Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / memory.c
blobef60ba9a9446356368c586c1e49a5e143ab77d09
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
29 static unsigned memory_region_transaction_depth;
30 static bool memory_region_update_pending;
31 static bool ioeventfd_update_pending;
32 static bool global_dirty_log = false;
34 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
35 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
37 static QTAILQ_HEAD(, AddressSpace) address_spaces
38 = QTAILQ_HEAD_INITIALIZER(address_spaces);
40 typedef struct AddrRange AddrRange;
43 * Note that signed integers are needed for negative offsetting in aliases
44 * (large MemoryRegion::alias_offset).
46 struct AddrRange {
47 Int128 start;
48 Int128 size;
51 static AddrRange addrrange_make(Int128 start, Int128 size)
53 return (AddrRange) { start, size };
56 static bool addrrange_equal(AddrRange r1, AddrRange r2)
58 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
61 static Int128 addrrange_end(AddrRange r)
63 return int128_add(r.start, r.size);
66 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
68 int128_addto(&range.start, delta);
69 return range;
72 static bool addrrange_contains(AddrRange range, Int128 addr)
74 return int128_ge(addr, range.start)
75 && int128_lt(addr, addrrange_end(range));
78 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
80 return addrrange_contains(r1, r2.start)
81 || addrrange_contains(r2, r1.start);
84 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
86 Int128 start = int128_max(r1.start, r2.start);
87 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
88 return addrrange_make(start, int128_sub(end, start));
91 enum ListenerDirection { Forward, Reverse };
93 static bool memory_listener_match(MemoryListener *listener,
94 MemoryRegionSection *section)
96 return !listener->address_space_filter
97 || listener->address_space_filter == section->address_space;
100 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
101 do { \
102 MemoryListener *_listener; \
104 switch (_direction) { \
105 case Forward: \
106 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
107 if (_listener->_callback) { \
108 _listener->_callback(_listener, ##_args); \
111 break; \
112 case Reverse: \
113 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
114 memory_listeners, link) { \
115 if (_listener->_callback) { \
116 _listener->_callback(_listener, ##_args); \
119 break; \
120 default: \
121 abort(); \
123 } while (0)
125 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
126 do { \
127 MemoryListener *_listener; \
129 switch (_direction) { \
130 case Forward: \
131 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
132 if (_listener->_callback \
133 && memory_listener_match(_listener, _section)) { \
134 _listener->_callback(_listener, _section, ##_args); \
137 break; \
138 case Reverse: \
139 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
140 memory_listeners, link) { \
141 if (_listener->_callback \
142 && memory_listener_match(_listener, _section)) { \
143 _listener->_callback(_listener, _section, ##_args); \
146 break; \
147 default: \
148 abort(); \
150 } while (0)
152 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
153 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
154 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
155 .mr = (fr)->mr, \
156 .address_space = (as), \
157 .offset_within_region = (fr)->offset_in_region, \
158 .size = (fr)->addr.size, \
159 .offset_within_address_space = int128_get64((fr)->addr.start), \
160 .readonly = (fr)->readonly, \
163 struct CoalescedMemoryRange {
164 AddrRange addr;
165 QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 struct MemoryRegionIoeventfd {
169 AddrRange addr;
170 bool match_data;
171 uint64_t data;
172 EventNotifier *e;
175 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
176 MemoryRegionIoeventfd b)
178 if (int128_lt(a.addr.start, b.addr.start)) {
179 return true;
180 } else if (int128_gt(a.addr.start, b.addr.start)) {
181 return false;
182 } else if (int128_lt(a.addr.size, b.addr.size)) {
183 return true;
184 } else if (int128_gt(a.addr.size, b.addr.size)) {
185 return false;
186 } else if (a.match_data < b.match_data) {
187 return true;
188 } else if (a.match_data > b.match_data) {
189 return false;
190 } else if (a.match_data) {
191 if (a.data < b.data) {
192 return true;
193 } else if (a.data > b.data) {
194 return false;
197 if (a.e < b.e) {
198 return true;
199 } else if (a.e > b.e) {
200 return false;
202 return false;
205 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
206 MemoryRegionIoeventfd b)
208 return !memory_region_ioeventfd_before(a, b)
209 && !memory_region_ioeventfd_before(b, a);
212 typedef struct FlatRange FlatRange;
213 typedef struct FlatView FlatView;
215 /* Range of memory in the global map. Addresses are absolute. */
216 struct FlatRange {
217 MemoryRegion *mr;
218 hwaddr offset_in_region;
219 AddrRange addr;
220 uint8_t dirty_log_mask;
221 bool romd_mode;
222 bool readonly;
225 /* Flattened global view of current active memory hierarchy. Kept in sorted
226 * order.
228 struct FlatView {
229 struct rcu_head rcu;
230 unsigned ref;
231 FlatRange *ranges;
232 unsigned nr;
233 unsigned nr_allocated;
236 typedef struct AddressSpaceOps AddressSpaceOps;
238 #define FOR_EACH_FLAT_RANGE(var, view) \
239 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
241 static bool flatrange_equal(FlatRange *a, FlatRange *b)
243 return a->mr == b->mr
244 && addrrange_equal(a->addr, b->addr)
245 && a->offset_in_region == b->offset_in_region
246 && a->romd_mode == b->romd_mode
247 && a->readonly == b->readonly;
250 static void flatview_init(FlatView *view)
252 view->ref = 1;
253 view->ranges = NULL;
254 view->nr = 0;
255 view->nr_allocated = 0;
258 /* Insert a range into a given position. Caller is responsible for maintaining
259 * sorting order.
261 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
263 if (view->nr == view->nr_allocated) {
264 view->nr_allocated = MAX(2 * view->nr, 10);
265 view->ranges = g_realloc(view->ranges,
266 view->nr_allocated * sizeof(*view->ranges));
268 memmove(view->ranges + pos + 1, view->ranges + pos,
269 (view->nr - pos) * sizeof(FlatRange));
270 view->ranges[pos] = *range;
271 memory_region_ref(range->mr);
272 ++view->nr;
275 static void flatview_destroy(FlatView *view)
277 int i;
279 for (i = 0; i < view->nr; i++) {
280 memory_region_unref(view->ranges[i].mr);
282 g_free(view->ranges);
283 g_free(view);
286 static void flatview_ref(FlatView *view)
288 atomic_inc(&view->ref);
291 static void flatview_unref(FlatView *view)
293 if (atomic_fetch_dec(&view->ref) == 1) {
294 flatview_destroy(view);
298 static bool can_merge(FlatRange *r1, FlatRange *r2)
300 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
301 && r1->mr == r2->mr
302 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
303 r1->addr.size),
304 int128_make64(r2->offset_in_region))
305 && r1->dirty_log_mask == r2->dirty_log_mask
306 && r1->romd_mode == r2->romd_mode
307 && r1->readonly == r2->readonly;
310 /* Attempt to simplify a view by merging adjacent ranges */
311 static void flatview_simplify(FlatView *view)
313 unsigned i, j;
315 i = 0;
316 while (i < view->nr) {
317 j = i + 1;
318 while (j < view->nr
319 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
320 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
321 ++j;
323 ++i;
324 memmove(&view->ranges[i], &view->ranges[j],
325 (view->nr - j) * sizeof(view->ranges[j]));
326 view->nr -= j - i;
330 static bool memory_region_big_endian(MemoryRegion *mr)
332 #ifdef TARGET_WORDS_BIGENDIAN
333 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
334 #else
335 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
336 #endif
339 static bool memory_region_wrong_endianness(MemoryRegion *mr)
341 #ifdef TARGET_WORDS_BIGENDIAN
342 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
343 #else
344 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
345 #endif
348 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
350 if (memory_region_wrong_endianness(mr)) {
351 switch (size) {
352 case 1:
353 break;
354 case 2:
355 *data = bswap16(*data);
356 break;
357 case 4:
358 *data = bswap32(*data);
359 break;
360 case 8:
361 *data = bswap64(*data);
362 break;
363 default:
364 abort();
369 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
370 hwaddr addr,
371 uint64_t *value,
372 unsigned size,
373 unsigned shift,
374 uint64_t mask)
376 uint64_t tmp;
378 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
379 trace_memory_region_ops_read(mr, addr, tmp, size);
380 *value |= (tmp & mask) << shift;
383 static void memory_region_read_accessor(MemoryRegion *mr,
384 hwaddr addr,
385 uint64_t *value,
386 unsigned size,
387 unsigned shift,
388 uint64_t mask)
390 uint64_t tmp;
392 if (mr->flush_coalesced_mmio) {
393 qemu_flush_coalesced_mmio_buffer();
395 tmp = mr->ops->read(mr->opaque, addr, size);
396 trace_memory_region_ops_read(mr, addr, tmp, size);
397 *value |= (tmp & mask) << shift;
400 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
401 hwaddr addr,
402 uint64_t *value,
403 unsigned size,
404 unsigned shift,
405 uint64_t mask)
407 uint64_t tmp;
409 tmp = (*value >> shift) & mask;
410 trace_memory_region_ops_write(mr, addr, tmp, size);
411 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
414 static void memory_region_write_accessor(MemoryRegion *mr,
415 hwaddr addr,
416 uint64_t *value,
417 unsigned size,
418 unsigned shift,
419 uint64_t mask)
421 uint64_t tmp;
423 if (mr->flush_coalesced_mmio) {
424 qemu_flush_coalesced_mmio_buffer();
426 tmp = (*value >> shift) & mask;
427 trace_memory_region_ops_write(mr, addr, tmp, size);
428 mr->ops->write(mr->opaque, addr, tmp, size);
431 static void access_with_adjusted_size(hwaddr addr,
432 uint64_t *value,
433 unsigned size,
434 unsigned access_size_min,
435 unsigned access_size_max,
436 void (*access)(MemoryRegion *mr,
437 hwaddr addr,
438 uint64_t *value,
439 unsigned size,
440 unsigned shift,
441 uint64_t mask),
442 MemoryRegion *mr)
444 uint64_t access_mask;
445 unsigned access_size;
446 unsigned i;
448 if (!access_size_min) {
449 access_size_min = 1;
451 if (!access_size_max) {
452 access_size_max = 4;
455 /* FIXME: support unaligned access? */
456 access_size = MAX(MIN(size, access_size_max), access_size_min);
457 access_mask = -1ULL >> (64 - access_size * 8);
458 if (memory_region_big_endian(mr)) {
459 for (i = 0; i < size; i += access_size) {
460 access(mr, addr + i, value, access_size,
461 (size - access_size - i) * 8, access_mask);
463 } else {
464 for (i = 0; i < size; i += access_size) {
465 access(mr, addr + i, value, access_size, i * 8, access_mask);
470 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
472 AddressSpace *as;
474 while (mr->container) {
475 mr = mr->container;
477 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
478 if (mr == as->root) {
479 return as;
482 return NULL;
485 /* Render a memory region into the global view. Ranges in @view obscure
486 * ranges in @mr.
488 static void render_memory_region(FlatView *view,
489 MemoryRegion *mr,
490 Int128 base,
491 AddrRange clip,
492 bool readonly)
494 MemoryRegion *subregion;
495 unsigned i;
496 hwaddr offset_in_region;
497 Int128 remain;
498 Int128 now;
499 FlatRange fr;
500 AddrRange tmp;
502 if (!mr->enabled) {
503 return;
506 int128_addto(&base, int128_make64(mr->addr));
507 readonly |= mr->readonly;
509 tmp = addrrange_make(base, mr->size);
511 if (!addrrange_intersects(tmp, clip)) {
512 return;
515 clip = addrrange_intersection(tmp, clip);
517 if (mr->alias) {
518 int128_subfrom(&base, int128_make64(mr->alias->addr));
519 int128_subfrom(&base, int128_make64(mr->alias_offset));
520 render_memory_region(view, mr->alias, base, clip, readonly);
521 return;
524 /* Render subregions in priority order. */
525 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
526 render_memory_region(view, subregion, base, clip, readonly);
529 if (!mr->terminates) {
530 return;
533 offset_in_region = int128_get64(int128_sub(clip.start, base));
534 base = clip.start;
535 remain = clip.size;
537 fr.mr = mr;
538 fr.dirty_log_mask = mr->dirty_log_mask;
539 fr.romd_mode = mr->romd_mode;
540 fr.readonly = readonly;
542 /* Render the region itself into any gaps left by the current view. */
543 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
544 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
545 continue;
547 if (int128_lt(base, view->ranges[i].addr.start)) {
548 now = int128_min(remain,
549 int128_sub(view->ranges[i].addr.start, base));
550 fr.offset_in_region = offset_in_region;
551 fr.addr = addrrange_make(base, now);
552 flatview_insert(view, i, &fr);
553 ++i;
554 int128_addto(&base, now);
555 offset_in_region += int128_get64(now);
556 int128_subfrom(&remain, now);
558 now = int128_sub(int128_min(int128_add(base, remain),
559 addrrange_end(view->ranges[i].addr)),
560 base);
561 int128_addto(&base, now);
562 offset_in_region += int128_get64(now);
563 int128_subfrom(&remain, now);
565 if (int128_nz(remain)) {
566 fr.offset_in_region = offset_in_region;
567 fr.addr = addrrange_make(base, remain);
568 flatview_insert(view, i, &fr);
572 /* Render a memory topology into a list of disjoint absolute ranges. */
573 static FlatView *generate_memory_topology(MemoryRegion *mr)
575 FlatView *view;
577 view = g_new(FlatView, 1);
578 flatview_init(view);
580 if (mr) {
581 render_memory_region(view, mr, int128_zero(),
582 addrrange_make(int128_zero(), int128_2_64()), false);
584 flatview_simplify(view);
586 return view;
589 static void address_space_add_del_ioeventfds(AddressSpace *as,
590 MemoryRegionIoeventfd *fds_new,
591 unsigned fds_new_nb,
592 MemoryRegionIoeventfd *fds_old,
593 unsigned fds_old_nb)
595 unsigned iold, inew;
596 MemoryRegionIoeventfd *fd;
597 MemoryRegionSection section;
599 /* Generate a symmetric difference of the old and new fd sets, adding
600 * and deleting as necessary.
603 iold = inew = 0;
604 while (iold < fds_old_nb || inew < fds_new_nb) {
605 if (iold < fds_old_nb
606 && (inew == fds_new_nb
607 || memory_region_ioeventfd_before(fds_old[iold],
608 fds_new[inew]))) {
609 fd = &fds_old[iold];
610 section = (MemoryRegionSection) {
611 .address_space = as,
612 .offset_within_address_space = int128_get64(fd->addr.start),
613 .size = fd->addr.size,
615 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
616 fd->match_data, fd->data, fd->e);
617 ++iold;
618 } else if (inew < fds_new_nb
619 && (iold == fds_old_nb
620 || memory_region_ioeventfd_before(fds_new[inew],
621 fds_old[iold]))) {
622 fd = &fds_new[inew];
623 section = (MemoryRegionSection) {
624 .address_space = as,
625 .offset_within_address_space = int128_get64(fd->addr.start),
626 .size = fd->addr.size,
628 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
629 fd->match_data, fd->data, fd->e);
630 ++inew;
631 } else {
632 ++iold;
633 ++inew;
638 static FlatView *address_space_get_flatview(AddressSpace *as)
640 FlatView *view;
642 rcu_read_lock();
643 view = atomic_rcu_read(&as->current_map);
644 flatview_ref(view);
645 rcu_read_unlock();
646 return view;
649 static void address_space_update_ioeventfds(AddressSpace *as)
651 FlatView *view;
652 FlatRange *fr;
653 unsigned ioeventfd_nb = 0;
654 MemoryRegionIoeventfd *ioeventfds = NULL;
655 AddrRange tmp;
656 unsigned i;
658 view = address_space_get_flatview(as);
659 FOR_EACH_FLAT_RANGE(fr, view) {
660 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
661 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
662 int128_sub(fr->addr.start,
663 int128_make64(fr->offset_in_region)));
664 if (addrrange_intersects(fr->addr, tmp)) {
665 ++ioeventfd_nb;
666 ioeventfds = g_realloc(ioeventfds,
667 ioeventfd_nb * sizeof(*ioeventfds));
668 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
669 ioeventfds[ioeventfd_nb-1].addr = tmp;
674 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
675 as->ioeventfds, as->ioeventfd_nb);
677 g_free(as->ioeventfds);
678 as->ioeventfds = ioeventfds;
679 as->ioeventfd_nb = ioeventfd_nb;
680 flatview_unref(view);
683 static void address_space_update_topology_pass(AddressSpace *as,
684 const FlatView *old_view,
685 const FlatView *new_view,
686 bool adding)
688 unsigned iold, inew;
689 FlatRange *frold, *frnew;
691 /* Generate a symmetric difference of the old and new memory maps.
692 * Kill ranges in the old map, and instantiate ranges in the new map.
694 iold = inew = 0;
695 while (iold < old_view->nr || inew < new_view->nr) {
696 if (iold < old_view->nr) {
697 frold = &old_view->ranges[iold];
698 } else {
699 frold = NULL;
701 if (inew < new_view->nr) {
702 frnew = &new_view->ranges[inew];
703 } else {
704 frnew = NULL;
707 if (frold
708 && (!frnew
709 || int128_lt(frold->addr.start, frnew->addr.start)
710 || (int128_eq(frold->addr.start, frnew->addr.start)
711 && !flatrange_equal(frold, frnew)))) {
712 /* In old but not in new, or in both but attributes changed. */
714 if (!adding) {
715 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
718 ++iold;
719 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
720 /* In both and unchanged (except logging may have changed) */
722 if (adding) {
723 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
724 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
725 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
726 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
727 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
731 ++iold;
732 ++inew;
733 } else {
734 /* In new */
736 if (adding) {
737 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
740 ++inew;
746 static void address_space_update_topology(AddressSpace *as)
748 FlatView *old_view = address_space_get_flatview(as);
749 FlatView *new_view = generate_memory_topology(as->root);
751 address_space_update_topology_pass(as, old_view, new_view, false);
752 address_space_update_topology_pass(as, old_view, new_view, true);
754 /* Writes are protected by the BQL. */
755 atomic_rcu_set(&as->current_map, new_view);
756 call_rcu(old_view, flatview_unref, rcu);
758 /* Note that all the old MemoryRegions are still alive up to this
759 * point. This relieves most MemoryListeners from the need to
760 * ref/unref the MemoryRegions they get---unless they use them
761 * outside the iothread mutex, in which case precise reference
762 * counting is necessary.
764 flatview_unref(old_view);
766 address_space_update_ioeventfds(as);
769 void memory_region_transaction_begin(void)
771 qemu_flush_coalesced_mmio_buffer();
772 ++memory_region_transaction_depth;
775 static void memory_region_clear_pending(void)
777 memory_region_update_pending = false;
778 ioeventfd_update_pending = false;
781 void memory_region_transaction_commit(void)
783 AddressSpace *as;
785 assert(memory_region_transaction_depth);
786 --memory_region_transaction_depth;
787 if (!memory_region_transaction_depth) {
788 if (memory_region_update_pending) {
789 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
791 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
792 address_space_update_topology(as);
795 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
796 } else if (ioeventfd_update_pending) {
797 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
798 address_space_update_ioeventfds(as);
801 memory_region_clear_pending();
805 static void memory_region_destructor_none(MemoryRegion *mr)
809 static void memory_region_destructor_ram(MemoryRegion *mr)
811 qemu_ram_free(mr->ram_addr);
814 static void memory_region_destructor_alias(MemoryRegion *mr)
816 memory_region_unref(mr->alias);
819 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
821 qemu_ram_free_from_ptr(mr->ram_addr);
824 static void memory_region_destructor_rom_device(MemoryRegion *mr)
826 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
829 static bool memory_region_need_escape(char c)
831 return c == '/' || c == '[' || c == '\\' || c == ']';
834 static char *memory_region_escape_name(const char *name)
836 const char *p;
837 char *escaped, *q;
838 uint8_t c;
839 size_t bytes = 0;
841 for (p = name; *p; p++) {
842 bytes += memory_region_need_escape(*p) ? 4 : 1;
844 if (bytes == p - name) {
845 return g_memdup(name, bytes + 1);
848 escaped = g_malloc(bytes + 1);
849 for (p = name, q = escaped; *p; p++) {
850 c = *p;
851 if (unlikely(memory_region_need_escape(c))) {
852 *q++ = '\\';
853 *q++ = 'x';
854 *q++ = "0123456789abcdef"[c >> 4];
855 c = "0123456789abcdef"[c & 15];
857 *q++ = c;
859 *q = 0;
860 return escaped;
863 void memory_region_init(MemoryRegion *mr,
864 Object *owner,
865 const char *name,
866 uint64_t size)
868 if (!owner) {
869 owner = container_get(qdev_get_machine(), "/unattached");
872 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
873 mr->size = int128_make64(size);
874 if (size == UINT64_MAX) {
875 mr->size = int128_2_64();
877 mr->name = g_strdup(name);
879 if (name) {
880 char *escaped_name = memory_region_escape_name(name);
881 char *name_array = g_strdup_printf("%s[*]", escaped_name);
882 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
883 object_unref(OBJECT(mr));
884 g_free(name_array);
885 g_free(escaped_name);
889 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
890 const char *name, Error **errp)
892 MemoryRegion *mr = MEMORY_REGION(obj);
893 uint64_t value = mr->addr;
895 visit_type_uint64(v, &value, name, errp);
898 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
899 const char *name, Error **errp)
901 MemoryRegion *mr = MEMORY_REGION(obj);
902 gchar *path = (gchar *)"";
904 if (mr->container) {
905 path = object_get_canonical_path(OBJECT(mr->container));
907 visit_type_str(v, &path, name, errp);
908 if (mr->container) {
909 g_free(path);
913 static Object *memory_region_resolve_container(Object *obj, void *opaque,
914 const char *part)
916 MemoryRegion *mr = MEMORY_REGION(obj);
918 return OBJECT(mr->container);
921 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
922 const char *name, Error **errp)
924 MemoryRegion *mr = MEMORY_REGION(obj);
925 int32_t value = mr->priority;
927 visit_type_int32(v, &value, name, errp);
930 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
932 MemoryRegion *mr = MEMORY_REGION(obj);
934 return mr->may_overlap;
937 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
938 const char *name, Error **errp)
940 MemoryRegion *mr = MEMORY_REGION(obj);
941 uint64_t value = memory_region_size(mr);
943 visit_type_uint64(v, &value, name, errp);
946 static void memory_region_initfn(Object *obj)
948 MemoryRegion *mr = MEMORY_REGION(obj);
949 ObjectProperty *op;
951 mr->ops = &unassigned_mem_ops;
952 mr->enabled = true;
953 mr->romd_mode = true;
954 mr->destructor = memory_region_destructor_none;
955 QTAILQ_INIT(&mr->subregions);
956 QTAILQ_INIT(&mr->coalesced);
958 op = object_property_add(OBJECT(mr), "container",
959 "link<" TYPE_MEMORY_REGION ">",
960 memory_region_get_container,
961 NULL, /* memory_region_set_container */
962 NULL, NULL, &error_abort);
963 op->resolve = memory_region_resolve_container;
965 object_property_add(OBJECT(mr), "addr", "uint64",
966 memory_region_get_addr,
967 NULL, /* memory_region_set_addr */
968 NULL, NULL, &error_abort);
969 object_property_add(OBJECT(mr), "priority", "uint32",
970 memory_region_get_priority,
971 NULL, /* memory_region_set_priority */
972 NULL, NULL, &error_abort);
973 object_property_add_bool(OBJECT(mr), "may-overlap",
974 memory_region_get_may_overlap,
975 NULL, /* memory_region_set_may_overlap */
976 &error_abort);
977 object_property_add(OBJECT(mr), "size", "uint64",
978 memory_region_get_size,
979 NULL, /* memory_region_set_size, */
980 NULL, NULL, &error_abort);
983 static int qemu_target_backtrace(target_ulong *array, size_t size)
985 int n = 0;
986 if (size >= 2) {
987 #if defined(TARGET_ARM)
988 CPUArchState *env = current_cpu->env_ptr;
989 array[0] = env->regs[15];
990 array[1] = env->regs[14];
991 #elif defined(TARGET_MIPS)
992 CPUArchState *env = current_cpu->env_ptr;
993 array[0] = env->active_tc.PC;
994 array[1] = env->active_tc.gpr[31];
995 #else
996 array[0] = 0;
997 array[1] = 0;
998 #endif
999 n = 2;
1001 return n;
1004 #include "disas/disas.h"
1005 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1007 char *p = buffer;
1008 if (current_cpu) {
1009 target_ulong caller[2];
1010 const char *symbol;
1011 qemu_target_backtrace(caller, 2);
1012 symbol = lookup_symbol(caller[0]);
1013 p += sprintf(p, "[%s]", symbol);
1014 symbol = lookup_symbol(caller[1]);
1015 p += sprintf(p, "[%s]", symbol);
1016 } else {
1017 p += sprintf(p, "[cpu not running]");
1019 assert((p - buffer) < length);
1020 return buffer;
1023 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1024 unsigned size)
1026 if (trace_unassigned) {
1027 char buffer[256];
1028 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1029 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1031 //~ vm_stop(0);
1032 if (current_cpu != NULL) {
1033 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1035 return 0;
1038 static void unassigned_mem_write(void *opaque, hwaddr addr,
1039 uint64_t val, unsigned size)
1041 if (trace_unassigned) {
1042 char buffer[256];
1043 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1044 " = 0x%" PRIx64 " %s\n",
1045 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1047 if (current_cpu != NULL) {
1048 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1052 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1053 unsigned size, bool is_write)
1055 return false;
1058 const MemoryRegionOps unassigned_mem_ops = {
1059 .valid.accepts = unassigned_mem_accepts,
1060 .endianness = DEVICE_NATIVE_ENDIAN,
1063 bool memory_region_access_valid(MemoryRegion *mr,
1064 hwaddr addr,
1065 unsigned size,
1066 bool is_write)
1068 int access_size_min, access_size_max;
1069 int access_size, i;
1071 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1072 fprintf(stderr, "Misaligned i/o with size %u for memory region %s\n",
1073 size, mr->name);
1074 return false;
1077 if (!mr->ops->valid.accepts) {
1078 return true;
1081 access_size_min = mr->ops->valid.min_access_size;
1082 if (!mr->ops->valid.min_access_size) {
1083 access_size_min = 1;
1086 access_size_max = mr->ops->valid.max_access_size;
1087 if (!mr->ops->valid.max_access_size) {
1088 access_size_max = 4;
1091 access_size = MAX(MIN(size, access_size_max), access_size_min);
1092 for (i = 0; i < size; i += access_size) {
1093 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1094 is_write)) {
1095 return false;
1099 return true;
1102 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1103 hwaddr addr,
1104 unsigned size)
1106 uint64_t data = 0;
1108 if (mr->ops->read) {
1109 access_with_adjusted_size(addr, &data, size,
1110 mr->ops->impl.min_access_size,
1111 mr->ops->impl.max_access_size,
1112 memory_region_read_accessor, mr);
1113 } else {
1114 access_with_adjusted_size(addr, &data, size, 1, 4,
1115 memory_region_oldmmio_read_accessor, mr);
1118 return data;
1121 static bool memory_region_dispatch_read(MemoryRegion *mr,
1122 hwaddr addr,
1123 uint64_t *pval,
1124 unsigned size)
1126 if (!memory_region_access_valid(mr, addr, size, false)) {
1127 *pval = unassigned_mem_read(mr, addr, size);
1128 return true;
1131 *pval = memory_region_dispatch_read1(mr, addr, size);
1132 adjust_endianness(mr, pval, size);
1133 return false;
1136 static bool memory_region_dispatch_write(MemoryRegion *mr,
1137 hwaddr addr,
1138 uint64_t data,
1139 unsigned size)
1141 if (!memory_region_access_valid(mr, addr, size, true)) {
1142 unassigned_mem_write(mr, addr, data, size);
1143 return true;
1146 adjust_endianness(mr, &data, size);
1148 if (mr->ops->write) {
1149 access_with_adjusted_size(addr, &data, size,
1150 mr->ops->impl.min_access_size,
1151 mr->ops->impl.max_access_size,
1152 memory_region_write_accessor, mr);
1153 } else {
1154 access_with_adjusted_size(addr, &data, size, 1, 4,
1155 memory_region_oldmmio_write_accessor, mr);
1157 return false;
1160 void memory_region_init_io(MemoryRegion *mr,
1161 Object *owner,
1162 const MemoryRegionOps *ops,
1163 void *opaque,
1164 const char *name,
1165 uint64_t size)
1167 memory_region_init(mr, owner, name, size);
1168 mr->ops = ops;
1169 mr->opaque = opaque;
1170 mr->terminates = true;
1171 mr->ram_addr = ~(ram_addr_t)0;
1174 void memory_region_init_ram(MemoryRegion *mr,
1175 Object *owner,
1176 const char *name,
1177 uint64_t size,
1178 Error **errp)
1180 memory_region_init(mr, owner, name, size);
1181 mr->ram = true;
1182 mr->terminates = true;
1183 mr->destructor = memory_region_destructor_ram;
1184 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1187 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1188 Object *owner,
1189 const char *name,
1190 uint64_t size,
1191 uint64_t max_size,
1192 void (*resized)(const char*,
1193 uint64_t length,
1194 void *host),
1195 Error **errp)
1197 memory_region_init(mr, owner, name, size);
1198 mr->ram = true;
1199 mr->terminates = true;
1200 mr->destructor = memory_region_destructor_ram;
1201 mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1204 #ifdef __linux__
1205 void memory_region_init_ram_from_file(MemoryRegion *mr,
1206 struct Object *owner,
1207 const char *name,
1208 uint64_t size,
1209 bool share,
1210 const char *path,
1211 Error **errp)
1213 memory_region_init(mr, owner, name, size);
1214 mr->ram = true;
1215 mr->terminates = true;
1216 mr->destructor = memory_region_destructor_ram;
1217 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1219 #endif
1221 void memory_region_init_ram_ptr(MemoryRegion *mr,
1222 Object *owner,
1223 const char *name,
1224 uint64_t size,
1225 void *ptr)
1227 memory_region_init(mr, owner, name, size);
1228 mr->ram = true;
1229 mr->terminates = true;
1230 mr->destructor = memory_region_destructor_ram_from_ptr;
1232 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1233 assert(ptr != NULL);
1234 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1237 void memory_region_set_skip_dump(MemoryRegion *mr)
1239 mr->skip_dump = true;
1242 void memory_region_init_alias(MemoryRegion *mr,
1243 Object *owner,
1244 const char *name,
1245 MemoryRegion *orig,
1246 hwaddr offset,
1247 uint64_t size)
1249 memory_region_init(mr, owner, name, size);
1250 memory_region_ref(orig);
1251 mr->destructor = memory_region_destructor_alias;
1252 mr->alias = orig;
1253 mr->alias_offset = offset;
1256 void memory_region_init_rom_device(MemoryRegion *mr,
1257 Object *owner,
1258 const MemoryRegionOps *ops,
1259 void *opaque,
1260 const char *name,
1261 uint64_t size,
1262 Error **errp)
1264 memory_region_init(mr, owner, name, size);
1265 mr->ops = ops;
1266 mr->opaque = opaque;
1267 mr->terminates = true;
1268 mr->rom_device = true;
1269 mr->destructor = memory_region_destructor_rom_device;
1270 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1273 void memory_region_init_iommu(MemoryRegion *mr,
1274 Object *owner,
1275 const MemoryRegionIOMMUOps *ops,
1276 const char *name,
1277 uint64_t size)
1279 memory_region_init(mr, owner, name, size);
1280 mr->iommu_ops = ops,
1281 mr->terminates = true; /* then re-forwards */
1282 notifier_list_init(&mr->iommu_notify);
1285 void memory_region_init_reservation(MemoryRegion *mr,
1286 Object *owner,
1287 const char *name,
1288 uint64_t size)
1290 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1293 static void memory_region_finalize(Object *obj)
1295 MemoryRegion *mr = MEMORY_REGION(obj);
1297 assert(QTAILQ_EMPTY(&mr->subregions));
1298 mr->destructor(mr);
1299 memory_region_clear_coalescing(mr);
1300 g_free((char *)mr->name);
1301 g_free(mr->ioeventfds);
1304 Object *memory_region_owner(MemoryRegion *mr)
1306 Object *obj = OBJECT(mr);
1307 return obj->parent;
1310 void memory_region_ref(MemoryRegion *mr)
1312 /* MMIO callbacks most likely will access data that belongs
1313 * to the owner, hence the need to ref/unref the owner whenever
1314 * the memory region is in use.
1316 * The memory region is a child of its owner. As long as the
1317 * owner doesn't call unparent itself on the memory region,
1318 * ref-ing the owner will also keep the memory region alive.
1319 * Memory regions without an owner are supposed to never go away,
1320 * but we still ref/unref them for debugging purposes.
1322 Object *obj = OBJECT(mr);
1323 if (obj && obj->parent) {
1324 object_ref(obj->parent);
1325 } else {
1326 object_ref(obj);
1330 void memory_region_unref(MemoryRegion *mr)
1332 Object *obj = OBJECT(mr);
1333 if (obj && obj->parent) {
1334 object_unref(obj->parent);
1335 } else {
1336 object_unref(obj);
1340 uint64_t memory_region_size(MemoryRegion *mr)
1342 if (int128_eq(mr->size, int128_2_64())) {
1343 return UINT64_MAX;
1345 return int128_get64(mr->size);
1348 const char *memory_region_name(const MemoryRegion *mr)
1350 if (!mr->name) {
1351 ((MemoryRegion *)mr)->name =
1352 object_get_canonical_path_component(OBJECT(mr));
1354 return mr->name;
1357 bool memory_region_is_ram(MemoryRegion *mr)
1359 return mr->ram;
1362 bool memory_region_is_skip_dump(MemoryRegion *mr)
1364 return mr->skip_dump;
1367 bool memory_region_is_logging(MemoryRegion *mr)
1369 return mr->dirty_log_mask;
1372 bool memory_region_is_rom(MemoryRegion *mr)
1374 return mr->ram && mr->readonly;
1377 bool memory_region_is_iommu(MemoryRegion *mr)
1379 return mr->iommu_ops;
1382 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1384 notifier_list_add(&mr->iommu_notify, n);
1387 void memory_region_unregister_iommu_notifier(Notifier *n)
1389 notifier_remove(n);
1392 void memory_region_notify_iommu(MemoryRegion *mr,
1393 IOMMUTLBEntry entry)
1395 assert(memory_region_is_iommu(mr));
1396 notifier_list_notify(&mr->iommu_notify, &entry);
1399 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1401 uint8_t mask = 1 << client;
1403 memory_region_transaction_begin();
1404 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1405 memory_region_update_pending |= mr->enabled;
1406 memory_region_transaction_commit();
1409 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1410 hwaddr size, unsigned client)
1412 assert(mr->terminates);
1413 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1416 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1417 hwaddr size)
1419 assert(mr->terminates);
1420 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1423 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1424 hwaddr size, unsigned client)
1426 bool ret;
1427 assert(mr->terminates);
1428 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1429 if (ret) {
1430 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1432 return ret;
1436 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1438 AddressSpace *as;
1439 FlatRange *fr;
1441 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1442 FlatView *view = address_space_get_flatview(as);
1443 FOR_EACH_FLAT_RANGE(fr, view) {
1444 if (fr->mr == mr) {
1445 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1448 flatview_unref(view);
1452 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1454 if (mr->readonly != readonly) {
1455 memory_region_transaction_begin();
1456 mr->readonly = readonly;
1457 memory_region_update_pending |= mr->enabled;
1458 memory_region_transaction_commit();
1462 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1464 if (mr->romd_mode != romd_mode) {
1465 memory_region_transaction_begin();
1466 mr->romd_mode = romd_mode;
1467 memory_region_update_pending |= mr->enabled;
1468 memory_region_transaction_commit();
1472 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1473 hwaddr size, unsigned client)
1475 assert(mr->terminates);
1476 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1479 int memory_region_get_fd(MemoryRegion *mr)
1481 if (mr->alias) {
1482 return memory_region_get_fd(mr->alias);
1485 assert(mr->terminates);
1487 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1490 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1492 if (mr->alias) {
1493 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1496 assert(mr->terminates);
1498 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1501 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1503 FlatView *view;
1504 FlatRange *fr;
1505 CoalescedMemoryRange *cmr;
1506 AddrRange tmp;
1507 MemoryRegionSection section;
1509 view = address_space_get_flatview(as);
1510 FOR_EACH_FLAT_RANGE(fr, view) {
1511 if (fr->mr == mr) {
1512 section = (MemoryRegionSection) {
1513 .address_space = as,
1514 .offset_within_address_space = int128_get64(fr->addr.start),
1515 .size = fr->addr.size,
1518 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1519 int128_get64(fr->addr.start),
1520 int128_get64(fr->addr.size));
1521 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1522 tmp = addrrange_shift(cmr->addr,
1523 int128_sub(fr->addr.start,
1524 int128_make64(fr->offset_in_region)));
1525 if (!addrrange_intersects(tmp, fr->addr)) {
1526 continue;
1528 tmp = addrrange_intersection(tmp, fr->addr);
1529 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1530 int128_get64(tmp.start),
1531 int128_get64(tmp.size));
1535 flatview_unref(view);
1538 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1540 AddressSpace *as;
1542 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1543 memory_region_update_coalesced_range_as(mr, as);
1547 void memory_region_set_coalescing(MemoryRegion *mr)
1549 memory_region_clear_coalescing(mr);
1550 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1553 void memory_region_add_coalescing(MemoryRegion *mr,
1554 hwaddr offset,
1555 uint64_t size)
1557 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1559 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1560 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1561 memory_region_update_coalesced_range(mr);
1562 memory_region_set_flush_coalesced(mr);
1565 void memory_region_clear_coalescing(MemoryRegion *mr)
1567 CoalescedMemoryRange *cmr;
1568 bool updated = false;
1570 qemu_flush_coalesced_mmio_buffer();
1571 mr->flush_coalesced_mmio = false;
1573 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1574 cmr = QTAILQ_FIRST(&mr->coalesced);
1575 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1576 g_free(cmr);
1577 updated = true;
1580 if (updated) {
1581 memory_region_update_coalesced_range(mr);
1585 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1587 mr->flush_coalesced_mmio = true;
1590 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1592 qemu_flush_coalesced_mmio_buffer();
1593 if (QTAILQ_EMPTY(&mr->coalesced)) {
1594 mr->flush_coalesced_mmio = false;
1598 void memory_region_add_eventfd(MemoryRegion *mr,
1599 hwaddr addr,
1600 unsigned size,
1601 bool match_data,
1602 uint64_t data,
1603 EventNotifier *e)
1605 MemoryRegionIoeventfd mrfd = {
1606 .addr.start = int128_make64(addr),
1607 .addr.size = int128_make64(size),
1608 .match_data = match_data,
1609 .data = data,
1610 .e = e,
1612 unsigned i;
1614 adjust_endianness(mr, &mrfd.data, size);
1615 memory_region_transaction_begin();
1616 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1617 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1618 break;
1621 ++mr->ioeventfd_nb;
1622 mr->ioeventfds = g_realloc(mr->ioeventfds,
1623 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1624 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1625 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1626 mr->ioeventfds[i] = mrfd;
1627 ioeventfd_update_pending |= mr->enabled;
1628 memory_region_transaction_commit();
1631 void memory_region_del_eventfd(MemoryRegion *mr,
1632 hwaddr addr,
1633 unsigned size,
1634 bool match_data,
1635 uint64_t data,
1636 EventNotifier *e)
1638 MemoryRegionIoeventfd mrfd = {
1639 .addr.start = int128_make64(addr),
1640 .addr.size = int128_make64(size),
1641 .match_data = match_data,
1642 .data = data,
1643 .e = e,
1645 unsigned i;
1647 adjust_endianness(mr, &mrfd.data, size);
1648 memory_region_transaction_begin();
1649 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1650 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1651 break;
1654 assert(i != mr->ioeventfd_nb);
1655 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1656 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1657 --mr->ioeventfd_nb;
1658 mr->ioeventfds = g_realloc(mr->ioeventfds,
1659 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1660 ioeventfd_update_pending |= mr->enabled;
1661 memory_region_transaction_commit();
1664 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1666 hwaddr offset = subregion->addr;
1667 MemoryRegion *mr = subregion->container;
1668 MemoryRegion *other;
1670 memory_region_transaction_begin();
1672 memory_region_ref(subregion);
1673 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1674 if (subregion->may_overlap || other->may_overlap) {
1675 continue;
1677 if (int128_ge(int128_make64(offset),
1678 int128_add(int128_make64(other->addr), other->size))
1679 || int128_le(int128_add(int128_make64(offset), subregion->size),
1680 int128_make64(other->addr))) {
1681 continue;
1683 #if 0
1684 printf("warning: subregion collision %llx/%llx (%s) "
1685 "vs %llx/%llx (%s)\n",
1686 (unsigned long long)offset,
1687 (unsigned long long)int128_get64(subregion->size),
1688 subregion->name,
1689 (unsigned long long)other->addr,
1690 (unsigned long long)int128_get64(other->size),
1691 other->name);
1692 #endif
1694 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1695 if (subregion->priority >= other->priority) {
1696 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1697 goto done;
1700 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1701 done:
1702 memory_region_update_pending |= mr->enabled && subregion->enabled;
1703 memory_region_transaction_commit();
1706 static void memory_region_add_subregion_common(MemoryRegion *mr,
1707 hwaddr offset,
1708 MemoryRegion *subregion)
1710 assert(!subregion->container);
1711 subregion->container = mr;
1712 subregion->addr = offset;
1713 memory_region_update_container_subregions(subregion);
1716 void memory_region_add_subregion(MemoryRegion *mr,
1717 hwaddr offset,
1718 MemoryRegion *subregion)
1720 subregion->may_overlap = false;
1721 subregion->priority = 0;
1722 memory_region_add_subregion_common(mr, offset, subregion);
1725 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1726 hwaddr offset,
1727 MemoryRegion *subregion,
1728 int priority)
1730 subregion->may_overlap = true;
1731 subregion->priority = priority;
1732 memory_region_add_subregion_common(mr, offset, subregion);
1735 void memory_region_del_subregion(MemoryRegion *mr,
1736 MemoryRegion *subregion)
1738 memory_region_transaction_begin();
1739 assert(subregion->container == mr);
1740 subregion->container = NULL;
1741 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1742 memory_region_unref(subregion);
1743 memory_region_update_pending |= mr->enabled && subregion->enabled;
1744 memory_region_transaction_commit();
1747 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1749 if (enabled == mr->enabled) {
1750 return;
1752 memory_region_transaction_begin();
1753 mr->enabled = enabled;
1754 memory_region_update_pending = true;
1755 memory_region_transaction_commit();
1758 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1760 Int128 s = int128_make64(size);
1762 if (size == UINT64_MAX) {
1763 s = int128_2_64();
1765 if (int128_eq(s, mr->size)) {
1766 return;
1768 memory_region_transaction_begin();
1769 mr->size = s;
1770 memory_region_update_pending = true;
1771 memory_region_transaction_commit();
1774 static void memory_region_readd_subregion(MemoryRegion *mr)
1776 MemoryRegion *container = mr->container;
1778 if (container) {
1779 memory_region_transaction_begin();
1780 memory_region_ref(mr);
1781 memory_region_del_subregion(container, mr);
1782 mr->container = container;
1783 memory_region_update_container_subregions(mr);
1784 memory_region_unref(mr);
1785 memory_region_transaction_commit();
1789 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1791 if (addr != mr->addr) {
1792 mr->addr = addr;
1793 memory_region_readd_subregion(mr);
1797 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1799 assert(mr->alias);
1801 if (offset == mr->alias_offset) {
1802 return;
1805 memory_region_transaction_begin();
1806 mr->alias_offset = offset;
1807 memory_region_update_pending |= mr->enabled;
1808 memory_region_transaction_commit();
1811 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1813 return mr->ram_addr;
1816 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1818 return mr->align;
1821 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1823 const AddrRange *addr = addr_;
1824 const FlatRange *fr = fr_;
1826 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1827 return -1;
1828 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1829 return 1;
1831 return 0;
1834 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1836 return bsearch(&addr, view->ranges, view->nr,
1837 sizeof(FlatRange), cmp_flatrange_addr);
1840 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1842 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1843 if (!mr || (mr == container)) {
1844 return false;
1846 memory_region_unref(mr);
1847 return true;
1850 bool memory_region_is_mapped(MemoryRegion *mr)
1852 return mr->container ? true : false;
1855 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1856 hwaddr addr, uint64_t size)
1858 MemoryRegionSection ret = { .mr = NULL };
1859 MemoryRegion *root;
1860 AddressSpace *as;
1861 AddrRange range;
1862 FlatView *view;
1863 FlatRange *fr;
1865 addr += mr->addr;
1866 for (root = mr; root->container; ) {
1867 root = root->container;
1868 addr += root->addr;
1871 as = memory_region_to_address_space(root);
1872 if (!as) {
1873 return ret;
1875 range = addrrange_make(int128_make64(addr), int128_make64(size));
1877 rcu_read_lock();
1878 view = atomic_rcu_read(&as->current_map);
1879 fr = flatview_lookup(view, range);
1880 if (!fr) {
1881 goto out;
1884 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1885 --fr;
1888 ret.mr = fr->mr;
1889 ret.address_space = as;
1890 range = addrrange_intersection(range, fr->addr);
1891 ret.offset_within_region = fr->offset_in_region;
1892 ret.offset_within_region += int128_get64(int128_sub(range.start,
1893 fr->addr.start));
1894 ret.size = range.size;
1895 ret.offset_within_address_space = int128_get64(range.start);
1896 ret.readonly = fr->readonly;
1897 memory_region_ref(ret.mr);
1898 out:
1899 rcu_read_unlock();
1900 return ret;
1903 void address_space_sync_dirty_bitmap(AddressSpace *as)
1905 FlatView *view;
1906 FlatRange *fr;
1908 view = address_space_get_flatview(as);
1909 FOR_EACH_FLAT_RANGE(fr, view) {
1910 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1912 flatview_unref(view);
1915 void memory_global_dirty_log_start(void)
1917 global_dirty_log = true;
1918 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1921 void memory_global_dirty_log_stop(void)
1923 global_dirty_log = false;
1924 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1927 static void listener_add_address_space(MemoryListener *listener,
1928 AddressSpace *as)
1930 FlatView *view;
1931 FlatRange *fr;
1933 if (listener->address_space_filter
1934 && listener->address_space_filter != as) {
1935 return;
1938 if (global_dirty_log) {
1939 if (listener->log_global_start) {
1940 listener->log_global_start(listener);
1944 view = address_space_get_flatview(as);
1945 FOR_EACH_FLAT_RANGE(fr, view) {
1946 MemoryRegionSection section = {
1947 .mr = fr->mr,
1948 .address_space = as,
1949 .offset_within_region = fr->offset_in_region,
1950 .size = fr->addr.size,
1951 .offset_within_address_space = int128_get64(fr->addr.start),
1952 .readonly = fr->readonly,
1954 if (listener->region_add) {
1955 listener->region_add(listener, &section);
1958 flatview_unref(view);
1961 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1963 MemoryListener *other = NULL;
1964 AddressSpace *as;
1966 listener->address_space_filter = filter;
1967 if (QTAILQ_EMPTY(&memory_listeners)
1968 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1969 memory_listeners)->priority) {
1970 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1971 } else {
1972 QTAILQ_FOREACH(other, &memory_listeners, link) {
1973 if (listener->priority < other->priority) {
1974 break;
1977 QTAILQ_INSERT_BEFORE(other, listener, link);
1980 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1981 listener_add_address_space(listener, as);
1985 void memory_listener_unregister(MemoryListener *listener)
1987 QTAILQ_REMOVE(&memory_listeners, listener, link);
1990 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1992 memory_region_ref(root);
1993 memory_region_transaction_begin();
1994 as->root = root;
1995 as->current_map = g_new(FlatView, 1);
1996 flatview_init(as->current_map);
1997 as->ioeventfd_nb = 0;
1998 as->ioeventfds = NULL;
1999 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2000 as->name = g_strdup(name ? name : "anonymous");
2001 address_space_init_dispatch(as);
2002 memory_region_update_pending |= root->enabled;
2003 memory_region_transaction_commit();
2006 static void do_address_space_destroy(AddressSpace *as)
2008 MemoryListener *listener;
2010 address_space_destroy_dispatch(as);
2012 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2013 assert(listener->address_space_filter != as);
2016 flatview_unref(as->current_map);
2017 g_free(as->name);
2018 g_free(as->ioeventfds);
2019 memory_region_unref(as->root);
2022 void address_space_destroy(AddressSpace *as)
2024 MemoryRegion *root = as->root;
2026 /* Flush out anything from MemoryListeners listening in on this */
2027 memory_region_transaction_begin();
2028 as->root = NULL;
2029 memory_region_transaction_commit();
2030 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2031 address_space_unregister(as);
2033 /* At this point, as->dispatch and as->current_map are dummy
2034 * entries that the guest should never use. Wait for the old
2035 * values to expire before freeing the data.
2037 as->root = root;
2038 call_rcu(as, do_address_space_destroy, rcu);
2041 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
2043 return memory_region_dispatch_read(mr, addr, pval, size);
2046 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
2047 uint64_t val, unsigned size)
2049 return memory_region_dispatch_write(mr, addr, val, size);
2052 typedef struct MemoryRegionList MemoryRegionList;
2054 struct MemoryRegionList {
2055 const MemoryRegion *mr;
2056 QTAILQ_ENTRY(MemoryRegionList) queue;
2059 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2061 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2062 const MemoryRegion *mr, unsigned int level,
2063 hwaddr base,
2064 MemoryRegionListHead *alias_print_queue)
2066 MemoryRegionList *new_ml, *ml, *next_ml;
2067 MemoryRegionListHead submr_print_queue;
2068 const MemoryRegion *submr;
2069 unsigned int i;
2071 if (!mr || !mr->enabled) {
2072 return;
2075 for (i = 0; i < level; i++) {
2076 mon_printf(f, " ");
2079 if (mr->alias) {
2080 MemoryRegionList *ml;
2081 bool found = false;
2083 /* check if the alias is already in the queue */
2084 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2085 if (ml->mr == mr->alias) {
2086 found = true;
2090 if (!found) {
2091 ml = g_new(MemoryRegionList, 1);
2092 ml->mr = mr->alias;
2093 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2095 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2096 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2097 "-" TARGET_FMT_plx "\n",
2098 base + mr->addr,
2099 base + mr->addr
2100 + (int128_nz(mr->size) ?
2101 (hwaddr)int128_get64(int128_sub(mr->size,
2102 int128_one())) : 0),
2103 mr->priority,
2104 mr->romd_mode ? 'R' : '-',
2105 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2106 : '-',
2107 memory_region_name(mr),
2108 memory_region_name(mr->alias),
2109 mr->alias_offset,
2110 mr->alias_offset
2111 + (int128_nz(mr->size) ?
2112 (hwaddr)int128_get64(int128_sub(mr->size,
2113 int128_one())) : 0));
2114 } else {
2115 mon_printf(f,
2116 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2117 base + mr->addr,
2118 base + mr->addr
2119 + (int128_nz(mr->size) ?
2120 (hwaddr)int128_get64(int128_sub(mr->size,
2121 int128_one())) : 0),
2122 mr->priority,
2123 mr->romd_mode ? 'R' : '-',
2124 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2125 : '-',
2126 memory_region_name(mr));
2129 QTAILQ_INIT(&submr_print_queue);
2131 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2132 new_ml = g_new(MemoryRegionList, 1);
2133 new_ml->mr = submr;
2134 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2135 if (new_ml->mr->addr < ml->mr->addr ||
2136 (new_ml->mr->addr == ml->mr->addr &&
2137 new_ml->mr->priority > ml->mr->priority)) {
2138 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2139 new_ml = NULL;
2140 break;
2143 if (new_ml) {
2144 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2148 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2149 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2150 alias_print_queue);
2153 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2154 g_free(ml);
2158 void mtree_info(fprintf_function mon_printf, void *f)
2160 MemoryRegionListHead ml_head;
2161 MemoryRegionList *ml, *ml2;
2162 AddressSpace *as;
2164 QTAILQ_INIT(&ml_head);
2166 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2167 mon_printf(f, "%s\n", as->name);
2168 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2171 mon_printf(f, "aliases\n");
2172 /* print aliased regions */
2173 QTAILQ_FOREACH(ml, &ml_head, queue) {
2174 mon_printf(f, "%s\n", memory_region_name(ml->mr));
2175 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2178 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2179 g_free(ml);
2183 static const TypeInfo memory_region_info = {
2184 .parent = TYPE_OBJECT,
2185 .name = TYPE_MEMORY_REGION,
2186 .instance_size = sizeof(MemoryRegion),
2187 .instance_init = memory_region_initfn,
2188 .instance_finalize = memory_region_finalize,
2191 static void memory_register_types(void)
2193 type_register_static(&memory_region_info);
2196 type_init(memory_register_types)