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2357 * but takes a size argument.
2359 * Called within RCU critical section.
2361 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2362 hwaddr
*size
, bool lock
)
2364 RAMBlock
*block
= ram_block
;
2369 if (block
== NULL
) {
2370 block
= qemu_get_ram_block(addr
);
2371 addr
-= block
->offset
;
2373 *size
= MIN(*size
, block
->max_length
- addr
);
2375 if (xen_enabled() && block
->host
== NULL
) {
2376 /* We need to check if the requested address is in the RAM
2377 * because we don't want to map the entire memory in QEMU.
2378 * In that case just map the requested area.
2380 if (block
->offset
== 0) {
2381 return xen_map_cache(addr
, *size
, lock
, lock
);
2384 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2387 return ramblock_ptr(block
, addr
);
2390 /* Return the offset of a hostpointer within a ramblock */
2391 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2393 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2394 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2395 assert(res
< rb
->max_length
);
2401 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2404 * ptr: Host pointer to look up
2405 * round_offset: If true round the result offset down to a page boundary
2406 * *ram_addr: set to result ram_addr
2407 * *offset: set to result offset within the RAMBlock
2409 * Returns: RAMBlock (or NULL if not found)
2411 * By the time this function returns, the returned pointer is not protected
2412 * by RCU anymore. If the caller is not within an RCU critical section and
2413 * does not hold the iothread lock, it must have other means of protecting the
2414 * pointer, such as a reference to the region that includes the incoming
2417 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2421 uint8_t *host
= ptr
;
2423 if (xen_enabled()) {
2424 ram_addr_t ram_addr
;
2426 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2427 block
= qemu_get_ram_block(ram_addr
);
2429 *offset
= ram_addr
- block
->offset
;
2436 block
= atomic_rcu_read(&ram_list
.mru_block
);
2437 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2441 RAMBLOCK_FOREACH(block
) {
2442 /* This case append when the block is not mapped. */
2443 if (block
->host
== NULL
) {
2446 if (host
- block
->host
< block
->max_length
) {
2455 *offset
= (host
- block
->host
);
2457 *offset
&= TARGET_PAGE_MASK
;
2464 * Finds the named RAMBlock
2466 * name: The name of RAMBlock to find
2468 * Returns: RAMBlock (or NULL if not found)
2470 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2474 RAMBLOCK_FOREACH(block
) {
2475 if (!strcmp(name
, block
->idstr
)) {
2483 /* Some of the softmmu routines need to translate from a host pointer
2484 (typically a TLB entry) back to a ram offset. */
2485 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2490 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2492 return RAM_ADDR_INVALID
;
2495 return block
->offset
+ offset
;
2498 /* Called within RCU critical section. */
2499 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2502 ram_addr_t ram_addr
,
2506 ndi
->ram_addr
= ram_addr
;
2507 ndi
->mem_vaddr
= mem_vaddr
;
2509 ndi
->locked
= false;
2511 assert(tcg_enabled());
2512 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2515 tb_invalidate_phys_page_fast(ram_addr
, size
);
2519 /* Called within RCU critical section. */
2520 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2526 /* Set both VGA and migration bits for simplicity and to remove
2527 * the notdirty callback faster.
2529 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2530 DIRTY_CLIENTS_NOCODE
);
2531 /* we remove the notdirty callback only if the code has been
2533 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2534 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2538 /* Called within RCU critical section. */
2539 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2540 uint64_t val
, unsigned size
)
2544 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2547 stn_p(qemu_map_ram_ptr(NULL
, ram_addr
), size
, val
);
2548 memory_notdirty_write_complete(&ndi
);
2551 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2552 unsigned size
, bool is_write
,
2558 static const MemoryRegionOps notdirty_mem_ops
= {
2559 .write
= notdirty_mem_write
,
2560 .valid
.accepts
= notdirty_mem_accepts
,
2561 .endianness
= DEVICE_NATIVE_ENDIAN
,
2563 .min_access_size
= 1,
2564 .max_access_size
= 8,
2568 .min_access_size
= 1,
2569 .max_access_size
= 8,
2574 /* Generate a debug exception if a watchpoint has been hit. */
2575 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2577 CPUState
*cpu
= current_cpu
;
2578 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2582 assert(tcg_enabled());
2583 if (cpu
->watchpoint_hit
) {
2584 /* We re-entered the check after replacing the TB. Now raise
2585 * the debug interrupt so that is will trigger after the
2586 * current instruction. */
2587 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2590 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2591 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2592 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2593 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2594 && (wp
->flags
& flags
)) {
2595 if (flags
== BP_MEM_READ
) {
2596 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2598 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2600 wp
->hitaddr
= vaddr
;
2601 wp
->hitattrs
= attrs
;
2602 if (!cpu
->watchpoint_hit
) {
2603 if (wp
->flags
& BP_CPU
&&
2604 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2605 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2608 cpu
->watchpoint_hit
= wp
;
2610 /* Both tb_lock and iothread_mutex will be reset when
2611 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2612 * back into the cpu_exec main loop.
2615 tb_check_watchpoint(cpu
);
2616 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2617 cpu
->exception_index
= EXCP_DEBUG
;
2620 /* Force execution of one insn next time. */
2621 cpu
->cflags_next_tb
= 1 | curr_cflags();
2622 cpu_loop_exit_noexc(cpu
);
2626 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2631 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2632 so these check for a hit then pass through to the normal out-of-line
2634 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2635 unsigned size
, MemTxAttrs attrs
)
2639 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2640 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2642 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2645 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2648 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2651 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2654 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2662 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2663 uint64_t val
, unsigned size
,
2667 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2668 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2670 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2673 address_space_stb(as
, addr
, val
, attrs
, &res
);
2676 address_space_stw(as
, addr
, val
, attrs
, &res
);
2679 address_space_stl(as
, addr
, val
, attrs
, &res
);
2682 address_space_stq(as
, addr
, val
, attrs
, &res
);
2689 static const MemoryRegionOps watch_mem_ops
= {
2690 .read_with_attrs
= watch_mem_read
,
2691 .write_with_attrs
= watch_mem_write
,
2692 .endianness
= DEVICE_NATIVE_ENDIAN
,
2694 .min_access_size
= 1,
2695 .max_access_size
= 8,
2699 .min_access_size
= 1,
2700 .max_access_size
= 8,
2705 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2706 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2707 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2708 const uint8_t *buf
, int len
);
2709 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2710 bool is_write
, MemTxAttrs attrs
);
2712 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2713 unsigned len
, MemTxAttrs attrs
)
2715 subpage_t
*subpage
= opaque
;
2719 #if defined(DEBUG_SUBPAGE)
2720 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2721 subpage
, len
, addr
);
2723 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2727 *data
= ldn_p(buf
, len
);
2731 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2732 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2734 subpage_t
*subpage
= opaque
;
2737 #if defined(DEBUG_SUBPAGE)
2738 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2739 " value %"PRIx64
"\n",
2740 __func__
, subpage
, len
, addr
, value
);
2742 stn_p(buf
, len
, value
);
2743 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2746 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2747 unsigned len
, bool is_write
,
2750 subpage_t
*subpage
= opaque
;
2751 #if defined(DEBUG_SUBPAGE)
2752 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2753 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2756 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2757 len
, is_write
, attrs
);
2760 static const MemoryRegionOps subpage_ops
= {
2761 .read_with_attrs
= subpage_read
,
2762 .write_with_attrs
= subpage_write
,
2763 .impl
.min_access_size
= 1,
2764 .impl
.max_access_size
= 8,
2765 .valid
.min_access_size
= 1,
2766 .valid
.max_access_size
= 8,
2767 .valid
.accepts
= subpage_accepts
,
2768 .endianness
= DEVICE_NATIVE_ENDIAN
,
2771 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2776 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2778 idx
= SUBPAGE_IDX(start
);
2779 eidx
= SUBPAGE_IDX(end
);
2780 #if defined(DEBUG_SUBPAGE)
2781 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2782 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2784 for (; idx
<= eidx
; idx
++) {
2785 mmio
->sub_section
[idx
] = section
;
2791 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2795 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2798 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2799 NULL
, TARGET_PAGE_SIZE
);
2800 mmio
->iomem
.subpage
= true;
2801 #if defined(DEBUG_SUBPAGE)
2802 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2803 mmio
, base
, TARGET_PAGE_SIZE
);
2805 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2810 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2813 MemoryRegionSection section
= {
2816 .offset_within_address_space
= 0,
2817 .offset_within_region
= 0,
2818 .size
= int128_2_64(),
2821 return phys_section_add(map
, §ion
);
2824 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2825 uint64_t val
, unsigned size
)
2827 /* Ignore any write to ROM. */
2830 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2831 unsigned size
, bool is_write
,
2837 /* This will only be used for writes, because reads are special cased
2838 * to directly access the underlying host ram.
2840 static const MemoryRegionOps readonly_mem_ops
= {
2841 .write
= readonly_mem_write
,
2842 .valid
.accepts
= readonly_mem_accepts
,
2843 .endianness
= DEVICE_NATIVE_ENDIAN
,
2845 .min_access_size
= 1,
2846 .max_access_size
= 8,
2850 .min_access_size
= 1,
2851 .max_access_size
= 8,
2856 MemoryRegionSection
*iotlb_to_section(CPUState
*cpu
,
2857 hwaddr index
, MemTxAttrs attrs
)
2859 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2860 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2861 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2862 MemoryRegionSection
*sections
= d
->map
.sections
;
2864 return §ions
[index
& ~TARGET_PAGE_MASK
];
2867 static void io_mem_init(void)
2869 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
2870 NULL
, NULL
, UINT64_MAX
);
2871 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2874 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2875 * which can be called without the iothread mutex.
2877 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2879 memory_region_clear_global_locking(&io_mem_notdirty
);
2881 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2885 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2887 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2890 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2891 assert(n
== PHYS_SECTION_UNASSIGNED
);
2892 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
2893 assert(n
== PHYS_SECTION_NOTDIRTY
);
2894 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
2895 assert(n
== PHYS_SECTION_ROM
);
2896 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
2897 assert(n
== PHYS_SECTION_WATCH
);
2899 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2904 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2906 phys_sections_free(&d
->map
);
2910 static void tcg_commit(MemoryListener
*listener
)
2912 CPUAddressSpace
*cpuas
;
2913 AddressSpaceDispatch
*d
;
2915 /* since each CPU stores ram addresses in its TLB cache, we must
2916 reset the modified entries */
2917 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2918 cpu_reloading_memory_map();
2919 /* The CPU and TLB are protected by the iothread lock.
2920 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2921 * may have split the RCU critical section.
2923 d
= address_space_to_dispatch(cpuas
->as
);
2924 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2925 tlb_flush(cpuas
->cpu
);
2928 static void memory_map_init(void)
2930 system_memory
= g_malloc(sizeof(*system_memory
));
2932 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2933 address_space_init(&address_space_memory
, system_memory
, "memory");
2935 system_io
= g_malloc(sizeof(*system_io
));
2936 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2938 address_space_init(&address_space_io
, system_io
, "I/O");
2941 MemoryRegion
*get_system_memory(void)
2943 return system_memory
;
2946 MemoryRegion
*get_system_io(void)
2951 #endif /* !defined(CONFIG_USER_ONLY) */
2953 /* physical memory access (slow version, mainly for debug) */
2954 #if defined(CONFIG_USER_ONLY)
2955 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2956 uint8_t *buf
, int len
, int is_write
)
2963 page
= addr
& TARGET_PAGE_MASK
;
2964 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2967 flags
= page_get_flags(page
);
2968 if (!(flags
& PAGE_VALID
))
2971 if (!(flags
& PAGE_WRITE
))
2973 /* XXX: this code should not depend on lock_user */
2974 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2977 unlock_user(p
, addr
, l
);
2979 if (!(flags
& PAGE_READ
))
2981 /* XXX: this code should not depend on lock_user */
2982 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2985 unlock_user(p
, addr
, 0);
2996 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2999 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3000 addr
+= memory_region_get_ram_addr(mr
);
3002 /* No early return if dirty_log_mask is or becomes 0, because
3003 * cpu_physical_memory_set_dirty_range will still call
3004 * xen_modified_memory.
3006 if (dirty_log_mask
) {
3008 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3010 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3011 assert(tcg_enabled());
3013 tb_invalidate_phys_range(addr
, addr
+ length
);
3015 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3017 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3020 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3022 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3024 /* Regions are assumed to support 1-4 byte accesses unless
3025 otherwise specified. */
3026 if (access_size_max
== 0) {
3027 access_size_max
= 4;
3030 /* Bound the maximum access by the alignment of the address. */
3031 if (!mr
->ops
->impl
.unaligned
) {
3032 unsigned align_size_max
= addr
& -addr
;
3033 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3034 access_size_max
= align_size_max
;
3038 /* Don't attempt accesses larger than the maximum. */
3039 if (l
> access_size_max
) {
3040 l
= access_size_max
;
3047 static bool prepare_mmio_access(MemoryRegion
*mr
)
3049 bool unlocked
= !qemu_mutex_iothread_locked();
3050 bool release_lock
= false;
3052 if (unlocked
&& mr
->global_locking
) {
3053 qemu_mutex_lock_iothread();
3055 release_lock
= true;
3057 if (mr
->flush_coalesced_mmio
) {
3059 qemu_mutex_lock_iothread();
3061 qemu_flush_coalesced_mmio_buffer();
3063 qemu_mutex_unlock_iothread();
3067 return release_lock
;
3070 /* Called within RCU critical section. */
3071 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3074 int len
, hwaddr addr1
,
3075 hwaddr l
, MemoryRegion
*mr
)
3079 MemTxResult result
= MEMTX_OK
;
3080 bool release_lock
= false;
3083 if (!memory_access_is_direct(mr
, true)) {
3084 release_lock
|= prepare_mmio_access(mr
);
3085 l
= memory_access_size(mr
, l
, addr1
);
3086 /* XXX: could force current_cpu to NULL to avoid
3088 val
= ldn_p(buf
, l
);
3089 result
|= memory_region_dispatch_write(mr
, addr1
, val
, l
, attrs
);
3092 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3093 memcpy(ptr
, buf
, l
);
3094 invalidate_and_set_dirty(mr
, addr1
, l
);
3098 qemu_mutex_unlock_iothread();
3099 release_lock
= false;
3111 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3117 /* Called from RCU critical section. */
3118 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3119 const uint8_t *buf
, int len
)
3124 MemTxResult result
= MEMTX_OK
;
3127 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true, attrs
);
3128 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3134 /* Called within RCU critical section. */
3135 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3136 MemTxAttrs attrs
, uint8_t *buf
,
3137 int len
, hwaddr addr1
, hwaddr l
,
3142 MemTxResult result
= MEMTX_OK
;
3143 bool release_lock
= false;
3146 if (!memory_access_is_direct(mr
, false)) {
3148 release_lock
|= prepare_mmio_access(mr
);
3149 l
= memory_access_size(mr
, l
, addr1
);
3150 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, l
, attrs
);
3154 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3155 memcpy(buf
, ptr
, l
);
3159 qemu_mutex_unlock_iothread();
3160 release_lock
= false;
3172 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3178 /* Called from RCU critical section. */
3179 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3180 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3187 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false, attrs
);
3188 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3192 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3193 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3195 MemTxResult result
= MEMTX_OK
;
3200 fv
= address_space_to_flatview(as
);
3201 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3208 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3210 const uint8_t *buf
, int len
)
3212 MemTxResult result
= MEMTX_OK
;
3217 fv
= address_space_to_flatview(as
);
3218 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3225 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3226 uint8_t *buf
, int len
, bool is_write
)
3229 return address_space_write(as
, addr
, attrs
, buf
, len
);
3231 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3235 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3236 int len
, int is_write
)
3238 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3239 buf
, len
, is_write
);
3242 enum write_rom_type
{
3247 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3248 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3258 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true,
3259 MEMTXATTRS_UNSPECIFIED
);
3261 if (!(memory_region_is_ram(mr
) ||
3262 memory_region_is_romd(mr
))) {
3263 l
= memory_access_size(mr
, l
, addr1
);
3266 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3269 memcpy(ptr
, buf
, l
);
3270 invalidate_and_set_dirty(mr
, addr1
, l
);
3273 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3284 /* used for ROM loading : can write in RAM and ROM */
3285 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3286 const uint8_t *buf
, int len
)
3288 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3291 void cpu_flush_icache_range(hwaddr start
, int len
)
3294 * This function should do the same thing as an icache flush that was
3295 * triggered from within the guest. For TCG we are always cache coherent,
3296 * so there is no need to flush anything. For KVM / Xen we need to flush
3297 * the host's instruction cache at least.
3299 if (tcg_enabled()) {
3303 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3304 start
, NULL
, len
, FLUSH_CACHE
);
3315 static BounceBuffer bounce
;
3317 typedef struct MapClient
{
3319 QLIST_ENTRY(MapClient
) link
;
3322 QemuMutex map_client_list_lock
;
3323 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3324 = QLIST_HEAD_INITIALIZER(map_client_list
);
3326 static void cpu_unregister_map_client_do(MapClient
*client
)
3328 QLIST_REMOVE(client
, link
);
3332 static void cpu_notify_map_clients_locked(void)
3336 while (!QLIST_EMPTY(&map_client_list
)) {
3337 client
= QLIST_FIRST(&map_client_list
);
3338 qemu_bh_schedule(client
->bh
);
3339 cpu_unregister_map_client_do(client
);
3343 void cpu_register_map_client(QEMUBH
*bh
)
3345 MapClient
*client
= g_malloc(sizeof(*client
));
3347 qemu_mutex_lock(&map_client_list_lock
);
3349 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3350 if (!atomic_read(&bounce
.in_use
)) {
3351 cpu_notify_map_clients_locked();
3353 qemu_mutex_unlock(&map_client_list_lock
);
3356 void cpu_exec_init_all(void)
3358 qemu_mutex_init(&ram_list
.mutex
);
3359 /* The data structures we set up here depend on knowing the page size,
3360 * so no more changes can be made after this point.
3361 * In an ideal world, nothing we did before we had finished the
3362 * machine setup would care about the target page size, and we could
3363 * do this much later, rather than requiring board models to state
3364 * up front what their requirements are.
3366 finalize_target_page_bits();
3369 qemu_mutex_init(&map_client_list_lock
);
3372 void cpu_unregister_map_client(QEMUBH
*bh
)
3376 qemu_mutex_lock(&map_client_list_lock
);
3377 QLIST_FOREACH(client
, &map_client_list
, link
) {
3378 if (client
->bh
== bh
) {
3379 cpu_unregister_map_client_do(client
);
3383 qemu_mutex_unlock(&map_client_list_lock
);
3386 static void cpu_notify_map_clients(void)
3388 qemu_mutex_lock(&map_client_list_lock
);
3389 cpu_notify_map_clients_locked();
3390 qemu_mutex_unlock(&map_client_list_lock
);
3393 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3394 bool is_write
, MemTxAttrs attrs
)
3401 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3402 if (!memory_access_is_direct(mr
, is_write
)) {
3403 l
= memory_access_size(mr
, l
, addr
);
3404 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
, attrs
)) {
3415 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3416 int len
, bool is_write
,
3423 fv
= address_space_to_flatview(as
);
3424 result
= flatview_access_valid(fv
, addr
, len
, is_write
, attrs
);
3430 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3432 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3433 bool is_write
, MemTxAttrs attrs
)
3437 MemoryRegion
*this_mr
;
3443 if (target_len
== 0) {
3448 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3449 &len
, is_write
, attrs
);
3450 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3456 /* Map a physical memory region into a host virtual address.
3457 * May map a subset of the requested range, given by and returned in *plen.
3458 * May return NULL if resources needed to perform the mapping are exhausted.
3459 * Use only for reads OR writes - not for read-modify-write operations.
3460 * Use cpu_register_map_client() to know when retrying the map operation is
3461 * likely to succeed.
3463 void *address_space_map(AddressSpace
*as
,
3481 fv
= address_space_to_flatview(as
);
3482 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
, attrs
);
3484 if (!memory_access_is_direct(mr
, is_write
)) {
3485 if (atomic_xchg(&bounce
.in_use
, true)) {
3489 /* Avoid unbounded allocations */
3490 l
= MIN(l
, TARGET_PAGE_SIZE
);
3491 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3495 memory_region_ref(mr
);
3498 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3504 return bounce
.buffer
;
3508 memory_region_ref(mr
);
3509 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3510 l
, is_write
, attrs
);
3511 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3517 /* Unmaps a memory region previously mapped by address_space_map().
3518 * Will also mark the memory as dirty if is_write == 1. access_len gives
3519 * the amount of memory that was actually read or written by the caller.
3521 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3522 int is_write
, hwaddr access_len
)
3524 if (buffer
!= bounce
.buffer
) {
3528 mr
= memory_region_from_host(buffer
, &addr1
);
3531 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3533 if (xen_enabled()) {
3534 xen_invalidate_map_cache_entry(buffer
);
3536 memory_region_unref(mr
);
3540 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3541 bounce
.buffer
, access_len
);
3543 qemu_vfree(bounce
.buffer
);
3544 bounce
.buffer
= NULL
;
3545 memory_region_unref(bounce
.mr
);
3546 atomic_mb_set(&bounce
.in_use
, false);
3547 cpu_notify_map_clients();
3550 void *cpu_physical_memory_map(hwaddr addr
,
3554 return address_space_map(&address_space_memory
, addr
, plen
, is_write
,
3555 MEMTXATTRS_UNSPECIFIED
);
3558 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3559 int is_write
, hwaddr access_len
)
3561 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3564 #define ARG1_DECL AddressSpace *as
3567 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3568 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3569 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3570 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3571 #define RCU_READ_LOCK(...) rcu_read_lock()
3572 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3573 #include "memory_ldst.inc.c"
3575 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3581 AddressSpaceDispatch
*d
;
3588 cache
->fv
= address_space_get_flatview(as
);
3589 d
= flatview_to_dispatch(cache
->fv
);
3590 cache
->mrs
= *address_space_translate_internal(d
, addr
, &cache
->xlat
, &l
, true);
3593 memory_region_ref(mr
);
3594 if (memory_access_is_direct(mr
, is_write
)) {
3595 /* We don't care about the memory attributes here as we're only
3596 * doing this if we found actual RAM, which behaves the same
3597 * regardless of attributes; so UNSPECIFIED is fine.
3599 l
= flatview_extend_translation(cache
->fv
, addr
, len
, mr
,
3600 cache
->xlat
, l
, is_write
,
3601 MEMTXATTRS_UNSPECIFIED
);
3602 cache
->ptr
= qemu_ram_ptr_length(mr
->ram_block
, cache
->xlat
, &l
, true);
3608 cache
->is_write
= is_write
;
3612 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3616 assert(cache
->is_write
);
3617 if (likely(cache
->ptr
)) {
3618 invalidate_and_set_dirty(cache
->mrs
.mr
, addr
+ cache
->xlat
, access_len
);
3622 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3624 if (!cache
->mrs
.mr
) {
3628 if (xen_enabled()) {
3629 xen_invalidate_map_cache_entry(cache
->ptr
);
3631 memory_region_unref(cache
->mrs
.mr
);
3632 flatview_unref(cache
->fv
);
3633 cache
->mrs
.mr
= NULL
;
3637 /* Called from RCU critical section. This function has the same
3638 * semantics as address_space_translate, but it only works on a
3639 * predefined range of a MemoryRegion that was mapped with
3640 * address_space_cache_init.
3642 static inline MemoryRegion
*address_space_translate_cached(
3643 MemoryRegionCache
*cache
, hwaddr addr
, hwaddr
*xlat
,
3644 hwaddr
*plen
, bool is_write
, MemTxAttrs attrs
)
3646 MemoryRegionSection section
;
3648 IOMMUMemoryRegion
*iommu_mr
;
3649 AddressSpace
*target_as
;
3651 assert(!cache
->ptr
);
3652 *xlat
= addr
+ cache
->xlat
;
3655 iommu_mr
= memory_region_get_iommu(mr
);
3661 section
= address_space_translate_iommu(iommu_mr
, xlat
, plen
,
3662 NULL
, is_write
, true,
3667 /* Called from RCU critical section. address_space_read_cached uses this
3668 * out of line function when the target is an MMIO or IOMMU region.
3671 address_space_read_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3678 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, false,
3679 MEMTXATTRS_UNSPECIFIED
);
3680 flatview_read_continue(cache
->fv
,
3681 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3685 /* Called from RCU critical section. address_space_write_cached uses this
3686 * out of line function when the target is an MMIO or IOMMU region.
3689 address_space_write_cached_slow(MemoryRegionCache
*cache
, hwaddr addr
,
3690 const void *buf
, int len
)
3696 mr
= address_space_translate_cached(cache
, addr
, &addr1
, &l
, true,
3697 MEMTXATTRS_UNSPECIFIED
);
3698 flatview_write_continue(cache
->fv
,
3699 addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
,
3703 #define ARG1_DECL MemoryRegionCache *cache
3705 #define SUFFIX _cached_slow
3706 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3707 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3708 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3709 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3710 #define RCU_READ_LOCK() ((void)0)
3711 #define RCU_READ_UNLOCK() ((void)0)
3712 #include "memory_ldst.inc.c"
3714 /* virtual memory access for debug (includes writing to ROM) */
3715 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3716 uint8_t *buf
, int len
, int is_write
)
3722 cpu_synchronize_state(cpu
);
3727 page
= addr
& TARGET_PAGE_MASK
;
3728 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3729 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3730 /* if no physical page mapped, return an error */
3731 if (phys_addr
== -1)
3733 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3736 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3738 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3741 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3742 MEMTXATTRS_UNSPECIFIED
,
3753 * Allows code that needs to deal with migration bitmaps etc to still be built
3754 * target independent.
3756 size_t qemu_target_page_size(void)
3758 return TARGET_PAGE_SIZE
;
3761 int qemu_target_page_bits(void)
3763 return TARGET_PAGE_BITS
;
3766 int qemu_target_page_bits_min(void)
3768 return TARGET_PAGE_BITS_MIN
;
3773 * A helper function for the _utterly broken_ virtio device model to find out if
3774 * it's running on a big endian machine. Don't do this at home kids!
3776 bool target_words_bigendian(void);
3777 bool target_words_bigendian(void)
3779 #if defined(TARGET_WORDS_BIGENDIAN)
3786 #ifndef CONFIG_USER_ONLY
3787 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3794 mr
= address_space_translate(&address_space_memory
,
3795 phys_addr
, &phys_addr
, &l
, false,
3796 MEMTXATTRS_UNSPECIFIED
);
3798 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3803 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3809 RAMBLOCK_FOREACH(block
) {
3810 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3811 block
->used_length
, opaque
);
3820 int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func
, void *opaque
)
3826 RAMBLOCK_FOREACH(block
) {
3827 if (!qemu_ram_is_migratable(block
)) {
3830 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3831 block
->used_length
, opaque
);
3841 * Unmap pages of memory from start to start+length such that
3842 * they a) read as 0, b) Trigger whatever fault mechanism
3843 * the OS provides for postcopy.
3844 * The pages must be unmapped by the end of the function.
3845 * Returns: 0 on success, none-0 on failure
3848 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3852 uint8_t *host_startaddr
= rb
->host
+ start
;
3854 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3855 error_report("ram_block_discard_range: Unaligned start address: %p",
3860 if ((start
+ length
) <= rb
->used_length
) {
3861 bool need_madvise
, need_fallocate
;
3862 uint8_t *host_endaddr
= host_startaddr
+ length
;
3863 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3864 error_report("ram_block_discard_range: Unaligned end address: %p",
3869 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3871 /* The logic here is messy;
3872 * madvise DONTNEED fails for hugepages
3873 * fallocate works on hugepages and shmem
3875 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3876 need_fallocate
= rb
->fd
!= -1;
3877 if (need_fallocate
) {
3878 /* For a file, this causes the area of the file to be zero'd
3879 * if read, and for hugetlbfs also causes it to be unmapped
3880 * so a userfault will trigger.
3882 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3883 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3887 error_report("ram_block_discard_range: Failed to fallocate "
3888 "%s:%" PRIx64
" +%zx (%d)",
3889 rb
->idstr
, start
, length
, ret
);
3894 error_report("ram_block_discard_range: fallocate not available/file"
3895 "%s:%" PRIx64
" +%zx (%d)",
3896 rb
->idstr
, start
, length
, ret
);
3901 /* For normal RAM this causes it to be unmapped,
3902 * for shared memory it causes the local mapping to disappear
3903 * and to fall back on the file contents (which we just
3904 * fallocate'd away).
3906 #if defined(CONFIG_MADVISE)
3907 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3910 error_report("ram_block_discard_range: Failed to discard range "
3911 "%s:%" PRIx64
" +%zx (%d)",
3912 rb
->idstr
, start
, length
, ret
);
3917 error_report("ram_block_discard_range: MADVISE not available"
3918 "%s:%" PRIx64
" +%zx (%d)",
3919 rb
->idstr
, start
, length
, ret
);
3923 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3924 need_madvise
, need_fallocate
, ret
);
3926 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3927 "/%zx/" RAM_ADDR_FMT
")",
3928 rb
->idstr
, start
, length
, rb
->used_length
);
3937 void page_size_init(void)
3939 /* NOTE: we can always suppose that qemu_host_page_size >=
3941 if (qemu_host_page_size
== 0) {
3942 qemu_host_page_size
= qemu_real_host_page_size
;
3944 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3945 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3947 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3950 #if !defined(CONFIG_USER_ONLY)
3952 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
3953 int start
, int end
, int skip
, int ptr
)
3955 if (start
== end
- 1) {
3956 mon(f
, "\t%3d ", start
);
3958 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
3960 mon(f
, " skip=%d ", skip
);
3961 if (ptr
== PHYS_MAP_NODE_NIL
) {
3964 mon(f
, " ptr=#%d", ptr
);
3966 mon(f
, " ptr=[%d]", ptr
);
3971 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3972 int128_sub((size), int128_one())) : 0)
3974 void mtree_print_dispatch(fprintf_function mon
, void *f
,
3975 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
3979 mon(f
, " Dispatch\n");
3980 mon(f
, " Physical sections\n");
3982 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
3983 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
3984 const char *names
[] = { " [unassigned]", " [not dirty]",
3985 " [ROM]", " [watch]" };
3987 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
3989 s
->offset_within_address_space
,
3990 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
3991 s
->mr
->name
? s
->mr
->name
: "(noname)",
3992 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
3993 s
->mr
== root
? " [ROOT]" : "",
3994 s
== d
->mru_section
? " [MRU]" : "",
3995 s
->mr
->is_iommu
? " [iommu]" : "");
3998 mon(f
, " alias=%s", s
->mr
->alias
->name
?
3999 s
->mr
->alias
->name
: "noname");
4004 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4005 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
4006 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
4009 Node
*n
= d
->map
.nodes
+ i
;
4011 mon(f
, " [%d]\n", i
);
4013 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
4014 PhysPageEntry
*pe
= *n
+ j
;
4016 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
4020 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
4026 if (jprev
!= ARRAY_SIZE(*n
)) {
4027 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);