target/arm: Implement SVE Integer Compare - Scalars Group
[qemu/ar7.git] / target / arm / helper.c
blob1248d84e6fad9d258ec5eaa4b71d029ed41d3f70
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
23 #ifndef CONFIG_USER_ONLY
24 /* Cacheability and shareability attributes for a memory access */
25 typedef struct ARMCacheAttrs {
26 unsigned int attrs:8; /* as in the MAIR register encoding */
27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
28 } ARMCacheAttrs;
30 static bool get_phys_addr(CPUARMState *env, target_ulong address,
31 MMUAccessType access_type, ARMMMUIdx mmu_idx,
32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
33 target_ulong *page_size,
34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
37 MMUAccessType access_type, ARMMMUIdx mmu_idx,
38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
39 target_ulong *page_size_ptr,
40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42 /* Security attributes for an address, as returned by v8m_security_lookup. */
43 typedef struct V8M_SAttributes {
44 bool ns;
45 bool nsc;
46 uint8_t sregion;
47 bool srvalid;
48 uint8_t iregion;
49 bool irvalid;
50 } V8M_SAttributes;
52 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
53 MMUAccessType access_type, ARMMMUIdx mmu_idx,
54 V8M_SAttributes *sattrs);
55 #endif
57 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
59 int nregs;
61 /* VFP data registers are always little-endian. */
62 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
63 if (reg < nregs) {
64 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
65 return 8;
67 if (arm_feature(env, ARM_FEATURE_NEON)) {
68 /* Aliases for Q regs. */
69 nregs += 16;
70 if (reg < nregs) {
71 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
72 stq_le_p(buf, q[0]);
73 stq_le_p(buf + 8, q[1]);
74 return 16;
77 switch (reg - nregs) {
78 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
79 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
80 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
82 return 0;
85 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
87 int nregs;
89 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
90 if (reg < nregs) {
91 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
92 return 8;
94 if (arm_feature(env, ARM_FEATURE_NEON)) {
95 nregs += 16;
96 if (reg < nregs) {
97 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
98 q[0] = ldq_le_p(buf);
99 q[1] = ldq_le_p(buf + 8);
100 return 16;
103 switch (reg - nregs) {
104 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
105 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
106 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108 return 0;
111 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 switch (reg) {
114 case 0 ... 31:
115 /* 128 bit FP register */
117 uint64_t *q = aa64_vfp_qreg(env, reg);
118 stq_le_p(buf, q[0]);
119 stq_le_p(buf + 8, q[1]);
120 return 16;
122 case 32:
123 /* FPSR */
124 stl_p(buf, vfp_get_fpsr(env));
125 return 4;
126 case 33:
127 /* FPCR */
128 stl_p(buf, vfp_get_fpcr(env));
129 return 4;
130 default:
131 return 0;
135 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
137 switch (reg) {
138 case 0 ... 31:
139 /* 128 bit FP register */
141 uint64_t *q = aa64_vfp_qreg(env, reg);
142 q[0] = ldq_le_p(buf);
143 q[1] = ldq_le_p(buf + 8);
144 return 16;
146 case 32:
147 /* FPSR */
148 vfp_set_fpsr(env, ldl_p(buf));
149 return 4;
150 case 33:
151 /* FPCR */
152 vfp_set_fpcr(env, ldl_p(buf));
153 return 4;
154 default:
155 return 0;
159 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
161 assert(ri->fieldoffset);
162 if (cpreg_field_is_64bit(ri)) {
163 return CPREG_FIELD64(env, ri);
164 } else {
165 return CPREG_FIELD32(env, ri);
169 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
170 uint64_t value)
172 assert(ri->fieldoffset);
173 if (cpreg_field_is_64bit(ri)) {
174 CPREG_FIELD64(env, ri) = value;
175 } else {
176 CPREG_FIELD32(env, ri) = value;
180 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
182 return (char *)env + ri->fieldoffset;
185 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
187 /* Raw read of a coprocessor register (as needed for migration, etc). */
188 if (ri->type & ARM_CP_CONST) {
189 return ri->resetvalue;
190 } else if (ri->raw_readfn) {
191 return ri->raw_readfn(env, ri);
192 } else if (ri->readfn) {
193 return ri->readfn(env, ri);
194 } else {
195 return raw_read(env, ri);
199 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
200 uint64_t v)
202 /* Raw write of a coprocessor register (as needed for migration, etc).
203 * Note that constant registers are treated as write-ignored; the
204 * caller should check for success by whether a readback gives the
205 * value written.
207 if (ri->type & ARM_CP_CONST) {
208 return;
209 } else if (ri->raw_writefn) {
210 ri->raw_writefn(env, ri, v);
211 } else if (ri->writefn) {
212 ri->writefn(env, ri, v);
213 } else {
214 raw_write(env, ri, v);
218 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
220 ARMCPU *cpu = arm_env_get_cpu(env);
221 const ARMCPRegInfo *ri;
222 uint32_t key;
224 key = cpu->dyn_xml.cpregs_keys[reg];
225 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
226 if (ri) {
227 if (cpreg_field_is_64bit(ri)) {
228 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
229 } else {
230 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233 return 0;
236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
238 return 0;
241 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
243 /* Return true if the regdef would cause an assertion if you called
244 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
245 * program bug for it not to have the NO_RAW flag).
246 * NB that returning false here doesn't necessarily mean that calling
247 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
248 * read/write access functions which are safe for raw use" from "has
249 * read/write access functions which have side effects but has forgotten
250 * to provide raw access functions".
251 * The tests here line up with the conditions in read/write_raw_cp_reg()
252 * and assertions in raw_read()/raw_write().
254 if ((ri->type & ARM_CP_CONST) ||
255 ri->fieldoffset ||
256 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
257 return false;
259 return true;
262 bool write_cpustate_to_list(ARMCPU *cpu)
264 /* Write the coprocessor state from cpu->env to the (index,value) list. */
265 int i;
266 bool ok = true;
268 for (i = 0; i < cpu->cpreg_array_len; i++) {
269 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
270 const ARMCPRegInfo *ri;
272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
273 if (!ri) {
274 ok = false;
275 continue;
277 if (ri->type & ARM_CP_NO_RAW) {
278 continue;
280 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
282 return ok;
285 bool write_list_to_cpustate(ARMCPU *cpu)
287 int i;
288 bool ok = true;
290 for (i = 0; i < cpu->cpreg_array_len; i++) {
291 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
292 uint64_t v = cpu->cpreg_values[i];
293 const ARMCPRegInfo *ri;
295 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
296 if (!ri) {
297 ok = false;
298 continue;
300 if (ri->type & ARM_CP_NO_RAW) {
301 continue;
303 /* Write value and confirm it reads back as written
304 * (to catch read-only registers and partially read-only
305 * registers where the incoming migration value doesn't match)
307 write_raw_cp_reg(&cpu->env, ri, v);
308 if (read_raw_cp_reg(&cpu->env, ri) != v) {
309 ok = false;
312 return ok;
315 static void add_cpreg_to_list(gpointer key, gpointer opaque)
317 ARMCPU *cpu = opaque;
318 uint64_t regidx;
319 const ARMCPRegInfo *ri;
321 regidx = *(uint32_t *)key;
322 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
324 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
325 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
326 /* The value array need not be initialized at this point */
327 cpu->cpreg_array_len++;
331 static void count_cpreg(gpointer key, gpointer opaque)
333 ARMCPU *cpu = opaque;
334 uint64_t regidx;
335 const ARMCPRegInfo *ri;
337 regidx = *(uint32_t *)key;
338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341 cpu->cpreg_array_len++;
345 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
347 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
348 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
350 if (aidx > bidx) {
351 return 1;
353 if (aidx < bidx) {
354 return -1;
356 return 0;
359 void init_cpreg_list(ARMCPU *cpu)
361 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
362 * Note that we require cpreg_tuples[] to be sorted by key ID.
364 GList *keys;
365 int arraylen;
367 keys = g_hash_table_get_keys(cpu->cp_regs);
368 keys = g_list_sort(keys, cpreg_key_compare);
370 cpu->cpreg_array_len = 0;
372 g_list_foreach(keys, count_cpreg, cpu);
374 arraylen = cpu->cpreg_array_len;
375 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
376 cpu->cpreg_values = g_new(uint64_t, arraylen);
377 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
378 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
379 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
380 cpu->cpreg_array_len = 0;
382 g_list_foreach(keys, add_cpreg_to_list, cpu);
384 assert(cpu->cpreg_array_len == arraylen);
386 g_list_free(keys);
390 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
391 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
393 * access_el3_aa32ns: Used to check AArch32 register views.
394 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
396 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
397 const ARMCPRegInfo *ri,
398 bool isread)
400 bool secure = arm_is_secure_below_el3(env);
402 assert(!arm_el_is_aa64(env, 3));
403 if (secure) {
404 return CP_ACCESS_TRAP_UNCATEGORIZED;
406 return CP_ACCESS_OK;
409 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
410 const ARMCPRegInfo *ri,
411 bool isread)
413 if (!arm_el_is_aa64(env, 3)) {
414 return access_el3_aa32ns(env, ri, isread);
416 return CP_ACCESS_OK;
419 /* Some secure-only AArch32 registers trap to EL3 if used from
420 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
421 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
422 * We assume that the .access field is set to PL1_RW.
424 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
425 const ARMCPRegInfo *ri,
426 bool isread)
428 if (arm_current_el(env) == 3) {
429 return CP_ACCESS_OK;
431 if (arm_is_secure_below_el3(env)) {
432 return CP_ACCESS_TRAP_EL3;
434 /* This will be EL1 NS and EL2 NS, which just UNDEF */
435 return CP_ACCESS_TRAP_UNCATEGORIZED;
438 /* Check for traps to "powerdown debug" registers, which are controlled
439 * by MDCR.TDOSA
441 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
442 bool isread)
444 int el = arm_current_el(env);
446 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
447 && !arm_is_secure_below_el3(env)) {
448 return CP_ACCESS_TRAP_EL2;
450 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
451 return CP_ACCESS_TRAP_EL3;
453 return CP_ACCESS_OK;
456 /* Check for traps to "debug ROM" registers, which are controlled
457 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
459 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
460 bool isread)
462 int el = arm_current_el(env);
464 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
465 && !arm_is_secure_below_el3(env)) {
466 return CP_ACCESS_TRAP_EL2;
468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
469 return CP_ACCESS_TRAP_EL3;
471 return CP_ACCESS_OK;
474 /* Check for traps to general debug registers, which are controlled
475 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
477 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
478 bool isread)
480 int el = arm_current_el(env);
482 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
483 && !arm_is_secure_below_el3(env)) {
484 return CP_ACCESS_TRAP_EL2;
486 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
487 return CP_ACCESS_TRAP_EL3;
489 return CP_ACCESS_OK;
492 /* Check for traps to performance monitor registers, which are controlled
493 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
495 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
496 bool isread)
498 int el = arm_current_el(env);
500 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
501 && !arm_is_secure_below_el3(env)) {
502 return CP_ACCESS_TRAP_EL2;
504 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
505 return CP_ACCESS_TRAP_EL3;
507 return CP_ACCESS_OK;
510 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
512 ARMCPU *cpu = arm_env_get_cpu(env);
514 raw_write(env, ri, value);
515 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
518 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 ARMCPU *cpu = arm_env_get_cpu(env);
522 if (raw_read(env, ri) != value) {
523 /* Unlike real hardware the qemu TLB uses virtual addresses,
524 * not modified virtual addresses, so this causes a TLB flush.
526 tlb_flush(CPU(cpu));
527 raw_write(env, ri, value);
531 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
532 uint64_t value)
534 ARMCPU *cpu = arm_env_get_cpu(env);
536 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
537 && !extended_addresses_enabled(env)) {
538 /* For VMSA (when not using the LPAE long descriptor page table
539 * format) this register includes the ASID, so do a TLB flush.
540 * For PMSA it is purely a process ID and no action is needed.
542 tlb_flush(CPU(cpu));
544 raw_write(env, ri, value);
547 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 uint64_t value)
550 /* Invalidate all (TLBIALL) */
551 ARMCPU *cpu = arm_env_get_cpu(env);
553 tlb_flush(CPU(cpu));
556 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
557 uint64_t value)
559 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
560 ARMCPU *cpu = arm_env_get_cpu(env);
562 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
565 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 /* Invalidate by ASID (TLBIASID) */
569 ARMCPU *cpu = arm_env_get_cpu(env);
571 tlb_flush(CPU(cpu));
574 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
575 uint64_t value)
577 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
578 ARMCPU *cpu = arm_env_get_cpu(env);
580 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
583 /* IS variants of TLB operations must affect all cores */
584 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
587 CPUState *cs = ENV_GET_CPU(env);
589 tlb_flush_all_cpus_synced(cs);
592 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = ENV_GET_CPU(env);
597 tlb_flush_all_cpus_synced(cs);
600 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601 uint64_t value)
603 CPUState *cs = ENV_GET_CPU(env);
605 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
608 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609 uint64_t value)
611 CPUState *cs = ENV_GET_CPU(env);
613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
616 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
617 uint64_t value)
619 CPUState *cs = ENV_GET_CPU(env);
621 tlb_flush_by_mmuidx(cs,
622 ARMMMUIdxBit_S12NSE1 |
623 ARMMMUIdxBit_S12NSE0 |
624 ARMMMUIdxBit_S2NS);
627 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
628 uint64_t value)
630 CPUState *cs = ENV_GET_CPU(env);
632 tlb_flush_by_mmuidx_all_cpus_synced(cs,
633 ARMMMUIdxBit_S12NSE1 |
634 ARMMMUIdxBit_S12NSE0 |
635 ARMMMUIdxBit_S2NS);
638 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t value)
641 /* Invalidate by IPA. This has to invalidate any structures that
642 * contain only stage 2 translation information, but does not need
643 * to apply to structures that contain combined stage 1 and stage 2
644 * translation information.
645 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
647 CPUState *cs = ENV_GET_CPU(env);
648 uint64_t pageaddr;
650 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
651 return;
654 pageaddr = sextract64(value << 12, 0, 40);
656 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
659 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
660 uint64_t value)
662 CPUState *cs = ENV_GET_CPU(env);
663 uint64_t pageaddr;
665 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
666 return;
669 pageaddr = sextract64(value << 12, 0, 40);
671 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
672 ARMMMUIdxBit_S2NS);
675 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
676 uint64_t value)
678 CPUState *cs = ENV_GET_CPU(env);
680 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
683 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 uint64_t value)
686 CPUState *cs = ENV_GET_CPU(env);
688 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
691 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
692 uint64_t value)
694 CPUState *cs = ENV_GET_CPU(env);
695 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
700 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 CPUState *cs = ENV_GET_CPU(env);
704 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
706 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
707 ARMMMUIdxBit_S1E2);
710 static const ARMCPRegInfo cp_reginfo[] = {
711 /* Define the secure and non-secure FCSE identifier CP registers
712 * separately because there is no secure bank in V8 (no _EL3). This allows
713 * the secure register to be properly reset and migrated. There is also no
714 * v8 EL1 version of the register so the non-secure instance stands alone.
716 { .name = "FCSEIDR",
717 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
718 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
719 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
720 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
721 { .name = "FCSEIDR_S",
722 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
723 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
724 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
725 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
726 /* Define the secure and non-secure context identifier CP registers
727 * separately because there is no secure bank in V8 (no _EL3). This allows
728 * the secure register to be properly reset and migrated. In the
729 * non-secure case, the 32-bit register will have reset and migration
730 * disabled during registration as it is handled by the 64-bit instance.
732 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
733 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
734 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
735 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
736 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
737 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
738 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
739 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
740 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
741 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
742 REGINFO_SENTINEL
745 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
746 /* NB: Some of these registers exist in v8 but with more precise
747 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
749 /* MMU Domain access control / MPU write buffer control */
750 { .name = "DACR",
751 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
752 .access = PL1_RW, .resetvalue = 0,
753 .writefn = dacr_write, .raw_writefn = raw_write,
754 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
755 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
756 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
757 * For v6 and v5, these mappings are overly broad.
759 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
760 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
761 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
762 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
763 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
764 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
765 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
766 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
767 /* Cache maintenance ops; some of this space may be overridden later. */
768 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
769 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
770 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
771 REGINFO_SENTINEL
774 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
775 /* Not all pre-v6 cores implemented this WFI, so this is slightly
776 * over-broad.
778 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
779 .access = PL1_W, .type = ARM_CP_WFI },
780 REGINFO_SENTINEL
783 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
784 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
785 * is UNPREDICTABLE; we choose to NOP as most implementations do).
787 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
788 .access = PL1_W, .type = ARM_CP_WFI },
789 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
790 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
791 * OMAPCP will override this space.
793 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
794 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
795 .resetvalue = 0 },
796 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
797 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
798 .resetvalue = 0 },
799 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
800 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
801 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
802 .resetvalue = 0 },
803 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
804 * implementing it as RAZ means the "debug architecture version" bits
805 * will read as a reserved value, which should cause Linux to not try
806 * to use the debug hardware.
808 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
809 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
810 /* MMU TLB control. Note that the wildcarding means we cover not just
811 * the unified TLB ops but also the dside/iside/inner-shareable variants.
813 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
814 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
815 .type = ARM_CP_NO_RAW },
816 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
817 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
818 .type = ARM_CP_NO_RAW },
819 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
820 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
821 .type = ARM_CP_NO_RAW },
822 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
823 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
824 .type = ARM_CP_NO_RAW },
825 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
826 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
827 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
828 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
829 REGINFO_SENTINEL
832 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
833 uint64_t value)
835 uint32_t mask = 0;
837 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
838 if (!arm_feature(env, ARM_FEATURE_V8)) {
839 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
840 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
841 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
843 if (arm_feature(env, ARM_FEATURE_VFP)) {
844 /* VFP coprocessor: cp10 & cp11 [23:20] */
845 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
847 if (!arm_feature(env, ARM_FEATURE_NEON)) {
848 /* ASEDIS [31] bit is RAO/WI */
849 value |= (1 << 31);
852 /* VFPv3 and upwards with NEON implement 32 double precision
853 * registers (D0-D31).
855 if (!arm_feature(env, ARM_FEATURE_NEON) ||
856 !arm_feature(env, ARM_FEATURE_VFP3)) {
857 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
858 value |= (1 << 30);
861 value &= mask;
863 env->cp15.cpacr_el1 = value;
866 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
868 /* Call cpacr_write() so that we reset with the correct RAO bits set
869 * for our CPU features.
871 cpacr_write(env, ri, 0);
874 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
875 bool isread)
877 if (arm_feature(env, ARM_FEATURE_V8)) {
878 /* Check if CPACR accesses are to be trapped to EL2 */
879 if (arm_current_el(env) == 1 &&
880 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
881 return CP_ACCESS_TRAP_EL2;
882 /* Check if CPACR accesses are to be trapped to EL3 */
883 } else if (arm_current_el(env) < 3 &&
884 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
885 return CP_ACCESS_TRAP_EL3;
889 return CP_ACCESS_OK;
892 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
893 bool isread)
895 /* Check if CPTR accesses are set to trap to EL3 */
896 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
897 return CP_ACCESS_TRAP_EL3;
900 return CP_ACCESS_OK;
903 static const ARMCPRegInfo v6_cp_reginfo[] = {
904 /* prefetch by MVA in v6, NOP in v7 */
905 { .name = "MVA_prefetch",
906 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
907 .access = PL1_W, .type = ARM_CP_NOP },
908 /* We need to break the TB after ISB to execute self-modifying code
909 * correctly and also to take any pending interrupts immediately.
910 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
912 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
913 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
914 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
915 .access = PL0_W, .type = ARM_CP_NOP },
916 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
917 .access = PL0_W, .type = ARM_CP_NOP },
918 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
919 .access = PL1_RW,
920 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
921 offsetof(CPUARMState, cp15.ifar_ns) },
922 .resetvalue = 0, },
923 /* Watchpoint Fault Address Register : should actually only be present
924 * for 1136, 1176, 11MPCore.
926 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
927 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
928 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
929 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
930 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
931 .resetfn = cpacr_reset, .writefn = cpacr_write },
932 REGINFO_SENTINEL
935 /* Definitions for the PMU registers */
936 #define PMCRN_MASK 0xf800
937 #define PMCRN_SHIFT 11
938 #define PMCRD 0x8
939 #define PMCRC 0x4
940 #define PMCRE 0x1
942 static inline uint32_t pmu_num_counters(CPUARMState *env)
944 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
947 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
948 static inline uint64_t pmu_counter_mask(CPUARMState *env)
950 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
953 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
954 bool isread)
956 /* Performance monitor registers user accessibility is controlled
957 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
958 * trapping to EL2 or EL3 for other accesses.
960 int el = arm_current_el(env);
962 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
963 return CP_ACCESS_TRAP;
965 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
966 && !arm_is_secure_below_el3(env)) {
967 return CP_ACCESS_TRAP_EL2;
969 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
970 return CP_ACCESS_TRAP_EL3;
973 return CP_ACCESS_OK;
976 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
977 const ARMCPRegInfo *ri,
978 bool isread)
980 /* ER: event counter read trap control */
981 if (arm_feature(env, ARM_FEATURE_V8)
982 && arm_current_el(env) == 0
983 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
984 && isread) {
985 return CP_ACCESS_OK;
988 return pmreg_access(env, ri, isread);
991 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
992 const ARMCPRegInfo *ri,
993 bool isread)
995 /* SW: software increment write trap control */
996 if (arm_feature(env, ARM_FEATURE_V8)
997 && arm_current_el(env) == 0
998 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
999 && !isread) {
1000 return CP_ACCESS_OK;
1003 return pmreg_access(env, ri, isread);
1006 #ifndef CONFIG_USER_ONLY
1008 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1009 const ARMCPRegInfo *ri,
1010 bool isread)
1012 /* ER: event counter read trap control */
1013 if (arm_feature(env, ARM_FEATURE_V8)
1014 && arm_current_el(env) == 0
1015 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1016 return CP_ACCESS_OK;
1019 return pmreg_access(env, ri, isread);
1022 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1023 const ARMCPRegInfo *ri,
1024 bool isread)
1026 /* CR: cycle counter read trap control */
1027 if (arm_feature(env, ARM_FEATURE_V8)
1028 && arm_current_el(env) == 0
1029 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1030 && isread) {
1031 return CP_ACCESS_OK;
1034 return pmreg_access(env, ri, isread);
1037 static inline bool arm_ccnt_enabled(CPUARMState *env)
1039 /* This does not support checking PMCCFILTR_EL0 register */
1041 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1042 return false;
1045 return true;
1048 void pmccntr_sync(CPUARMState *env)
1050 uint64_t temp_ticks;
1052 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1053 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1055 if (env->cp15.c9_pmcr & PMCRD) {
1056 /* Increment once every 64 processor clock cycles */
1057 temp_ticks /= 64;
1060 if (arm_ccnt_enabled(env)) {
1061 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1065 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1066 uint64_t value)
1068 pmccntr_sync(env);
1070 if (value & PMCRC) {
1071 /* The counter has been reset */
1072 env->cp15.c15_ccnt = 0;
1075 /* only the DP, X, D and E bits are writable */
1076 env->cp15.c9_pmcr &= ~0x39;
1077 env->cp15.c9_pmcr |= (value & 0x39);
1079 pmccntr_sync(env);
1082 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1084 uint64_t total_ticks;
1086 if (!arm_ccnt_enabled(env)) {
1087 /* Counter is disabled, do not change value */
1088 return env->cp15.c15_ccnt;
1091 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1092 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1094 if (env->cp15.c9_pmcr & PMCRD) {
1095 /* Increment once every 64 processor clock cycles */
1096 total_ticks /= 64;
1098 return total_ticks - env->cp15.c15_ccnt;
1101 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1102 uint64_t value)
1104 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1105 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1106 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1107 * accessed.
1109 env->cp15.c9_pmselr = value & 0x1f;
1112 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1113 uint64_t value)
1115 uint64_t total_ticks;
1117 if (!arm_ccnt_enabled(env)) {
1118 /* Counter is disabled, set the absolute value */
1119 env->cp15.c15_ccnt = value;
1120 return;
1123 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1124 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1126 if (env->cp15.c9_pmcr & PMCRD) {
1127 /* Increment once every 64 processor clock cycles */
1128 total_ticks /= 64;
1130 env->cp15.c15_ccnt = total_ticks - value;
1133 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1134 uint64_t value)
1136 uint64_t cur_val = pmccntr_read(env, NULL);
1138 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1141 #else /* CONFIG_USER_ONLY */
1143 void pmccntr_sync(CPUARMState *env)
1147 #endif
1149 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1150 uint64_t value)
1152 pmccntr_sync(env);
1153 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1154 pmccntr_sync(env);
1157 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 uint64_t value)
1160 value &= pmu_counter_mask(env);
1161 env->cp15.c9_pmcnten |= value;
1164 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1165 uint64_t value)
1167 value &= pmu_counter_mask(env);
1168 env->cp15.c9_pmcnten &= ~value;
1171 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172 uint64_t value)
1174 env->cp15.c9_pmovsr &= ~value;
1177 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178 uint64_t value)
1180 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1181 * PMSELR value is equal to or greater than the number of implemented
1182 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1184 if (env->cp15.c9_pmselr == 0x1f) {
1185 pmccfiltr_write(env, ri, value);
1189 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1191 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1192 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1194 if (env->cp15.c9_pmselr == 0x1f) {
1195 return env->cp15.pmccfiltr_el0;
1196 } else {
1197 return 0;
1201 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1202 uint64_t value)
1204 if (arm_feature(env, ARM_FEATURE_V8)) {
1205 env->cp15.c9_pmuserenr = value & 0xf;
1206 } else {
1207 env->cp15.c9_pmuserenr = value & 1;
1211 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1212 uint64_t value)
1214 /* We have no event counters so only the C bit can be changed */
1215 value &= pmu_counter_mask(env);
1216 env->cp15.c9_pminten |= value;
1219 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220 uint64_t value)
1222 value &= pmu_counter_mask(env);
1223 env->cp15.c9_pminten &= ~value;
1226 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1227 uint64_t value)
1229 /* Note that even though the AArch64 view of this register has bits
1230 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1231 * architectural requirements for bits which are RES0 only in some
1232 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1233 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1235 raw_write(env, ri, value & ~0x1FULL);
1238 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1240 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1241 * For bits that vary between AArch32/64, code needs to check the
1242 * current execution mode before directly using the feature bit.
1244 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1246 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1247 valid_mask &= ~SCR_HCE;
1249 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1250 * supported if EL2 exists. The bit is UNK/SBZP when
1251 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1252 * when EL2 is unavailable.
1253 * On ARMv8, this bit is always available.
1255 if (arm_feature(env, ARM_FEATURE_V7) &&
1256 !arm_feature(env, ARM_FEATURE_V8)) {
1257 valid_mask &= ~SCR_SMD;
1261 /* Clear all-context RES0 bits. */
1262 value &= valid_mask;
1263 raw_write(env, ri, value);
1266 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1268 ARMCPU *cpu = arm_env_get_cpu(env);
1270 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1271 * bank
1273 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1274 ri->secure & ARM_CP_SECSTATE_S);
1276 return cpu->ccsidr[index];
1279 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1280 uint64_t value)
1282 raw_write(env, ri, value & 0xf);
1285 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1287 CPUState *cs = ENV_GET_CPU(env);
1288 uint64_t ret = 0;
1290 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1291 ret |= CPSR_I;
1293 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1294 ret |= CPSR_F;
1296 /* External aborts are not possible in QEMU so A bit is always clear */
1297 return ret;
1300 static const ARMCPRegInfo v7_cp_reginfo[] = {
1301 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1302 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1303 .access = PL1_W, .type = ARM_CP_NOP },
1304 /* Performance monitors are implementation defined in v7,
1305 * but with an ARM recommended set of registers, which we
1306 * follow (although we don't actually implement any counters)
1308 * Performance registers fall into three categories:
1309 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1310 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1311 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1312 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1313 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1315 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1316 .access = PL0_RW, .type = ARM_CP_ALIAS,
1317 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1318 .writefn = pmcntenset_write,
1319 .accessfn = pmreg_access,
1320 .raw_writefn = raw_write },
1321 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1322 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1323 .access = PL0_RW, .accessfn = pmreg_access,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1325 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1326 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1327 .access = PL0_RW,
1328 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1329 .accessfn = pmreg_access,
1330 .writefn = pmcntenclr_write,
1331 .type = ARM_CP_ALIAS },
1332 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1333 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1334 .access = PL0_RW, .accessfn = pmreg_access,
1335 .type = ARM_CP_ALIAS,
1336 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1337 .writefn = pmcntenclr_write },
1338 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1339 .access = PL0_RW,
1340 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1341 .accessfn = pmreg_access,
1342 .writefn = pmovsr_write,
1343 .raw_writefn = raw_write },
1344 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1345 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1346 .access = PL0_RW, .accessfn = pmreg_access,
1347 .type = ARM_CP_ALIAS,
1348 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1349 .writefn = pmovsr_write,
1350 .raw_writefn = raw_write },
1351 /* Unimplemented so WI. */
1352 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1353 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1354 #ifndef CONFIG_USER_ONLY
1355 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1356 .access = PL0_RW, .type = ARM_CP_ALIAS,
1357 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1358 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1359 .raw_writefn = raw_write},
1360 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1361 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1362 .access = PL0_RW, .accessfn = pmreg_access_selr,
1363 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1364 .writefn = pmselr_write, .raw_writefn = raw_write, },
1365 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1366 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1367 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1368 .accessfn = pmreg_access_ccntr },
1369 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1370 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1371 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1372 .type = ARM_CP_IO,
1373 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1374 #endif
1375 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1376 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1377 .writefn = pmccfiltr_write,
1378 .access = PL0_RW, .accessfn = pmreg_access,
1379 .type = ARM_CP_IO,
1380 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1381 .resetvalue = 0, },
1382 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1383 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1384 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1385 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1386 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1387 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1388 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1389 /* Unimplemented, RAZ/WI. */
1390 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1391 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1392 .accessfn = pmreg_access_xevcntr },
1393 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1394 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1395 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1396 .resetvalue = 0,
1397 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1398 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1399 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1400 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1401 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1402 .resetvalue = 0,
1403 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1404 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1405 .access = PL1_RW, .accessfn = access_tpm,
1406 .type = ARM_CP_ALIAS,
1407 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1408 .resetvalue = 0,
1409 .writefn = pmintenset_write, .raw_writefn = raw_write },
1410 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1411 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1412 .access = PL1_RW, .accessfn = access_tpm,
1413 .type = ARM_CP_IO,
1414 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1415 .writefn = pmintenset_write, .raw_writefn = raw_write,
1416 .resetvalue = 0x0 },
1417 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1418 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1419 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1420 .writefn = pmintenclr_write, },
1421 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1422 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1423 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1424 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1425 .writefn = pmintenclr_write },
1426 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1427 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1428 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1429 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1430 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1431 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1432 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1433 offsetof(CPUARMState, cp15.csselr_ns) } },
1434 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1435 * just RAZ for all cores:
1437 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1438 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1439 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1440 /* Auxiliary fault status registers: these also are IMPDEF, and we
1441 * choose to RAZ/WI for all cores.
1443 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1444 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1445 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1446 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1447 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1448 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1449 /* MAIR can just read-as-written because we don't implement caches
1450 * and so don't need to care about memory attributes.
1452 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1453 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1454 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1455 .resetvalue = 0 },
1456 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1457 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1458 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1459 .resetvalue = 0 },
1460 /* For non-long-descriptor page tables these are PRRR and NMRR;
1461 * regardless they still act as reads-as-written for QEMU.
1463 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1464 * allows them to assign the correct fieldoffset based on the endianness
1465 * handled in the field definitions.
1467 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1468 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1469 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1470 offsetof(CPUARMState, cp15.mair0_ns) },
1471 .resetfn = arm_cp_reset_ignore },
1472 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1473 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1474 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1475 offsetof(CPUARMState, cp15.mair1_ns) },
1476 .resetfn = arm_cp_reset_ignore },
1477 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1478 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1479 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1480 /* 32 bit ITLB invalidates */
1481 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1482 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1483 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1484 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1485 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1486 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1487 /* 32 bit DTLB invalidates */
1488 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1489 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1490 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1491 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1492 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1493 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1494 /* 32 bit TLB invalidates */
1495 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1496 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1497 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1498 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1499 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1500 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1501 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1502 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1503 REGINFO_SENTINEL
1506 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1507 /* 32 bit TLB invalidates, Inner Shareable */
1508 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1509 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1510 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1511 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1512 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1513 .type = ARM_CP_NO_RAW, .access = PL1_W,
1514 .writefn = tlbiasid_is_write },
1515 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1516 .type = ARM_CP_NO_RAW, .access = PL1_W,
1517 .writefn = tlbimvaa_is_write },
1518 REGINFO_SENTINEL
1521 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1522 uint64_t value)
1524 value &= 1;
1525 env->teecr = value;
1528 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1529 bool isread)
1531 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1532 return CP_ACCESS_TRAP;
1534 return CP_ACCESS_OK;
1537 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1538 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1539 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1540 .resetvalue = 0,
1541 .writefn = teecr_write },
1542 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1543 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1544 .accessfn = teehbr_access, .resetvalue = 0 },
1545 REGINFO_SENTINEL
1548 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1549 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1550 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1551 .access = PL0_RW,
1552 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1553 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1554 .access = PL0_RW,
1555 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1556 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1557 .resetfn = arm_cp_reset_ignore },
1558 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1559 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1560 .access = PL0_R|PL1_W,
1561 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1562 .resetvalue = 0},
1563 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1564 .access = PL0_R|PL1_W,
1565 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1566 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1567 .resetfn = arm_cp_reset_ignore },
1568 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1569 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1570 .access = PL1_RW,
1571 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1572 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1573 .access = PL1_RW,
1574 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1575 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1576 .resetvalue = 0 },
1577 REGINFO_SENTINEL
1580 #ifndef CONFIG_USER_ONLY
1582 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1583 bool isread)
1585 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1586 * Writable only at the highest implemented exception level.
1588 int el = arm_current_el(env);
1590 switch (el) {
1591 case 0:
1592 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1593 return CP_ACCESS_TRAP;
1595 break;
1596 case 1:
1597 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1598 arm_is_secure_below_el3(env)) {
1599 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1600 return CP_ACCESS_TRAP_UNCATEGORIZED;
1602 break;
1603 case 2:
1604 case 3:
1605 break;
1608 if (!isread && el < arm_highest_el(env)) {
1609 return CP_ACCESS_TRAP_UNCATEGORIZED;
1612 return CP_ACCESS_OK;
1615 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1616 bool isread)
1618 unsigned int cur_el = arm_current_el(env);
1619 bool secure = arm_is_secure(env);
1621 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1622 if (cur_el == 0 &&
1623 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1624 return CP_ACCESS_TRAP;
1627 if (arm_feature(env, ARM_FEATURE_EL2) &&
1628 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1629 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1630 return CP_ACCESS_TRAP_EL2;
1632 return CP_ACCESS_OK;
1635 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1636 bool isread)
1638 unsigned int cur_el = arm_current_el(env);
1639 bool secure = arm_is_secure(env);
1641 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1642 * EL0[PV]TEN is zero.
1644 if (cur_el == 0 &&
1645 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1646 return CP_ACCESS_TRAP;
1649 if (arm_feature(env, ARM_FEATURE_EL2) &&
1650 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1651 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1652 return CP_ACCESS_TRAP_EL2;
1654 return CP_ACCESS_OK;
1657 static CPAccessResult gt_pct_access(CPUARMState *env,
1658 const ARMCPRegInfo *ri,
1659 bool isread)
1661 return gt_counter_access(env, GTIMER_PHYS, isread);
1664 static CPAccessResult gt_vct_access(CPUARMState *env,
1665 const ARMCPRegInfo *ri,
1666 bool isread)
1668 return gt_counter_access(env, GTIMER_VIRT, isread);
1671 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1672 bool isread)
1674 return gt_timer_access(env, GTIMER_PHYS, isread);
1677 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1678 bool isread)
1680 return gt_timer_access(env, GTIMER_VIRT, isread);
1683 static CPAccessResult gt_stimer_access(CPUARMState *env,
1684 const ARMCPRegInfo *ri,
1685 bool isread)
1687 /* The AArch64 register view of the secure physical timer is
1688 * always accessible from EL3, and configurably accessible from
1689 * Secure EL1.
1691 switch (arm_current_el(env)) {
1692 case 1:
1693 if (!arm_is_secure(env)) {
1694 return CP_ACCESS_TRAP;
1696 if (!(env->cp15.scr_el3 & SCR_ST)) {
1697 return CP_ACCESS_TRAP_EL3;
1699 return CP_ACCESS_OK;
1700 case 0:
1701 case 2:
1702 return CP_ACCESS_TRAP;
1703 case 3:
1704 return CP_ACCESS_OK;
1705 default:
1706 g_assert_not_reached();
1710 static uint64_t gt_get_countervalue(CPUARMState *env)
1712 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1715 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1717 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1719 if (gt->ctl & 1) {
1720 /* Timer enabled: calculate and set current ISTATUS, irq, and
1721 * reset timer to when ISTATUS next has to change
1723 uint64_t offset = timeridx == GTIMER_VIRT ?
1724 cpu->env.cp15.cntvoff_el2 : 0;
1725 uint64_t count = gt_get_countervalue(&cpu->env);
1726 /* Note that this must be unsigned 64 bit arithmetic: */
1727 int istatus = count - offset >= gt->cval;
1728 uint64_t nexttick;
1729 int irqstate;
1731 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1733 irqstate = (istatus && !(gt->ctl & 2));
1734 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1736 if (istatus) {
1737 /* Next transition is when count rolls back over to zero */
1738 nexttick = UINT64_MAX;
1739 } else {
1740 /* Next transition is when we hit cval */
1741 nexttick = gt->cval + offset;
1743 /* Note that the desired next expiry time might be beyond the
1744 * signed-64-bit range of a QEMUTimer -- in this case we just
1745 * set the timer for as far in the future as possible. When the
1746 * timer expires we will reset the timer for any remaining period.
1748 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1749 nexttick = INT64_MAX / GTIMER_SCALE;
1751 timer_mod(cpu->gt_timer[timeridx], nexttick);
1752 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1753 } else {
1754 /* Timer disabled: ISTATUS and timer output always clear */
1755 gt->ctl &= ~4;
1756 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1757 timer_del(cpu->gt_timer[timeridx]);
1758 trace_arm_gt_recalc_disabled(timeridx);
1762 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1763 int timeridx)
1765 ARMCPU *cpu = arm_env_get_cpu(env);
1767 timer_del(cpu->gt_timer[timeridx]);
1770 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1772 return gt_get_countervalue(env);
1775 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1777 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1780 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 int timeridx,
1782 uint64_t value)
1784 trace_arm_gt_cval_write(timeridx, value);
1785 env->cp15.c14_timer[timeridx].cval = value;
1786 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1789 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1790 int timeridx)
1792 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1794 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1795 (gt_get_countervalue(env) - offset));
1798 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799 int timeridx,
1800 uint64_t value)
1802 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1804 trace_arm_gt_tval_write(timeridx, value);
1805 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1806 sextract64(value, 0, 32);
1807 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1810 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811 int timeridx,
1812 uint64_t value)
1814 ARMCPU *cpu = arm_env_get_cpu(env);
1815 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1817 trace_arm_gt_ctl_write(timeridx, value);
1818 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1819 if ((oldval ^ value) & 1) {
1820 /* Enable toggled */
1821 gt_recalc_timer(cpu, timeridx);
1822 } else if ((oldval ^ value) & 2) {
1823 /* IMASK toggled: don't need to recalculate,
1824 * just set the interrupt line based on ISTATUS
1826 int irqstate = (oldval & 4) && !(value & 2);
1828 trace_arm_gt_imask_toggle(timeridx, irqstate);
1829 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1833 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1835 gt_timer_reset(env, ri, GTIMER_PHYS);
1838 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839 uint64_t value)
1841 gt_cval_write(env, ri, GTIMER_PHYS, value);
1844 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1846 return gt_tval_read(env, ri, GTIMER_PHYS);
1849 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850 uint64_t value)
1852 gt_tval_write(env, ri, GTIMER_PHYS, value);
1855 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856 uint64_t value)
1858 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1861 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1863 gt_timer_reset(env, ri, GTIMER_VIRT);
1866 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867 uint64_t value)
1869 gt_cval_write(env, ri, GTIMER_VIRT, value);
1872 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1874 return gt_tval_read(env, ri, GTIMER_VIRT);
1877 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878 uint64_t value)
1880 gt_tval_write(env, ri, GTIMER_VIRT, value);
1883 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1884 uint64_t value)
1886 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1889 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890 uint64_t value)
1892 ARMCPU *cpu = arm_env_get_cpu(env);
1894 trace_arm_gt_cntvoff_write(value);
1895 raw_write(env, ri, value);
1896 gt_recalc_timer(cpu, GTIMER_VIRT);
1899 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1901 gt_timer_reset(env, ri, GTIMER_HYP);
1904 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1905 uint64_t value)
1907 gt_cval_write(env, ri, GTIMER_HYP, value);
1910 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1912 return gt_tval_read(env, ri, GTIMER_HYP);
1915 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1916 uint64_t value)
1918 gt_tval_write(env, ri, GTIMER_HYP, value);
1921 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1922 uint64_t value)
1924 gt_ctl_write(env, ri, GTIMER_HYP, value);
1927 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1929 gt_timer_reset(env, ri, GTIMER_SEC);
1932 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1933 uint64_t value)
1935 gt_cval_write(env, ri, GTIMER_SEC, value);
1938 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1940 return gt_tval_read(env, ri, GTIMER_SEC);
1943 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1944 uint64_t value)
1946 gt_tval_write(env, ri, GTIMER_SEC, value);
1949 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1950 uint64_t value)
1952 gt_ctl_write(env, ri, GTIMER_SEC, value);
1955 void arm_gt_ptimer_cb(void *opaque)
1957 ARMCPU *cpu = opaque;
1959 gt_recalc_timer(cpu, GTIMER_PHYS);
1962 void arm_gt_vtimer_cb(void *opaque)
1964 ARMCPU *cpu = opaque;
1966 gt_recalc_timer(cpu, GTIMER_VIRT);
1969 void arm_gt_htimer_cb(void *opaque)
1971 ARMCPU *cpu = opaque;
1973 gt_recalc_timer(cpu, GTIMER_HYP);
1976 void arm_gt_stimer_cb(void *opaque)
1978 ARMCPU *cpu = opaque;
1980 gt_recalc_timer(cpu, GTIMER_SEC);
1983 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1984 /* Note that CNTFRQ is purely reads-as-written for the benefit
1985 * of software; writing it doesn't actually change the timer frequency.
1986 * Our reset value matches the fixed frequency we implement the timer at.
1988 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1989 .type = ARM_CP_ALIAS,
1990 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1991 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1993 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1995 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1996 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1997 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1999 /* overall control: mostly access permissions */
2000 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2001 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2002 .access = PL1_RW,
2003 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2004 .resetvalue = 0,
2006 /* per-timer control */
2007 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2008 .secure = ARM_CP_SECSTATE_NS,
2009 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2010 .accessfn = gt_ptimer_access,
2011 .fieldoffset = offsetoflow32(CPUARMState,
2012 cp15.c14_timer[GTIMER_PHYS].ctl),
2013 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2015 { .name = "CNTP_CTL_S",
2016 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2017 .secure = ARM_CP_SECSTATE_S,
2018 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2019 .accessfn = gt_ptimer_access,
2020 .fieldoffset = offsetoflow32(CPUARMState,
2021 cp15.c14_timer[GTIMER_SEC].ctl),
2022 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2024 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2025 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2026 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2027 .accessfn = gt_ptimer_access,
2028 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2029 .resetvalue = 0,
2030 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2032 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2033 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2034 .accessfn = gt_vtimer_access,
2035 .fieldoffset = offsetoflow32(CPUARMState,
2036 cp15.c14_timer[GTIMER_VIRT].ctl),
2037 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2039 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2041 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2042 .accessfn = gt_vtimer_access,
2043 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2044 .resetvalue = 0,
2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2047 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2048 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2049 .secure = ARM_CP_SECSTATE_NS,
2050 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2051 .accessfn = gt_ptimer_access,
2052 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2054 { .name = "CNTP_TVAL_S",
2055 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2056 .secure = ARM_CP_SECSTATE_S,
2057 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2058 .accessfn = gt_ptimer_access,
2059 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2061 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2063 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2064 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2065 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2067 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2068 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2069 .accessfn = gt_vtimer_access,
2070 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2072 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2073 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2074 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2075 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2076 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2078 /* The counter itself */
2079 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2080 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2081 .accessfn = gt_pct_access,
2082 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2084 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2085 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2086 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2087 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2089 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2090 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2091 .accessfn = gt_vct_access,
2092 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2094 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2095 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2096 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2097 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2099 /* Comparison value, indicating when the timer goes off */
2100 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2101 .secure = ARM_CP_SECSTATE_NS,
2102 .access = PL1_RW | PL0_R,
2103 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2105 .accessfn = gt_ptimer_access,
2106 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2108 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2109 .secure = ARM_CP_SECSTATE_S,
2110 .access = PL1_RW | PL0_R,
2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2113 .accessfn = gt_ptimer_access,
2114 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2116 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2117 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2118 .access = PL1_RW | PL0_R,
2119 .type = ARM_CP_IO,
2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2121 .resetvalue = 0, .accessfn = gt_ptimer_access,
2122 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2124 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2125 .access = PL1_RW | PL0_R,
2126 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2128 .accessfn = gt_vtimer_access,
2129 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2131 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2132 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2133 .access = PL1_RW | PL0_R,
2134 .type = ARM_CP_IO,
2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136 .resetvalue = 0, .accessfn = gt_vtimer_access,
2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2139 /* Secure timer -- this is actually restricted to only EL3
2140 * and configurably Secure-EL1 via the accessfn.
2142 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2143 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2144 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2145 .accessfn = gt_stimer_access,
2146 .readfn = gt_sec_tval_read,
2147 .writefn = gt_sec_tval_write,
2148 .resetfn = gt_sec_timer_reset,
2150 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2152 .type = ARM_CP_IO, .access = PL1_RW,
2153 .accessfn = gt_stimer_access,
2154 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2155 .resetvalue = 0,
2156 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2158 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2160 .type = ARM_CP_IO, .access = PL1_RW,
2161 .accessfn = gt_stimer_access,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2163 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2165 REGINFO_SENTINEL
2168 #else
2169 /* In user-mode none of the generic timer registers are accessible,
2170 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2171 * so instead just don't register any of them.
2173 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2174 REGINFO_SENTINEL
2177 #endif
2179 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2181 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2182 raw_write(env, ri, value);
2183 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2184 raw_write(env, ri, value & 0xfffff6ff);
2185 } else {
2186 raw_write(env, ri, value & 0xfffff1ff);
2190 #ifndef CONFIG_USER_ONLY
2191 /* get_phys_addr() isn't present for user-mode-only targets */
2193 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2194 bool isread)
2196 if (ri->opc2 & 4) {
2197 /* The ATS12NSO* operations must trap to EL3 if executed in
2198 * Secure EL1 (which can only happen if EL3 is AArch64).
2199 * They are simply UNDEF if executed from NS EL1.
2200 * They function normally from EL2 or EL3.
2202 if (arm_current_el(env) == 1) {
2203 if (arm_is_secure_below_el3(env)) {
2204 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2206 return CP_ACCESS_TRAP_UNCATEGORIZED;
2209 return CP_ACCESS_OK;
2212 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2213 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2215 hwaddr phys_addr;
2216 target_ulong page_size;
2217 int prot;
2218 bool ret;
2219 uint64_t par64;
2220 bool format64 = false;
2221 MemTxAttrs attrs = {};
2222 ARMMMUFaultInfo fi = {};
2223 ARMCacheAttrs cacheattrs = {};
2225 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2226 &prot, &page_size, &fi, &cacheattrs);
2228 if (is_a64(env)) {
2229 format64 = true;
2230 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2232 * ATS1Cxx:
2233 * * TTBCR.EAE determines whether the result is returned using the
2234 * 32-bit or the 64-bit PAR format
2235 * * Instructions executed in Hyp mode always use the 64bit format
2237 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2238 * * The Non-secure TTBCR.EAE bit is set to 1
2239 * * The implementation includes EL2, and the value of HCR.VM is 1
2241 * ATS1Hx always uses the 64bit format (not supported yet).
2243 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2245 if (arm_feature(env, ARM_FEATURE_EL2)) {
2246 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2247 format64 |= env->cp15.hcr_el2 & HCR_VM;
2248 } else {
2249 format64 |= arm_current_el(env) == 2;
2254 if (format64) {
2255 /* Create a 64-bit PAR */
2256 par64 = (1 << 11); /* LPAE bit always set */
2257 if (!ret) {
2258 par64 |= phys_addr & ~0xfffULL;
2259 if (!attrs.secure) {
2260 par64 |= (1 << 9); /* NS */
2262 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2263 par64 |= cacheattrs.shareability << 7; /* SH */
2264 } else {
2265 uint32_t fsr = arm_fi_to_lfsc(&fi);
2267 par64 |= 1; /* F */
2268 par64 |= (fsr & 0x3f) << 1; /* FS */
2269 /* Note that S2WLK and FSTAGE are always zero, because we don't
2270 * implement virtualization and therefore there can't be a stage 2
2271 * fault.
2274 } else {
2275 /* fsr is a DFSR/IFSR value for the short descriptor
2276 * translation table format (with WnR always clear).
2277 * Convert it to a 32-bit PAR.
2279 if (!ret) {
2280 /* We do not set any attribute bits in the PAR */
2281 if (page_size == (1 << 24)
2282 && arm_feature(env, ARM_FEATURE_V7)) {
2283 par64 = (phys_addr & 0xff000000) | (1 << 1);
2284 } else {
2285 par64 = phys_addr & 0xfffff000;
2287 if (!attrs.secure) {
2288 par64 |= (1 << 9); /* NS */
2290 } else {
2291 uint32_t fsr = arm_fi_to_sfsc(&fi);
2293 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2294 ((fsr & 0xf) << 1) | 1;
2297 return par64;
2300 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2302 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2303 uint64_t par64;
2304 ARMMMUIdx mmu_idx;
2305 int el = arm_current_el(env);
2306 bool secure = arm_is_secure_below_el3(env);
2308 switch (ri->opc2 & 6) {
2309 case 0:
2310 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2311 switch (el) {
2312 case 3:
2313 mmu_idx = ARMMMUIdx_S1E3;
2314 break;
2315 case 2:
2316 mmu_idx = ARMMMUIdx_S1NSE1;
2317 break;
2318 case 1:
2319 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2320 break;
2321 default:
2322 g_assert_not_reached();
2324 break;
2325 case 2:
2326 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2327 switch (el) {
2328 case 3:
2329 mmu_idx = ARMMMUIdx_S1SE0;
2330 break;
2331 case 2:
2332 mmu_idx = ARMMMUIdx_S1NSE0;
2333 break;
2334 case 1:
2335 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2336 break;
2337 default:
2338 g_assert_not_reached();
2340 break;
2341 case 4:
2342 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2343 mmu_idx = ARMMMUIdx_S12NSE1;
2344 break;
2345 case 6:
2346 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2347 mmu_idx = ARMMMUIdx_S12NSE0;
2348 break;
2349 default:
2350 g_assert_not_reached();
2353 par64 = do_ats_write(env, value, access_type, mmu_idx);
2355 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2358 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359 uint64_t value)
2361 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2362 uint64_t par64;
2364 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2366 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2369 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2370 bool isread)
2372 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2373 return CP_ACCESS_TRAP;
2375 return CP_ACCESS_OK;
2378 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2379 uint64_t value)
2381 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2382 ARMMMUIdx mmu_idx;
2383 int secure = arm_is_secure_below_el3(env);
2385 switch (ri->opc2 & 6) {
2386 case 0:
2387 switch (ri->opc1) {
2388 case 0: /* AT S1E1R, AT S1E1W */
2389 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2390 break;
2391 case 4: /* AT S1E2R, AT S1E2W */
2392 mmu_idx = ARMMMUIdx_S1E2;
2393 break;
2394 case 6: /* AT S1E3R, AT S1E3W */
2395 mmu_idx = ARMMMUIdx_S1E3;
2396 break;
2397 default:
2398 g_assert_not_reached();
2400 break;
2401 case 2: /* AT S1E0R, AT S1E0W */
2402 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2403 break;
2404 case 4: /* AT S12E1R, AT S12E1W */
2405 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2406 break;
2407 case 6: /* AT S12E0R, AT S12E0W */
2408 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2409 break;
2410 default:
2411 g_assert_not_reached();
2414 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2416 #endif
2418 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2419 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2420 .access = PL1_RW, .resetvalue = 0,
2421 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2422 offsetoflow32(CPUARMState, cp15.par_ns) },
2423 .writefn = par_write },
2424 #ifndef CONFIG_USER_ONLY
2425 /* This underdecoding is safe because the reginfo is NO_RAW. */
2426 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2427 .access = PL1_W, .accessfn = ats_access,
2428 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2429 #endif
2430 REGINFO_SENTINEL
2433 /* Return basic MPU access permission bits. */
2434 static uint32_t simple_mpu_ap_bits(uint32_t val)
2436 uint32_t ret;
2437 uint32_t mask;
2438 int i;
2439 ret = 0;
2440 mask = 3;
2441 for (i = 0; i < 16; i += 2) {
2442 ret |= (val >> i) & mask;
2443 mask <<= 2;
2445 return ret;
2448 /* Pad basic MPU access permission bits to extended format. */
2449 static uint32_t extended_mpu_ap_bits(uint32_t val)
2451 uint32_t ret;
2452 uint32_t mask;
2453 int i;
2454 ret = 0;
2455 mask = 3;
2456 for (i = 0; i < 16; i += 2) {
2457 ret |= (val & mask) << i;
2458 mask <<= 2;
2460 return ret;
2463 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 uint64_t value)
2466 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2469 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2471 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2474 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475 uint64_t value)
2477 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2480 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2482 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2485 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2487 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2489 if (!u32p) {
2490 return 0;
2493 u32p += env->pmsav7.rnr[M_REG_NS];
2494 return *u32p;
2497 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2498 uint64_t value)
2500 ARMCPU *cpu = arm_env_get_cpu(env);
2501 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2503 if (!u32p) {
2504 return;
2507 u32p += env->pmsav7.rnr[M_REG_NS];
2508 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2509 *u32p = value;
2512 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2513 uint64_t value)
2515 ARMCPU *cpu = arm_env_get_cpu(env);
2516 uint32_t nrgs = cpu->pmsav7_dregion;
2518 if (value >= nrgs) {
2519 qemu_log_mask(LOG_GUEST_ERROR,
2520 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2521 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2522 return;
2525 raw_write(env, ri, value);
2528 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2529 /* Reset for all these registers is handled in arm_cpu_reset(),
2530 * because the PMSAv7 is also used by M-profile CPUs, which do
2531 * not register cpregs but still need the state to be reset.
2533 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2534 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2535 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2536 .readfn = pmsav7_read, .writefn = pmsav7_write,
2537 .resetfn = arm_cp_reset_ignore },
2538 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2539 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2540 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2541 .readfn = pmsav7_read, .writefn = pmsav7_write,
2542 .resetfn = arm_cp_reset_ignore },
2543 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2544 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2545 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2546 .readfn = pmsav7_read, .writefn = pmsav7_write,
2547 .resetfn = arm_cp_reset_ignore },
2548 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2549 .access = PL1_RW,
2550 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2551 .writefn = pmsav7_rgnr_write,
2552 .resetfn = arm_cp_reset_ignore },
2553 REGINFO_SENTINEL
2556 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2557 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2558 .access = PL1_RW, .type = ARM_CP_ALIAS,
2559 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2560 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2561 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2562 .access = PL1_RW, .type = ARM_CP_ALIAS,
2563 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2564 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2565 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2566 .access = PL1_RW,
2567 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2568 .resetvalue = 0, },
2569 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2570 .access = PL1_RW,
2571 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2572 .resetvalue = 0, },
2573 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2574 .access = PL1_RW,
2575 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2576 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2577 .access = PL1_RW,
2578 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2579 /* Protection region base and size registers */
2580 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2581 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2582 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2583 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2584 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2585 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2586 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2587 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2588 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2589 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2590 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2591 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2592 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2593 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2594 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2595 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2596 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2597 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2598 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2599 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2600 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2601 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2602 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2603 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2604 REGINFO_SENTINEL
2607 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608 uint64_t value)
2610 TCR *tcr = raw_ptr(env, ri);
2611 int maskshift = extract32(value, 0, 3);
2613 if (!arm_feature(env, ARM_FEATURE_V8)) {
2614 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2615 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2616 * using Long-desciptor translation table format */
2617 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2618 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2619 /* In an implementation that includes the Security Extensions
2620 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2621 * Short-descriptor translation table format.
2623 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2624 } else {
2625 value &= TTBCR_N;
2629 /* Update the masks corresponding to the TCR bank being written
2630 * Note that we always calculate mask and base_mask, but
2631 * they are only used for short-descriptor tables (ie if EAE is 0);
2632 * for long-descriptor tables the TCR fields are used differently
2633 * and the mask and base_mask values are meaningless.
2635 tcr->raw_tcr = value;
2636 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2637 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2640 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2641 uint64_t value)
2643 ARMCPU *cpu = arm_env_get_cpu(env);
2645 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2646 /* With LPAE the TTBCR could result in a change of ASID
2647 * via the TTBCR.A1 bit, so do a TLB flush.
2649 tlb_flush(CPU(cpu));
2651 vmsa_ttbcr_raw_write(env, ri, value);
2654 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2656 TCR *tcr = raw_ptr(env, ri);
2658 /* Reset both the TCR as well as the masks corresponding to the bank of
2659 * the TCR being reset.
2661 tcr->raw_tcr = 0;
2662 tcr->mask = 0;
2663 tcr->base_mask = 0xffffc000u;
2666 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2667 uint64_t value)
2669 ARMCPU *cpu = arm_env_get_cpu(env);
2670 TCR *tcr = raw_ptr(env, ri);
2672 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2673 tlb_flush(CPU(cpu));
2674 tcr->raw_tcr = value;
2677 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678 uint64_t value)
2680 /* 64 bit accesses to the TTBRs can change the ASID and so we
2681 * must flush the TLB.
2683 if (cpreg_field_is_64bit(ri)) {
2684 ARMCPU *cpu = arm_env_get_cpu(env);
2686 tlb_flush(CPU(cpu));
2688 raw_write(env, ri, value);
2691 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692 uint64_t value)
2694 ARMCPU *cpu = arm_env_get_cpu(env);
2695 CPUState *cs = CPU(cpu);
2697 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2698 if (raw_read(env, ri) != value) {
2699 tlb_flush_by_mmuidx(cs,
2700 ARMMMUIdxBit_S12NSE1 |
2701 ARMMMUIdxBit_S12NSE0 |
2702 ARMMMUIdxBit_S2NS);
2703 raw_write(env, ri, value);
2707 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2708 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2709 .access = PL1_RW, .type = ARM_CP_ALIAS,
2710 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2711 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2712 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2713 .access = PL1_RW, .resetvalue = 0,
2714 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2715 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2716 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2717 .access = PL1_RW, .resetvalue = 0,
2718 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2719 offsetof(CPUARMState, cp15.dfar_ns) } },
2720 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2721 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2722 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2723 .resetvalue = 0, },
2724 REGINFO_SENTINEL
2727 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2728 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2729 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2730 .access = PL1_RW,
2731 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2732 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2733 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2734 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2735 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2736 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2737 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2738 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2739 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2740 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2741 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2742 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2743 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2744 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2745 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2746 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2747 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2748 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2749 .raw_writefn = vmsa_ttbcr_raw_write,
2750 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2751 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2752 REGINFO_SENTINEL
2755 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756 uint64_t value)
2758 env->cp15.c15_ticonfig = value & 0xe7;
2759 /* The OS_TYPE bit in this register changes the reported CPUID! */
2760 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2761 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2764 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2765 uint64_t value)
2767 env->cp15.c15_threadid = value & 0xffff;
2770 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771 uint64_t value)
2773 /* Wait-for-interrupt (deprecated) */
2774 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2777 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2778 uint64_t value)
2780 /* On OMAP there are registers indicating the max/min index of dcache lines
2781 * containing a dirty line; cache flush operations have to reset these.
2783 env->cp15.c15_i_max = 0x000;
2784 env->cp15.c15_i_min = 0xff0;
2787 static const ARMCPRegInfo omap_cp_reginfo[] = {
2788 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2789 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2790 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2791 .resetvalue = 0, },
2792 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2793 .access = PL1_RW, .type = ARM_CP_NOP },
2794 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2795 .access = PL1_RW,
2796 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2797 .writefn = omap_ticonfig_write },
2798 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2799 .access = PL1_RW,
2800 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2801 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2802 .access = PL1_RW, .resetvalue = 0xff0,
2803 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2804 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2805 .access = PL1_RW,
2806 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2807 .writefn = omap_threadid_write },
2808 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2809 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2810 .type = ARM_CP_NO_RAW,
2811 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2812 /* TODO: Peripheral port remap register:
2813 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2814 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2815 * when MMU is off.
2817 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2818 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2819 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2820 .writefn = omap_cachemaint_write },
2821 { .name = "C9", .cp = 15, .crn = 9,
2822 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2823 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2824 REGINFO_SENTINEL
2827 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 uint64_t value)
2830 env->cp15.c15_cpar = value & 0x3fff;
2833 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2834 { .name = "XSCALE_CPAR",
2835 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2836 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2837 .writefn = xscale_cpar_write, },
2838 { .name = "XSCALE_AUXCR",
2839 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2840 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2841 .resetvalue = 0, },
2842 /* XScale specific cache-lockdown: since we have no cache we NOP these
2843 * and hope the guest does not really rely on cache behaviour.
2845 { .name = "XSCALE_LOCK_ICACHE_LINE",
2846 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2847 .access = PL1_W, .type = ARM_CP_NOP },
2848 { .name = "XSCALE_UNLOCK_ICACHE",
2849 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2850 .access = PL1_W, .type = ARM_CP_NOP },
2851 { .name = "XSCALE_DCACHE_LOCK",
2852 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2853 .access = PL1_RW, .type = ARM_CP_NOP },
2854 { .name = "XSCALE_UNLOCK_DCACHE",
2855 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2856 .access = PL1_W, .type = ARM_CP_NOP },
2857 REGINFO_SENTINEL
2860 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2861 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2862 * implementation of this implementation-defined space.
2863 * Ideally this should eventually disappear in favour of actually
2864 * implementing the correct behaviour for all cores.
2866 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2867 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2868 .access = PL1_RW,
2869 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2870 .resetvalue = 0 },
2871 REGINFO_SENTINEL
2874 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2875 /* Cache status: RAZ because we have no cache so it's always clean */
2876 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2877 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2878 .resetvalue = 0 },
2879 REGINFO_SENTINEL
2882 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2883 /* We never have a a block transfer operation in progress */
2884 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2885 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2886 .resetvalue = 0 },
2887 /* The cache ops themselves: these all NOP for QEMU */
2888 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2889 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2890 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2891 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2892 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2893 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2894 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2895 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2896 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2897 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2898 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2899 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2900 REGINFO_SENTINEL
2903 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2904 /* The cache test-and-clean instructions always return (1 << 30)
2905 * to indicate that there are no dirty cache lines.
2907 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2908 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2909 .resetvalue = (1 << 30) },
2910 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2911 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2912 .resetvalue = (1 << 30) },
2913 REGINFO_SENTINEL
2916 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2917 /* Ignore ReadBuffer accesses */
2918 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2919 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2920 .access = PL1_RW, .resetvalue = 0,
2921 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2922 REGINFO_SENTINEL
2925 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2927 ARMCPU *cpu = arm_env_get_cpu(env);
2928 unsigned int cur_el = arm_current_el(env);
2929 bool secure = arm_is_secure(env);
2931 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2932 return env->cp15.vpidr_el2;
2934 return raw_read(env, ri);
2937 static uint64_t mpidr_read_val(CPUARMState *env)
2939 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2940 uint64_t mpidr = cpu->mp_affinity;
2942 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2943 mpidr |= (1U << 31);
2944 /* Cores which are uniprocessor (non-coherent)
2945 * but still implement the MP extensions set
2946 * bit 30. (For instance, Cortex-R5).
2948 if (cpu->mp_is_up) {
2949 mpidr |= (1u << 30);
2952 return mpidr;
2955 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2957 unsigned int cur_el = arm_current_el(env);
2958 bool secure = arm_is_secure(env);
2960 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961 return env->cp15.vmpidr_el2;
2963 return mpidr_read_val(env);
2966 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2967 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2968 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2969 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2970 REGINFO_SENTINEL
2973 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2974 /* NOP AMAIR0/1 */
2975 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2976 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2977 .access = PL1_RW, .type = ARM_CP_CONST,
2978 .resetvalue = 0 },
2979 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2980 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2981 .access = PL1_RW, .type = ARM_CP_CONST,
2982 .resetvalue = 0 },
2983 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2984 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2985 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2986 offsetof(CPUARMState, cp15.par_ns)} },
2987 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2988 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2989 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2990 offsetof(CPUARMState, cp15.ttbr0_ns) },
2991 .writefn = vmsa_ttbr_write, },
2992 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2993 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2994 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2995 offsetof(CPUARMState, cp15.ttbr1_ns) },
2996 .writefn = vmsa_ttbr_write, },
2997 REGINFO_SENTINEL
3000 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3002 return vfp_get_fpcr(env);
3005 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3006 uint64_t value)
3008 vfp_set_fpcr(env, value);
3011 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3013 return vfp_get_fpsr(env);
3016 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3017 uint64_t value)
3019 vfp_set_fpsr(env, value);
3022 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3023 bool isread)
3025 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3026 return CP_ACCESS_TRAP;
3028 return CP_ACCESS_OK;
3031 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3032 uint64_t value)
3034 env->daif = value & PSTATE_DAIF;
3037 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3038 const ARMCPRegInfo *ri,
3039 bool isread)
3041 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3042 * SCTLR_EL1.UCI is set.
3044 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3045 return CP_ACCESS_TRAP;
3047 return CP_ACCESS_OK;
3050 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3051 * Page D4-1736 (DDI0487A.b)
3054 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055 uint64_t value)
3057 CPUState *cs = ENV_GET_CPU(env);
3059 if (arm_is_secure_below_el3(env)) {
3060 tlb_flush_by_mmuidx(cs,
3061 ARMMMUIdxBit_S1SE1 |
3062 ARMMMUIdxBit_S1SE0);
3063 } else {
3064 tlb_flush_by_mmuidx(cs,
3065 ARMMMUIdxBit_S12NSE1 |
3066 ARMMMUIdxBit_S12NSE0);
3070 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071 uint64_t value)
3073 CPUState *cs = ENV_GET_CPU(env);
3074 bool sec = arm_is_secure_below_el3(env);
3076 if (sec) {
3077 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3078 ARMMMUIdxBit_S1SE1 |
3079 ARMMMUIdxBit_S1SE0);
3080 } else {
3081 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3082 ARMMMUIdxBit_S12NSE1 |
3083 ARMMMUIdxBit_S12NSE0);
3087 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3088 uint64_t value)
3090 /* Note that the 'ALL' scope must invalidate both stage 1 and
3091 * stage 2 translations, whereas most other scopes only invalidate
3092 * stage 1 translations.
3094 ARMCPU *cpu = arm_env_get_cpu(env);
3095 CPUState *cs = CPU(cpu);
3097 if (arm_is_secure_below_el3(env)) {
3098 tlb_flush_by_mmuidx(cs,
3099 ARMMMUIdxBit_S1SE1 |
3100 ARMMMUIdxBit_S1SE0);
3101 } else {
3102 if (arm_feature(env, ARM_FEATURE_EL2)) {
3103 tlb_flush_by_mmuidx(cs,
3104 ARMMMUIdxBit_S12NSE1 |
3105 ARMMMUIdxBit_S12NSE0 |
3106 ARMMMUIdxBit_S2NS);
3107 } else {
3108 tlb_flush_by_mmuidx(cs,
3109 ARMMMUIdxBit_S12NSE1 |
3110 ARMMMUIdxBit_S12NSE0);
3115 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116 uint64_t value)
3118 ARMCPU *cpu = arm_env_get_cpu(env);
3119 CPUState *cs = CPU(cpu);
3121 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3124 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125 uint64_t value)
3127 ARMCPU *cpu = arm_env_get_cpu(env);
3128 CPUState *cs = CPU(cpu);
3130 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3133 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3134 uint64_t value)
3136 /* Note that the 'ALL' scope must invalidate both stage 1 and
3137 * stage 2 translations, whereas most other scopes only invalidate
3138 * stage 1 translations.
3140 CPUState *cs = ENV_GET_CPU(env);
3141 bool sec = arm_is_secure_below_el3(env);
3142 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3144 if (sec) {
3145 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3146 ARMMMUIdxBit_S1SE1 |
3147 ARMMMUIdxBit_S1SE0);
3148 } else if (has_el2) {
3149 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3150 ARMMMUIdxBit_S12NSE1 |
3151 ARMMMUIdxBit_S12NSE0 |
3152 ARMMMUIdxBit_S2NS);
3153 } else {
3154 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3155 ARMMMUIdxBit_S12NSE1 |
3156 ARMMMUIdxBit_S12NSE0);
3160 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3161 uint64_t value)
3163 CPUState *cs = ENV_GET_CPU(env);
3165 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3168 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3169 uint64_t value)
3171 CPUState *cs = ENV_GET_CPU(env);
3173 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3176 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3177 uint64_t value)
3179 /* Invalidate by VA, EL1&0 (AArch64 version).
3180 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3181 * since we don't support flush-for-specific-ASID-only or
3182 * flush-last-level-only.
3184 ARMCPU *cpu = arm_env_get_cpu(env);
3185 CPUState *cs = CPU(cpu);
3186 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3188 if (arm_is_secure_below_el3(env)) {
3189 tlb_flush_page_by_mmuidx(cs, pageaddr,
3190 ARMMMUIdxBit_S1SE1 |
3191 ARMMMUIdxBit_S1SE0);
3192 } else {
3193 tlb_flush_page_by_mmuidx(cs, pageaddr,
3194 ARMMMUIdxBit_S12NSE1 |
3195 ARMMMUIdxBit_S12NSE0);
3199 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200 uint64_t value)
3202 /* Invalidate by VA, EL2
3203 * Currently handles both VAE2 and VALE2, since we don't support
3204 * flush-last-level-only.
3206 ARMCPU *cpu = arm_env_get_cpu(env);
3207 CPUState *cs = CPU(cpu);
3208 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3210 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3213 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3214 uint64_t value)
3216 /* Invalidate by VA, EL3
3217 * Currently handles both VAE3 and VALE3, since we don't support
3218 * flush-last-level-only.
3220 ARMCPU *cpu = arm_env_get_cpu(env);
3221 CPUState *cs = CPU(cpu);
3222 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3224 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3227 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3228 uint64_t value)
3230 ARMCPU *cpu = arm_env_get_cpu(env);
3231 CPUState *cs = CPU(cpu);
3232 bool sec = arm_is_secure_below_el3(env);
3233 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3235 if (sec) {
3236 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3237 ARMMMUIdxBit_S1SE1 |
3238 ARMMMUIdxBit_S1SE0);
3239 } else {
3240 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3241 ARMMMUIdxBit_S12NSE1 |
3242 ARMMMUIdxBit_S12NSE0);
3246 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3247 uint64_t value)
3249 CPUState *cs = ENV_GET_CPU(env);
3250 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3252 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3253 ARMMMUIdxBit_S1E2);
3256 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257 uint64_t value)
3259 CPUState *cs = ENV_GET_CPU(env);
3260 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3262 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3263 ARMMMUIdxBit_S1E3);
3266 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3267 uint64_t value)
3269 /* Invalidate by IPA. This has to invalidate any structures that
3270 * contain only stage 2 translation information, but does not need
3271 * to apply to structures that contain combined stage 1 and stage 2
3272 * translation information.
3273 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3275 ARMCPU *cpu = arm_env_get_cpu(env);
3276 CPUState *cs = CPU(cpu);
3277 uint64_t pageaddr;
3279 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3280 return;
3283 pageaddr = sextract64(value << 12, 0, 48);
3285 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3288 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3289 uint64_t value)
3291 CPUState *cs = ENV_GET_CPU(env);
3292 uint64_t pageaddr;
3294 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3295 return;
3298 pageaddr = sextract64(value << 12, 0, 48);
3300 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3301 ARMMMUIdxBit_S2NS);
3304 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3305 bool isread)
3307 /* We don't implement EL2, so the only control on DC ZVA is the
3308 * bit in the SCTLR which can prohibit access for EL0.
3310 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3311 return CP_ACCESS_TRAP;
3313 return CP_ACCESS_OK;
3316 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3318 ARMCPU *cpu = arm_env_get_cpu(env);
3319 int dzp_bit = 1 << 4;
3321 /* DZP indicates whether DC ZVA access is allowed */
3322 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3323 dzp_bit = 0;
3325 return cpu->dcz_blocksize | dzp_bit;
3328 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3329 bool isread)
3331 if (!(env->pstate & PSTATE_SP)) {
3332 /* Access to SP_EL0 is undefined if it's being used as
3333 * the stack pointer.
3335 return CP_ACCESS_TRAP_UNCATEGORIZED;
3337 return CP_ACCESS_OK;
3340 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3342 return env->pstate & PSTATE_SP;
3345 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3347 update_spsel(env, val);
3350 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3351 uint64_t value)
3353 ARMCPU *cpu = arm_env_get_cpu(env);
3355 if (raw_read(env, ri) == value) {
3356 /* Skip the TLB flush if nothing actually changed; Linux likes
3357 * to do a lot of pointless SCTLR writes.
3359 return;
3362 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3363 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3364 value &= ~SCTLR_M;
3367 raw_write(env, ri, value);
3368 /* ??? Lots of these bits are not implemented. */
3369 /* This may enable/disable the MMU, so do a TLB flush. */
3370 tlb_flush(CPU(cpu));
3373 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3374 bool isread)
3376 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3377 return CP_ACCESS_TRAP_FP_EL2;
3379 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3380 return CP_ACCESS_TRAP_FP_EL3;
3382 return CP_ACCESS_OK;
3385 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3386 uint64_t value)
3388 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3391 static const ARMCPRegInfo v8_cp_reginfo[] = {
3392 /* Minimal set of EL0-visible registers. This will need to be expanded
3393 * significantly for system emulation of AArch64 CPUs.
3395 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3396 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3397 .access = PL0_RW, .type = ARM_CP_NZCV },
3398 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3399 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3400 .type = ARM_CP_NO_RAW,
3401 .access = PL0_RW, .accessfn = aa64_daif_access,
3402 .fieldoffset = offsetof(CPUARMState, daif),
3403 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3404 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3405 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3406 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3407 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3408 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3409 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3410 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3411 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3412 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3413 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3414 .access = PL0_R, .type = ARM_CP_NO_RAW,
3415 .readfn = aa64_dczid_read },
3416 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3417 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3418 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3419 #ifndef CONFIG_USER_ONLY
3420 /* Avoid overhead of an access check that always passes in user-mode */
3421 .accessfn = aa64_zva_access,
3422 #endif
3424 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3426 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3427 /* Cache ops: all NOPs since we don't emulate caches */
3428 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3430 .access = PL1_W, .type = ARM_CP_NOP },
3431 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3432 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3433 .access = PL1_W, .type = ARM_CP_NOP },
3434 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3435 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3436 .access = PL0_W, .type = ARM_CP_NOP,
3437 .accessfn = aa64_cacheop_access },
3438 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3439 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3440 .access = PL1_W, .type = ARM_CP_NOP },
3441 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3443 .access = PL1_W, .type = ARM_CP_NOP },
3444 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3446 .access = PL0_W, .type = ARM_CP_NOP,
3447 .accessfn = aa64_cacheop_access },
3448 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3449 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3450 .access = PL1_W, .type = ARM_CP_NOP },
3451 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3453 .access = PL0_W, .type = ARM_CP_NOP,
3454 .accessfn = aa64_cacheop_access },
3455 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3456 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3457 .access = PL0_W, .type = ARM_CP_NOP,
3458 .accessfn = aa64_cacheop_access },
3459 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3460 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3461 .access = PL1_W, .type = ARM_CP_NOP },
3462 /* TLBI operations */
3463 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3465 .access = PL1_W, .type = ARM_CP_NO_RAW,
3466 .writefn = tlbi_aa64_vmalle1is_write },
3467 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3469 .access = PL1_W, .type = ARM_CP_NO_RAW,
3470 .writefn = tlbi_aa64_vae1is_write },
3471 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3472 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3473 .access = PL1_W, .type = ARM_CP_NO_RAW,
3474 .writefn = tlbi_aa64_vmalle1is_write },
3475 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3476 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3477 .access = PL1_W, .type = ARM_CP_NO_RAW,
3478 .writefn = tlbi_aa64_vae1is_write },
3479 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3480 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3481 .access = PL1_W, .type = ARM_CP_NO_RAW,
3482 .writefn = tlbi_aa64_vae1is_write },
3483 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3485 .access = PL1_W, .type = ARM_CP_NO_RAW,
3486 .writefn = tlbi_aa64_vae1is_write },
3487 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3489 .access = PL1_W, .type = ARM_CP_NO_RAW,
3490 .writefn = tlbi_aa64_vmalle1_write },
3491 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3492 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3493 .access = PL1_W, .type = ARM_CP_NO_RAW,
3494 .writefn = tlbi_aa64_vae1_write },
3495 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3496 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3497 .access = PL1_W, .type = ARM_CP_NO_RAW,
3498 .writefn = tlbi_aa64_vmalle1_write },
3499 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3500 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3501 .access = PL1_W, .type = ARM_CP_NO_RAW,
3502 .writefn = tlbi_aa64_vae1_write },
3503 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3504 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3505 .access = PL1_W, .type = ARM_CP_NO_RAW,
3506 .writefn = tlbi_aa64_vae1_write },
3507 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3508 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3509 .access = PL1_W, .type = ARM_CP_NO_RAW,
3510 .writefn = tlbi_aa64_vae1_write },
3511 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3512 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3513 .access = PL2_W, .type = ARM_CP_NO_RAW,
3514 .writefn = tlbi_aa64_ipas2e1is_write },
3515 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3516 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3517 .access = PL2_W, .type = ARM_CP_NO_RAW,
3518 .writefn = tlbi_aa64_ipas2e1is_write },
3519 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3520 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3521 .access = PL2_W, .type = ARM_CP_NO_RAW,
3522 .writefn = tlbi_aa64_alle1is_write },
3523 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3524 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3525 .access = PL2_W, .type = ARM_CP_NO_RAW,
3526 .writefn = tlbi_aa64_alle1is_write },
3527 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3528 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3529 .access = PL2_W, .type = ARM_CP_NO_RAW,
3530 .writefn = tlbi_aa64_ipas2e1_write },
3531 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3532 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3533 .access = PL2_W, .type = ARM_CP_NO_RAW,
3534 .writefn = tlbi_aa64_ipas2e1_write },
3535 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3536 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3537 .access = PL2_W, .type = ARM_CP_NO_RAW,
3538 .writefn = tlbi_aa64_alle1_write },
3539 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3540 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3541 .access = PL2_W, .type = ARM_CP_NO_RAW,
3542 .writefn = tlbi_aa64_alle1is_write },
3543 #ifndef CONFIG_USER_ONLY
3544 /* 64 bit address translation operations */
3545 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3546 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3547 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3548 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3549 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3550 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3551 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3553 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3554 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3555 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3556 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3557 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3558 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3559 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3560 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3562 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3563 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3564 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3565 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3566 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3567 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3568 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3569 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3570 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3571 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3572 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3573 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3575 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3576 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3577 .type = ARM_CP_ALIAS,
3578 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3579 .access = PL1_RW, .resetvalue = 0,
3580 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3581 .writefn = par_write },
3582 #endif
3583 /* TLB invalidate last level of translation table walk */
3584 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3585 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3586 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3587 .type = ARM_CP_NO_RAW, .access = PL1_W,
3588 .writefn = tlbimvaa_is_write },
3589 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3590 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3591 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3592 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3593 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3594 .type = ARM_CP_NO_RAW, .access = PL2_W,
3595 .writefn = tlbimva_hyp_write },
3596 { .name = "TLBIMVALHIS",
3597 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3598 .type = ARM_CP_NO_RAW, .access = PL2_W,
3599 .writefn = tlbimva_hyp_is_write },
3600 { .name = "TLBIIPAS2",
3601 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3602 .type = ARM_CP_NO_RAW, .access = PL2_W,
3603 .writefn = tlbiipas2_write },
3604 { .name = "TLBIIPAS2IS",
3605 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3606 .type = ARM_CP_NO_RAW, .access = PL2_W,
3607 .writefn = tlbiipas2_is_write },
3608 { .name = "TLBIIPAS2L",
3609 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3610 .type = ARM_CP_NO_RAW, .access = PL2_W,
3611 .writefn = tlbiipas2_write },
3612 { .name = "TLBIIPAS2LIS",
3613 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3614 .type = ARM_CP_NO_RAW, .access = PL2_W,
3615 .writefn = tlbiipas2_is_write },
3616 /* 32 bit cache operations */
3617 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3618 .type = ARM_CP_NOP, .access = PL1_W },
3619 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3620 .type = ARM_CP_NOP, .access = PL1_W },
3621 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3622 .type = ARM_CP_NOP, .access = PL1_W },
3623 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3624 .type = ARM_CP_NOP, .access = PL1_W },
3625 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3626 .type = ARM_CP_NOP, .access = PL1_W },
3627 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3628 .type = ARM_CP_NOP, .access = PL1_W },
3629 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3630 .type = ARM_CP_NOP, .access = PL1_W },
3631 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3632 .type = ARM_CP_NOP, .access = PL1_W },
3633 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3634 .type = ARM_CP_NOP, .access = PL1_W },
3635 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3636 .type = ARM_CP_NOP, .access = PL1_W },
3637 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3638 .type = ARM_CP_NOP, .access = PL1_W },
3639 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3640 .type = ARM_CP_NOP, .access = PL1_W },
3641 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3642 .type = ARM_CP_NOP, .access = PL1_W },
3643 /* MMU Domain access control / MPU write buffer control */
3644 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3645 .access = PL1_RW, .resetvalue = 0,
3646 .writefn = dacr_write, .raw_writefn = raw_write,
3647 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3648 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3649 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3650 .type = ARM_CP_ALIAS,
3651 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3652 .access = PL1_RW,
3653 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3654 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3655 .type = ARM_CP_ALIAS,
3656 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3657 .access = PL1_RW,
3658 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3659 /* We rely on the access checks not allowing the guest to write to the
3660 * state field when SPSel indicates that it's being used as the stack
3661 * pointer.
3663 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3664 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3665 .access = PL1_RW, .accessfn = sp_el0_access,
3666 .type = ARM_CP_ALIAS,
3667 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3668 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3669 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3670 .access = PL2_RW, .type = ARM_CP_ALIAS,
3671 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3672 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3673 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3674 .type = ARM_CP_NO_RAW,
3675 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3676 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3677 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3678 .type = ARM_CP_ALIAS,
3679 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3680 .access = PL2_RW, .accessfn = fpexc32_access },
3681 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3682 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3683 .access = PL2_RW, .resetvalue = 0,
3684 .writefn = dacr_write, .raw_writefn = raw_write,
3685 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3686 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3687 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3688 .access = PL2_RW, .resetvalue = 0,
3689 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3690 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3691 .type = ARM_CP_ALIAS,
3692 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3693 .access = PL2_RW,
3694 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3695 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3696 .type = ARM_CP_ALIAS,
3697 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3698 .access = PL2_RW,
3699 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3700 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3701 .type = ARM_CP_ALIAS,
3702 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3703 .access = PL2_RW,
3704 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3705 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3706 .type = ARM_CP_ALIAS,
3707 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3708 .access = PL2_RW,
3709 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3710 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3711 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3712 .resetvalue = 0,
3713 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3714 { .name = "SDCR", .type = ARM_CP_ALIAS,
3715 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3716 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3717 .writefn = sdcr_write,
3718 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3719 REGINFO_SENTINEL
3722 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3723 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3724 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3725 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3726 .access = PL2_RW,
3727 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3728 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3729 .type = ARM_CP_NO_RAW,
3730 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3731 .access = PL2_RW,
3732 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3733 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3734 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3735 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3736 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3737 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3738 .access = PL2_RW, .type = ARM_CP_CONST,
3739 .resetvalue = 0 },
3740 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3741 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3742 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3743 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3744 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3745 .access = PL2_RW, .type = ARM_CP_CONST,
3746 .resetvalue = 0 },
3747 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3748 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3749 .access = PL2_RW, .type = ARM_CP_CONST,
3750 .resetvalue = 0 },
3751 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3752 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3753 .access = PL2_RW, .type = ARM_CP_CONST,
3754 .resetvalue = 0 },
3755 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3756 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3757 .access = PL2_RW, .type = ARM_CP_CONST,
3758 .resetvalue = 0 },
3759 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3760 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3761 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3762 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3764 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3765 .type = ARM_CP_CONST, .resetvalue = 0 },
3766 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3767 .cp = 15, .opc1 = 6, .crm = 2,
3768 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3769 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3770 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3771 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3772 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3773 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3774 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3775 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3776 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3777 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3778 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3779 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3780 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3781 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3782 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3783 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3784 .resetvalue = 0 },
3785 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3786 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3787 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3788 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3789 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3790 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3791 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3792 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3793 .resetvalue = 0 },
3794 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3795 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3796 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3797 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3798 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3799 .resetvalue = 0 },
3800 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3801 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3802 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3803 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3804 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3805 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3806 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3807 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3808 .access = PL2_RW, .accessfn = access_tda,
3809 .type = ARM_CP_CONST, .resetvalue = 0 },
3810 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3811 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3812 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3813 .type = ARM_CP_CONST, .resetvalue = 0 },
3814 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3815 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3816 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3817 REGINFO_SENTINEL
3820 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3822 ARMCPU *cpu = arm_env_get_cpu(env);
3823 uint64_t valid_mask = HCR_MASK;
3825 if (arm_feature(env, ARM_FEATURE_EL3)) {
3826 valid_mask &= ~HCR_HCD;
3827 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3828 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3829 * However, if we're using the SMC PSCI conduit then QEMU is
3830 * effectively acting like EL3 firmware and so the guest at
3831 * EL2 should retain the ability to prevent EL1 from being
3832 * able to make SMC calls into the ersatz firmware, so in
3833 * that case HCR.TSC should be read/write.
3835 valid_mask &= ~HCR_TSC;
3838 /* Clear RES0 bits. */
3839 value &= valid_mask;
3841 /* These bits change the MMU setup:
3842 * HCR_VM enables stage 2 translation
3843 * HCR_PTW forbids certain page-table setups
3844 * HCR_DC Disables stage1 and enables stage2 translation
3846 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3847 tlb_flush(CPU(cpu));
3849 raw_write(env, ri, value);
3852 static const ARMCPRegInfo el2_cp_reginfo[] = {
3853 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3854 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3855 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3856 .writefn = hcr_write },
3857 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3858 .type = ARM_CP_ALIAS,
3859 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3860 .access = PL2_RW,
3861 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3862 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3863 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3864 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3865 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3866 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3867 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3868 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3869 .type = ARM_CP_ALIAS,
3870 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3871 .access = PL2_RW,
3872 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3873 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3874 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3875 .access = PL2_RW, .writefn = vbar_write,
3876 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3877 .resetvalue = 0 },
3878 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3879 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3880 .access = PL3_RW, .type = ARM_CP_ALIAS,
3881 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3882 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3883 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3884 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3885 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3886 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3887 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3888 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3889 .resetvalue = 0 },
3890 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3891 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3892 .access = PL2_RW, .type = ARM_CP_ALIAS,
3893 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3894 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3895 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3896 .access = PL2_RW, .type = ARM_CP_CONST,
3897 .resetvalue = 0 },
3898 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3899 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3900 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3901 .access = PL2_RW, .type = ARM_CP_CONST,
3902 .resetvalue = 0 },
3903 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3904 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3905 .access = PL2_RW, .type = ARM_CP_CONST,
3906 .resetvalue = 0 },
3907 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3908 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3909 .access = PL2_RW, .type = ARM_CP_CONST,
3910 .resetvalue = 0 },
3911 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3912 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3913 .access = PL2_RW,
3914 /* no .writefn needed as this can't cause an ASID change;
3915 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3917 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3918 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3919 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3920 .type = ARM_CP_ALIAS,
3921 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3922 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3923 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3924 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3925 .access = PL2_RW,
3926 /* no .writefn needed as this can't cause an ASID change;
3927 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3929 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3930 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3931 .cp = 15, .opc1 = 6, .crm = 2,
3932 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3933 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3934 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3935 .writefn = vttbr_write },
3936 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3937 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3938 .access = PL2_RW, .writefn = vttbr_write,
3939 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3940 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3941 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3942 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3943 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3944 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3945 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3946 .access = PL2_RW, .resetvalue = 0,
3947 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3948 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3949 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3950 .access = PL2_RW, .resetvalue = 0,
3951 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3952 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3953 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3954 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3955 { .name = "TLBIALLNSNH",
3956 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3957 .type = ARM_CP_NO_RAW, .access = PL2_W,
3958 .writefn = tlbiall_nsnh_write },
3959 { .name = "TLBIALLNSNHIS",
3960 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3961 .type = ARM_CP_NO_RAW, .access = PL2_W,
3962 .writefn = tlbiall_nsnh_is_write },
3963 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3964 .type = ARM_CP_NO_RAW, .access = PL2_W,
3965 .writefn = tlbiall_hyp_write },
3966 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3967 .type = ARM_CP_NO_RAW, .access = PL2_W,
3968 .writefn = tlbiall_hyp_is_write },
3969 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3970 .type = ARM_CP_NO_RAW, .access = PL2_W,
3971 .writefn = tlbimva_hyp_write },
3972 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3973 .type = ARM_CP_NO_RAW, .access = PL2_W,
3974 .writefn = tlbimva_hyp_is_write },
3975 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3977 .type = ARM_CP_NO_RAW, .access = PL2_W,
3978 .writefn = tlbi_aa64_alle2_write },
3979 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3981 .type = ARM_CP_NO_RAW, .access = PL2_W,
3982 .writefn = tlbi_aa64_vae2_write },
3983 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3985 .access = PL2_W, .type = ARM_CP_NO_RAW,
3986 .writefn = tlbi_aa64_vae2_write },
3987 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3988 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3989 .access = PL2_W, .type = ARM_CP_NO_RAW,
3990 .writefn = tlbi_aa64_alle2is_write },
3991 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3992 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3993 .type = ARM_CP_NO_RAW, .access = PL2_W,
3994 .writefn = tlbi_aa64_vae2is_write },
3995 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3996 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3997 .access = PL2_W, .type = ARM_CP_NO_RAW,
3998 .writefn = tlbi_aa64_vae2is_write },
3999 #ifndef CONFIG_USER_ONLY
4000 /* Unlike the other EL2-related AT operations, these must
4001 * UNDEF from EL3 if EL2 is not implemented, which is why we
4002 * define them here rather than with the rest of the AT ops.
4004 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4005 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4006 .access = PL2_W, .accessfn = at_s1e2_access,
4007 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4008 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4009 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4010 .access = PL2_W, .accessfn = at_s1e2_access,
4011 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4012 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4013 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4014 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4015 * to behave as if SCR.NS was 1.
4017 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4018 .access = PL2_W,
4019 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4020 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4021 .access = PL2_W,
4022 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4023 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4024 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4025 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4026 * reset values as IMPDEF. We choose to reset to 3 to comply with
4027 * both ARMv7 and ARMv8.
4029 .access = PL2_RW, .resetvalue = 3,
4030 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4031 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4032 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4033 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4034 .writefn = gt_cntvoff_write,
4035 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4036 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4037 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4038 .writefn = gt_cntvoff_write,
4039 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4040 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4041 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4042 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4043 .type = ARM_CP_IO, .access = PL2_RW,
4044 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4045 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4047 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4048 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4049 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4050 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4051 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4052 .resetfn = gt_hyp_timer_reset,
4053 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4054 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4055 .type = ARM_CP_IO,
4056 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4057 .access = PL2_RW,
4058 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4059 .resetvalue = 0,
4060 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4061 #endif
4062 /* The only field of MDCR_EL2 that has a defined architectural reset value
4063 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4064 * don't impelment any PMU event counters, so using zero as a reset
4065 * value for MDCR_EL2 is okay
4067 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4068 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4069 .access = PL2_RW, .resetvalue = 0,
4070 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4071 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4072 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4073 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4074 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4075 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4076 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4077 .access = PL2_RW,
4078 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4079 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4080 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4081 .access = PL2_RW,
4082 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4083 REGINFO_SENTINEL
4086 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4087 bool isread)
4089 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4090 * At Secure EL1 it traps to EL3.
4092 if (arm_current_el(env) == 3) {
4093 return CP_ACCESS_OK;
4095 if (arm_is_secure_below_el3(env)) {
4096 return CP_ACCESS_TRAP_EL3;
4098 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4099 if (isread) {
4100 return CP_ACCESS_OK;
4102 return CP_ACCESS_TRAP_UNCATEGORIZED;
4105 static const ARMCPRegInfo el3_cp_reginfo[] = {
4106 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4107 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4108 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4109 .resetvalue = 0, .writefn = scr_write },
4110 { .name = "SCR", .type = ARM_CP_ALIAS,
4111 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4112 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4113 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4114 .writefn = scr_write },
4115 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4116 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4117 .access = PL3_RW, .resetvalue = 0,
4118 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4119 { .name = "SDER",
4120 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4121 .access = PL3_RW, .resetvalue = 0,
4122 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4123 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4124 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4125 .writefn = vbar_write, .resetvalue = 0,
4126 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4127 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4128 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4129 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4130 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4131 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4132 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4133 .access = PL3_RW,
4134 /* no .writefn needed as this can't cause an ASID change;
4135 * we must provide a .raw_writefn and .resetfn because we handle
4136 * reset and migration for the AArch32 TTBCR(S), which might be
4137 * using mask and base_mask.
4139 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4140 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4141 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4142 .type = ARM_CP_ALIAS,
4143 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4144 .access = PL3_RW,
4145 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4146 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4147 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4148 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4149 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4151 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4152 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4153 .type = ARM_CP_ALIAS,
4154 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4155 .access = PL3_RW,
4156 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4157 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4159 .access = PL3_RW, .writefn = vbar_write,
4160 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4161 .resetvalue = 0 },
4162 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4163 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4164 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4165 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4166 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4167 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4168 .access = PL3_RW, .resetvalue = 0,
4169 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4170 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4171 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4172 .access = PL3_RW, .type = ARM_CP_CONST,
4173 .resetvalue = 0 },
4174 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4175 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4176 .access = PL3_RW, .type = ARM_CP_CONST,
4177 .resetvalue = 0 },
4178 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4179 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4180 .access = PL3_RW, .type = ARM_CP_CONST,
4181 .resetvalue = 0 },
4182 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4183 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4184 .access = PL3_W, .type = ARM_CP_NO_RAW,
4185 .writefn = tlbi_aa64_alle3is_write },
4186 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4187 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4188 .access = PL3_W, .type = ARM_CP_NO_RAW,
4189 .writefn = tlbi_aa64_vae3is_write },
4190 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4191 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4192 .access = PL3_W, .type = ARM_CP_NO_RAW,
4193 .writefn = tlbi_aa64_vae3is_write },
4194 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4195 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4196 .access = PL3_W, .type = ARM_CP_NO_RAW,
4197 .writefn = tlbi_aa64_alle3_write },
4198 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4199 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4200 .access = PL3_W, .type = ARM_CP_NO_RAW,
4201 .writefn = tlbi_aa64_vae3_write },
4202 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4203 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4204 .access = PL3_W, .type = ARM_CP_NO_RAW,
4205 .writefn = tlbi_aa64_vae3_write },
4206 REGINFO_SENTINEL
4209 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4210 bool isread)
4212 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4213 * but the AArch32 CTR has its own reginfo struct)
4215 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4216 return CP_ACCESS_TRAP;
4218 return CP_ACCESS_OK;
4221 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4222 uint64_t value)
4224 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4225 * read via a bit in OSLSR_EL1.
4227 int oslock;
4229 if (ri->state == ARM_CP_STATE_AA32) {
4230 oslock = (value == 0xC5ACCE55);
4231 } else {
4232 oslock = value & 1;
4235 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4238 static const ARMCPRegInfo debug_cp_reginfo[] = {
4239 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4240 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4241 * unlike DBGDRAR it is never accessible from EL0.
4242 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4243 * accessor.
4245 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4246 .access = PL0_R, .accessfn = access_tdra,
4247 .type = ARM_CP_CONST, .resetvalue = 0 },
4248 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4250 .access = PL1_R, .accessfn = access_tdra,
4251 .type = ARM_CP_CONST, .resetvalue = 0 },
4252 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4253 .access = PL0_R, .accessfn = access_tdra,
4254 .type = ARM_CP_CONST, .resetvalue = 0 },
4255 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4256 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4257 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4258 .access = PL1_RW, .accessfn = access_tda,
4259 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4260 .resetvalue = 0 },
4261 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4262 * We don't implement the configurable EL0 access.
4264 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4265 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4266 .type = ARM_CP_ALIAS,
4267 .access = PL1_R, .accessfn = access_tda,
4268 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4269 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4270 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4271 .access = PL1_W, .type = ARM_CP_NO_RAW,
4272 .accessfn = access_tdosa,
4273 .writefn = oslar_write },
4274 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4275 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4276 .access = PL1_R, .resetvalue = 10,
4277 .accessfn = access_tdosa,
4278 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4279 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4280 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4281 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4282 .access = PL1_RW, .accessfn = access_tdosa,
4283 .type = ARM_CP_NOP },
4284 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4285 * implement vector catch debug events yet.
4287 { .name = "DBGVCR",
4288 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4289 .access = PL1_RW, .accessfn = access_tda,
4290 .type = ARM_CP_NOP },
4291 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4292 * to save and restore a 32-bit guest's DBGVCR)
4294 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4296 .access = PL2_RW, .accessfn = access_tda,
4297 .type = ARM_CP_NOP },
4298 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4299 * Channel but Linux may try to access this register. The 32-bit
4300 * alias is DBGDCCINT.
4302 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4303 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4304 .access = PL1_RW, .accessfn = access_tda,
4305 .type = ARM_CP_NOP },
4306 REGINFO_SENTINEL
4309 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4310 /* 64 bit access versions of the (dummy) debug registers */
4311 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4312 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4313 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4314 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4315 REGINFO_SENTINEL
4318 /* Return the exception level to which SVE-disabled exceptions should
4319 * be taken, or 0 if SVE is enabled.
4321 static int sve_exception_el(CPUARMState *env)
4323 #ifndef CONFIG_USER_ONLY
4324 unsigned current_el = arm_current_el(env);
4326 /* The CPACR.ZEN controls traps to EL1:
4327 * 0, 2 : trap EL0 and EL1 accesses
4328 * 1 : trap only EL0 accesses
4329 * 3 : trap no accesses
4331 switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4332 default:
4333 if (current_el <= 1) {
4334 /* Trap to PL1, which might be EL1 or EL3 */
4335 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4336 return 3;
4338 return 1;
4340 break;
4341 case 1:
4342 if (current_el == 0) {
4343 return 1;
4345 break;
4346 case 3:
4347 break;
4350 /* Similarly for CPACR.FPEN, after having checked ZEN. */
4351 switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4352 default:
4353 if (current_el <= 1) {
4354 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4355 return 3;
4357 return 1;
4359 break;
4360 case 1:
4361 if (current_el == 0) {
4362 return 1;
4364 break;
4365 case 3:
4366 break;
4369 /* CPTR_EL2. Check both TZ and TFP. */
4370 if (current_el <= 2
4371 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4372 && !arm_is_secure_below_el3(env)) {
4373 return 2;
4376 /* CPTR_EL3. Check both EZ and TFP. */
4377 if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4378 || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4379 return 3;
4381 #endif
4382 return 0;
4385 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4386 uint64_t value)
4388 /* Bits other than [3:0] are RAZ/WI. */
4389 raw_write(env, ri, value & 0xf);
4392 static const ARMCPRegInfo zcr_el1_reginfo = {
4393 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4394 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4395 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4396 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4397 .writefn = zcr_write, .raw_writefn = raw_write
4400 static const ARMCPRegInfo zcr_el2_reginfo = {
4401 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4402 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4403 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4404 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4405 .writefn = zcr_write, .raw_writefn = raw_write
4408 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4409 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4410 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4411 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4412 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4415 static const ARMCPRegInfo zcr_el3_reginfo = {
4416 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4417 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4418 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4419 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4420 .writefn = zcr_write, .raw_writefn = raw_write
4423 void hw_watchpoint_update(ARMCPU *cpu, int n)
4425 CPUARMState *env = &cpu->env;
4426 vaddr len = 0;
4427 vaddr wvr = env->cp15.dbgwvr[n];
4428 uint64_t wcr = env->cp15.dbgwcr[n];
4429 int mask;
4430 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4432 if (env->cpu_watchpoint[n]) {
4433 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4434 env->cpu_watchpoint[n] = NULL;
4437 if (!extract64(wcr, 0, 1)) {
4438 /* E bit clear : watchpoint disabled */
4439 return;
4442 switch (extract64(wcr, 3, 2)) {
4443 case 0:
4444 /* LSC 00 is reserved and must behave as if the wp is disabled */
4445 return;
4446 case 1:
4447 flags |= BP_MEM_READ;
4448 break;
4449 case 2:
4450 flags |= BP_MEM_WRITE;
4451 break;
4452 case 3:
4453 flags |= BP_MEM_ACCESS;
4454 break;
4457 /* Attempts to use both MASK and BAS fields simultaneously are
4458 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4459 * thus generating a watchpoint for every byte in the masked region.
4461 mask = extract64(wcr, 24, 4);
4462 if (mask == 1 || mask == 2) {
4463 /* Reserved values of MASK; we must act as if the mask value was
4464 * some non-reserved value, or as if the watchpoint were disabled.
4465 * We choose the latter.
4467 return;
4468 } else if (mask) {
4469 /* Watchpoint covers an aligned area up to 2GB in size */
4470 len = 1ULL << mask;
4471 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4472 * whether the watchpoint fires when the unmasked bits match; we opt
4473 * to generate the exceptions.
4475 wvr &= ~(len - 1);
4476 } else {
4477 /* Watchpoint covers bytes defined by the byte address select bits */
4478 int bas = extract64(wcr, 5, 8);
4479 int basstart;
4481 if (bas == 0) {
4482 /* This must act as if the watchpoint is disabled */
4483 return;
4486 if (extract64(wvr, 2, 1)) {
4487 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4488 * ignored, and BAS[3:0] define which bytes to watch.
4490 bas &= 0xf;
4492 /* The BAS bits are supposed to be programmed to indicate a contiguous
4493 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4494 * we fire for each byte in the word/doubleword addressed by the WVR.
4495 * We choose to ignore any non-zero bits after the first range of 1s.
4497 basstart = ctz32(bas);
4498 len = cto32(bas >> basstart);
4499 wvr += basstart;
4502 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4503 &env->cpu_watchpoint[n]);
4506 void hw_watchpoint_update_all(ARMCPU *cpu)
4508 int i;
4509 CPUARMState *env = &cpu->env;
4511 /* Completely clear out existing QEMU watchpoints and our array, to
4512 * avoid possible stale entries following migration load.
4514 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4515 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4517 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4518 hw_watchpoint_update(cpu, i);
4522 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523 uint64_t value)
4525 ARMCPU *cpu = arm_env_get_cpu(env);
4526 int i = ri->crm;
4528 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4529 * register reads and behaves as if values written are sign extended.
4530 * Bits [1:0] are RES0.
4532 value = sextract64(value, 0, 49) & ~3ULL;
4534 raw_write(env, ri, value);
4535 hw_watchpoint_update(cpu, i);
4538 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4539 uint64_t value)
4541 ARMCPU *cpu = arm_env_get_cpu(env);
4542 int i = ri->crm;
4544 raw_write(env, ri, value);
4545 hw_watchpoint_update(cpu, i);
4548 void hw_breakpoint_update(ARMCPU *cpu, int n)
4550 CPUARMState *env = &cpu->env;
4551 uint64_t bvr = env->cp15.dbgbvr[n];
4552 uint64_t bcr = env->cp15.dbgbcr[n];
4553 vaddr addr;
4554 int bt;
4555 int flags = BP_CPU;
4557 if (env->cpu_breakpoint[n]) {
4558 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4559 env->cpu_breakpoint[n] = NULL;
4562 if (!extract64(bcr, 0, 1)) {
4563 /* E bit clear : watchpoint disabled */
4564 return;
4567 bt = extract64(bcr, 20, 4);
4569 switch (bt) {
4570 case 4: /* unlinked address mismatch (reserved if AArch64) */
4571 case 5: /* linked address mismatch (reserved if AArch64) */
4572 qemu_log_mask(LOG_UNIMP,
4573 "arm: address mismatch breakpoint types not implemented\n");
4574 return;
4575 case 0: /* unlinked address match */
4576 case 1: /* linked address match */
4578 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4579 * we behave as if the register was sign extended. Bits [1:0] are
4580 * RES0. The BAS field is used to allow setting breakpoints on 16
4581 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4582 * a bp will fire if the addresses covered by the bp and the addresses
4583 * covered by the insn overlap but the insn doesn't start at the
4584 * start of the bp address range. We choose to require the insn and
4585 * the bp to have the same address. The constraints on writing to
4586 * BAS enforced in dbgbcr_write mean we have only four cases:
4587 * 0b0000 => no breakpoint
4588 * 0b0011 => breakpoint on addr
4589 * 0b1100 => breakpoint on addr + 2
4590 * 0b1111 => breakpoint on addr
4591 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4593 int bas = extract64(bcr, 5, 4);
4594 addr = sextract64(bvr, 0, 49) & ~3ULL;
4595 if (bas == 0) {
4596 return;
4598 if (bas == 0xc) {
4599 addr += 2;
4601 break;
4603 case 2: /* unlinked context ID match */
4604 case 8: /* unlinked VMID match (reserved if no EL2) */
4605 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4606 qemu_log_mask(LOG_UNIMP,
4607 "arm: unlinked context breakpoint types not implemented\n");
4608 return;
4609 case 9: /* linked VMID match (reserved if no EL2) */
4610 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4611 case 3: /* linked context ID match */
4612 default:
4613 /* We must generate no events for Linked context matches (unless
4614 * they are linked to by some other bp/wp, which is handled in
4615 * updates for the linking bp/wp). We choose to also generate no events
4616 * for reserved values.
4618 return;
4621 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4624 void hw_breakpoint_update_all(ARMCPU *cpu)
4626 int i;
4627 CPUARMState *env = &cpu->env;
4629 /* Completely clear out existing QEMU breakpoints and our array, to
4630 * avoid possible stale entries following migration load.
4632 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4633 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4635 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4636 hw_breakpoint_update(cpu, i);
4640 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4641 uint64_t value)
4643 ARMCPU *cpu = arm_env_get_cpu(env);
4644 int i = ri->crm;
4646 raw_write(env, ri, value);
4647 hw_breakpoint_update(cpu, i);
4650 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4651 uint64_t value)
4653 ARMCPU *cpu = arm_env_get_cpu(env);
4654 int i = ri->crm;
4656 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4657 * copy of BAS[0].
4659 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4660 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4662 raw_write(env, ri, value);
4663 hw_breakpoint_update(cpu, i);
4666 static void define_debug_regs(ARMCPU *cpu)
4668 /* Define v7 and v8 architectural debug registers.
4669 * These are just dummy implementations for now.
4671 int i;
4672 int wrps, brps, ctx_cmps;
4673 ARMCPRegInfo dbgdidr = {
4674 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4675 .access = PL0_R, .accessfn = access_tda,
4676 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4679 /* Note that all these register fields hold "number of Xs minus 1". */
4680 brps = extract32(cpu->dbgdidr, 24, 4);
4681 wrps = extract32(cpu->dbgdidr, 28, 4);
4682 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4684 assert(ctx_cmps <= brps);
4686 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4687 * of the debug registers such as number of breakpoints;
4688 * check that if they both exist then they agree.
4690 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4691 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4692 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4693 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4696 define_one_arm_cp_reg(cpu, &dbgdidr);
4697 define_arm_cp_regs(cpu, debug_cp_reginfo);
4699 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4700 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4703 for (i = 0; i < brps + 1; i++) {
4704 ARMCPRegInfo dbgregs[] = {
4705 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4706 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4707 .access = PL1_RW, .accessfn = access_tda,
4708 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4709 .writefn = dbgbvr_write, .raw_writefn = raw_write
4711 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4712 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4713 .access = PL1_RW, .accessfn = access_tda,
4714 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4715 .writefn = dbgbcr_write, .raw_writefn = raw_write
4717 REGINFO_SENTINEL
4719 define_arm_cp_regs(cpu, dbgregs);
4722 for (i = 0; i < wrps + 1; i++) {
4723 ARMCPRegInfo dbgregs[] = {
4724 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4725 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4726 .access = PL1_RW, .accessfn = access_tda,
4727 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4728 .writefn = dbgwvr_write, .raw_writefn = raw_write
4730 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4731 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4732 .access = PL1_RW, .accessfn = access_tda,
4733 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4734 .writefn = dbgwcr_write, .raw_writefn = raw_write
4736 REGINFO_SENTINEL
4738 define_arm_cp_regs(cpu, dbgregs);
4742 /* We don't know until after realize whether there's a GICv3
4743 * attached, and that is what registers the gicv3 sysregs.
4744 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4745 * at runtime.
4747 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4749 ARMCPU *cpu = arm_env_get_cpu(env);
4750 uint64_t pfr1 = cpu->id_pfr1;
4752 if (env->gicv3state) {
4753 pfr1 |= 1 << 28;
4755 return pfr1;
4758 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4760 ARMCPU *cpu = arm_env_get_cpu(env);
4761 uint64_t pfr0 = cpu->id_aa64pfr0;
4763 if (env->gicv3state) {
4764 pfr0 |= 1 << 24;
4766 return pfr0;
4769 void register_cp_regs_for_features(ARMCPU *cpu)
4771 /* Register all the coprocessor registers based on feature bits */
4772 CPUARMState *env = &cpu->env;
4773 if (arm_feature(env, ARM_FEATURE_M)) {
4774 /* M profile has no coprocessor registers */
4775 return;
4778 define_arm_cp_regs(cpu, cp_reginfo);
4779 if (!arm_feature(env, ARM_FEATURE_V8)) {
4780 /* Must go early as it is full of wildcards that may be
4781 * overridden by later definitions.
4783 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4786 if (arm_feature(env, ARM_FEATURE_V6)) {
4787 /* The ID registers all have impdef reset values */
4788 ARMCPRegInfo v6_idregs[] = {
4789 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4791 .access = PL1_R, .type = ARM_CP_CONST,
4792 .resetvalue = cpu->id_pfr0 },
4793 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4794 * the value of the GIC field until after we define these regs.
4796 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4798 .access = PL1_R, .type = ARM_CP_NO_RAW,
4799 .readfn = id_pfr1_read,
4800 .writefn = arm_cp_write_ignore },
4801 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4803 .access = PL1_R, .type = ARM_CP_CONST,
4804 .resetvalue = cpu->id_dfr0 },
4805 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4807 .access = PL1_R, .type = ARM_CP_CONST,
4808 .resetvalue = cpu->id_afr0 },
4809 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4811 .access = PL1_R, .type = ARM_CP_CONST,
4812 .resetvalue = cpu->id_mmfr0 },
4813 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4815 .access = PL1_R, .type = ARM_CP_CONST,
4816 .resetvalue = cpu->id_mmfr1 },
4817 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4819 .access = PL1_R, .type = ARM_CP_CONST,
4820 .resetvalue = cpu->id_mmfr2 },
4821 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4823 .access = PL1_R, .type = ARM_CP_CONST,
4824 .resetvalue = cpu->id_mmfr3 },
4825 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4827 .access = PL1_R, .type = ARM_CP_CONST,
4828 .resetvalue = cpu->id_isar0 },
4829 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4831 .access = PL1_R, .type = ARM_CP_CONST,
4832 .resetvalue = cpu->id_isar1 },
4833 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4835 .access = PL1_R, .type = ARM_CP_CONST,
4836 .resetvalue = cpu->id_isar2 },
4837 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4839 .access = PL1_R, .type = ARM_CP_CONST,
4840 .resetvalue = cpu->id_isar3 },
4841 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4843 .access = PL1_R, .type = ARM_CP_CONST,
4844 .resetvalue = cpu->id_isar4 },
4845 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4847 .access = PL1_R, .type = ARM_CP_CONST,
4848 .resetvalue = cpu->id_isar5 },
4849 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4851 .access = PL1_R, .type = ARM_CP_CONST,
4852 .resetvalue = cpu->id_mmfr4 },
4853 /* 7 is as yet unallocated and must RAZ */
4854 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4856 .access = PL1_R, .type = ARM_CP_CONST,
4857 .resetvalue = 0 },
4858 REGINFO_SENTINEL
4860 define_arm_cp_regs(cpu, v6_idregs);
4861 define_arm_cp_regs(cpu, v6_cp_reginfo);
4862 } else {
4863 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4865 if (arm_feature(env, ARM_FEATURE_V6K)) {
4866 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4868 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4869 !arm_feature(env, ARM_FEATURE_PMSA)) {
4870 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4872 if (arm_feature(env, ARM_FEATURE_V7)) {
4873 /* v7 performance monitor control register: same implementor
4874 * field as main ID register, and we implement only the cycle
4875 * count register.
4877 #ifndef CONFIG_USER_ONLY
4878 ARMCPRegInfo pmcr = {
4879 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4880 .access = PL0_RW,
4881 .type = ARM_CP_IO | ARM_CP_ALIAS,
4882 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4883 .accessfn = pmreg_access, .writefn = pmcr_write,
4884 .raw_writefn = raw_write,
4886 ARMCPRegInfo pmcr64 = {
4887 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4889 .access = PL0_RW, .accessfn = pmreg_access,
4890 .type = ARM_CP_IO,
4891 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4892 .resetvalue = cpu->midr & 0xff000000,
4893 .writefn = pmcr_write, .raw_writefn = raw_write,
4895 define_one_arm_cp_reg(cpu, &pmcr);
4896 define_one_arm_cp_reg(cpu, &pmcr64);
4897 #endif
4898 ARMCPRegInfo clidr = {
4899 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4900 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4901 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4903 define_one_arm_cp_reg(cpu, &clidr);
4904 define_arm_cp_regs(cpu, v7_cp_reginfo);
4905 define_debug_regs(cpu);
4906 } else {
4907 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4909 if (arm_feature(env, ARM_FEATURE_V8)) {
4910 /* AArch64 ID registers, which all have impdef reset values.
4911 * Note that within the ID register ranges the unused slots
4912 * must all RAZ, not UNDEF; future architecture versions may
4913 * define new registers here.
4915 ARMCPRegInfo v8_idregs[] = {
4916 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4917 * know the right value for the GIC field until after we
4918 * define these regs.
4920 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4922 .access = PL1_R, .type = ARM_CP_NO_RAW,
4923 .readfn = id_aa64pfr0_read,
4924 .writefn = arm_cp_write_ignore },
4925 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4927 .access = PL1_R, .type = ARM_CP_CONST,
4928 .resetvalue = cpu->id_aa64pfr1},
4929 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4931 .access = PL1_R, .type = ARM_CP_CONST,
4932 .resetvalue = 0 },
4933 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4935 .access = PL1_R, .type = ARM_CP_CONST,
4936 .resetvalue = 0 },
4937 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4939 .access = PL1_R, .type = ARM_CP_CONST,
4940 .resetvalue = 0 },
4941 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4943 .access = PL1_R, .type = ARM_CP_CONST,
4944 .resetvalue = 0 },
4945 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4947 .access = PL1_R, .type = ARM_CP_CONST,
4948 .resetvalue = 0 },
4949 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4951 .access = PL1_R, .type = ARM_CP_CONST,
4952 .resetvalue = 0 },
4953 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4955 .access = PL1_R, .type = ARM_CP_CONST,
4956 .resetvalue = cpu->id_aa64dfr0 },
4957 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4959 .access = PL1_R, .type = ARM_CP_CONST,
4960 .resetvalue = cpu->id_aa64dfr1 },
4961 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4963 .access = PL1_R, .type = ARM_CP_CONST,
4964 .resetvalue = 0 },
4965 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4967 .access = PL1_R, .type = ARM_CP_CONST,
4968 .resetvalue = 0 },
4969 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4971 .access = PL1_R, .type = ARM_CP_CONST,
4972 .resetvalue = cpu->id_aa64afr0 },
4973 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4975 .access = PL1_R, .type = ARM_CP_CONST,
4976 .resetvalue = cpu->id_aa64afr1 },
4977 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4979 .access = PL1_R, .type = ARM_CP_CONST,
4980 .resetvalue = 0 },
4981 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4983 .access = PL1_R, .type = ARM_CP_CONST,
4984 .resetvalue = 0 },
4985 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4987 .access = PL1_R, .type = ARM_CP_CONST,
4988 .resetvalue = cpu->id_aa64isar0 },
4989 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4991 .access = PL1_R, .type = ARM_CP_CONST,
4992 .resetvalue = cpu->id_aa64isar1 },
4993 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4995 .access = PL1_R, .type = ARM_CP_CONST,
4996 .resetvalue = 0 },
4997 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4999 .access = PL1_R, .type = ARM_CP_CONST,
5000 .resetvalue = 0 },
5001 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5003 .access = PL1_R, .type = ARM_CP_CONST,
5004 .resetvalue = 0 },
5005 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5007 .access = PL1_R, .type = ARM_CP_CONST,
5008 .resetvalue = 0 },
5009 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5011 .access = PL1_R, .type = ARM_CP_CONST,
5012 .resetvalue = 0 },
5013 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5015 .access = PL1_R, .type = ARM_CP_CONST,
5016 .resetvalue = 0 },
5017 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5019 .access = PL1_R, .type = ARM_CP_CONST,
5020 .resetvalue = cpu->id_aa64mmfr0 },
5021 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5023 .access = PL1_R, .type = ARM_CP_CONST,
5024 .resetvalue = cpu->id_aa64mmfr1 },
5025 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5027 .access = PL1_R, .type = ARM_CP_CONST,
5028 .resetvalue = 0 },
5029 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5031 .access = PL1_R, .type = ARM_CP_CONST,
5032 .resetvalue = 0 },
5033 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5035 .access = PL1_R, .type = ARM_CP_CONST,
5036 .resetvalue = 0 },
5037 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5039 .access = PL1_R, .type = ARM_CP_CONST,
5040 .resetvalue = 0 },
5041 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5043 .access = PL1_R, .type = ARM_CP_CONST,
5044 .resetvalue = 0 },
5045 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5047 .access = PL1_R, .type = ARM_CP_CONST,
5048 .resetvalue = 0 },
5049 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5051 .access = PL1_R, .type = ARM_CP_CONST,
5052 .resetvalue = cpu->mvfr0 },
5053 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5055 .access = PL1_R, .type = ARM_CP_CONST,
5056 .resetvalue = cpu->mvfr1 },
5057 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5059 .access = PL1_R, .type = ARM_CP_CONST,
5060 .resetvalue = cpu->mvfr2 },
5061 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5063 .access = PL1_R, .type = ARM_CP_CONST,
5064 .resetvalue = 0 },
5065 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5067 .access = PL1_R, .type = ARM_CP_CONST,
5068 .resetvalue = 0 },
5069 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5071 .access = PL1_R, .type = ARM_CP_CONST,
5072 .resetvalue = 0 },
5073 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5075 .access = PL1_R, .type = ARM_CP_CONST,
5076 .resetvalue = 0 },
5077 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5079 .access = PL1_R, .type = ARM_CP_CONST,
5080 .resetvalue = 0 },
5081 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5082 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5083 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5084 .resetvalue = cpu->pmceid0 },
5085 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5087 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5088 .resetvalue = cpu->pmceid0 },
5089 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5090 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5091 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5092 .resetvalue = cpu->pmceid1 },
5093 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5095 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5096 .resetvalue = cpu->pmceid1 },
5097 REGINFO_SENTINEL
5099 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5100 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5101 !arm_feature(env, ARM_FEATURE_EL2)) {
5102 ARMCPRegInfo rvbar = {
5103 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5104 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5105 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5107 define_one_arm_cp_reg(cpu, &rvbar);
5109 define_arm_cp_regs(cpu, v8_idregs);
5110 define_arm_cp_regs(cpu, v8_cp_reginfo);
5112 if (arm_feature(env, ARM_FEATURE_EL2)) {
5113 uint64_t vmpidr_def = mpidr_read_val(env);
5114 ARMCPRegInfo vpidr_regs[] = {
5115 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5116 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5117 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5118 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5119 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5120 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5121 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5122 .access = PL2_RW, .resetvalue = cpu->midr,
5123 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5124 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5125 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5126 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5127 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5128 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5129 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5130 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5131 .access = PL2_RW,
5132 .resetvalue = vmpidr_def,
5133 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5134 REGINFO_SENTINEL
5136 define_arm_cp_regs(cpu, vpidr_regs);
5137 define_arm_cp_regs(cpu, el2_cp_reginfo);
5138 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5139 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5140 ARMCPRegInfo rvbar = {
5141 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5142 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5143 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5145 define_one_arm_cp_reg(cpu, &rvbar);
5147 } else {
5148 /* If EL2 is missing but higher ELs are enabled, we need to
5149 * register the no_el2 reginfos.
5151 if (arm_feature(env, ARM_FEATURE_EL3)) {
5152 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5153 * of MIDR_EL1 and MPIDR_EL1.
5155 ARMCPRegInfo vpidr_regs[] = {
5156 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5157 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5158 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5159 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5160 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5161 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5162 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5163 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5164 .type = ARM_CP_NO_RAW,
5165 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5166 REGINFO_SENTINEL
5168 define_arm_cp_regs(cpu, vpidr_regs);
5169 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5172 if (arm_feature(env, ARM_FEATURE_EL3)) {
5173 define_arm_cp_regs(cpu, el3_cp_reginfo);
5174 ARMCPRegInfo el3_regs[] = {
5175 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5176 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5177 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5178 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5179 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5180 .access = PL3_RW,
5181 .raw_writefn = raw_write, .writefn = sctlr_write,
5182 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5183 .resetvalue = cpu->reset_sctlr },
5184 REGINFO_SENTINEL
5187 define_arm_cp_regs(cpu, el3_regs);
5189 /* The behaviour of NSACR is sufficiently various that we don't
5190 * try to describe it in a single reginfo:
5191 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5192 * reads as constant 0xc00 from NS EL1 and NS EL2
5193 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5194 * if v7 without EL3, register doesn't exist
5195 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5197 if (arm_feature(env, ARM_FEATURE_EL3)) {
5198 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5199 ARMCPRegInfo nsacr = {
5200 .name = "NSACR", .type = ARM_CP_CONST,
5201 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5202 .access = PL1_RW, .accessfn = nsacr_access,
5203 .resetvalue = 0xc00
5205 define_one_arm_cp_reg(cpu, &nsacr);
5206 } else {
5207 ARMCPRegInfo nsacr = {
5208 .name = "NSACR",
5209 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5210 .access = PL3_RW | PL1_R,
5211 .resetvalue = 0,
5212 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5214 define_one_arm_cp_reg(cpu, &nsacr);
5216 } else {
5217 if (arm_feature(env, ARM_FEATURE_V8)) {
5218 ARMCPRegInfo nsacr = {
5219 .name = "NSACR", .type = ARM_CP_CONST,
5220 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5221 .access = PL1_R,
5222 .resetvalue = 0xc00
5224 define_one_arm_cp_reg(cpu, &nsacr);
5228 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5229 if (arm_feature(env, ARM_FEATURE_V6)) {
5230 /* PMSAv6 not implemented */
5231 assert(arm_feature(env, ARM_FEATURE_V7));
5232 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5233 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5234 } else {
5235 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5237 } else {
5238 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5239 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5241 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5242 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5244 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5245 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5247 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5248 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5250 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5251 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5253 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5254 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5256 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5257 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5259 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5260 define_arm_cp_regs(cpu, omap_cp_reginfo);
5262 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5263 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5265 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5266 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5268 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5269 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5271 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5272 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5274 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5275 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5276 * be read-only (ie write causes UNDEF exception).
5279 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5280 /* Pre-v8 MIDR space.
5281 * Note that the MIDR isn't a simple constant register because
5282 * of the TI925 behaviour where writes to another register can
5283 * cause the MIDR value to change.
5285 * Unimplemented registers in the c15 0 0 0 space default to
5286 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5287 * and friends override accordingly.
5289 { .name = "MIDR",
5290 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5291 .access = PL1_R, .resetvalue = cpu->midr,
5292 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5293 .readfn = midr_read,
5294 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5295 .type = ARM_CP_OVERRIDE },
5296 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5297 { .name = "DUMMY",
5298 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5299 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5300 { .name = "DUMMY",
5301 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5302 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5303 { .name = "DUMMY",
5304 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5305 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5306 { .name = "DUMMY",
5307 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5308 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5309 { .name = "DUMMY",
5310 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5311 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5312 REGINFO_SENTINEL
5314 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5315 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5317 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5318 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5319 .readfn = midr_read },
5320 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5321 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5322 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5323 .access = PL1_R, .resetvalue = cpu->midr },
5324 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5325 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5326 .access = PL1_R, .resetvalue = cpu->midr },
5327 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5329 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5330 REGINFO_SENTINEL
5332 ARMCPRegInfo id_cp_reginfo[] = {
5333 /* These are common to v8 and pre-v8 */
5334 { .name = "CTR",
5335 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5337 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5338 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5339 .access = PL0_R, .accessfn = ctr_el0_access,
5340 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5341 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5342 { .name = "TCMTR",
5343 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5344 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5345 REGINFO_SENTINEL
5347 /* TLBTR is specific to VMSA */
5348 ARMCPRegInfo id_tlbtr_reginfo = {
5349 .name = "TLBTR",
5350 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5351 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5353 /* MPUIR is specific to PMSA V6+ */
5354 ARMCPRegInfo id_mpuir_reginfo = {
5355 .name = "MPUIR",
5356 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5357 .access = PL1_R, .type = ARM_CP_CONST,
5358 .resetvalue = cpu->pmsav7_dregion << 8
5360 ARMCPRegInfo crn0_wi_reginfo = {
5361 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5362 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5363 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5365 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5366 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5367 ARMCPRegInfo *r;
5368 /* Register the blanket "writes ignored" value first to cover the
5369 * whole space. Then update the specific ID registers to allow write
5370 * access, so that they ignore writes rather than causing them to
5371 * UNDEF.
5373 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5374 for (r = id_pre_v8_midr_cp_reginfo;
5375 r->type != ARM_CP_SENTINEL; r++) {
5376 r->access = PL1_RW;
5378 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5379 r->access = PL1_RW;
5381 id_mpuir_reginfo.access = PL1_RW;
5382 id_tlbtr_reginfo.access = PL1_RW;
5384 if (arm_feature(env, ARM_FEATURE_V8)) {
5385 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5386 } else {
5387 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5389 define_arm_cp_regs(cpu, id_cp_reginfo);
5390 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5391 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5392 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5393 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5397 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5398 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5401 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5402 ARMCPRegInfo auxcr_reginfo[] = {
5403 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5404 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5405 .access = PL1_RW, .type = ARM_CP_CONST,
5406 .resetvalue = cpu->reset_auxcr },
5407 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5408 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5409 .access = PL2_RW, .type = ARM_CP_CONST,
5410 .resetvalue = 0 },
5411 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5412 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5413 .access = PL3_RW, .type = ARM_CP_CONST,
5414 .resetvalue = 0 },
5415 REGINFO_SENTINEL
5417 define_arm_cp_regs(cpu, auxcr_reginfo);
5420 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5421 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5422 /* 32 bit view is [31:18] 0...0 [43:32]. */
5423 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5424 | extract64(cpu->reset_cbar, 32, 12);
5425 ARMCPRegInfo cbar_reginfo[] = {
5426 { .name = "CBAR",
5427 .type = ARM_CP_CONST,
5428 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5429 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5430 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5431 .type = ARM_CP_CONST,
5432 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5433 .access = PL1_R, .resetvalue = cbar32 },
5434 REGINFO_SENTINEL
5436 /* We don't implement a r/w 64 bit CBAR currently */
5437 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5438 define_arm_cp_regs(cpu, cbar_reginfo);
5439 } else {
5440 ARMCPRegInfo cbar = {
5441 .name = "CBAR",
5442 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5443 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5444 .fieldoffset = offsetof(CPUARMState,
5445 cp15.c15_config_base_address)
5447 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5448 cbar.access = PL1_R;
5449 cbar.fieldoffset = 0;
5450 cbar.type = ARM_CP_CONST;
5452 define_one_arm_cp_reg(cpu, &cbar);
5456 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5457 ARMCPRegInfo vbar_cp_reginfo[] = {
5458 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5459 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5460 .access = PL1_RW, .writefn = vbar_write,
5461 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5462 offsetof(CPUARMState, cp15.vbar_ns) },
5463 .resetvalue = 0 },
5464 REGINFO_SENTINEL
5466 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5469 /* Generic registers whose values depend on the implementation */
5471 ARMCPRegInfo sctlr = {
5472 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5473 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5474 .access = PL1_RW,
5475 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5476 offsetof(CPUARMState, cp15.sctlr_ns) },
5477 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5478 .raw_writefn = raw_write,
5480 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5481 /* Normally we would always end the TB on an SCTLR write, but Linux
5482 * arch/arm/mach-pxa/sleep.S expects two instructions following
5483 * an MMU enable to execute from cache. Imitate this behaviour.
5485 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5487 define_one_arm_cp_reg(cpu, &sctlr);
5490 if (arm_feature(env, ARM_FEATURE_SVE)) {
5491 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5492 if (arm_feature(env, ARM_FEATURE_EL2)) {
5493 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5494 } else {
5495 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5497 if (arm_feature(env, ARM_FEATURE_EL3)) {
5498 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5503 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5505 CPUState *cs = CPU(cpu);
5506 CPUARMState *env = &cpu->env;
5508 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5509 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5510 aarch64_fpu_gdb_set_reg,
5511 34, "aarch64-fpu.xml", 0);
5512 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5513 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5514 51, "arm-neon.xml", 0);
5515 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5516 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5517 35, "arm-vfp3.xml", 0);
5518 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5519 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5520 19, "arm-vfp.xml", 0);
5522 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5523 arm_gen_dynamic_xml(cs),
5524 "system-registers.xml", 0);
5527 /* Sort alphabetically by type name, except for "any". */
5528 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5530 ObjectClass *class_a = (ObjectClass *)a;
5531 ObjectClass *class_b = (ObjectClass *)b;
5532 const char *name_a, *name_b;
5534 name_a = object_class_get_name(class_a);
5535 name_b = object_class_get_name(class_b);
5536 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5537 return 1;
5538 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5539 return -1;
5540 } else {
5541 return strcmp(name_a, name_b);
5545 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5547 ObjectClass *oc = data;
5548 CPUListState *s = user_data;
5549 const char *typename;
5550 char *name;
5552 typename = object_class_get_name(oc);
5553 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5554 (*s->cpu_fprintf)(s->file, " %s\n",
5555 name);
5556 g_free(name);
5559 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5561 CPUListState s = {
5562 .file = f,
5563 .cpu_fprintf = cpu_fprintf,
5565 GSList *list;
5567 list = object_class_get_list(TYPE_ARM_CPU, false);
5568 list = g_slist_sort(list, arm_cpu_list_compare);
5569 (*cpu_fprintf)(f, "Available CPUs:\n");
5570 g_slist_foreach(list, arm_cpu_list_entry, &s);
5571 g_slist_free(list);
5572 #ifdef CONFIG_KVM
5573 /* The 'host' CPU type is dynamically registered only if KVM is
5574 * enabled, so we have to special-case it here:
5576 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5577 #endif
5580 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5582 ObjectClass *oc = data;
5583 CpuDefinitionInfoList **cpu_list = user_data;
5584 CpuDefinitionInfoList *entry;
5585 CpuDefinitionInfo *info;
5586 const char *typename;
5588 typename = object_class_get_name(oc);
5589 info = g_malloc0(sizeof(*info));
5590 info->name = g_strndup(typename,
5591 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5592 info->q_typename = g_strdup(typename);
5594 entry = g_malloc0(sizeof(*entry));
5595 entry->value = info;
5596 entry->next = *cpu_list;
5597 *cpu_list = entry;
5600 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5602 CpuDefinitionInfoList *cpu_list = NULL;
5603 GSList *list;
5605 list = object_class_get_list(TYPE_ARM_CPU, false);
5606 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5607 g_slist_free(list);
5609 return cpu_list;
5612 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5613 void *opaque, int state, int secstate,
5614 int crm, int opc1, int opc2,
5615 const char *name)
5617 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5618 * add a single reginfo struct to the hash table.
5620 uint32_t *key = g_new(uint32_t, 1);
5621 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5622 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5623 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5625 r2->name = g_strdup(name);
5626 /* Reset the secure state to the specific incoming state. This is
5627 * necessary as the register may have been defined with both states.
5629 r2->secure = secstate;
5631 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5632 /* Register is banked (using both entries in array).
5633 * Overwriting fieldoffset as the array is only used to define
5634 * banked registers but later only fieldoffset is used.
5636 r2->fieldoffset = r->bank_fieldoffsets[ns];
5639 if (state == ARM_CP_STATE_AA32) {
5640 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5641 /* If the register is banked then we don't need to migrate or
5642 * reset the 32-bit instance in certain cases:
5644 * 1) If the register has both 32-bit and 64-bit instances then we
5645 * can count on the 64-bit instance taking care of the
5646 * non-secure bank.
5647 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5648 * taking care of the secure bank. This requires that separate
5649 * 32 and 64-bit definitions are provided.
5651 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5652 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5653 r2->type |= ARM_CP_ALIAS;
5655 } else if ((secstate != r->secure) && !ns) {
5656 /* The register is not banked so we only want to allow migration of
5657 * the non-secure instance.
5659 r2->type |= ARM_CP_ALIAS;
5662 if (r->state == ARM_CP_STATE_BOTH) {
5663 /* We assume it is a cp15 register if the .cp field is left unset.
5665 if (r2->cp == 0) {
5666 r2->cp = 15;
5669 #ifdef HOST_WORDS_BIGENDIAN
5670 if (r2->fieldoffset) {
5671 r2->fieldoffset += sizeof(uint32_t);
5673 #endif
5676 if (state == ARM_CP_STATE_AA64) {
5677 /* To allow abbreviation of ARMCPRegInfo
5678 * definitions, we treat cp == 0 as equivalent to
5679 * the value for "standard guest-visible sysreg".
5680 * STATE_BOTH definitions are also always "standard
5681 * sysreg" in their AArch64 view (the .cp value may
5682 * be non-zero for the benefit of the AArch32 view).
5684 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5685 r2->cp = CP_REG_ARM64_SYSREG_CP;
5687 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5688 r2->opc0, opc1, opc2);
5689 } else {
5690 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5692 if (opaque) {
5693 r2->opaque = opaque;
5695 /* reginfo passed to helpers is correct for the actual access,
5696 * and is never ARM_CP_STATE_BOTH:
5698 r2->state = state;
5699 /* Make sure reginfo passed to helpers for wildcarded regs
5700 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5702 r2->crm = crm;
5703 r2->opc1 = opc1;
5704 r2->opc2 = opc2;
5705 /* By convention, for wildcarded registers only the first
5706 * entry is used for migration; the others are marked as
5707 * ALIAS so we don't try to transfer the register
5708 * multiple times. Special registers (ie NOP/WFI) are
5709 * never migratable and not even raw-accessible.
5711 if ((r->type & ARM_CP_SPECIAL)) {
5712 r2->type |= ARM_CP_NO_RAW;
5714 if (((r->crm == CP_ANY) && crm != 0) ||
5715 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5716 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5717 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5720 /* Check that raw accesses are either forbidden or handled. Note that
5721 * we can't assert this earlier because the setup of fieldoffset for
5722 * banked registers has to be done first.
5724 if (!(r2->type & ARM_CP_NO_RAW)) {
5725 assert(!raw_accessors_invalid(r2));
5728 /* Overriding of an existing definition must be explicitly
5729 * requested.
5731 if (!(r->type & ARM_CP_OVERRIDE)) {
5732 ARMCPRegInfo *oldreg;
5733 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5734 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5735 fprintf(stderr, "Register redefined: cp=%d %d bit "
5736 "crn=%d crm=%d opc1=%d opc2=%d, "
5737 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5738 r2->crn, r2->crm, r2->opc1, r2->opc2,
5739 oldreg->name, r2->name);
5740 g_assert_not_reached();
5743 g_hash_table_insert(cpu->cp_regs, key, r2);
5747 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5748 const ARMCPRegInfo *r, void *opaque)
5750 /* Define implementations of coprocessor registers.
5751 * We store these in a hashtable because typically
5752 * there are less than 150 registers in a space which
5753 * is 16*16*16*8*8 = 262144 in size.
5754 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5755 * If a register is defined twice then the second definition is
5756 * used, so this can be used to define some generic registers and
5757 * then override them with implementation specific variations.
5758 * At least one of the original and the second definition should
5759 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5760 * against accidental use.
5762 * The state field defines whether the register is to be
5763 * visible in the AArch32 or AArch64 execution state. If the
5764 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5765 * reginfo structure for the AArch32 view, which sees the lower
5766 * 32 bits of the 64 bit register.
5768 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5769 * be wildcarded. AArch64 registers are always considered to be 64
5770 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5771 * the register, if any.
5773 int crm, opc1, opc2, state;
5774 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5775 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5776 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5777 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5778 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5779 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5780 /* 64 bit registers have only CRm and Opc1 fields */
5781 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5782 /* op0 only exists in the AArch64 encodings */
5783 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5784 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5785 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5786 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5787 * encodes a minimum access level for the register. We roll this
5788 * runtime check into our general permission check code, so check
5789 * here that the reginfo's specified permissions are strict enough
5790 * to encompass the generic architectural permission check.
5792 if (r->state != ARM_CP_STATE_AA32) {
5793 int mask = 0;
5794 switch (r->opc1) {
5795 case 0: case 1: case 2:
5796 /* min_EL EL1 */
5797 mask = PL1_RW;
5798 break;
5799 case 3:
5800 /* min_EL EL0 */
5801 mask = PL0_RW;
5802 break;
5803 case 4:
5804 /* min_EL EL2 */
5805 mask = PL2_RW;
5806 break;
5807 case 5:
5808 /* unallocated encoding, so not possible */
5809 assert(false);
5810 break;
5811 case 6:
5812 /* min_EL EL3 */
5813 mask = PL3_RW;
5814 break;
5815 case 7:
5816 /* min_EL EL1, secure mode only (we don't check the latter) */
5817 mask = PL1_RW;
5818 break;
5819 default:
5820 /* broken reginfo with out-of-range opc1 */
5821 assert(false);
5822 break;
5824 /* assert our permissions are not too lax (stricter is fine) */
5825 assert((r->access & ~mask) == 0);
5828 /* Check that the register definition has enough info to handle
5829 * reads and writes if they are permitted.
5831 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5832 if (r->access & PL3_R) {
5833 assert((r->fieldoffset ||
5834 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5835 r->readfn);
5837 if (r->access & PL3_W) {
5838 assert((r->fieldoffset ||
5839 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5840 r->writefn);
5843 /* Bad type field probably means missing sentinel at end of reg list */
5844 assert(cptype_valid(r->type));
5845 for (crm = crmmin; crm <= crmmax; crm++) {
5846 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5847 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5848 for (state = ARM_CP_STATE_AA32;
5849 state <= ARM_CP_STATE_AA64; state++) {
5850 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5851 continue;
5853 if (state == ARM_CP_STATE_AA32) {
5854 /* Under AArch32 CP registers can be common
5855 * (same for secure and non-secure world) or banked.
5857 char *name;
5859 switch (r->secure) {
5860 case ARM_CP_SECSTATE_S:
5861 case ARM_CP_SECSTATE_NS:
5862 add_cpreg_to_hashtable(cpu, r, opaque, state,
5863 r->secure, crm, opc1, opc2,
5864 r->name);
5865 break;
5866 default:
5867 name = g_strdup_printf("%s_S", r->name);
5868 add_cpreg_to_hashtable(cpu, r, opaque, state,
5869 ARM_CP_SECSTATE_S,
5870 crm, opc1, opc2, name);
5871 g_free(name);
5872 add_cpreg_to_hashtable(cpu, r, opaque, state,
5873 ARM_CP_SECSTATE_NS,
5874 crm, opc1, opc2, r->name);
5875 break;
5877 } else {
5878 /* AArch64 registers get mapped to non-secure instance
5879 * of AArch32 */
5880 add_cpreg_to_hashtable(cpu, r, opaque, state,
5881 ARM_CP_SECSTATE_NS,
5882 crm, opc1, opc2, r->name);
5890 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5891 const ARMCPRegInfo *regs, void *opaque)
5893 /* Define a whole list of registers */
5894 const ARMCPRegInfo *r;
5895 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5896 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5900 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5902 return g_hash_table_lookup(cpregs, &encoded_cp);
5905 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5906 uint64_t value)
5908 /* Helper coprocessor write function for write-ignore registers */
5911 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5913 /* Helper coprocessor write function for read-as-zero registers */
5914 return 0;
5917 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5919 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5922 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5924 /* Return true if it is not valid for us to switch to
5925 * this CPU mode (ie all the UNPREDICTABLE cases in
5926 * the ARM ARM CPSRWriteByInstr pseudocode).
5929 /* Changes to or from Hyp via MSR and CPS are illegal. */
5930 if (write_type == CPSRWriteByInstr &&
5931 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5932 mode == ARM_CPU_MODE_HYP)) {
5933 return 1;
5936 switch (mode) {
5937 case ARM_CPU_MODE_USR:
5938 return 0;
5939 case ARM_CPU_MODE_SYS:
5940 case ARM_CPU_MODE_SVC:
5941 case ARM_CPU_MODE_ABT:
5942 case ARM_CPU_MODE_UND:
5943 case ARM_CPU_MODE_IRQ:
5944 case ARM_CPU_MODE_FIQ:
5945 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5946 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5948 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5949 * and CPS are treated as illegal mode changes.
5951 if (write_type == CPSRWriteByInstr &&
5952 (env->cp15.hcr_el2 & HCR_TGE) &&
5953 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5954 !arm_is_secure_below_el3(env)) {
5955 return 1;
5957 return 0;
5958 case ARM_CPU_MODE_HYP:
5959 return !arm_feature(env, ARM_FEATURE_EL2)
5960 || arm_current_el(env) < 2 || arm_is_secure(env);
5961 case ARM_CPU_MODE_MON:
5962 return arm_current_el(env) < 3;
5963 default:
5964 return 1;
5968 uint32_t cpsr_read(CPUARMState *env)
5970 int ZF;
5971 ZF = (env->ZF == 0);
5972 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5973 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5974 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5975 | ((env->condexec_bits & 0xfc) << 8)
5976 | (env->GE << 16) | (env->daif & CPSR_AIF);
5979 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5980 CPSRWriteType write_type)
5982 uint32_t changed_daif;
5984 if (mask & CPSR_NZCV) {
5985 env->ZF = (~val) & CPSR_Z;
5986 env->NF = val;
5987 env->CF = (val >> 29) & 1;
5988 env->VF = (val << 3) & 0x80000000;
5990 if (mask & CPSR_Q)
5991 env->QF = ((val & CPSR_Q) != 0);
5992 if (mask & CPSR_T)
5993 env->thumb = ((val & CPSR_T) != 0);
5994 if (mask & CPSR_IT_0_1) {
5995 env->condexec_bits &= ~3;
5996 env->condexec_bits |= (val >> 25) & 3;
5998 if (mask & CPSR_IT_2_7) {
5999 env->condexec_bits &= 3;
6000 env->condexec_bits |= (val >> 8) & 0xfc;
6002 if (mask & CPSR_GE) {
6003 env->GE = (val >> 16) & 0xf;
6006 /* In a V7 implementation that includes the security extensions but does
6007 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6008 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6009 * bits respectively.
6011 * In a V8 implementation, it is permitted for privileged software to
6012 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6014 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6015 arm_feature(env, ARM_FEATURE_EL3) &&
6016 !arm_feature(env, ARM_FEATURE_EL2) &&
6017 !arm_is_secure(env)) {
6019 changed_daif = (env->daif ^ val) & mask;
6021 if (changed_daif & CPSR_A) {
6022 /* Check to see if we are allowed to change the masking of async
6023 * abort exceptions from a non-secure state.
6025 if (!(env->cp15.scr_el3 & SCR_AW)) {
6026 qemu_log_mask(LOG_GUEST_ERROR,
6027 "Ignoring attempt to switch CPSR_A flag from "
6028 "non-secure world with SCR.AW bit clear\n");
6029 mask &= ~CPSR_A;
6033 if (changed_daif & CPSR_F) {
6034 /* Check to see if we are allowed to change the masking of FIQ
6035 * exceptions from a non-secure state.
6037 if (!(env->cp15.scr_el3 & SCR_FW)) {
6038 qemu_log_mask(LOG_GUEST_ERROR,
6039 "Ignoring attempt to switch CPSR_F flag from "
6040 "non-secure world with SCR.FW bit clear\n");
6041 mask &= ~CPSR_F;
6044 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6045 * If this bit is set software is not allowed to mask
6046 * FIQs, but is allowed to set CPSR_F to 0.
6048 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6049 (val & CPSR_F)) {
6050 qemu_log_mask(LOG_GUEST_ERROR,
6051 "Ignoring attempt to enable CPSR_F flag "
6052 "(non-maskable FIQ [NMFI] support enabled)\n");
6053 mask &= ~CPSR_F;
6058 env->daif &= ~(CPSR_AIF & mask);
6059 env->daif |= val & CPSR_AIF & mask;
6061 if (write_type != CPSRWriteRaw &&
6062 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6063 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6064 /* Note that we can only get here in USR mode if this is a
6065 * gdb stub write; for this case we follow the architectural
6066 * behaviour for guest writes in USR mode of ignoring an attempt
6067 * to switch mode. (Those are caught by translate.c for writes
6068 * triggered by guest instructions.)
6070 mask &= ~CPSR_M;
6071 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6072 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6073 * v7, and has defined behaviour in v8:
6074 * + leave CPSR.M untouched
6075 * + allow changes to the other CPSR fields
6076 * + set PSTATE.IL
6077 * For user changes via the GDB stub, we don't set PSTATE.IL,
6078 * as this would be unnecessarily harsh for a user error.
6080 mask &= ~CPSR_M;
6081 if (write_type != CPSRWriteByGDBStub &&
6082 arm_feature(env, ARM_FEATURE_V8)) {
6083 mask |= CPSR_IL;
6084 val |= CPSR_IL;
6086 } else {
6087 switch_mode(env, val & CPSR_M);
6090 mask &= ~CACHED_CPSR_BITS;
6091 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6094 /* Sign/zero extend */
6095 uint32_t HELPER(sxtb16)(uint32_t x)
6097 uint32_t res;
6098 res = (uint16_t)(int8_t)x;
6099 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6100 return res;
6103 uint32_t HELPER(uxtb16)(uint32_t x)
6105 uint32_t res;
6106 res = (uint16_t)(uint8_t)x;
6107 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6108 return res;
6111 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6113 if (den == 0)
6114 return 0;
6115 if (num == INT_MIN && den == -1)
6116 return INT_MIN;
6117 return num / den;
6120 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6122 if (den == 0)
6123 return 0;
6124 return num / den;
6127 uint32_t HELPER(rbit)(uint32_t x)
6129 return revbit32(x);
6132 #if defined(CONFIG_USER_ONLY)
6134 /* These should probably raise undefined insn exceptions. */
6135 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6137 ARMCPU *cpu = arm_env_get_cpu(env);
6139 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6142 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6144 ARMCPU *cpu = arm_env_get_cpu(env);
6146 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6147 return 0;
6150 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6152 /* translate.c should never generate calls here in user-only mode */
6153 g_assert_not_reached();
6156 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6158 /* translate.c should never generate calls here in user-only mode */
6159 g_assert_not_reached();
6162 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6164 /* The TT instructions can be used by unprivileged code, but in
6165 * user-only emulation we don't have the MPU.
6166 * Luckily since we know we are NonSecure unprivileged (and that in
6167 * turn means that the A flag wasn't specified), all the bits in the
6168 * register must be zero:
6169 * IREGION: 0 because IRVALID is 0
6170 * IRVALID: 0 because NS
6171 * S: 0 because NS
6172 * NSRW: 0 because NS
6173 * NSR: 0 because NS
6174 * RW: 0 because unpriv and A flag not set
6175 * R: 0 because unpriv and A flag not set
6176 * SRVALID: 0 because NS
6177 * MRVALID: 0 because unpriv and A flag not set
6178 * SREGION: 0 becaus SRVALID is 0
6179 * MREGION: 0 because MRVALID is 0
6181 return 0;
6184 void switch_mode(CPUARMState *env, int mode)
6186 ARMCPU *cpu = arm_env_get_cpu(env);
6188 if (mode != ARM_CPU_MODE_USR) {
6189 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6193 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6194 uint32_t cur_el, bool secure)
6196 return 1;
6199 void aarch64_sync_64_to_32(CPUARMState *env)
6201 g_assert_not_reached();
6204 #else
6206 void switch_mode(CPUARMState *env, int mode)
6208 int old_mode;
6209 int i;
6211 old_mode = env->uncached_cpsr & CPSR_M;
6212 if (mode == old_mode)
6213 return;
6215 if (old_mode == ARM_CPU_MODE_FIQ) {
6216 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6217 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6218 } else if (mode == ARM_CPU_MODE_FIQ) {
6219 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6220 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6223 i = bank_number(old_mode);
6224 env->banked_r13[i] = env->regs[13];
6225 env->banked_r14[i] = env->regs[14];
6226 env->banked_spsr[i] = env->spsr;
6228 i = bank_number(mode);
6229 env->regs[13] = env->banked_r13[i];
6230 env->regs[14] = env->banked_r14[i];
6231 env->spsr = env->banked_spsr[i];
6234 /* Physical Interrupt Target EL Lookup Table
6236 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6238 * The below multi-dimensional table is used for looking up the target
6239 * exception level given numerous condition criteria. Specifically, the
6240 * target EL is based on SCR and HCR routing controls as well as the
6241 * currently executing EL and secure state.
6243 * Dimensions:
6244 * target_el_table[2][2][2][2][2][4]
6245 * | | | | | +--- Current EL
6246 * | | | | +------ Non-secure(0)/Secure(1)
6247 * | | | +--------- HCR mask override
6248 * | | +------------ SCR exec state control
6249 * | +--------------- SCR mask override
6250 * +------------------ 32-bit(0)/64-bit(1) EL3
6252 * The table values are as such:
6253 * 0-3 = EL0-EL3
6254 * -1 = Cannot occur
6256 * The ARM ARM target EL table includes entries indicating that an "exception
6257 * is not taken". The two cases where this is applicable are:
6258 * 1) An exception is taken from EL3 but the SCR does not have the exception
6259 * routed to EL3.
6260 * 2) An exception is taken from EL2 but the HCR does not have the exception
6261 * routed to EL2.
6262 * In these two cases, the below table contain a target of EL1. This value is
6263 * returned as it is expected that the consumer of the table data will check
6264 * for "target EL >= current EL" to ensure the exception is not taken.
6266 * SCR HCR
6267 * 64 EA AMO From
6268 * BIT IRQ IMO Non-secure Secure
6269 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6271 static const int8_t target_el_table[2][2][2][2][2][4] = {
6272 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6273 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6274 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6275 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6276 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6277 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6278 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6279 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6280 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6281 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6282 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6283 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6284 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6285 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6286 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6287 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6291 * Determine the target EL for physical exceptions
6293 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6294 uint32_t cur_el, bool secure)
6296 CPUARMState *env = cs->env_ptr;
6297 int rw;
6298 int scr;
6299 int hcr;
6300 int target_el;
6301 /* Is the highest EL AArch64? */
6302 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6304 if (arm_feature(env, ARM_FEATURE_EL3)) {
6305 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6306 } else {
6307 /* Either EL2 is the highest EL (and so the EL2 register width
6308 * is given by is64); or there is no EL2 or EL3, in which case
6309 * the value of 'rw' does not affect the table lookup anyway.
6311 rw = is64;
6314 switch (excp_idx) {
6315 case EXCP_IRQ:
6316 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6317 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6318 break;
6319 case EXCP_FIQ:
6320 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6321 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6322 break;
6323 default:
6324 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6325 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6326 break;
6329 /* If HCR.TGE is set then HCR is treated as being 1 */
6330 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6332 /* Perform a table-lookup for the target EL given the current state */
6333 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6335 assert(target_el > 0);
6337 return target_el;
6340 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6341 ARMMMUIdx mmu_idx, bool ignfault)
6343 CPUState *cs = CPU(cpu);
6344 CPUARMState *env = &cpu->env;
6345 MemTxAttrs attrs = {};
6346 MemTxResult txres;
6347 target_ulong page_size;
6348 hwaddr physaddr;
6349 int prot;
6350 ARMMMUFaultInfo fi;
6351 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6352 int exc;
6353 bool exc_secure;
6355 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6356 &attrs, &prot, &page_size, &fi, NULL)) {
6357 /* MPU/SAU lookup failed */
6358 if (fi.type == ARMFault_QEMU_SFault) {
6359 qemu_log_mask(CPU_LOG_INT,
6360 "...SecureFault with SFSR.AUVIOL during stacking\n");
6361 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6362 env->v7m.sfar = addr;
6363 exc = ARMV7M_EXCP_SECURE;
6364 exc_secure = false;
6365 } else {
6366 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6367 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6368 exc = ARMV7M_EXCP_MEM;
6369 exc_secure = secure;
6371 goto pend_fault;
6373 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6374 attrs, &txres);
6375 if (txres != MEMTX_OK) {
6376 /* BusFault trying to write the data */
6377 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6378 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6379 exc = ARMV7M_EXCP_BUS;
6380 exc_secure = false;
6381 goto pend_fault;
6383 return true;
6385 pend_fault:
6386 /* By pending the exception at this point we are making
6387 * the IMPDEF choice "overridden exceptions pended" (see the
6388 * MergeExcInfo() pseudocode). The other choice would be to not
6389 * pend them now and then make a choice about which to throw away
6390 * later if we have two derived exceptions.
6391 * The only case when we must not pend the exception but instead
6392 * throw it away is if we are doing the push of the callee registers
6393 * and we've already generated a derived exception. Even in this
6394 * case we will still update the fault status registers.
6396 if (!ignfault) {
6397 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6399 return false;
6402 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6403 ARMMMUIdx mmu_idx)
6405 CPUState *cs = CPU(cpu);
6406 CPUARMState *env = &cpu->env;
6407 MemTxAttrs attrs = {};
6408 MemTxResult txres;
6409 target_ulong page_size;
6410 hwaddr physaddr;
6411 int prot;
6412 ARMMMUFaultInfo fi;
6413 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6414 int exc;
6415 bool exc_secure;
6416 uint32_t value;
6418 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6419 &attrs, &prot, &page_size, &fi, NULL)) {
6420 /* MPU/SAU lookup failed */
6421 if (fi.type == ARMFault_QEMU_SFault) {
6422 qemu_log_mask(CPU_LOG_INT,
6423 "...SecureFault with SFSR.AUVIOL during unstack\n");
6424 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6425 env->v7m.sfar = addr;
6426 exc = ARMV7M_EXCP_SECURE;
6427 exc_secure = false;
6428 } else {
6429 qemu_log_mask(CPU_LOG_INT,
6430 "...MemManageFault with CFSR.MUNSTKERR\n");
6431 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6432 exc = ARMV7M_EXCP_MEM;
6433 exc_secure = secure;
6435 goto pend_fault;
6438 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6439 attrs, &txres);
6440 if (txres != MEMTX_OK) {
6441 /* BusFault trying to read the data */
6442 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6443 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6444 exc = ARMV7M_EXCP_BUS;
6445 exc_secure = false;
6446 goto pend_fault;
6449 *dest = value;
6450 return true;
6452 pend_fault:
6453 /* By pending the exception at this point we are making
6454 * the IMPDEF choice "overridden exceptions pended" (see the
6455 * MergeExcInfo() pseudocode). The other choice would be to not
6456 * pend them now and then make a choice about which to throw away
6457 * later if we have two derived exceptions.
6459 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6460 return false;
6463 /* Return true if we're using the process stack pointer (not the MSP) */
6464 static bool v7m_using_psp(CPUARMState *env)
6466 /* Handler mode always uses the main stack; for thread mode
6467 * the CONTROL.SPSEL bit determines the answer.
6468 * Note that in v7M it is not possible to be in Handler mode with
6469 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6471 return !arm_v7m_is_handler_mode(env) &&
6472 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6475 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6476 * This may change the current stack pointer between Main and Process
6477 * stack pointers if it is done for the CONTROL register for the current
6478 * security state.
6480 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6481 bool new_spsel,
6482 bool secstate)
6484 bool old_is_psp = v7m_using_psp(env);
6486 env->v7m.control[secstate] =
6487 deposit32(env->v7m.control[secstate],
6488 R_V7M_CONTROL_SPSEL_SHIFT,
6489 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6491 if (secstate == env->v7m.secure) {
6492 bool new_is_psp = v7m_using_psp(env);
6493 uint32_t tmp;
6495 if (old_is_psp != new_is_psp) {
6496 tmp = env->v7m.other_sp;
6497 env->v7m.other_sp = env->regs[13];
6498 env->regs[13] = tmp;
6503 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6504 * stack pointer between Main and Process stack pointers.
6506 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6508 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6511 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6513 /* Write a new value to v7m.exception, thus transitioning into or out
6514 * of Handler mode; this may result in a change of active stack pointer.
6516 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6517 uint32_t tmp;
6519 env->v7m.exception = new_exc;
6521 new_is_psp = v7m_using_psp(env);
6523 if (old_is_psp != new_is_psp) {
6524 tmp = env->v7m.other_sp;
6525 env->v7m.other_sp = env->regs[13];
6526 env->regs[13] = tmp;
6530 /* Switch M profile security state between NS and S */
6531 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6533 uint32_t new_ss_msp, new_ss_psp;
6535 if (env->v7m.secure == new_secstate) {
6536 return;
6539 /* All the banked state is accessed by looking at env->v7m.secure
6540 * except for the stack pointer; rearrange the SP appropriately.
6542 new_ss_msp = env->v7m.other_ss_msp;
6543 new_ss_psp = env->v7m.other_ss_psp;
6545 if (v7m_using_psp(env)) {
6546 env->v7m.other_ss_psp = env->regs[13];
6547 env->v7m.other_ss_msp = env->v7m.other_sp;
6548 } else {
6549 env->v7m.other_ss_msp = env->regs[13];
6550 env->v7m.other_ss_psp = env->v7m.other_sp;
6553 env->v7m.secure = new_secstate;
6555 if (v7m_using_psp(env)) {
6556 env->regs[13] = new_ss_psp;
6557 env->v7m.other_sp = new_ss_msp;
6558 } else {
6559 env->regs[13] = new_ss_msp;
6560 env->v7m.other_sp = new_ss_psp;
6564 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6566 /* Handle v7M BXNS:
6567 * - if the return value is a magic value, do exception return (like BX)
6568 * - otherwise bit 0 of the return value is the target security state
6570 uint32_t min_magic;
6572 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6573 /* Covers FNC_RETURN and EXC_RETURN magic */
6574 min_magic = FNC_RETURN_MIN_MAGIC;
6575 } else {
6576 /* EXC_RETURN magic only */
6577 min_magic = EXC_RETURN_MIN_MAGIC;
6580 if (dest >= min_magic) {
6581 /* This is an exception return magic value; put it where
6582 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6583 * Note that if we ever add gen_ss_advance() singlestep support to
6584 * M profile this should count as an "instruction execution complete"
6585 * event (compare gen_bx_excret_final_code()).
6587 env->regs[15] = dest & ~1;
6588 env->thumb = dest & 1;
6589 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6590 /* notreached */
6593 /* translate.c should have made BXNS UNDEF unless we're secure */
6594 assert(env->v7m.secure);
6596 switch_v7m_security_state(env, dest & 1);
6597 env->thumb = 1;
6598 env->regs[15] = dest & ~1;
6601 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6603 /* Handle v7M BLXNS:
6604 * - bit 0 of the destination address is the target security state
6607 /* At this point regs[15] is the address just after the BLXNS */
6608 uint32_t nextinst = env->regs[15] | 1;
6609 uint32_t sp = env->regs[13] - 8;
6610 uint32_t saved_psr;
6612 /* translate.c will have made BLXNS UNDEF unless we're secure */
6613 assert(env->v7m.secure);
6615 if (dest & 1) {
6616 /* target is Secure, so this is just a normal BLX,
6617 * except that the low bit doesn't indicate Thumb/not.
6619 env->regs[14] = nextinst;
6620 env->thumb = 1;
6621 env->regs[15] = dest & ~1;
6622 return;
6625 /* Target is non-secure: first push a stack frame */
6626 if (!QEMU_IS_ALIGNED(sp, 8)) {
6627 qemu_log_mask(LOG_GUEST_ERROR,
6628 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6631 saved_psr = env->v7m.exception;
6632 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6633 saved_psr |= XPSR_SFPA;
6636 /* Note that these stores can throw exceptions on MPU faults */
6637 cpu_stl_data(env, sp, nextinst);
6638 cpu_stl_data(env, sp + 4, saved_psr);
6640 env->regs[13] = sp;
6641 env->regs[14] = 0xfeffffff;
6642 if (arm_v7m_is_handler_mode(env)) {
6643 /* Write a dummy value to IPSR, to avoid leaking the current secure
6644 * exception number to non-secure code. This is guaranteed not
6645 * to cause write_v7m_exception() to actually change stacks.
6647 write_v7m_exception(env, 1);
6649 switch_v7m_security_state(env, 0);
6650 env->thumb = 1;
6651 env->regs[15] = dest;
6654 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6655 bool spsel)
6657 /* Return a pointer to the location where we currently store the
6658 * stack pointer for the requested security state and thread mode.
6659 * This pointer will become invalid if the CPU state is updated
6660 * such that the stack pointers are switched around (eg changing
6661 * the SPSEL control bit).
6662 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6663 * Unlike that pseudocode, we require the caller to pass us in the
6664 * SPSEL control bit value; this is because we also use this
6665 * function in handling of pushing of the callee-saves registers
6666 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6667 * and in the tailchain codepath the SPSEL bit comes from the exception
6668 * return magic LR value from the previous exception. The pseudocode
6669 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6670 * to make this utility function generic enough to do the job.
6672 bool want_psp = threadmode && spsel;
6674 if (secure == env->v7m.secure) {
6675 if (want_psp == v7m_using_psp(env)) {
6676 return &env->regs[13];
6677 } else {
6678 return &env->v7m.other_sp;
6680 } else {
6681 if (want_psp) {
6682 return &env->v7m.other_ss_psp;
6683 } else {
6684 return &env->v7m.other_ss_msp;
6689 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6690 uint32_t *pvec)
6692 CPUState *cs = CPU(cpu);
6693 CPUARMState *env = &cpu->env;
6694 MemTxResult result;
6695 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6696 uint32_t vector_entry;
6697 MemTxAttrs attrs = {};
6698 ARMMMUIdx mmu_idx;
6699 bool exc_secure;
6701 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6703 /* We don't do a get_phys_addr() here because the rules for vector
6704 * loads are special: they always use the default memory map, and
6705 * the default memory map permits reads from all addresses.
6706 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6707 * that we want this special case which would always say "yes",
6708 * we just do the SAU lookup here followed by a direct physical load.
6710 attrs.secure = targets_secure;
6711 attrs.user = false;
6713 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6714 V8M_SAttributes sattrs = {};
6716 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6717 if (sattrs.ns) {
6718 attrs.secure = false;
6719 } else if (!targets_secure) {
6720 /* NS access to S memory */
6721 goto load_fail;
6725 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6726 attrs, &result);
6727 if (result != MEMTX_OK) {
6728 goto load_fail;
6730 *pvec = vector_entry;
6731 return true;
6733 load_fail:
6734 /* All vector table fetch fails are reported as HardFault, with
6735 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6736 * technically the underlying exception is a MemManage or BusFault
6737 * that is escalated to HardFault.) This is a terminal exception,
6738 * so we will either take the HardFault immediately or else enter
6739 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6741 exc_secure = targets_secure ||
6742 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6743 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6744 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6745 return false;
6748 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6749 bool ignore_faults)
6751 /* For v8M, push the callee-saves register part of the stack frame.
6752 * Compare the v8M pseudocode PushCalleeStack().
6753 * In the tailchaining case this may not be the current stack.
6755 CPUARMState *env = &cpu->env;
6756 uint32_t *frame_sp_p;
6757 uint32_t frameptr;
6758 ARMMMUIdx mmu_idx;
6759 bool stacked_ok;
6761 if (dotailchain) {
6762 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6763 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6764 !mode;
6766 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6767 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6768 lr & R_V7M_EXCRET_SPSEL_MASK);
6769 } else {
6770 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6771 frame_sp_p = &env->regs[13];
6774 frameptr = *frame_sp_p - 0x28;
6776 /* Write as much of the stack frame as we can. A write failure may
6777 * cause us to pend a derived exception.
6779 stacked_ok =
6780 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6781 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6782 ignore_faults) &&
6783 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6784 ignore_faults) &&
6785 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6786 ignore_faults) &&
6787 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6788 ignore_faults) &&
6789 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6790 ignore_faults) &&
6791 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6792 ignore_faults) &&
6793 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6794 ignore_faults) &&
6795 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6796 ignore_faults);
6798 /* Update SP regardless of whether any of the stack accesses failed.
6799 * When we implement v8M stack limit checking then this attempt to
6800 * update SP might also fail and result in a derived exception.
6802 *frame_sp_p = frameptr;
6804 return !stacked_ok;
6807 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6808 bool ignore_stackfaults)
6810 /* Do the "take the exception" parts of exception entry,
6811 * but not the pushing of state to the stack. This is
6812 * similar to the pseudocode ExceptionTaken() function.
6814 CPUARMState *env = &cpu->env;
6815 uint32_t addr;
6816 bool targets_secure;
6817 int exc;
6818 bool push_failed = false;
6820 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6822 if (arm_feature(env, ARM_FEATURE_V8)) {
6823 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6824 (lr & R_V7M_EXCRET_S_MASK)) {
6825 /* The background code (the owner of the registers in the
6826 * exception frame) is Secure. This means it may either already
6827 * have or now needs to push callee-saves registers.
6829 if (targets_secure) {
6830 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6831 /* We took an exception from Secure to NonSecure
6832 * (which means the callee-saved registers got stacked)
6833 * and are now tailchaining to a Secure exception.
6834 * Clear DCRS so eventual return from this Secure
6835 * exception unstacks the callee-saved registers.
6837 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6839 } else {
6840 /* We're going to a non-secure exception; push the
6841 * callee-saves registers to the stack now, if they're
6842 * not already saved.
6844 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6845 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6846 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6847 ignore_stackfaults);
6849 lr |= R_V7M_EXCRET_DCRS_MASK;
6853 lr &= ~R_V7M_EXCRET_ES_MASK;
6854 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6855 lr |= R_V7M_EXCRET_ES_MASK;
6857 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6858 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6859 lr |= R_V7M_EXCRET_SPSEL_MASK;
6862 /* Clear registers if necessary to prevent non-secure exception
6863 * code being able to see register values from secure code.
6864 * Where register values become architecturally UNKNOWN we leave
6865 * them with their previous values.
6867 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6868 if (!targets_secure) {
6869 /* Always clear the caller-saved registers (they have been
6870 * pushed to the stack earlier in v7m_push_stack()).
6871 * Clear callee-saved registers if the background code is
6872 * Secure (in which case these regs were saved in
6873 * v7m_push_callee_stack()).
6875 int i;
6877 for (i = 0; i < 13; i++) {
6878 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6879 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6880 env->regs[i] = 0;
6883 /* Clear EAPSR */
6884 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6889 if (push_failed && !ignore_stackfaults) {
6890 /* Derived exception on callee-saves register stacking:
6891 * we might now want to take a different exception which
6892 * targets a different security state, so try again from the top.
6894 v7m_exception_taken(cpu, lr, true, true);
6895 return;
6898 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6899 /* Vector load failed: derived exception */
6900 v7m_exception_taken(cpu, lr, true, true);
6901 return;
6904 /* Now we've done everything that might cause a derived exception
6905 * we can go ahead and activate whichever exception we're going to
6906 * take (which might now be the derived exception).
6908 armv7m_nvic_acknowledge_irq(env->nvic);
6910 /* Switch to target security state -- must do this before writing SPSEL */
6911 switch_v7m_security_state(env, targets_secure);
6912 write_v7m_control_spsel(env, 0);
6913 arm_clear_exclusive(env);
6914 /* Clear IT bits */
6915 env->condexec_bits = 0;
6916 env->regs[14] = lr;
6917 env->regs[15] = addr & 0xfffffffe;
6918 env->thumb = addr & 1;
6921 static bool v7m_push_stack(ARMCPU *cpu)
6923 /* Do the "set up stack frame" part of exception entry,
6924 * similar to pseudocode PushStack().
6925 * Return true if we generate a derived exception (and so
6926 * should ignore further stack faults trying to process
6927 * that derived exception.)
6929 bool stacked_ok;
6930 CPUARMState *env = &cpu->env;
6931 uint32_t xpsr = xpsr_read(env);
6932 uint32_t frameptr = env->regs[13];
6933 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6935 /* Align stack pointer if the guest wants that */
6936 if ((frameptr & 4) &&
6937 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6938 frameptr -= 4;
6939 xpsr |= XPSR_SPREALIGN;
6942 frameptr -= 0x20;
6944 /* Write as much of the stack frame as we can. If we fail a stack
6945 * write this will result in a derived exception being pended
6946 * (which may be taken in preference to the one we started with
6947 * if it has higher priority).
6949 stacked_ok =
6950 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6951 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6952 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6953 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6954 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6955 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6956 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6957 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6959 /* Update SP regardless of whether any of the stack accesses failed.
6960 * When we implement v8M stack limit checking then this attempt to
6961 * update SP might also fail and result in a derived exception.
6963 env->regs[13] = frameptr;
6965 return !stacked_ok;
6968 static void do_v7m_exception_exit(ARMCPU *cpu)
6970 CPUARMState *env = &cpu->env;
6971 uint32_t excret;
6972 uint32_t xpsr;
6973 bool ufault = false;
6974 bool sfault = false;
6975 bool return_to_sp_process;
6976 bool return_to_handler;
6977 bool rettobase = false;
6978 bool exc_secure = false;
6979 bool return_to_secure;
6981 /* If we're not in Handler mode then jumps to magic exception-exit
6982 * addresses don't have magic behaviour. However for the v8M
6983 * security extensions the magic secure-function-return has to
6984 * work in thread mode too, so to avoid doing an extra check in
6985 * the generated code we allow exception-exit magic to also cause the
6986 * internal exception and bring us here in thread mode. Correct code
6987 * will never try to do this (the following insn fetch will always
6988 * fault) so we the overhead of having taken an unnecessary exception
6989 * doesn't matter.
6991 if (!arm_v7m_is_handler_mode(env)) {
6992 return;
6995 /* In the spec pseudocode ExceptionReturn() is called directly
6996 * from BXWritePC() and gets the full target PC value including
6997 * bit zero. In QEMU's implementation we treat it as a normal
6998 * jump-to-register (which is then caught later on), and so split
6999 * the target value up between env->regs[15] and env->thumb in
7000 * gen_bx(). Reconstitute it.
7002 excret = env->regs[15];
7003 if (env->thumb) {
7004 excret |= 1;
7007 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7008 " previous exception %d\n",
7009 excret, env->v7m.exception);
7011 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7012 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7013 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7014 excret);
7017 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7018 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7019 * we pick which FAULTMASK to clear.
7021 if (!env->v7m.secure &&
7022 ((excret & R_V7M_EXCRET_ES_MASK) ||
7023 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7024 sfault = 1;
7025 /* For all other purposes, treat ES as 0 (R_HXSR) */
7026 excret &= ~R_V7M_EXCRET_ES_MASK;
7030 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7031 /* Auto-clear FAULTMASK on return from other than NMI.
7032 * If the security extension is implemented then this only
7033 * happens if the raw execution priority is >= 0; the
7034 * value of the ES bit in the exception return value indicates
7035 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7037 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7038 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7039 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7040 env->v7m.faultmask[exc_secure] = 0;
7042 } else {
7043 env->v7m.faultmask[M_REG_NS] = 0;
7047 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7048 exc_secure)) {
7049 case -1:
7050 /* attempt to exit an exception that isn't active */
7051 ufault = true;
7052 break;
7053 case 0:
7054 /* still an irq active now */
7055 break;
7056 case 1:
7057 /* we returned to base exception level, no nesting.
7058 * (In the pseudocode this is written using "NestedActivation != 1"
7059 * where we have 'rettobase == false'.)
7061 rettobase = true;
7062 break;
7063 default:
7064 g_assert_not_reached();
7067 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7068 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7069 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7070 (excret & R_V7M_EXCRET_S_MASK);
7072 if (arm_feature(env, ARM_FEATURE_V8)) {
7073 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7074 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7075 * we choose to take the UsageFault.
7077 if ((excret & R_V7M_EXCRET_S_MASK) ||
7078 (excret & R_V7M_EXCRET_ES_MASK) ||
7079 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7080 ufault = true;
7083 if (excret & R_V7M_EXCRET_RES0_MASK) {
7084 ufault = true;
7086 } else {
7087 /* For v7M we only recognize certain combinations of the low bits */
7088 switch (excret & 0xf) {
7089 case 1: /* Return to Handler */
7090 break;
7091 case 13: /* Return to Thread using Process stack */
7092 case 9: /* Return to Thread using Main stack */
7093 /* We only need to check NONBASETHRDENA for v7M, because in
7094 * v8M this bit does not exist (it is RES1).
7096 if (!rettobase &&
7097 !(env->v7m.ccr[env->v7m.secure] &
7098 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7099 ufault = true;
7101 break;
7102 default:
7103 ufault = true;
7107 if (sfault) {
7108 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7109 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7110 v7m_exception_taken(cpu, excret, true, false);
7111 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7112 "stackframe: failed EXC_RETURN.ES validity check\n");
7113 return;
7116 if (ufault) {
7117 /* Bad exception return: instead of popping the exception
7118 * stack, directly take a usage fault on the current stack.
7120 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7121 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7122 v7m_exception_taken(cpu, excret, true, false);
7123 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7124 "stackframe: failed exception return integrity check\n");
7125 return;
7128 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7129 * Handler mode (and will be until we write the new XPSR.Interrupt
7130 * field) this does not switch around the current stack pointer.
7132 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7134 switch_v7m_security_state(env, return_to_secure);
7137 /* The stack pointer we should be reading the exception frame from
7138 * depends on bits in the magic exception return type value (and
7139 * for v8M isn't necessarily the stack pointer we will eventually
7140 * end up resuming execution with). Get a pointer to the location
7141 * in the CPU state struct where the SP we need is currently being
7142 * stored; we will use and modify it in place.
7143 * We use this limited C variable scope so we don't accidentally
7144 * use 'frame_sp_p' after we do something that makes it invalid.
7146 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7147 return_to_secure,
7148 !return_to_handler,
7149 return_to_sp_process);
7150 uint32_t frameptr = *frame_sp_p;
7151 bool pop_ok = true;
7152 ARMMMUIdx mmu_idx;
7154 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7155 !return_to_handler);
7157 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7158 arm_feature(env, ARM_FEATURE_V8)) {
7159 qemu_log_mask(LOG_GUEST_ERROR,
7160 "M profile exception return with non-8-aligned SP "
7161 "for destination state is UNPREDICTABLE\n");
7164 /* Do we need to pop callee-saved registers? */
7165 if (return_to_secure &&
7166 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7167 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7168 uint32_t expected_sig = 0xfefa125b;
7169 uint32_t actual_sig;
7171 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7173 if (pop_ok && expected_sig != actual_sig) {
7174 /* Take a SecureFault on the current stack */
7175 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7176 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7177 v7m_exception_taken(cpu, excret, true, false);
7178 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7179 "stackframe: failed exception return integrity "
7180 "signature check\n");
7181 return;
7184 pop_ok = pop_ok &&
7185 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7186 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7187 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7188 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7189 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7190 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7191 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7192 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7193 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7195 frameptr += 0x28;
7198 /* Pop registers */
7199 pop_ok = pop_ok &&
7200 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7201 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7202 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7203 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7204 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7205 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7206 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7207 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7209 if (!pop_ok) {
7210 /* v7m_stack_read() pended a fault, so take it (as a tail
7211 * chained exception on the same stack frame)
7213 v7m_exception_taken(cpu, excret, true, false);
7214 return;
7217 /* Returning from an exception with a PC with bit 0 set is defined
7218 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7219 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7220 * the lsbit, and there are several RTOSes out there which incorrectly
7221 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7222 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7223 * complain about the badly behaved guest.
7225 if (env->regs[15] & 1) {
7226 env->regs[15] &= ~1U;
7227 if (!arm_feature(env, ARM_FEATURE_V8)) {
7228 qemu_log_mask(LOG_GUEST_ERROR,
7229 "M profile return from interrupt with misaligned "
7230 "PC is UNPREDICTABLE on v7M\n");
7234 if (arm_feature(env, ARM_FEATURE_V8)) {
7235 /* For v8M we have to check whether the xPSR exception field
7236 * matches the EXCRET value for return to handler/thread
7237 * before we commit to changing the SP and xPSR.
7239 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7240 if (return_to_handler != will_be_handler) {
7241 /* Take an INVPC UsageFault on the current stack.
7242 * By this point we will have switched to the security state
7243 * for the background state, so this UsageFault will target
7244 * that state.
7246 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7247 env->v7m.secure);
7248 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7249 v7m_exception_taken(cpu, excret, true, false);
7250 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7251 "stackframe: failed exception return integrity "
7252 "check\n");
7253 return;
7257 /* Commit to consuming the stack frame */
7258 frameptr += 0x20;
7259 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7260 * pre-exception SP was not 8-aligned and we added a padding word to
7261 * align it, so we undo this by ORing in the bit that increases it
7262 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7263 * would work too but a logical OR is how the pseudocode specifies it.)
7265 if (xpsr & XPSR_SPREALIGN) {
7266 frameptr |= 4;
7268 *frame_sp_p = frameptr;
7270 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7271 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7273 /* The restored xPSR exception field will be zero if we're
7274 * resuming in Thread mode. If that doesn't match what the
7275 * exception return excret specified then this is a UsageFault.
7276 * v7M requires we make this check here; v8M did it earlier.
7278 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7279 /* Take an INVPC UsageFault by pushing the stack again;
7280 * we know we're v7M so this is never a Secure UsageFault.
7282 bool ignore_stackfaults;
7284 assert(!arm_feature(env, ARM_FEATURE_V8));
7285 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7286 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7287 ignore_stackfaults = v7m_push_stack(cpu);
7288 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7289 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7290 "failed exception return integrity check\n");
7291 return;
7294 /* Otherwise, we have a successful exception exit. */
7295 arm_clear_exclusive(env);
7296 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7299 static bool do_v7m_function_return(ARMCPU *cpu)
7301 /* v8M security extensions magic function return.
7302 * We may either:
7303 * (1) throw an exception (longjump)
7304 * (2) return true if we successfully handled the function return
7305 * (3) return false if we failed a consistency check and have
7306 * pended a UsageFault that needs to be taken now
7308 * At this point the magic return value is split between env->regs[15]
7309 * and env->thumb. We don't bother to reconstitute it because we don't
7310 * need it (all values are handled the same way).
7312 CPUARMState *env = &cpu->env;
7313 uint32_t newpc, newpsr, newpsr_exc;
7315 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7318 bool threadmode, spsel;
7319 TCGMemOpIdx oi;
7320 ARMMMUIdx mmu_idx;
7321 uint32_t *frame_sp_p;
7322 uint32_t frameptr;
7324 /* Pull the return address and IPSR from the Secure stack */
7325 threadmode = !arm_v7m_is_handler_mode(env);
7326 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7328 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7329 frameptr = *frame_sp_p;
7331 /* These loads may throw an exception (for MPU faults). We want to
7332 * do them as secure, so work out what MMU index that is.
7334 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7335 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7336 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7337 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7339 /* Consistency checks on new IPSR */
7340 newpsr_exc = newpsr & XPSR_EXCP;
7341 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7342 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7343 /* Pend the fault and tell our caller to take it */
7344 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7345 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7346 env->v7m.secure);
7347 qemu_log_mask(CPU_LOG_INT,
7348 "...taking INVPC UsageFault: "
7349 "IPSR consistency check failed\n");
7350 return false;
7353 *frame_sp_p = frameptr + 8;
7356 /* This invalidates frame_sp_p */
7357 switch_v7m_security_state(env, true);
7358 env->v7m.exception = newpsr_exc;
7359 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7360 if (newpsr & XPSR_SFPA) {
7361 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7363 xpsr_write(env, 0, XPSR_IT);
7364 env->thumb = newpc & 1;
7365 env->regs[15] = newpc & ~1;
7367 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7368 return true;
7371 static void arm_log_exception(int idx)
7373 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7374 const char *exc = NULL;
7375 static const char * const excnames[] = {
7376 [EXCP_UDEF] = "Undefined Instruction",
7377 [EXCP_SWI] = "SVC",
7378 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7379 [EXCP_DATA_ABORT] = "Data Abort",
7380 [EXCP_IRQ] = "IRQ",
7381 [EXCP_FIQ] = "FIQ",
7382 [EXCP_BKPT] = "Breakpoint",
7383 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7384 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7385 [EXCP_HVC] = "Hypervisor Call",
7386 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7387 [EXCP_SMC] = "Secure Monitor Call",
7388 [EXCP_VIRQ] = "Virtual IRQ",
7389 [EXCP_VFIQ] = "Virtual FIQ",
7390 [EXCP_SEMIHOST] = "Semihosting call",
7391 [EXCP_NOCP] = "v7M NOCP UsageFault",
7392 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7395 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7396 exc = excnames[idx];
7398 if (!exc) {
7399 exc = "unknown";
7401 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7405 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7406 uint32_t addr, uint16_t *insn)
7408 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7409 * or false on failure (in which case we will have pended the appropriate
7410 * exception).
7411 * We need to do the instruction fetch's MPU and SAU checks
7412 * like this because there is no MMU index that would allow
7413 * doing the load with a single function call. Instead we must
7414 * first check that the security attributes permit the load
7415 * and that they don't mismatch on the two halves of the instruction,
7416 * and then we do the load as a secure load (ie using the security
7417 * attributes of the address, not the CPU, as architecturally required).
7419 CPUState *cs = CPU(cpu);
7420 CPUARMState *env = &cpu->env;
7421 V8M_SAttributes sattrs = {};
7422 MemTxAttrs attrs = {};
7423 ARMMMUFaultInfo fi = {};
7424 MemTxResult txres;
7425 target_ulong page_size;
7426 hwaddr physaddr;
7427 int prot;
7429 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7430 if (!sattrs.nsc || sattrs.ns) {
7431 /* This must be the second half of the insn, and it straddles a
7432 * region boundary with the second half not being S&NSC.
7434 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7435 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7436 qemu_log_mask(CPU_LOG_INT,
7437 "...really SecureFault with SFSR.INVEP\n");
7438 return false;
7440 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7441 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7442 /* the MPU lookup failed */
7443 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7444 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7445 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7446 return false;
7448 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7449 attrs, &txres);
7450 if (txres != MEMTX_OK) {
7451 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7452 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7453 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7454 return false;
7456 return true;
7459 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7461 /* Check whether this attempt to execute code in a Secure & NS-Callable
7462 * memory region is for an SG instruction; if so, then emulate the
7463 * effect of the SG instruction and return true. Otherwise pend
7464 * the correct kind of exception and return false.
7466 CPUARMState *env = &cpu->env;
7467 ARMMMUIdx mmu_idx;
7468 uint16_t insn;
7470 /* We should never get here unless get_phys_addr_pmsav8() caused
7471 * an exception for NS executing in S&NSC memory.
7473 assert(!env->v7m.secure);
7474 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7476 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7477 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7479 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7480 return false;
7483 if (!env->thumb) {
7484 goto gen_invep;
7487 if (insn != 0xe97f) {
7488 /* Not an SG instruction first half (we choose the IMPDEF
7489 * early-SG-check option).
7491 goto gen_invep;
7494 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7495 return false;
7498 if (insn != 0xe97f) {
7499 /* Not an SG instruction second half (yes, both halves of the SG
7500 * insn have the same hex value)
7502 goto gen_invep;
7505 /* OK, we have confirmed that we really have an SG instruction.
7506 * We know we're NS in S memory so don't need to repeat those checks.
7508 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7509 ", executing it\n", env->regs[15]);
7510 env->regs[14] &= ~1;
7511 switch_v7m_security_state(env, true);
7512 xpsr_write(env, 0, XPSR_IT);
7513 env->regs[15] += 4;
7514 return true;
7516 gen_invep:
7517 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7518 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7519 qemu_log_mask(CPU_LOG_INT,
7520 "...really SecureFault with SFSR.INVEP\n");
7521 return false;
7524 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7526 ARMCPU *cpu = ARM_CPU(cs);
7527 CPUARMState *env = &cpu->env;
7528 uint32_t lr;
7529 bool ignore_stackfaults;
7531 arm_log_exception(cs->exception_index);
7533 /* For exceptions we just mark as pending on the NVIC, and let that
7534 handle it. */
7535 switch (cs->exception_index) {
7536 case EXCP_UDEF:
7537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7539 break;
7540 case EXCP_NOCP:
7541 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7542 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7543 break;
7544 case EXCP_INVSTATE:
7545 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7546 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7547 break;
7548 case EXCP_SWI:
7549 /* The PC already points to the next instruction. */
7550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7551 break;
7552 case EXCP_PREFETCH_ABORT:
7553 case EXCP_DATA_ABORT:
7554 /* Note that for M profile we don't have a guest facing FSR, but
7555 * the env->exception.fsr will be populated by the code that
7556 * raises the fault, in the A profile short-descriptor format.
7558 switch (env->exception.fsr & 0xf) {
7559 case M_FAKE_FSR_NSC_EXEC:
7560 /* Exception generated when we try to execute code at an address
7561 * which is marked as Secure & Non-Secure Callable and the CPU
7562 * is in the Non-Secure state. The only instruction which can
7563 * be executed like this is SG (and that only if both halves of
7564 * the SG instruction have the same security attributes.)
7565 * Everything else must generate an INVEP SecureFault, so we
7566 * emulate the SG instruction here.
7568 if (v7m_handle_execute_nsc(cpu)) {
7569 return;
7571 break;
7572 case M_FAKE_FSR_SFAULT:
7573 /* Various flavours of SecureFault for attempts to execute or
7574 * access data in the wrong security state.
7576 switch (cs->exception_index) {
7577 case EXCP_PREFETCH_ABORT:
7578 if (env->v7m.secure) {
7579 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7580 qemu_log_mask(CPU_LOG_INT,
7581 "...really SecureFault with SFSR.INVTRAN\n");
7582 } else {
7583 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7584 qemu_log_mask(CPU_LOG_INT,
7585 "...really SecureFault with SFSR.INVEP\n");
7587 break;
7588 case EXCP_DATA_ABORT:
7589 /* This must be an NS access to S memory */
7590 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7591 qemu_log_mask(CPU_LOG_INT,
7592 "...really SecureFault with SFSR.AUVIOL\n");
7593 break;
7595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7596 break;
7597 case 0x8: /* External Abort */
7598 switch (cs->exception_index) {
7599 case EXCP_PREFETCH_ABORT:
7600 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7601 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7602 break;
7603 case EXCP_DATA_ABORT:
7604 env->v7m.cfsr[M_REG_NS] |=
7605 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7606 env->v7m.bfar = env->exception.vaddress;
7607 qemu_log_mask(CPU_LOG_INT,
7608 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7609 env->v7m.bfar);
7610 break;
7612 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7613 break;
7614 default:
7615 /* All other FSR values are either MPU faults or "can't happen
7616 * for M profile" cases.
7618 switch (cs->exception_index) {
7619 case EXCP_PREFETCH_ABORT:
7620 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7621 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7622 break;
7623 case EXCP_DATA_ABORT:
7624 env->v7m.cfsr[env->v7m.secure] |=
7625 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7626 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7627 qemu_log_mask(CPU_LOG_INT,
7628 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7629 env->v7m.mmfar[env->v7m.secure]);
7630 break;
7632 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7633 env->v7m.secure);
7634 break;
7636 break;
7637 case EXCP_BKPT:
7638 if (semihosting_enabled()) {
7639 int nr;
7640 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7641 if (nr == 0xab) {
7642 env->regs[15] += 2;
7643 qemu_log_mask(CPU_LOG_INT,
7644 "...handling as semihosting call 0x%x\n",
7645 env->regs[0]);
7646 env->regs[0] = do_arm_semihosting(env);
7647 return;
7650 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7651 break;
7652 case EXCP_IRQ:
7653 break;
7654 case EXCP_EXCEPTION_EXIT:
7655 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7656 /* Must be v8M security extension function return */
7657 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7658 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7659 if (do_v7m_function_return(cpu)) {
7660 return;
7662 } else {
7663 do_v7m_exception_exit(cpu);
7664 return;
7666 break;
7667 default:
7668 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7669 return; /* Never happens. Keep compiler happy. */
7672 if (arm_feature(env, ARM_FEATURE_V8)) {
7673 lr = R_V7M_EXCRET_RES1_MASK |
7674 R_V7M_EXCRET_DCRS_MASK |
7675 R_V7M_EXCRET_FTYPE_MASK;
7676 /* The S bit indicates whether we should return to Secure
7677 * or NonSecure (ie our current state).
7678 * The ES bit indicates whether we're taking this exception
7679 * to Secure or NonSecure (ie our target state). We set it
7680 * later, in v7m_exception_taken().
7681 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7682 * This corresponds to the ARM ARM pseudocode for v8M setting
7683 * some LR bits in PushStack() and some in ExceptionTaken();
7684 * the distinction matters for the tailchain cases where we
7685 * can take an exception without pushing the stack.
7687 if (env->v7m.secure) {
7688 lr |= R_V7M_EXCRET_S_MASK;
7690 } else {
7691 lr = R_V7M_EXCRET_RES1_MASK |
7692 R_V7M_EXCRET_S_MASK |
7693 R_V7M_EXCRET_DCRS_MASK |
7694 R_V7M_EXCRET_FTYPE_MASK |
7695 R_V7M_EXCRET_ES_MASK;
7696 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7697 lr |= R_V7M_EXCRET_SPSEL_MASK;
7700 if (!arm_v7m_is_handler_mode(env)) {
7701 lr |= R_V7M_EXCRET_MODE_MASK;
7704 ignore_stackfaults = v7m_push_stack(cpu);
7705 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7706 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7709 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7710 * register set. This is necessary when switching between AArch32 and AArch64
7711 * execution state.
7713 void aarch64_sync_32_to_64(CPUARMState *env)
7715 int i;
7716 uint32_t mode = env->uncached_cpsr & CPSR_M;
7718 /* We can blanket copy R[0:7] to X[0:7] */
7719 for (i = 0; i < 8; i++) {
7720 env->xregs[i] = env->regs[i];
7723 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7724 * Otherwise, they come from the banked user regs.
7726 if (mode == ARM_CPU_MODE_FIQ) {
7727 for (i = 8; i < 13; i++) {
7728 env->xregs[i] = env->usr_regs[i - 8];
7730 } else {
7731 for (i = 8; i < 13; i++) {
7732 env->xregs[i] = env->regs[i];
7736 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7737 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7738 * from the mode banked register.
7740 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7741 env->xregs[13] = env->regs[13];
7742 env->xregs[14] = env->regs[14];
7743 } else {
7744 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7745 /* HYP is an exception in that it is copied from r14 */
7746 if (mode == ARM_CPU_MODE_HYP) {
7747 env->xregs[14] = env->regs[14];
7748 } else {
7749 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7753 if (mode == ARM_CPU_MODE_HYP) {
7754 env->xregs[15] = env->regs[13];
7755 } else {
7756 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7759 if (mode == ARM_CPU_MODE_IRQ) {
7760 env->xregs[16] = env->regs[14];
7761 env->xregs[17] = env->regs[13];
7762 } else {
7763 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7764 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7767 if (mode == ARM_CPU_MODE_SVC) {
7768 env->xregs[18] = env->regs[14];
7769 env->xregs[19] = env->regs[13];
7770 } else {
7771 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7772 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7775 if (mode == ARM_CPU_MODE_ABT) {
7776 env->xregs[20] = env->regs[14];
7777 env->xregs[21] = env->regs[13];
7778 } else {
7779 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7780 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7783 if (mode == ARM_CPU_MODE_UND) {
7784 env->xregs[22] = env->regs[14];
7785 env->xregs[23] = env->regs[13];
7786 } else {
7787 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7788 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7791 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7792 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7793 * FIQ bank for r8-r14.
7795 if (mode == ARM_CPU_MODE_FIQ) {
7796 for (i = 24; i < 31; i++) {
7797 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7799 } else {
7800 for (i = 24; i < 29; i++) {
7801 env->xregs[i] = env->fiq_regs[i - 24];
7803 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7804 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7807 env->pc = env->regs[15];
7810 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7811 * register set. This is necessary when switching between AArch32 and AArch64
7812 * execution state.
7814 void aarch64_sync_64_to_32(CPUARMState *env)
7816 int i;
7817 uint32_t mode = env->uncached_cpsr & CPSR_M;
7819 /* We can blanket copy X[0:7] to R[0:7] */
7820 for (i = 0; i < 8; i++) {
7821 env->regs[i] = env->xregs[i];
7824 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7825 * Otherwise, we copy x8-x12 into the banked user regs.
7827 if (mode == ARM_CPU_MODE_FIQ) {
7828 for (i = 8; i < 13; i++) {
7829 env->usr_regs[i - 8] = env->xregs[i];
7831 } else {
7832 for (i = 8; i < 13; i++) {
7833 env->regs[i] = env->xregs[i];
7837 /* Registers r13 & r14 depend on the current mode.
7838 * If we are in a given mode, we copy the corresponding x registers to r13
7839 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7840 * for the mode.
7842 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7843 env->regs[13] = env->xregs[13];
7844 env->regs[14] = env->xregs[14];
7845 } else {
7846 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7848 /* HYP is an exception in that it does not have its own banked r14 but
7849 * shares the USR r14
7851 if (mode == ARM_CPU_MODE_HYP) {
7852 env->regs[14] = env->xregs[14];
7853 } else {
7854 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7858 if (mode == ARM_CPU_MODE_HYP) {
7859 env->regs[13] = env->xregs[15];
7860 } else {
7861 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7864 if (mode == ARM_CPU_MODE_IRQ) {
7865 env->regs[14] = env->xregs[16];
7866 env->regs[13] = env->xregs[17];
7867 } else {
7868 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7869 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7872 if (mode == ARM_CPU_MODE_SVC) {
7873 env->regs[14] = env->xregs[18];
7874 env->regs[13] = env->xregs[19];
7875 } else {
7876 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7877 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7880 if (mode == ARM_CPU_MODE_ABT) {
7881 env->regs[14] = env->xregs[20];
7882 env->regs[13] = env->xregs[21];
7883 } else {
7884 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7885 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7888 if (mode == ARM_CPU_MODE_UND) {
7889 env->regs[14] = env->xregs[22];
7890 env->regs[13] = env->xregs[23];
7891 } else {
7892 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7893 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7896 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7897 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7898 * FIQ bank for r8-r14.
7900 if (mode == ARM_CPU_MODE_FIQ) {
7901 for (i = 24; i < 31; i++) {
7902 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7904 } else {
7905 for (i = 24; i < 29; i++) {
7906 env->fiq_regs[i - 24] = env->xregs[i];
7908 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7909 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7912 env->regs[15] = env->pc;
7915 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7917 ARMCPU *cpu = ARM_CPU(cs);
7918 CPUARMState *env = &cpu->env;
7919 uint32_t addr;
7920 uint32_t mask;
7921 int new_mode;
7922 uint32_t offset;
7923 uint32_t moe;
7925 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7926 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7927 case EC_BREAKPOINT:
7928 case EC_BREAKPOINT_SAME_EL:
7929 moe = 1;
7930 break;
7931 case EC_WATCHPOINT:
7932 case EC_WATCHPOINT_SAME_EL:
7933 moe = 10;
7934 break;
7935 case EC_AA32_BKPT:
7936 moe = 3;
7937 break;
7938 case EC_VECTORCATCH:
7939 moe = 5;
7940 break;
7941 default:
7942 moe = 0;
7943 break;
7946 if (moe) {
7947 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7950 /* TODO: Vectored interrupt controller. */
7951 switch (cs->exception_index) {
7952 case EXCP_UDEF:
7953 new_mode = ARM_CPU_MODE_UND;
7954 addr = 0x04;
7955 mask = CPSR_I;
7956 if (env->thumb)
7957 offset = 2;
7958 else
7959 offset = 4;
7960 break;
7961 case EXCP_SWI:
7962 new_mode = ARM_CPU_MODE_SVC;
7963 addr = 0x08;
7964 mask = CPSR_I;
7965 /* The PC already points to the next instruction. */
7966 offset = 0;
7967 break;
7968 case EXCP_BKPT:
7969 /* Fall through to prefetch abort. */
7970 case EXCP_PREFETCH_ABORT:
7971 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7972 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7973 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7974 env->exception.fsr, (uint32_t)env->exception.vaddress);
7975 new_mode = ARM_CPU_MODE_ABT;
7976 addr = 0x0c;
7977 mask = CPSR_A | CPSR_I;
7978 offset = 4;
7979 break;
7980 case EXCP_DATA_ABORT:
7981 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7982 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7983 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7984 env->exception.fsr,
7985 (uint32_t)env->exception.vaddress);
7986 new_mode = ARM_CPU_MODE_ABT;
7987 addr = 0x10;
7988 mask = CPSR_A | CPSR_I;
7989 offset = 8;
7990 break;
7991 case EXCP_IRQ:
7992 new_mode = ARM_CPU_MODE_IRQ;
7993 addr = 0x18;
7994 /* Disable IRQ and imprecise data aborts. */
7995 mask = CPSR_A | CPSR_I;
7996 offset = 4;
7997 if (env->cp15.scr_el3 & SCR_IRQ) {
7998 /* IRQ routed to monitor mode */
7999 new_mode = ARM_CPU_MODE_MON;
8000 mask |= CPSR_F;
8002 break;
8003 case EXCP_FIQ:
8004 new_mode = ARM_CPU_MODE_FIQ;
8005 addr = 0x1c;
8006 /* Disable FIQ, IRQ and imprecise data aborts. */
8007 mask = CPSR_A | CPSR_I | CPSR_F;
8008 if (env->cp15.scr_el3 & SCR_FIQ) {
8009 /* FIQ routed to monitor mode */
8010 new_mode = ARM_CPU_MODE_MON;
8012 offset = 4;
8013 break;
8014 case EXCP_VIRQ:
8015 new_mode = ARM_CPU_MODE_IRQ;
8016 addr = 0x18;
8017 /* Disable IRQ and imprecise data aborts. */
8018 mask = CPSR_A | CPSR_I;
8019 offset = 4;
8020 break;
8021 case EXCP_VFIQ:
8022 new_mode = ARM_CPU_MODE_FIQ;
8023 addr = 0x1c;
8024 /* Disable FIQ, IRQ and imprecise data aborts. */
8025 mask = CPSR_A | CPSR_I | CPSR_F;
8026 offset = 4;
8027 break;
8028 case EXCP_SMC:
8029 new_mode = ARM_CPU_MODE_MON;
8030 addr = 0x08;
8031 mask = CPSR_A | CPSR_I | CPSR_F;
8032 offset = 0;
8033 break;
8034 default:
8035 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8036 return; /* Never happens. Keep compiler happy. */
8039 if (new_mode == ARM_CPU_MODE_MON) {
8040 addr += env->cp15.mvbar;
8041 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8042 /* High vectors. When enabled, base address cannot be remapped. */
8043 addr += 0xffff0000;
8044 } else {
8045 /* ARM v7 architectures provide a vector base address register to remap
8046 * the interrupt vector table.
8047 * This register is only followed in non-monitor mode, and is banked.
8048 * Note: only bits 31:5 are valid.
8050 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8053 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8054 env->cp15.scr_el3 &= ~SCR_NS;
8057 switch_mode (env, new_mode);
8058 /* For exceptions taken to AArch32 we must clear the SS bit in both
8059 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8061 env->uncached_cpsr &= ~PSTATE_SS;
8062 env->spsr = cpsr_read(env);
8063 /* Clear IT bits. */
8064 env->condexec_bits = 0;
8065 /* Switch to the new mode, and to the correct instruction set. */
8066 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8067 /* Set new mode endianness */
8068 env->uncached_cpsr &= ~CPSR_E;
8069 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8070 env->uncached_cpsr |= CPSR_E;
8072 env->daif |= mask;
8073 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8074 * and we should just guard the thumb mode on V4 */
8075 if (arm_feature(env, ARM_FEATURE_V4T)) {
8076 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8078 env->regs[14] = env->regs[15] + offset;
8079 env->regs[15] = addr;
8082 /* Handle exception entry to a target EL which is using AArch64 */
8083 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8085 ARMCPU *cpu = ARM_CPU(cs);
8086 CPUARMState *env = &cpu->env;
8087 unsigned int new_el = env->exception.target_el;
8088 target_ulong addr = env->cp15.vbar_el[new_el];
8089 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8091 if (arm_current_el(env) < new_el) {
8092 /* Entry vector offset depends on whether the implemented EL
8093 * immediately lower than the target level is using AArch32 or AArch64
8095 bool is_aa64;
8097 switch (new_el) {
8098 case 3:
8099 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8100 break;
8101 case 2:
8102 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8103 break;
8104 case 1:
8105 is_aa64 = is_a64(env);
8106 break;
8107 default:
8108 g_assert_not_reached();
8111 if (is_aa64) {
8112 addr += 0x400;
8113 } else {
8114 addr += 0x600;
8116 } else if (pstate_read(env) & PSTATE_SP) {
8117 addr += 0x200;
8120 switch (cs->exception_index) {
8121 case EXCP_PREFETCH_ABORT:
8122 case EXCP_DATA_ABORT:
8123 env->cp15.far_el[new_el] = env->exception.vaddress;
8124 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8125 env->cp15.far_el[new_el]);
8126 /* fall through */
8127 case EXCP_BKPT:
8128 case EXCP_UDEF:
8129 case EXCP_SWI:
8130 case EXCP_HVC:
8131 case EXCP_HYP_TRAP:
8132 case EXCP_SMC:
8133 env->cp15.esr_el[new_el] = env->exception.syndrome;
8134 break;
8135 case EXCP_IRQ:
8136 case EXCP_VIRQ:
8137 addr += 0x80;
8138 break;
8139 case EXCP_FIQ:
8140 case EXCP_VFIQ:
8141 addr += 0x100;
8142 break;
8143 case EXCP_SEMIHOST:
8144 qemu_log_mask(CPU_LOG_INT,
8145 "...handling as semihosting call 0x%" PRIx64 "\n",
8146 env->xregs[0]);
8147 env->xregs[0] = do_arm_semihosting(env);
8148 return;
8149 default:
8150 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8153 if (is_a64(env)) {
8154 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8155 aarch64_save_sp(env, arm_current_el(env));
8156 env->elr_el[new_el] = env->pc;
8157 } else {
8158 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8159 env->elr_el[new_el] = env->regs[15];
8161 aarch64_sync_32_to_64(env);
8163 env->condexec_bits = 0;
8165 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8166 env->elr_el[new_el]);
8168 pstate_write(env, PSTATE_DAIF | new_mode);
8169 env->aarch64 = 1;
8170 aarch64_restore_sp(env, new_el);
8172 env->pc = addr;
8174 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8175 new_el, env->pc, pstate_read(env));
8178 static inline bool check_for_semihosting(CPUState *cs)
8180 /* Check whether this exception is a semihosting call; if so
8181 * then handle it and return true; otherwise return false.
8183 ARMCPU *cpu = ARM_CPU(cs);
8184 CPUARMState *env = &cpu->env;
8186 if (is_a64(env)) {
8187 if (cs->exception_index == EXCP_SEMIHOST) {
8188 /* This is always the 64-bit semihosting exception.
8189 * The "is this usermode" and "is semihosting enabled"
8190 * checks have been done at translate time.
8192 qemu_log_mask(CPU_LOG_INT,
8193 "...handling as semihosting call 0x%" PRIx64 "\n",
8194 env->xregs[0]);
8195 env->xregs[0] = do_arm_semihosting(env);
8196 return true;
8198 return false;
8199 } else {
8200 uint32_t imm;
8202 /* Only intercept calls from privileged modes, to provide some
8203 * semblance of security.
8205 if (cs->exception_index != EXCP_SEMIHOST &&
8206 (!semihosting_enabled() ||
8207 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8208 return false;
8211 switch (cs->exception_index) {
8212 case EXCP_SEMIHOST:
8213 /* This is always a semihosting call; the "is this usermode"
8214 * and "is semihosting enabled" checks have been done at
8215 * translate time.
8217 break;
8218 case EXCP_SWI:
8219 /* Check for semihosting interrupt. */
8220 if (env->thumb) {
8221 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8222 & 0xff;
8223 if (imm == 0xab) {
8224 break;
8226 } else {
8227 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8228 & 0xffffff;
8229 if (imm == 0x123456) {
8230 break;
8233 return false;
8234 case EXCP_BKPT:
8235 /* See if this is a semihosting syscall. */
8236 if (env->thumb) {
8237 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8238 & 0xff;
8239 if (imm == 0xab) {
8240 env->regs[15] += 2;
8241 break;
8244 return false;
8245 default:
8246 return false;
8249 qemu_log_mask(CPU_LOG_INT,
8250 "...handling as semihosting call 0x%x\n",
8251 env->regs[0]);
8252 env->regs[0] = do_arm_semihosting(env);
8253 return true;
8257 /* Handle a CPU exception for A and R profile CPUs.
8258 * Do any appropriate logging, handle PSCI calls, and then hand off
8259 * to the AArch64-entry or AArch32-entry function depending on the
8260 * target exception level's register width.
8262 void arm_cpu_do_interrupt(CPUState *cs)
8264 ARMCPU *cpu = ARM_CPU(cs);
8265 CPUARMState *env = &cpu->env;
8266 unsigned int new_el = env->exception.target_el;
8268 assert(!arm_feature(env, ARM_FEATURE_M));
8270 arm_log_exception(cs->exception_index);
8271 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8272 new_el);
8273 if (qemu_loglevel_mask(CPU_LOG_INT)
8274 && !excp_is_internal(cs->exception_index)) {
8275 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8276 env->exception.syndrome >> ARM_EL_EC_SHIFT,
8277 env->exception.syndrome);
8280 if (arm_is_psci_call(cpu, cs->exception_index)) {
8281 arm_handle_psci_call(cpu);
8282 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8283 return;
8286 /* Semihosting semantics depend on the register width of the
8287 * code that caused the exception, not the target exception level,
8288 * so must be handled here.
8290 if (check_for_semihosting(cs)) {
8291 return;
8294 /* Hooks may change global state so BQL should be held, also the
8295 * BQL needs to be held for any modification of
8296 * cs->interrupt_request.
8298 g_assert(qemu_mutex_iothread_locked());
8300 arm_call_pre_el_change_hook(cpu);
8302 assert(!excp_is_internal(cs->exception_index));
8303 if (arm_el_is_aa64(env, new_el)) {
8304 arm_cpu_do_interrupt_aarch64(cs);
8305 } else {
8306 arm_cpu_do_interrupt_aarch32(cs);
8309 arm_call_el_change_hook(cpu);
8311 if (!kvm_enabled()) {
8312 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8316 /* Return the exception level which controls this address translation regime */
8317 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8319 switch (mmu_idx) {
8320 case ARMMMUIdx_S2NS:
8321 case ARMMMUIdx_S1E2:
8322 return 2;
8323 case ARMMMUIdx_S1E3:
8324 return 3;
8325 case ARMMMUIdx_S1SE0:
8326 return arm_el_is_aa64(env, 3) ? 1 : 3;
8327 case ARMMMUIdx_S1SE1:
8328 case ARMMMUIdx_S1NSE0:
8329 case ARMMMUIdx_S1NSE1:
8330 case ARMMMUIdx_MPrivNegPri:
8331 case ARMMMUIdx_MUserNegPri:
8332 case ARMMMUIdx_MPriv:
8333 case ARMMMUIdx_MUser:
8334 case ARMMMUIdx_MSPrivNegPri:
8335 case ARMMMUIdx_MSUserNegPri:
8336 case ARMMMUIdx_MSPriv:
8337 case ARMMMUIdx_MSUser:
8338 return 1;
8339 default:
8340 g_assert_not_reached();
8344 /* Return the SCTLR value which controls this address translation regime */
8345 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8347 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8350 /* Return true if the specified stage of address translation is disabled */
8351 static inline bool regime_translation_disabled(CPUARMState *env,
8352 ARMMMUIdx mmu_idx)
8354 if (arm_feature(env, ARM_FEATURE_M)) {
8355 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8356 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8357 case R_V7M_MPU_CTRL_ENABLE_MASK:
8358 /* Enabled, but not for HardFault and NMI */
8359 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8360 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8361 /* Enabled for all cases */
8362 return false;
8363 case 0:
8364 default:
8365 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8366 * we warned about that in armv7m_nvic.c when the guest set it.
8368 return true;
8372 if (mmu_idx == ARMMMUIdx_S2NS) {
8373 return (env->cp15.hcr_el2 & HCR_VM) == 0;
8375 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8378 static inline bool regime_translation_big_endian(CPUARMState *env,
8379 ARMMMUIdx mmu_idx)
8381 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8384 /* Return the TCR controlling this translation regime */
8385 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8387 if (mmu_idx == ARMMMUIdx_S2NS) {
8388 return &env->cp15.vtcr_el2;
8390 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8393 /* Convert a possible stage1+2 MMU index into the appropriate
8394 * stage 1 MMU index
8396 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8398 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8399 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8401 return mmu_idx;
8404 /* Returns TBI0 value for current regime el */
8405 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8407 TCR *tcr;
8408 uint32_t el;
8410 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8411 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8413 mmu_idx = stage_1_mmu_idx(mmu_idx);
8415 tcr = regime_tcr(env, mmu_idx);
8416 el = regime_el(env, mmu_idx);
8418 if (el > 1) {
8419 return extract64(tcr->raw_tcr, 20, 1);
8420 } else {
8421 return extract64(tcr->raw_tcr, 37, 1);
8425 /* Returns TBI1 value for current regime el */
8426 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8428 TCR *tcr;
8429 uint32_t el;
8431 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8432 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8434 mmu_idx = stage_1_mmu_idx(mmu_idx);
8436 tcr = regime_tcr(env, mmu_idx);
8437 el = regime_el(env, mmu_idx);
8439 if (el > 1) {
8440 return 0;
8441 } else {
8442 return extract64(tcr->raw_tcr, 38, 1);
8446 /* Return the TTBR associated with this translation regime */
8447 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8448 int ttbrn)
8450 if (mmu_idx == ARMMMUIdx_S2NS) {
8451 return env->cp15.vttbr_el2;
8453 if (ttbrn == 0) {
8454 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8455 } else {
8456 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8460 /* Return true if the translation regime is using LPAE format page tables */
8461 static inline bool regime_using_lpae_format(CPUARMState *env,
8462 ARMMMUIdx mmu_idx)
8464 int el = regime_el(env, mmu_idx);
8465 if (el == 2 || arm_el_is_aa64(env, el)) {
8466 return true;
8468 if (arm_feature(env, ARM_FEATURE_LPAE)
8469 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8470 return true;
8472 return false;
8475 /* Returns true if the stage 1 translation regime is using LPAE format page
8476 * tables. Used when raising alignment exceptions, whose FSR changes depending
8477 * on whether the long or short descriptor format is in use. */
8478 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8480 mmu_idx = stage_1_mmu_idx(mmu_idx);
8482 return regime_using_lpae_format(env, mmu_idx);
8485 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8487 switch (mmu_idx) {
8488 case ARMMMUIdx_S1SE0:
8489 case ARMMMUIdx_S1NSE0:
8490 case ARMMMUIdx_MUser:
8491 case ARMMMUIdx_MSUser:
8492 case ARMMMUIdx_MUserNegPri:
8493 case ARMMMUIdx_MSUserNegPri:
8494 return true;
8495 default:
8496 return false;
8497 case ARMMMUIdx_S12NSE0:
8498 case ARMMMUIdx_S12NSE1:
8499 g_assert_not_reached();
8503 /* Translate section/page access permissions to page
8504 * R/W protection flags
8506 * @env: CPUARMState
8507 * @mmu_idx: MMU index indicating required translation regime
8508 * @ap: The 3-bit access permissions (AP[2:0])
8509 * @domain_prot: The 2-bit domain access permissions
8511 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8512 int ap, int domain_prot)
8514 bool is_user = regime_is_user(env, mmu_idx);
8516 if (domain_prot == 3) {
8517 return PAGE_READ | PAGE_WRITE;
8520 switch (ap) {
8521 case 0:
8522 if (arm_feature(env, ARM_FEATURE_V7)) {
8523 return 0;
8525 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8526 case SCTLR_S:
8527 return is_user ? 0 : PAGE_READ;
8528 case SCTLR_R:
8529 return PAGE_READ;
8530 default:
8531 return 0;
8533 case 1:
8534 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8535 case 2:
8536 if (is_user) {
8537 return PAGE_READ;
8538 } else {
8539 return PAGE_READ | PAGE_WRITE;
8541 case 3:
8542 return PAGE_READ | PAGE_WRITE;
8543 case 4: /* Reserved. */
8544 return 0;
8545 case 5:
8546 return is_user ? 0 : PAGE_READ;
8547 case 6:
8548 return PAGE_READ;
8549 case 7:
8550 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8551 return 0;
8553 return PAGE_READ;
8554 default:
8555 g_assert_not_reached();
8559 /* Translate section/page access permissions to page
8560 * R/W protection flags.
8562 * @ap: The 2-bit simple AP (AP[2:1])
8563 * @is_user: TRUE if accessing from PL0
8565 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8567 switch (ap) {
8568 case 0:
8569 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8570 case 1:
8571 return PAGE_READ | PAGE_WRITE;
8572 case 2:
8573 return is_user ? 0 : PAGE_READ;
8574 case 3:
8575 return PAGE_READ;
8576 default:
8577 g_assert_not_reached();
8581 static inline int
8582 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8584 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8587 /* Translate S2 section/page access permissions to protection flags
8589 * @env: CPUARMState
8590 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8591 * @xn: XN (execute-never) bit
8593 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8595 int prot = 0;
8597 if (s2ap & 1) {
8598 prot |= PAGE_READ;
8600 if (s2ap & 2) {
8601 prot |= PAGE_WRITE;
8603 if (!xn) {
8604 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8605 prot |= PAGE_EXEC;
8608 return prot;
8611 /* Translate section/page access permissions to protection flags
8613 * @env: CPUARMState
8614 * @mmu_idx: MMU index indicating required translation regime
8615 * @is_aa64: TRUE if AArch64
8616 * @ap: The 2-bit simple AP (AP[2:1])
8617 * @ns: NS (non-secure) bit
8618 * @xn: XN (execute-never) bit
8619 * @pxn: PXN (privileged execute-never) bit
8621 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8622 int ap, int ns, int xn, int pxn)
8624 bool is_user = regime_is_user(env, mmu_idx);
8625 int prot_rw, user_rw;
8626 bool have_wxn;
8627 int wxn = 0;
8629 assert(mmu_idx != ARMMMUIdx_S2NS);
8631 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8632 if (is_user) {
8633 prot_rw = user_rw;
8634 } else {
8635 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8638 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8639 return prot_rw;
8642 /* TODO have_wxn should be replaced with
8643 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8644 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8645 * compatible processors have EL2, which is required for [U]WXN.
8647 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8649 if (have_wxn) {
8650 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8653 if (is_aa64) {
8654 switch (regime_el(env, mmu_idx)) {
8655 case 1:
8656 if (!is_user) {
8657 xn = pxn || (user_rw & PAGE_WRITE);
8659 break;
8660 case 2:
8661 case 3:
8662 break;
8664 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8665 switch (regime_el(env, mmu_idx)) {
8666 case 1:
8667 case 3:
8668 if (is_user) {
8669 xn = xn || !(user_rw & PAGE_READ);
8670 } else {
8671 int uwxn = 0;
8672 if (have_wxn) {
8673 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8675 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8676 (uwxn && (user_rw & PAGE_WRITE));
8678 break;
8679 case 2:
8680 break;
8682 } else {
8683 xn = wxn = 0;
8686 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8687 return prot_rw;
8689 return prot_rw | PAGE_EXEC;
8692 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8693 uint32_t *table, uint32_t address)
8695 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8696 TCR *tcr = regime_tcr(env, mmu_idx);
8698 if (address & tcr->mask) {
8699 if (tcr->raw_tcr & TTBCR_PD1) {
8700 /* Translation table walk disabled for TTBR1 */
8701 return false;
8703 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8704 } else {
8705 if (tcr->raw_tcr & TTBCR_PD0) {
8706 /* Translation table walk disabled for TTBR0 */
8707 return false;
8709 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8711 *table |= (address >> 18) & 0x3ffc;
8712 return true;
8715 /* Translate a S1 pagetable walk through S2 if needed. */
8716 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8717 hwaddr addr, MemTxAttrs txattrs,
8718 ARMMMUFaultInfo *fi)
8720 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8721 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8722 target_ulong s2size;
8723 hwaddr s2pa;
8724 int s2prot;
8725 int ret;
8727 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8728 &txattrs, &s2prot, &s2size, fi, NULL);
8729 if (ret) {
8730 assert(fi->type != ARMFault_None);
8731 fi->s2addr = addr;
8732 fi->stage2 = true;
8733 fi->s1ptw = true;
8734 return ~0;
8736 addr = s2pa;
8738 return addr;
8741 /* All loads done in the course of a page table walk go through here. */
8742 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8743 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8745 ARMCPU *cpu = ARM_CPU(cs);
8746 CPUARMState *env = &cpu->env;
8747 MemTxAttrs attrs = {};
8748 MemTxResult result = MEMTX_OK;
8749 AddressSpace *as;
8750 uint32_t data;
8752 attrs.secure = is_secure;
8753 as = arm_addressspace(cs, attrs);
8754 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8755 if (fi->s1ptw) {
8756 return 0;
8758 if (regime_translation_big_endian(env, mmu_idx)) {
8759 data = address_space_ldl_be(as, addr, attrs, &result);
8760 } else {
8761 data = address_space_ldl_le(as, addr, attrs, &result);
8763 if (result == MEMTX_OK) {
8764 return data;
8766 fi->type = ARMFault_SyncExternalOnWalk;
8767 fi->ea = arm_extabort_type(result);
8768 return 0;
8771 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8772 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8774 ARMCPU *cpu = ARM_CPU(cs);
8775 CPUARMState *env = &cpu->env;
8776 MemTxAttrs attrs = {};
8777 MemTxResult result = MEMTX_OK;
8778 AddressSpace *as;
8779 uint64_t data;
8781 attrs.secure = is_secure;
8782 as = arm_addressspace(cs, attrs);
8783 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8784 if (fi->s1ptw) {
8785 return 0;
8787 if (regime_translation_big_endian(env, mmu_idx)) {
8788 data = address_space_ldq_be(as, addr, attrs, &result);
8789 } else {
8790 data = address_space_ldq_le(as, addr, attrs, &result);
8792 if (result == MEMTX_OK) {
8793 return data;
8795 fi->type = ARMFault_SyncExternalOnWalk;
8796 fi->ea = arm_extabort_type(result);
8797 return 0;
8800 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8801 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8802 hwaddr *phys_ptr, int *prot,
8803 target_ulong *page_size,
8804 ARMMMUFaultInfo *fi)
8806 CPUState *cs = CPU(arm_env_get_cpu(env));
8807 int level = 1;
8808 uint32_t table;
8809 uint32_t desc;
8810 int type;
8811 int ap;
8812 int domain = 0;
8813 int domain_prot;
8814 hwaddr phys_addr;
8815 uint32_t dacr;
8817 /* Pagetable walk. */
8818 /* Lookup l1 descriptor. */
8819 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8820 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8821 fi->type = ARMFault_Translation;
8822 goto do_fault;
8824 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8825 mmu_idx, fi);
8826 if (fi->type != ARMFault_None) {
8827 goto do_fault;
8829 type = (desc & 3);
8830 domain = (desc >> 5) & 0x0f;
8831 if (regime_el(env, mmu_idx) == 1) {
8832 dacr = env->cp15.dacr_ns;
8833 } else {
8834 dacr = env->cp15.dacr_s;
8836 domain_prot = (dacr >> (domain * 2)) & 3;
8837 if (type == 0) {
8838 /* Section translation fault. */
8839 fi->type = ARMFault_Translation;
8840 goto do_fault;
8842 if (type != 2) {
8843 level = 2;
8845 if (domain_prot == 0 || domain_prot == 2) {
8846 fi->type = ARMFault_Domain;
8847 goto do_fault;
8849 if (type == 2) {
8850 /* 1Mb section. */
8851 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8852 ap = (desc >> 10) & 3;
8853 *page_size = 1024 * 1024;
8854 } else {
8855 /* Lookup l2 entry. */
8856 if (type == 1) {
8857 /* Coarse pagetable. */
8858 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8859 } else {
8860 /* Fine pagetable. */
8861 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8863 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8864 mmu_idx, fi);
8865 if (fi->type != ARMFault_None) {
8866 goto do_fault;
8868 switch (desc & 3) {
8869 case 0: /* Page translation fault. */
8870 fi->type = ARMFault_Translation;
8871 goto do_fault;
8872 case 1: /* 64k page. */
8873 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8874 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8875 *page_size = 0x10000;
8876 break;
8877 case 2: /* 4k page. */
8878 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8879 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8880 *page_size = 0x1000;
8881 break;
8882 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8883 if (type == 1) {
8884 /* ARMv6/XScale extended small page format */
8885 if (arm_feature(env, ARM_FEATURE_XSCALE)
8886 || arm_feature(env, ARM_FEATURE_V6)) {
8887 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8888 *page_size = 0x1000;
8889 } else {
8890 /* UNPREDICTABLE in ARMv5; we choose to take a
8891 * page translation fault.
8893 fi->type = ARMFault_Translation;
8894 goto do_fault;
8896 } else {
8897 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8898 *page_size = 0x400;
8900 ap = (desc >> 4) & 3;
8901 break;
8902 default:
8903 /* Never happens, but compiler isn't smart enough to tell. */
8904 abort();
8907 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8908 *prot |= *prot ? PAGE_EXEC : 0;
8909 if (!(*prot & (1 << access_type))) {
8910 /* Access permission fault. */
8911 fi->type = ARMFault_Permission;
8912 goto do_fault;
8914 *phys_ptr = phys_addr;
8915 return false;
8916 do_fault:
8917 fi->domain = domain;
8918 fi->level = level;
8919 return true;
8922 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8923 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8924 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8925 target_ulong *page_size, ARMMMUFaultInfo *fi)
8927 CPUState *cs = CPU(arm_env_get_cpu(env));
8928 int level = 1;
8929 uint32_t table;
8930 uint32_t desc;
8931 uint32_t xn;
8932 uint32_t pxn = 0;
8933 int type;
8934 int ap;
8935 int domain = 0;
8936 int domain_prot;
8937 hwaddr phys_addr;
8938 uint32_t dacr;
8939 bool ns;
8941 /* Pagetable walk. */
8942 /* Lookup l1 descriptor. */
8943 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8944 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8945 fi->type = ARMFault_Translation;
8946 goto do_fault;
8948 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8949 mmu_idx, fi);
8950 if (fi->type != ARMFault_None) {
8951 goto do_fault;
8953 type = (desc & 3);
8954 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8955 /* Section translation fault, or attempt to use the encoding
8956 * which is Reserved on implementations without PXN.
8958 fi->type = ARMFault_Translation;
8959 goto do_fault;
8961 if ((type == 1) || !(desc & (1 << 18))) {
8962 /* Page or Section. */
8963 domain = (desc >> 5) & 0x0f;
8965 if (regime_el(env, mmu_idx) == 1) {
8966 dacr = env->cp15.dacr_ns;
8967 } else {
8968 dacr = env->cp15.dacr_s;
8970 if (type == 1) {
8971 level = 2;
8973 domain_prot = (dacr >> (domain * 2)) & 3;
8974 if (domain_prot == 0 || domain_prot == 2) {
8975 /* Section or Page domain fault */
8976 fi->type = ARMFault_Domain;
8977 goto do_fault;
8979 if (type != 1) {
8980 if (desc & (1 << 18)) {
8981 /* Supersection. */
8982 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8983 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8984 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8985 *page_size = 0x1000000;
8986 } else {
8987 /* Section. */
8988 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8989 *page_size = 0x100000;
8991 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8992 xn = desc & (1 << 4);
8993 pxn = desc & 1;
8994 ns = extract32(desc, 19, 1);
8995 } else {
8996 if (arm_feature(env, ARM_FEATURE_PXN)) {
8997 pxn = (desc >> 2) & 1;
8999 ns = extract32(desc, 3, 1);
9000 /* Lookup l2 entry. */
9001 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9002 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9003 mmu_idx, fi);
9004 if (fi->type != ARMFault_None) {
9005 goto do_fault;
9007 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9008 switch (desc & 3) {
9009 case 0: /* Page translation fault. */
9010 fi->type = ARMFault_Translation;
9011 goto do_fault;
9012 case 1: /* 64k page. */
9013 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9014 xn = desc & (1 << 15);
9015 *page_size = 0x10000;
9016 break;
9017 case 2: case 3: /* 4k page. */
9018 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9019 xn = desc & 1;
9020 *page_size = 0x1000;
9021 break;
9022 default:
9023 /* Never happens, but compiler isn't smart enough to tell. */
9024 abort();
9027 if (domain_prot == 3) {
9028 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9029 } else {
9030 if (pxn && !regime_is_user(env, mmu_idx)) {
9031 xn = 1;
9033 if (xn && access_type == MMU_INST_FETCH) {
9034 fi->type = ARMFault_Permission;
9035 goto do_fault;
9038 if (arm_feature(env, ARM_FEATURE_V6K) &&
9039 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9040 /* The simplified model uses AP[0] as an access control bit. */
9041 if ((ap & 1) == 0) {
9042 /* Access flag fault. */
9043 fi->type = ARMFault_AccessFlag;
9044 goto do_fault;
9046 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9047 } else {
9048 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9050 if (*prot && !xn) {
9051 *prot |= PAGE_EXEC;
9053 if (!(*prot & (1 << access_type))) {
9054 /* Access permission fault. */
9055 fi->type = ARMFault_Permission;
9056 goto do_fault;
9059 if (ns) {
9060 /* The NS bit will (as required by the architecture) have no effect if
9061 * the CPU doesn't support TZ or this is a non-secure translation
9062 * regime, because the attribute will already be non-secure.
9064 attrs->secure = false;
9066 *phys_ptr = phys_addr;
9067 return false;
9068 do_fault:
9069 fi->domain = domain;
9070 fi->level = level;
9071 return true;
9075 * check_s2_mmu_setup
9076 * @cpu: ARMCPU
9077 * @is_aa64: True if the translation regime is in AArch64 state
9078 * @startlevel: Suggested starting level
9079 * @inputsize: Bitsize of IPAs
9080 * @stride: Page-table stride (See the ARM ARM)
9082 * Returns true if the suggested S2 translation parameters are OK and
9083 * false otherwise.
9085 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9086 int inputsize, int stride)
9088 const int grainsize = stride + 3;
9089 int startsizecheck;
9091 /* Negative levels are never allowed. */
9092 if (level < 0) {
9093 return false;
9096 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9097 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9098 return false;
9101 if (is_aa64) {
9102 CPUARMState *env = &cpu->env;
9103 unsigned int pamax = arm_pamax(cpu);
9105 switch (stride) {
9106 case 13: /* 64KB Pages. */
9107 if (level == 0 || (level == 1 && pamax <= 42)) {
9108 return false;
9110 break;
9111 case 11: /* 16KB Pages. */
9112 if (level == 0 || (level == 1 && pamax <= 40)) {
9113 return false;
9115 break;
9116 case 9: /* 4KB Pages. */
9117 if (level == 0 && pamax <= 42) {
9118 return false;
9120 break;
9121 default:
9122 g_assert_not_reached();
9125 /* Inputsize checks. */
9126 if (inputsize > pamax &&
9127 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9128 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9129 return false;
9131 } else {
9132 /* AArch32 only supports 4KB pages. Assert on that. */
9133 assert(stride == 9);
9135 if (level == 0) {
9136 return false;
9139 return true;
9142 /* Translate from the 4-bit stage 2 representation of
9143 * memory attributes (without cache-allocation hints) to
9144 * the 8-bit representation of the stage 1 MAIR registers
9145 * (which includes allocation hints).
9147 * ref: shared/translation/attrs/S2AttrDecode()
9148 * .../S2ConvertAttrsHints()
9150 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9152 uint8_t hiattr = extract32(s2attrs, 2, 2);
9153 uint8_t loattr = extract32(s2attrs, 0, 2);
9154 uint8_t hihint = 0, lohint = 0;
9156 if (hiattr != 0) { /* normal memory */
9157 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9158 hiattr = loattr = 1; /* non-cacheable */
9159 } else {
9160 if (hiattr != 1) { /* Write-through or write-back */
9161 hihint = 3; /* RW allocate */
9163 if (loattr != 1) { /* Write-through or write-back */
9164 lohint = 3; /* RW allocate */
9169 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9172 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9173 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9174 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9175 target_ulong *page_size_ptr,
9176 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9178 ARMCPU *cpu = arm_env_get_cpu(env);
9179 CPUState *cs = CPU(cpu);
9180 /* Read an LPAE long-descriptor translation table. */
9181 ARMFaultType fault_type = ARMFault_Translation;
9182 uint32_t level;
9183 uint32_t epd = 0;
9184 int32_t t0sz, t1sz;
9185 uint32_t tg;
9186 uint64_t ttbr;
9187 int ttbr_select;
9188 hwaddr descaddr, indexmask, indexmask_grainsize;
9189 uint32_t tableattrs;
9190 target_ulong page_size;
9191 uint32_t attrs;
9192 int32_t stride = 9;
9193 int32_t addrsize;
9194 int inputsize;
9195 int32_t tbi = 0;
9196 TCR *tcr = regime_tcr(env, mmu_idx);
9197 int ap, ns, xn, pxn;
9198 uint32_t el = regime_el(env, mmu_idx);
9199 bool ttbr1_valid = true;
9200 uint64_t descaddrmask;
9201 bool aarch64 = arm_el_is_aa64(env, el);
9203 /* TODO:
9204 * This code does not handle the different format TCR for VTCR_EL2.
9205 * This code also does not support shareability levels.
9206 * Attribute and permission bit handling should also be checked when adding
9207 * support for those page table walks.
9209 if (aarch64) {
9210 level = 0;
9211 addrsize = 64;
9212 if (el > 1) {
9213 if (mmu_idx != ARMMMUIdx_S2NS) {
9214 tbi = extract64(tcr->raw_tcr, 20, 1);
9216 } else {
9217 if (extract64(address, 55, 1)) {
9218 tbi = extract64(tcr->raw_tcr, 38, 1);
9219 } else {
9220 tbi = extract64(tcr->raw_tcr, 37, 1);
9223 tbi *= 8;
9225 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9226 * invalid.
9228 if (el > 1) {
9229 ttbr1_valid = false;
9231 } else {
9232 level = 1;
9233 addrsize = 32;
9234 /* There is no TTBR1 for EL2 */
9235 if (el == 2) {
9236 ttbr1_valid = false;
9240 /* Determine whether this address is in the region controlled by
9241 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9242 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9243 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9245 if (aarch64) {
9246 /* AArch64 translation. */
9247 t0sz = extract32(tcr->raw_tcr, 0, 6);
9248 t0sz = MIN(t0sz, 39);
9249 t0sz = MAX(t0sz, 16);
9250 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9251 /* AArch32 stage 1 translation. */
9252 t0sz = extract32(tcr->raw_tcr, 0, 3);
9253 } else {
9254 /* AArch32 stage 2 translation. */
9255 bool sext = extract32(tcr->raw_tcr, 4, 1);
9256 bool sign = extract32(tcr->raw_tcr, 3, 1);
9257 /* Address size is 40-bit for a stage 2 translation,
9258 * and t0sz can be negative (from -8 to 7),
9259 * so we need to adjust it to use the TTBR selecting logic below.
9261 addrsize = 40;
9262 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9264 /* If the sign-extend bit is not the same as t0sz[3], the result
9265 * is unpredictable. Flag this as a guest error. */
9266 if (sign != sext) {
9267 qemu_log_mask(LOG_GUEST_ERROR,
9268 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9271 t1sz = extract32(tcr->raw_tcr, 16, 6);
9272 if (aarch64) {
9273 t1sz = MIN(t1sz, 39);
9274 t1sz = MAX(t1sz, 16);
9276 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9277 /* there is a ttbr0 region and we are in it (high bits all zero) */
9278 ttbr_select = 0;
9279 } else if (ttbr1_valid && t1sz &&
9280 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9281 /* there is a ttbr1 region and we are in it (high bits all one) */
9282 ttbr_select = 1;
9283 } else if (!t0sz) {
9284 /* ttbr0 region is "everything not in the ttbr1 region" */
9285 ttbr_select = 0;
9286 } else if (!t1sz && ttbr1_valid) {
9287 /* ttbr1 region is "everything not in the ttbr0 region" */
9288 ttbr_select = 1;
9289 } else {
9290 /* in the gap between the two regions, this is a Translation fault */
9291 fault_type = ARMFault_Translation;
9292 goto do_fault;
9295 /* Note that QEMU ignores shareability and cacheability attributes,
9296 * so we don't need to do anything with the SH, ORGN, IRGN fields
9297 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9298 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9299 * implement any ASID-like capability so we can ignore it (instead
9300 * we will always flush the TLB any time the ASID is changed).
9302 if (ttbr_select == 0) {
9303 ttbr = regime_ttbr(env, mmu_idx, 0);
9304 if (el < 2) {
9305 epd = extract32(tcr->raw_tcr, 7, 1);
9307 inputsize = addrsize - t0sz;
9309 tg = extract32(tcr->raw_tcr, 14, 2);
9310 if (tg == 1) { /* 64KB pages */
9311 stride = 13;
9313 if (tg == 2) { /* 16KB pages */
9314 stride = 11;
9316 } else {
9317 /* We should only be here if TTBR1 is valid */
9318 assert(ttbr1_valid);
9320 ttbr = regime_ttbr(env, mmu_idx, 1);
9321 epd = extract32(tcr->raw_tcr, 23, 1);
9322 inputsize = addrsize - t1sz;
9324 tg = extract32(tcr->raw_tcr, 30, 2);
9325 if (tg == 3) { /* 64KB pages */
9326 stride = 13;
9328 if (tg == 1) { /* 16KB pages */
9329 stride = 11;
9333 /* Here we should have set up all the parameters for the translation:
9334 * inputsize, ttbr, epd, stride, tbi
9337 if (epd) {
9338 /* Translation table walk disabled => Translation fault on TLB miss
9339 * Note: This is always 0 on 64-bit EL2 and EL3.
9341 goto do_fault;
9344 if (mmu_idx != ARMMMUIdx_S2NS) {
9345 /* The starting level depends on the virtual address size (which can
9346 * be up to 48 bits) and the translation granule size. It indicates
9347 * the number of strides (stride bits at a time) needed to
9348 * consume the bits of the input address. In the pseudocode this is:
9349 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9350 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9351 * our 'stride + 3' and 'stride' is our 'stride'.
9352 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9353 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9354 * = 4 - (inputsize - 4) / stride;
9356 level = 4 - (inputsize - 4) / stride;
9357 } else {
9358 /* For stage 2 translations the starting level is specified by the
9359 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9361 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9362 uint32_t startlevel;
9363 bool ok;
9365 if (!aarch64 || stride == 9) {
9366 /* AArch32 or 4KB pages */
9367 startlevel = 2 - sl0;
9368 } else {
9369 /* 16KB or 64KB pages */
9370 startlevel = 3 - sl0;
9373 /* Check that the starting level is valid. */
9374 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9375 inputsize, stride);
9376 if (!ok) {
9377 fault_type = ARMFault_Translation;
9378 goto do_fault;
9380 level = startlevel;
9383 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9384 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9386 /* Now we can extract the actual base address from the TTBR */
9387 descaddr = extract64(ttbr, 0, 48);
9388 descaddr &= ~indexmask;
9390 /* The address field in the descriptor goes up to bit 39 for ARMv7
9391 * but up to bit 47 for ARMv8, but we use the descaddrmask
9392 * up to bit 39 for AArch32, because we don't need other bits in that case
9393 * to construct next descriptor address (anyway they should be all zeroes).
9395 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9396 ~indexmask_grainsize;
9398 /* Secure accesses start with the page table in secure memory and
9399 * can be downgraded to non-secure at any step. Non-secure accesses
9400 * remain non-secure. We implement this by just ORing in the NSTable/NS
9401 * bits at each step.
9403 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9404 for (;;) {
9405 uint64_t descriptor;
9406 bool nstable;
9408 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9409 descaddr &= ~7ULL;
9410 nstable = extract32(tableattrs, 4, 1);
9411 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9412 if (fi->type != ARMFault_None) {
9413 goto do_fault;
9416 if (!(descriptor & 1) ||
9417 (!(descriptor & 2) && (level == 3))) {
9418 /* Invalid, or the Reserved level 3 encoding */
9419 goto do_fault;
9421 descaddr = descriptor & descaddrmask;
9423 if ((descriptor & 2) && (level < 3)) {
9424 /* Table entry. The top five bits are attributes which may
9425 * propagate down through lower levels of the table (and
9426 * which are all arranged so that 0 means "no effect", so
9427 * we can gather them up by ORing in the bits at each level).
9429 tableattrs |= extract64(descriptor, 59, 5);
9430 level++;
9431 indexmask = indexmask_grainsize;
9432 continue;
9434 /* Block entry at level 1 or 2, or page entry at level 3.
9435 * These are basically the same thing, although the number
9436 * of bits we pull in from the vaddr varies.
9438 page_size = (1ULL << ((stride * (4 - level)) + 3));
9439 descaddr |= (address & (page_size - 1));
9440 /* Extract attributes from the descriptor */
9441 attrs = extract64(descriptor, 2, 10)
9442 | (extract64(descriptor, 52, 12) << 10);
9444 if (mmu_idx == ARMMMUIdx_S2NS) {
9445 /* Stage 2 table descriptors do not include any attribute fields */
9446 break;
9448 /* Merge in attributes from table descriptors */
9449 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9450 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9451 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9452 * means "force PL1 access only", which means forcing AP[1] to 0.
9454 if (extract32(tableattrs, 2, 1)) {
9455 attrs &= ~(1 << 4);
9457 attrs |= nstable << 3; /* NS */
9458 break;
9460 /* Here descaddr is the final physical address, and attributes
9461 * are all in attrs.
9463 fault_type = ARMFault_AccessFlag;
9464 if ((attrs & (1 << 8)) == 0) {
9465 /* Access flag */
9466 goto do_fault;
9469 ap = extract32(attrs, 4, 2);
9470 xn = extract32(attrs, 12, 1);
9472 if (mmu_idx == ARMMMUIdx_S2NS) {
9473 ns = true;
9474 *prot = get_S2prot(env, ap, xn);
9475 } else {
9476 ns = extract32(attrs, 3, 1);
9477 pxn = extract32(attrs, 11, 1);
9478 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9481 fault_type = ARMFault_Permission;
9482 if (!(*prot & (1 << access_type))) {
9483 goto do_fault;
9486 if (ns) {
9487 /* The NS bit will (as required by the architecture) have no effect if
9488 * the CPU doesn't support TZ or this is a non-secure translation
9489 * regime, because the attribute will already be non-secure.
9491 txattrs->secure = false;
9494 if (cacheattrs != NULL) {
9495 if (mmu_idx == ARMMMUIdx_S2NS) {
9496 cacheattrs->attrs = convert_stage2_attrs(env,
9497 extract32(attrs, 0, 4));
9498 } else {
9499 /* Index into MAIR registers for cache attributes */
9500 uint8_t attrindx = extract32(attrs, 0, 3);
9501 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9502 assert(attrindx <= 7);
9503 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9505 cacheattrs->shareability = extract32(attrs, 6, 2);
9508 *phys_ptr = descaddr;
9509 *page_size_ptr = page_size;
9510 return false;
9512 do_fault:
9513 fi->type = fault_type;
9514 fi->level = level;
9515 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9516 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9517 return true;
9520 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9521 ARMMMUIdx mmu_idx,
9522 int32_t address, int *prot)
9524 if (!arm_feature(env, ARM_FEATURE_M)) {
9525 *prot = PAGE_READ | PAGE_WRITE;
9526 switch (address) {
9527 case 0xF0000000 ... 0xFFFFFFFF:
9528 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9529 /* hivecs execing is ok */
9530 *prot |= PAGE_EXEC;
9532 break;
9533 case 0x00000000 ... 0x7FFFFFFF:
9534 *prot |= PAGE_EXEC;
9535 break;
9537 } else {
9538 /* Default system address map for M profile cores.
9539 * The architecture specifies which regions are execute-never;
9540 * at the MPU level no other checks are defined.
9542 switch (address) {
9543 case 0x00000000 ... 0x1fffffff: /* ROM */
9544 case 0x20000000 ... 0x3fffffff: /* SRAM */
9545 case 0x60000000 ... 0x7fffffff: /* RAM */
9546 case 0x80000000 ... 0x9fffffff: /* RAM */
9547 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9548 break;
9549 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9550 case 0xa0000000 ... 0xbfffffff: /* Device */
9551 case 0xc0000000 ... 0xdfffffff: /* Device */
9552 case 0xe0000000 ... 0xffffffff: /* System */
9553 *prot = PAGE_READ | PAGE_WRITE;
9554 break;
9555 default:
9556 g_assert_not_reached();
9561 static bool pmsav7_use_background_region(ARMCPU *cpu,
9562 ARMMMUIdx mmu_idx, bool is_user)
9564 /* Return true if we should use the default memory map as a
9565 * "background" region if there are no hits against any MPU regions.
9567 CPUARMState *env = &cpu->env;
9569 if (is_user) {
9570 return false;
9573 if (arm_feature(env, ARM_FEATURE_M)) {
9574 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9575 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9576 } else {
9577 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9581 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9583 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9584 return arm_feature(env, ARM_FEATURE_M) &&
9585 extract32(address, 20, 12) == 0xe00;
9588 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9590 /* True if address is in the M profile system region
9591 * 0xe0000000 - 0xffffffff
9593 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9596 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9597 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9598 hwaddr *phys_ptr, int *prot,
9599 ARMMMUFaultInfo *fi)
9601 ARMCPU *cpu = arm_env_get_cpu(env);
9602 int n;
9603 bool is_user = regime_is_user(env, mmu_idx);
9605 *phys_ptr = address;
9606 *prot = 0;
9608 if (regime_translation_disabled(env, mmu_idx) ||
9609 m_is_ppb_region(env, address)) {
9610 /* MPU disabled or M profile PPB access: use default memory map.
9611 * The other case which uses the default memory map in the
9612 * v7M ARM ARM pseudocode is exception vector reads from the vector
9613 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9614 * which always does a direct read using address_space_ldl(), rather
9615 * than going via this function, so we don't need to check that here.
9617 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9618 } else { /* MPU enabled */
9619 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9620 /* region search */
9621 uint32_t base = env->pmsav7.drbar[n];
9622 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9623 uint32_t rmask;
9624 bool srdis = false;
9626 if (!(env->pmsav7.drsr[n] & 0x1)) {
9627 continue;
9630 if (!rsize) {
9631 qemu_log_mask(LOG_GUEST_ERROR,
9632 "DRSR[%d]: Rsize field cannot be 0\n", n);
9633 continue;
9635 rsize++;
9636 rmask = (1ull << rsize) - 1;
9638 if (base & rmask) {
9639 qemu_log_mask(LOG_GUEST_ERROR,
9640 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9641 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9642 n, base, rmask);
9643 continue;
9646 if (address < base || address > base + rmask) {
9647 continue;
9650 /* Region matched */
9652 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9653 int i, snd;
9654 uint32_t srdis_mask;
9656 rsize -= 3; /* sub region size (power of 2) */
9657 snd = ((address - base) >> rsize) & 0x7;
9658 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9660 srdis_mask = srdis ? 0x3 : 0x0;
9661 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9662 /* This will check in groups of 2, 4 and then 8, whether
9663 * the subregion bits are consistent. rsize is incremented
9664 * back up to give the region size, considering consistent
9665 * adjacent subregions as one region. Stop testing if rsize
9666 * is already big enough for an entire QEMU page.
9668 int snd_rounded = snd & ~(i - 1);
9669 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9670 snd_rounded + 8, i);
9671 if (srdis_mask ^ srdis_multi) {
9672 break;
9674 srdis_mask = (srdis_mask << i) | srdis_mask;
9675 rsize++;
9678 if (rsize < TARGET_PAGE_BITS) {
9679 qemu_log_mask(LOG_UNIMP,
9680 "DRSR[%d]: No support for MPU (sub)region size of"
9681 " %" PRIu32 " bytes. Minimum is %d.\n",
9682 n, (1 << rsize), TARGET_PAGE_SIZE);
9683 continue;
9685 if (srdis) {
9686 continue;
9688 break;
9691 if (n == -1) { /* no hits */
9692 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9693 /* background fault */
9694 fi->type = ARMFault_Background;
9695 return true;
9697 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9698 } else { /* a MPU hit! */
9699 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9700 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9702 if (m_is_system_region(env, address)) {
9703 /* System space is always execute never */
9704 xn = 1;
9707 if (is_user) { /* User mode AP bit decoding */
9708 switch (ap) {
9709 case 0:
9710 case 1:
9711 case 5:
9712 break; /* no access */
9713 case 3:
9714 *prot |= PAGE_WRITE;
9715 /* fall through */
9716 case 2:
9717 case 6:
9718 *prot |= PAGE_READ | PAGE_EXEC;
9719 break;
9720 case 7:
9721 /* for v7M, same as 6; for R profile a reserved value */
9722 if (arm_feature(env, ARM_FEATURE_M)) {
9723 *prot |= PAGE_READ | PAGE_EXEC;
9724 break;
9726 /* fall through */
9727 default:
9728 qemu_log_mask(LOG_GUEST_ERROR,
9729 "DRACR[%d]: Bad value for AP bits: 0x%"
9730 PRIx32 "\n", n, ap);
9732 } else { /* Priv. mode AP bits decoding */
9733 switch (ap) {
9734 case 0:
9735 break; /* no access */
9736 case 1:
9737 case 2:
9738 case 3:
9739 *prot |= PAGE_WRITE;
9740 /* fall through */
9741 case 5:
9742 case 6:
9743 *prot |= PAGE_READ | PAGE_EXEC;
9744 break;
9745 case 7:
9746 /* for v7M, same as 6; for R profile a reserved value */
9747 if (arm_feature(env, ARM_FEATURE_M)) {
9748 *prot |= PAGE_READ | PAGE_EXEC;
9749 break;
9751 /* fall through */
9752 default:
9753 qemu_log_mask(LOG_GUEST_ERROR,
9754 "DRACR[%d]: Bad value for AP bits: 0x%"
9755 PRIx32 "\n", n, ap);
9759 /* execute never */
9760 if (xn) {
9761 *prot &= ~PAGE_EXEC;
9766 fi->type = ARMFault_Permission;
9767 fi->level = 1;
9768 return !(*prot & (1 << access_type));
9771 static bool v8m_is_sau_exempt(CPUARMState *env,
9772 uint32_t address, MMUAccessType access_type)
9774 /* The architecture specifies that certain address ranges are
9775 * exempt from v8M SAU/IDAU checks.
9777 return
9778 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9779 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9780 (address >= 0xe000e000 && address <= 0xe000efff) ||
9781 (address >= 0xe002e000 && address <= 0xe002efff) ||
9782 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9783 (address >= 0xe00ff000 && address <= 0xe00fffff);
9786 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9787 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9788 V8M_SAttributes *sattrs)
9790 /* Look up the security attributes for this address. Compare the
9791 * pseudocode SecurityCheck() function.
9792 * We assume the caller has zero-initialized *sattrs.
9794 ARMCPU *cpu = arm_env_get_cpu(env);
9795 int r;
9796 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9797 int idau_region = IREGION_NOTVALID;
9799 if (cpu->idau) {
9800 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9801 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9803 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9804 &idau_nsc);
9807 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9808 /* 0xf0000000..0xffffffff is always S for insn fetches */
9809 return;
9812 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9813 sattrs->ns = !regime_is_secure(env, mmu_idx);
9814 return;
9817 if (idau_region != IREGION_NOTVALID) {
9818 sattrs->irvalid = true;
9819 sattrs->iregion = idau_region;
9822 switch (env->sau.ctrl & 3) {
9823 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9824 break;
9825 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9826 sattrs->ns = true;
9827 break;
9828 default: /* SAU.ENABLE == 1 */
9829 for (r = 0; r < cpu->sau_sregion; r++) {
9830 if (env->sau.rlar[r] & 1) {
9831 uint32_t base = env->sau.rbar[r] & ~0x1f;
9832 uint32_t limit = env->sau.rlar[r] | 0x1f;
9834 if (base <= address && limit >= address) {
9835 if (sattrs->srvalid) {
9836 /* If we hit in more than one region then we must report
9837 * as Secure, not NS-Callable, with no valid region
9838 * number info.
9840 sattrs->ns = false;
9841 sattrs->nsc = false;
9842 sattrs->sregion = 0;
9843 sattrs->srvalid = false;
9844 break;
9845 } else {
9846 if (env->sau.rlar[r] & 2) {
9847 sattrs->nsc = true;
9848 } else {
9849 sattrs->ns = true;
9851 sattrs->srvalid = true;
9852 sattrs->sregion = r;
9858 /* The IDAU will override the SAU lookup results if it specifies
9859 * higher security than the SAU does.
9861 if (!idau_ns) {
9862 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9863 sattrs->ns = false;
9864 sattrs->nsc = idau_nsc;
9867 break;
9871 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9872 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9873 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9874 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9876 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9877 * that a full phys-to-virt translation does).
9878 * mregion is (if not NULL) set to the region number which matched,
9879 * or -1 if no region number is returned (MPU off, address did not
9880 * hit a region, address hit in multiple regions).
9882 ARMCPU *cpu = arm_env_get_cpu(env);
9883 bool is_user = regime_is_user(env, mmu_idx);
9884 uint32_t secure = regime_is_secure(env, mmu_idx);
9885 int n;
9886 int matchregion = -1;
9887 bool hit = false;
9889 *phys_ptr = address;
9890 *prot = 0;
9891 if (mregion) {
9892 *mregion = -1;
9895 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9896 * was an exception vector read from the vector table (which is always
9897 * done using the default system address map), because those accesses
9898 * are done in arm_v7m_load_vector(), which always does a direct
9899 * read using address_space_ldl(), rather than going via this function.
9901 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9902 hit = true;
9903 } else if (m_is_ppb_region(env, address)) {
9904 hit = true;
9905 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9906 hit = true;
9907 } else {
9908 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9909 /* region search */
9910 /* Note that the base address is bits [31:5] from the register
9911 * with bits [4:0] all zeroes, but the limit address is bits
9912 * [31:5] from the register with bits [4:0] all ones.
9914 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9915 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9917 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9918 /* Region disabled */
9919 continue;
9922 if (address < base || address > limit) {
9923 continue;
9926 if (hit) {
9927 /* Multiple regions match -- always a failure (unlike
9928 * PMSAv7 where highest-numbered-region wins)
9930 fi->type = ARMFault_Permission;
9931 fi->level = 1;
9932 return true;
9935 matchregion = n;
9936 hit = true;
9938 if (base & ~TARGET_PAGE_MASK) {
9939 qemu_log_mask(LOG_UNIMP,
9940 "MPU_RBAR[%d]: No support for MPU region base"
9941 "address of 0x%" PRIx32 ". Minimum alignment is "
9942 "%d\n",
9943 n, base, TARGET_PAGE_BITS);
9944 continue;
9946 if ((limit + 1) & ~TARGET_PAGE_MASK) {
9947 qemu_log_mask(LOG_UNIMP,
9948 "MPU_RBAR[%d]: No support for MPU region limit"
9949 "address of 0x%" PRIx32 ". Minimum alignment is "
9950 "%d\n",
9951 n, limit, TARGET_PAGE_BITS);
9952 continue;
9957 if (!hit) {
9958 /* background fault */
9959 fi->type = ARMFault_Background;
9960 return true;
9963 if (matchregion == -1) {
9964 /* hit using the background region */
9965 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9966 } else {
9967 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9968 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9970 if (m_is_system_region(env, address)) {
9971 /* System space is always execute never */
9972 xn = 1;
9975 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9976 if (*prot && !xn) {
9977 *prot |= PAGE_EXEC;
9979 /* We don't need to look the attribute up in the MAIR0/MAIR1
9980 * registers because that only tells us about cacheability.
9982 if (mregion) {
9983 *mregion = matchregion;
9987 fi->type = ARMFault_Permission;
9988 fi->level = 1;
9989 return !(*prot & (1 << access_type));
9993 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9994 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9995 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9996 int *prot, ARMMMUFaultInfo *fi)
9998 uint32_t secure = regime_is_secure(env, mmu_idx);
9999 V8M_SAttributes sattrs = {};
10001 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10002 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10003 if (access_type == MMU_INST_FETCH) {
10004 /* Instruction fetches always use the MMU bank and the
10005 * transaction attribute determined by the fetch address,
10006 * regardless of CPU state. This is painful for QEMU
10007 * to handle, because it would mean we need to encode
10008 * into the mmu_idx not just the (user, negpri) information
10009 * for the current security state but also that for the
10010 * other security state, which would balloon the number
10011 * of mmu_idx values needed alarmingly.
10012 * Fortunately we can avoid this because it's not actually
10013 * possible to arbitrarily execute code from memory with
10014 * the wrong security attribute: it will always generate
10015 * an exception of some kind or another, apart from the
10016 * special case of an NS CPU executing an SG instruction
10017 * in S&NSC memory. So we always just fail the translation
10018 * here and sort things out in the exception handler
10019 * (including possibly emulating an SG instruction).
10021 if (sattrs.ns != !secure) {
10022 if (sattrs.nsc) {
10023 fi->type = ARMFault_QEMU_NSCExec;
10024 } else {
10025 fi->type = ARMFault_QEMU_SFault;
10027 *phys_ptr = address;
10028 *prot = 0;
10029 return true;
10031 } else {
10032 /* For data accesses we always use the MMU bank indicated
10033 * by the current CPU state, but the security attributes
10034 * might downgrade a secure access to nonsecure.
10036 if (sattrs.ns) {
10037 txattrs->secure = false;
10038 } else if (!secure) {
10039 /* NS access to S memory must fault.
10040 * Architecturally we should first check whether the
10041 * MPU information for this address indicates that we
10042 * are doing an unaligned access to Device memory, which
10043 * should generate a UsageFault instead. QEMU does not
10044 * currently check for that kind of unaligned access though.
10045 * If we added it we would need to do so as a special case
10046 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10048 fi->type = ARMFault_QEMU_SFault;
10049 *phys_ptr = address;
10050 *prot = 0;
10051 return true;
10056 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10057 txattrs, prot, fi, NULL);
10060 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10061 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10062 hwaddr *phys_ptr, int *prot,
10063 ARMMMUFaultInfo *fi)
10065 int n;
10066 uint32_t mask;
10067 uint32_t base;
10068 bool is_user = regime_is_user(env, mmu_idx);
10070 if (regime_translation_disabled(env, mmu_idx)) {
10071 /* MPU disabled. */
10072 *phys_ptr = address;
10073 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10074 return false;
10077 *phys_ptr = address;
10078 for (n = 7; n >= 0; n--) {
10079 base = env->cp15.c6_region[n];
10080 if ((base & 1) == 0) {
10081 continue;
10083 mask = 1 << ((base >> 1) & 0x1f);
10084 /* Keep this shift separate from the above to avoid an
10085 (undefined) << 32. */
10086 mask = (mask << 1) - 1;
10087 if (((base ^ address) & ~mask) == 0) {
10088 break;
10091 if (n < 0) {
10092 fi->type = ARMFault_Background;
10093 return true;
10096 if (access_type == MMU_INST_FETCH) {
10097 mask = env->cp15.pmsav5_insn_ap;
10098 } else {
10099 mask = env->cp15.pmsav5_data_ap;
10101 mask = (mask >> (n * 4)) & 0xf;
10102 switch (mask) {
10103 case 0:
10104 fi->type = ARMFault_Permission;
10105 fi->level = 1;
10106 return true;
10107 case 1:
10108 if (is_user) {
10109 fi->type = ARMFault_Permission;
10110 fi->level = 1;
10111 return true;
10113 *prot = PAGE_READ | PAGE_WRITE;
10114 break;
10115 case 2:
10116 *prot = PAGE_READ;
10117 if (!is_user) {
10118 *prot |= PAGE_WRITE;
10120 break;
10121 case 3:
10122 *prot = PAGE_READ | PAGE_WRITE;
10123 break;
10124 case 5:
10125 if (is_user) {
10126 fi->type = ARMFault_Permission;
10127 fi->level = 1;
10128 return true;
10130 *prot = PAGE_READ;
10131 break;
10132 case 6:
10133 *prot = PAGE_READ;
10134 break;
10135 default:
10136 /* Bad permission. */
10137 fi->type = ARMFault_Permission;
10138 fi->level = 1;
10139 return true;
10141 *prot |= PAGE_EXEC;
10142 return false;
10145 /* Combine either inner or outer cacheability attributes for normal
10146 * memory, according to table D4-42 and pseudocode procedure
10147 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10149 * NB: only stage 1 includes allocation hints (RW bits), leading to
10150 * some asymmetry.
10152 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10154 if (s1 == 4 || s2 == 4) {
10155 /* non-cacheable has precedence */
10156 return 4;
10157 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10158 /* stage 1 write-through takes precedence */
10159 return s1;
10160 } else if (extract32(s2, 2, 2) == 2) {
10161 /* stage 2 write-through takes precedence, but the allocation hint
10162 * is still taken from stage 1
10164 return (2 << 2) | extract32(s1, 0, 2);
10165 } else { /* write-back */
10166 return s1;
10170 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10171 * and CombineS1S2Desc()
10173 * @s1: Attributes from stage 1 walk
10174 * @s2: Attributes from stage 2 walk
10176 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10178 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10179 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10180 ARMCacheAttrs ret;
10182 /* Combine shareability attributes (table D4-43) */
10183 if (s1.shareability == 2 || s2.shareability == 2) {
10184 /* if either are outer-shareable, the result is outer-shareable */
10185 ret.shareability = 2;
10186 } else if (s1.shareability == 3 || s2.shareability == 3) {
10187 /* if either are inner-shareable, the result is inner-shareable */
10188 ret.shareability = 3;
10189 } else {
10190 /* both non-shareable */
10191 ret.shareability = 0;
10194 /* Combine memory type and cacheability attributes */
10195 if (s1hi == 0 || s2hi == 0) {
10196 /* Device has precedence over normal */
10197 if (s1lo == 0 || s2lo == 0) {
10198 /* nGnRnE has precedence over anything */
10199 ret.attrs = 0;
10200 } else if (s1lo == 4 || s2lo == 4) {
10201 /* non-Reordering has precedence over Reordering */
10202 ret.attrs = 4; /* nGnRE */
10203 } else if (s1lo == 8 || s2lo == 8) {
10204 /* non-Gathering has precedence over Gathering */
10205 ret.attrs = 8; /* nGRE */
10206 } else {
10207 ret.attrs = 0xc; /* GRE */
10210 /* Any location for which the resultant memory type is any
10211 * type of Device memory is always treated as Outer Shareable.
10213 ret.shareability = 2;
10214 } else { /* Normal memory */
10215 /* Outer/inner cacheability combine independently */
10216 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10217 | combine_cacheattr_nibble(s1lo, s2lo);
10219 if (ret.attrs == 0x44) {
10220 /* Any location for which the resultant memory type is Normal
10221 * Inner Non-cacheable, Outer Non-cacheable is always treated
10222 * as Outer Shareable.
10224 ret.shareability = 2;
10228 return ret;
10232 /* get_phys_addr - get the physical address for this virtual address
10234 * Find the physical address corresponding to the given virtual address,
10235 * by doing a translation table walk on MMU based systems or using the
10236 * MPU state on MPU based systems.
10238 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10239 * prot and page_size may not be filled in, and the populated fsr value provides
10240 * information on why the translation aborted, in the format of a
10241 * DFSR/IFSR fault register, with the following caveats:
10242 * * we honour the short vs long DFSR format differences.
10243 * * the WnR bit is never set (the caller must do this).
10244 * * for PSMAv5 based systems we don't bother to return a full FSR format
10245 * value.
10247 * @env: CPUARMState
10248 * @address: virtual address to get physical address for
10249 * @access_type: 0 for read, 1 for write, 2 for execute
10250 * @mmu_idx: MMU index indicating required translation regime
10251 * @phys_ptr: set to the physical address corresponding to the virtual address
10252 * @attrs: set to the memory transaction attributes to use
10253 * @prot: set to the permissions for the page containing phys_ptr
10254 * @page_size: set to the size of the page containing phys_ptr
10255 * @fi: set to fault info if the translation fails
10256 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10258 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10259 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10260 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10261 target_ulong *page_size,
10262 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10264 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10265 /* Call ourselves recursively to do the stage 1 and then stage 2
10266 * translations.
10268 if (arm_feature(env, ARM_FEATURE_EL2)) {
10269 hwaddr ipa;
10270 int s2_prot;
10271 int ret;
10272 ARMCacheAttrs cacheattrs2 = {};
10274 ret = get_phys_addr(env, address, access_type,
10275 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10276 prot, page_size, fi, cacheattrs);
10278 /* If S1 fails or S2 is disabled, return early. */
10279 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10280 *phys_ptr = ipa;
10281 return ret;
10284 /* S1 is done. Now do S2 translation. */
10285 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10286 phys_ptr, attrs, &s2_prot,
10287 page_size, fi,
10288 cacheattrs != NULL ? &cacheattrs2 : NULL);
10289 fi->s2addr = ipa;
10290 /* Combine the S1 and S2 perms. */
10291 *prot &= s2_prot;
10293 /* Combine the S1 and S2 cache attributes, if needed */
10294 if (!ret && cacheattrs != NULL) {
10295 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10298 return ret;
10299 } else {
10301 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10303 mmu_idx = stage_1_mmu_idx(mmu_idx);
10307 /* The page table entries may downgrade secure to non-secure, but
10308 * cannot upgrade an non-secure translation regime's attributes
10309 * to secure.
10311 attrs->secure = regime_is_secure(env, mmu_idx);
10312 attrs->user = regime_is_user(env, mmu_idx);
10314 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10315 * In v7 and earlier it affects all stage 1 translations.
10317 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10318 && !arm_feature(env, ARM_FEATURE_V8)) {
10319 if (regime_el(env, mmu_idx) == 3) {
10320 address += env->cp15.fcseidr_s;
10321 } else {
10322 address += env->cp15.fcseidr_ns;
10326 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10327 bool ret;
10328 *page_size = TARGET_PAGE_SIZE;
10330 if (arm_feature(env, ARM_FEATURE_V8)) {
10331 /* PMSAv8 */
10332 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10333 phys_ptr, attrs, prot, fi);
10334 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10335 /* PMSAv7 */
10336 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10337 phys_ptr, prot, fi);
10338 } else {
10339 /* Pre-v7 MPU */
10340 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10341 phys_ptr, prot, fi);
10343 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10344 " mmu_idx %u -> %s (prot %c%c%c)\n",
10345 access_type == MMU_DATA_LOAD ? "reading" :
10346 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10347 (uint32_t)address, mmu_idx,
10348 ret ? "Miss" : "Hit",
10349 *prot & PAGE_READ ? 'r' : '-',
10350 *prot & PAGE_WRITE ? 'w' : '-',
10351 *prot & PAGE_EXEC ? 'x' : '-');
10353 return ret;
10356 /* Definitely a real MMU, not an MPU */
10358 if (regime_translation_disabled(env, mmu_idx)) {
10359 /* MMU disabled. */
10360 *phys_ptr = address;
10361 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10362 *page_size = TARGET_PAGE_SIZE;
10363 return 0;
10366 if (regime_using_lpae_format(env, mmu_idx)) {
10367 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10368 phys_ptr, attrs, prot, page_size,
10369 fi, cacheattrs);
10370 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10371 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10372 phys_ptr, attrs, prot, page_size, fi);
10373 } else {
10374 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10375 phys_ptr, prot, page_size, fi);
10379 /* Walk the page table and (if the mapping exists) add the page
10380 * to the TLB. Return false on success, or true on failure. Populate
10381 * fsr with ARM DFSR/IFSR fault register format value on failure.
10383 bool arm_tlb_fill(CPUState *cs, vaddr address,
10384 MMUAccessType access_type, int mmu_idx,
10385 ARMMMUFaultInfo *fi)
10387 ARMCPU *cpu = ARM_CPU(cs);
10388 CPUARMState *env = &cpu->env;
10389 hwaddr phys_addr;
10390 target_ulong page_size;
10391 int prot;
10392 int ret;
10393 MemTxAttrs attrs = {};
10395 ret = get_phys_addr(env, address, access_type,
10396 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10397 &attrs, &prot, &page_size, fi, NULL);
10398 if (!ret) {
10399 /* Map a single [sub]page. */
10400 phys_addr &= TARGET_PAGE_MASK;
10401 address &= TARGET_PAGE_MASK;
10402 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10403 prot, mmu_idx, page_size);
10404 return 0;
10407 return ret;
10410 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10411 MemTxAttrs *attrs)
10413 ARMCPU *cpu = ARM_CPU(cs);
10414 CPUARMState *env = &cpu->env;
10415 hwaddr phys_addr;
10416 target_ulong page_size;
10417 int prot;
10418 bool ret;
10419 ARMMMUFaultInfo fi = {};
10420 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10422 *attrs = (MemTxAttrs) {};
10424 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10425 attrs, &prot, &page_size, &fi, NULL);
10427 if (ret) {
10428 return -1;
10430 return phys_addr;
10433 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10435 uint32_t mask;
10436 unsigned el = arm_current_el(env);
10438 /* First handle registers which unprivileged can read */
10440 switch (reg) {
10441 case 0 ... 7: /* xPSR sub-fields */
10442 mask = 0;
10443 if ((reg & 1) && el) {
10444 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10446 if (!(reg & 4)) {
10447 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10449 /* EPSR reads as zero */
10450 return xpsr_read(env) & mask;
10451 break;
10452 case 20: /* CONTROL */
10453 return env->v7m.control[env->v7m.secure];
10454 case 0x94: /* CONTROL_NS */
10455 /* We have to handle this here because unprivileged Secure code
10456 * can read the NS CONTROL register.
10458 if (!env->v7m.secure) {
10459 return 0;
10461 return env->v7m.control[M_REG_NS];
10464 if (el == 0) {
10465 return 0; /* unprivileged reads others as zero */
10468 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10469 switch (reg) {
10470 case 0x88: /* MSP_NS */
10471 if (!env->v7m.secure) {
10472 return 0;
10474 return env->v7m.other_ss_msp;
10475 case 0x89: /* PSP_NS */
10476 if (!env->v7m.secure) {
10477 return 0;
10479 return env->v7m.other_ss_psp;
10480 case 0x8a: /* MSPLIM_NS */
10481 if (!env->v7m.secure) {
10482 return 0;
10484 return env->v7m.msplim[M_REG_NS];
10485 case 0x8b: /* PSPLIM_NS */
10486 if (!env->v7m.secure) {
10487 return 0;
10489 return env->v7m.psplim[M_REG_NS];
10490 case 0x90: /* PRIMASK_NS */
10491 if (!env->v7m.secure) {
10492 return 0;
10494 return env->v7m.primask[M_REG_NS];
10495 case 0x91: /* BASEPRI_NS */
10496 if (!env->v7m.secure) {
10497 return 0;
10499 return env->v7m.basepri[M_REG_NS];
10500 case 0x93: /* FAULTMASK_NS */
10501 if (!env->v7m.secure) {
10502 return 0;
10504 return env->v7m.faultmask[M_REG_NS];
10505 case 0x98: /* SP_NS */
10507 /* This gives the non-secure SP selected based on whether we're
10508 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10510 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10512 if (!env->v7m.secure) {
10513 return 0;
10515 if (!arm_v7m_is_handler_mode(env) && spsel) {
10516 return env->v7m.other_ss_psp;
10517 } else {
10518 return env->v7m.other_ss_msp;
10521 default:
10522 break;
10526 switch (reg) {
10527 case 8: /* MSP */
10528 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10529 case 9: /* PSP */
10530 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10531 case 10: /* MSPLIM */
10532 if (!arm_feature(env, ARM_FEATURE_V8)) {
10533 goto bad_reg;
10535 return env->v7m.msplim[env->v7m.secure];
10536 case 11: /* PSPLIM */
10537 if (!arm_feature(env, ARM_FEATURE_V8)) {
10538 goto bad_reg;
10540 return env->v7m.psplim[env->v7m.secure];
10541 case 16: /* PRIMASK */
10542 return env->v7m.primask[env->v7m.secure];
10543 case 17: /* BASEPRI */
10544 case 18: /* BASEPRI_MAX */
10545 return env->v7m.basepri[env->v7m.secure];
10546 case 19: /* FAULTMASK */
10547 return env->v7m.faultmask[env->v7m.secure];
10548 default:
10549 bad_reg:
10550 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10551 " register %d\n", reg);
10552 return 0;
10556 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10558 /* We're passed bits [11..0] of the instruction; extract
10559 * SYSm and the mask bits.
10560 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10561 * we choose to treat them as if the mask bits were valid.
10562 * NB that the pseudocode 'mask' variable is bits [11..10],
10563 * whereas ours is [11..8].
10565 uint32_t mask = extract32(maskreg, 8, 4);
10566 uint32_t reg = extract32(maskreg, 0, 8);
10568 if (arm_current_el(env) == 0 && reg > 7) {
10569 /* only xPSR sub-fields may be written by unprivileged */
10570 return;
10573 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10574 switch (reg) {
10575 case 0x88: /* MSP_NS */
10576 if (!env->v7m.secure) {
10577 return;
10579 env->v7m.other_ss_msp = val;
10580 return;
10581 case 0x89: /* PSP_NS */
10582 if (!env->v7m.secure) {
10583 return;
10585 env->v7m.other_ss_psp = val;
10586 return;
10587 case 0x8a: /* MSPLIM_NS */
10588 if (!env->v7m.secure) {
10589 return;
10591 env->v7m.msplim[M_REG_NS] = val & ~7;
10592 return;
10593 case 0x8b: /* PSPLIM_NS */
10594 if (!env->v7m.secure) {
10595 return;
10597 env->v7m.psplim[M_REG_NS] = val & ~7;
10598 return;
10599 case 0x90: /* PRIMASK_NS */
10600 if (!env->v7m.secure) {
10601 return;
10603 env->v7m.primask[M_REG_NS] = val & 1;
10604 return;
10605 case 0x91: /* BASEPRI_NS */
10606 if (!env->v7m.secure) {
10607 return;
10609 env->v7m.basepri[M_REG_NS] = val & 0xff;
10610 return;
10611 case 0x93: /* FAULTMASK_NS */
10612 if (!env->v7m.secure) {
10613 return;
10615 env->v7m.faultmask[M_REG_NS] = val & 1;
10616 return;
10617 case 0x94: /* CONTROL_NS */
10618 if (!env->v7m.secure) {
10619 return;
10621 write_v7m_control_spsel_for_secstate(env,
10622 val & R_V7M_CONTROL_SPSEL_MASK,
10623 M_REG_NS);
10624 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10625 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10626 return;
10627 case 0x98: /* SP_NS */
10629 /* This gives the non-secure SP selected based on whether we're
10630 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10632 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10634 if (!env->v7m.secure) {
10635 return;
10637 if (!arm_v7m_is_handler_mode(env) && spsel) {
10638 env->v7m.other_ss_psp = val;
10639 } else {
10640 env->v7m.other_ss_msp = val;
10642 return;
10644 default:
10645 break;
10649 switch (reg) {
10650 case 0 ... 7: /* xPSR sub-fields */
10651 /* only APSR is actually writable */
10652 if (!(reg & 4)) {
10653 uint32_t apsrmask = 0;
10655 if (mask & 8) {
10656 apsrmask |= XPSR_NZCV | XPSR_Q;
10658 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10659 apsrmask |= XPSR_GE;
10661 xpsr_write(env, val, apsrmask);
10663 break;
10664 case 8: /* MSP */
10665 if (v7m_using_psp(env)) {
10666 env->v7m.other_sp = val;
10667 } else {
10668 env->regs[13] = val;
10670 break;
10671 case 9: /* PSP */
10672 if (v7m_using_psp(env)) {
10673 env->regs[13] = val;
10674 } else {
10675 env->v7m.other_sp = val;
10677 break;
10678 case 10: /* MSPLIM */
10679 if (!arm_feature(env, ARM_FEATURE_V8)) {
10680 goto bad_reg;
10682 env->v7m.msplim[env->v7m.secure] = val & ~7;
10683 break;
10684 case 11: /* PSPLIM */
10685 if (!arm_feature(env, ARM_FEATURE_V8)) {
10686 goto bad_reg;
10688 env->v7m.psplim[env->v7m.secure] = val & ~7;
10689 break;
10690 case 16: /* PRIMASK */
10691 env->v7m.primask[env->v7m.secure] = val & 1;
10692 break;
10693 case 17: /* BASEPRI */
10694 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10695 break;
10696 case 18: /* BASEPRI_MAX */
10697 val &= 0xff;
10698 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10699 || env->v7m.basepri[env->v7m.secure] == 0)) {
10700 env->v7m.basepri[env->v7m.secure] = val;
10702 break;
10703 case 19: /* FAULTMASK */
10704 env->v7m.faultmask[env->v7m.secure] = val & 1;
10705 break;
10706 case 20: /* CONTROL */
10707 /* Writing to the SPSEL bit only has an effect if we are in
10708 * thread mode; other bits can be updated by any privileged code.
10709 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10710 * env->v7m.control, so we only need update the others.
10711 * For v7M, we must just ignore explicit writes to SPSEL in handler
10712 * mode; for v8M the write is permitted but will have no effect.
10714 if (arm_feature(env, ARM_FEATURE_V8) ||
10715 !arm_v7m_is_handler_mode(env)) {
10716 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10718 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10719 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10720 break;
10721 default:
10722 bad_reg:
10723 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10724 " register %d\n", reg);
10725 return;
10729 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10731 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10732 bool forceunpriv = op & 1;
10733 bool alt = op & 2;
10734 V8M_SAttributes sattrs = {};
10735 uint32_t tt_resp;
10736 bool r, rw, nsr, nsrw, mrvalid;
10737 int prot;
10738 ARMMMUFaultInfo fi = {};
10739 MemTxAttrs attrs = {};
10740 hwaddr phys_addr;
10741 ARMMMUIdx mmu_idx;
10742 uint32_t mregion;
10743 bool targetpriv;
10744 bool targetsec = env->v7m.secure;
10746 /* Work out what the security state and privilege level we're
10747 * interested in is...
10749 if (alt) {
10750 targetsec = !targetsec;
10753 if (forceunpriv) {
10754 targetpriv = false;
10755 } else {
10756 targetpriv = arm_v7m_is_handler_mode(env) ||
10757 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10760 /* ...and then figure out which MMU index this is */
10761 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10763 /* We know that the MPU and SAU don't care about the access type
10764 * for our purposes beyond that we don't want to claim to be
10765 * an insn fetch, so we arbitrarily call this a read.
10768 /* MPU region info only available for privileged or if
10769 * inspecting the other MPU state.
10771 if (arm_current_el(env) != 0 || alt) {
10772 /* We can ignore the return value as prot is always set */
10773 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10774 &phys_addr, &attrs, &prot, &fi, &mregion);
10775 if (mregion == -1) {
10776 mrvalid = false;
10777 mregion = 0;
10778 } else {
10779 mrvalid = true;
10781 r = prot & PAGE_READ;
10782 rw = prot & PAGE_WRITE;
10783 } else {
10784 r = false;
10785 rw = false;
10786 mrvalid = false;
10787 mregion = 0;
10790 if (env->v7m.secure) {
10791 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10792 nsr = sattrs.ns && r;
10793 nsrw = sattrs.ns && rw;
10794 } else {
10795 sattrs.ns = true;
10796 nsr = false;
10797 nsrw = false;
10800 tt_resp = (sattrs.iregion << 24) |
10801 (sattrs.irvalid << 23) |
10802 ((!sattrs.ns) << 22) |
10803 (nsrw << 21) |
10804 (nsr << 20) |
10805 (rw << 19) |
10806 (r << 18) |
10807 (sattrs.srvalid << 17) |
10808 (mrvalid << 16) |
10809 (sattrs.sregion << 8) |
10810 mregion;
10812 return tt_resp;
10815 #endif
10817 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10819 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10820 * Note that we do not implement the (architecturally mandated)
10821 * alignment fault for attempts to use this on Device memory
10822 * (which matches the usual QEMU behaviour of not implementing either
10823 * alignment faults or any memory attribute handling).
10826 ARMCPU *cpu = arm_env_get_cpu(env);
10827 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10828 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10830 #ifndef CONFIG_USER_ONLY
10832 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10833 * the block size so we might have to do more than one TLB lookup.
10834 * We know that in fact for any v8 CPU the page size is at least 4K
10835 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10836 * 1K as an artefact of legacy v5 subpage support being present in the
10837 * same QEMU executable.
10839 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10840 void *hostaddr[maxidx];
10841 int try, i;
10842 unsigned mmu_idx = cpu_mmu_index(env, false);
10843 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10845 for (try = 0; try < 2; try++) {
10847 for (i = 0; i < maxidx; i++) {
10848 hostaddr[i] = tlb_vaddr_to_host(env,
10849 vaddr + TARGET_PAGE_SIZE * i,
10850 1, mmu_idx);
10851 if (!hostaddr[i]) {
10852 break;
10855 if (i == maxidx) {
10856 /* If it's all in the TLB it's fair game for just writing to;
10857 * we know we don't need to update dirty status, etc.
10859 for (i = 0; i < maxidx - 1; i++) {
10860 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10862 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10863 return;
10865 /* OK, try a store and see if we can populate the tlb. This
10866 * might cause an exception if the memory isn't writable,
10867 * in which case we will longjmp out of here. We must for
10868 * this purpose use the actual register value passed to us
10869 * so that we get the fault address right.
10871 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10872 /* Now we can populate the other TLB entries, if any */
10873 for (i = 0; i < maxidx; i++) {
10874 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10875 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10876 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10881 /* Slow path (probably attempt to do this to an I/O device or
10882 * similar, or clearing of a block of code we have translations
10883 * cached for). Just do a series of byte writes as the architecture
10884 * demands. It's not worth trying to use a cpu_physical_memory_map(),
10885 * memset(), unmap() sequence here because:
10886 * + we'd need to account for the blocksize being larger than a page
10887 * + the direct-RAM access case is almost always going to be dealt
10888 * with in the fastpath code above, so there's no speed benefit
10889 * + we would have to deal with the map returning NULL because the
10890 * bounce buffer was in use
10892 for (i = 0; i < blocklen; i++) {
10893 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10896 #else
10897 memset(g2h(vaddr), 0, blocklen);
10898 #endif
10901 /* Note that signed overflow is undefined in C. The following routines are
10902 careful to use unsigned types where modulo arithmetic is required.
10903 Failure to do so _will_ break on newer gcc. */
10905 /* Signed saturating arithmetic. */
10907 /* Perform 16-bit signed saturating addition. */
10908 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10910 uint16_t res;
10912 res = a + b;
10913 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10914 if (a & 0x8000)
10915 res = 0x8000;
10916 else
10917 res = 0x7fff;
10919 return res;
10922 /* Perform 8-bit signed saturating addition. */
10923 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10925 uint8_t res;
10927 res = a + b;
10928 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10929 if (a & 0x80)
10930 res = 0x80;
10931 else
10932 res = 0x7f;
10934 return res;
10937 /* Perform 16-bit signed saturating subtraction. */
10938 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10940 uint16_t res;
10942 res = a - b;
10943 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10944 if (a & 0x8000)
10945 res = 0x8000;
10946 else
10947 res = 0x7fff;
10949 return res;
10952 /* Perform 8-bit signed saturating subtraction. */
10953 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10955 uint8_t res;
10957 res = a - b;
10958 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10959 if (a & 0x80)
10960 res = 0x80;
10961 else
10962 res = 0x7f;
10964 return res;
10967 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10968 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10969 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
10970 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
10971 #define PFX q
10973 #include "op_addsub.h"
10975 /* Unsigned saturating arithmetic. */
10976 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10978 uint16_t res;
10979 res = a + b;
10980 if (res < a)
10981 res = 0xffff;
10982 return res;
10985 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10987 if (a > b)
10988 return a - b;
10989 else
10990 return 0;
10993 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10995 uint8_t res;
10996 res = a + b;
10997 if (res < a)
10998 res = 0xff;
10999 return res;
11002 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11004 if (a > b)
11005 return a - b;
11006 else
11007 return 0;
11010 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11011 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11012 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11013 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11014 #define PFX uq
11016 #include "op_addsub.h"
11018 /* Signed modulo arithmetic. */
11019 #define SARITH16(a, b, n, op) do { \
11020 int32_t sum; \
11021 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11022 RESULT(sum, n, 16); \
11023 if (sum >= 0) \
11024 ge |= 3 << (n * 2); \
11025 } while(0)
11027 #define SARITH8(a, b, n, op) do { \
11028 int32_t sum; \
11029 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11030 RESULT(sum, n, 8); \
11031 if (sum >= 0) \
11032 ge |= 1 << n; \
11033 } while(0)
11036 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11037 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11038 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11039 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11040 #define PFX s
11041 #define ARITH_GE
11043 #include "op_addsub.h"
11045 /* Unsigned modulo arithmetic. */
11046 #define ADD16(a, b, n) do { \
11047 uint32_t sum; \
11048 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11049 RESULT(sum, n, 16); \
11050 if ((sum >> 16) == 1) \
11051 ge |= 3 << (n * 2); \
11052 } while(0)
11054 #define ADD8(a, b, n) do { \
11055 uint32_t sum; \
11056 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11057 RESULT(sum, n, 8); \
11058 if ((sum >> 8) == 1) \
11059 ge |= 1 << n; \
11060 } while(0)
11062 #define SUB16(a, b, n) do { \
11063 uint32_t sum; \
11064 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11065 RESULT(sum, n, 16); \
11066 if ((sum >> 16) == 0) \
11067 ge |= 3 << (n * 2); \
11068 } while(0)
11070 #define SUB8(a, b, n) do { \
11071 uint32_t sum; \
11072 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11073 RESULT(sum, n, 8); \
11074 if ((sum >> 8) == 0) \
11075 ge |= 1 << n; \
11076 } while(0)
11078 #define PFX u
11079 #define ARITH_GE
11081 #include "op_addsub.h"
11083 /* Halved signed arithmetic. */
11084 #define ADD16(a, b, n) \
11085 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11086 #define SUB16(a, b, n) \
11087 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11088 #define ADD8(a, b, n) \
11089 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11090 #define SUB8(a, b, n) \
11091 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11092 #define PFX sh
11094 #include "op_addsub.h"
11096 /* Halved unsigned arithmetic. */
11097 #define ADD16(a, b, n) \
11098 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11099 #define SUB16(a, b, n) \
11100 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11101 #define ADD8(a, b, n) \
11102 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11103 #define SUB8(a, b, n) \
11104 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11105 #define PFX uh
11107 #include "op_addsub.h"
11109 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11111 if (a > b)
11112 return a - b;
11113 else
11114 return b - a;
11117 /* Unsigned sum of absolute byte differences. */
11118 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11120 uint32_t sum;
11121 sum = do_usad(a, b);
11122 sum += do_usad(a >> 8, b >> 8);
11123 sum += do_usad(a >> 16, b >>16);
11124 sum += do_usad(a >> 24, b >> 24);
11125 return sum;
11128 /* For ARMv6 SEL instruction. */
11129 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11131 uint32_t mask;
11133 mask = 0;
11134 if (flags & 1)
11135 mask |= 0xff;
11136 if (flags & 2)
11137 mask |= 0xff00;
11138 if (flags & 4)
11139 mask |= 0xff0000;
11140 if (flags & 8)
11141 mask |= 0xff000000;
11142 return (a & mask) | (b & ~mask);
11145 /* VFP support. We follow the convention used for VFP instructions:
11146 Single precision routines have a "s" suffix, double precision a
11147 "d" suffix. */
11149 /* Convert host exception flags to vfp form. */
11150 static inline int vfp_exceptbits_from_host(int host_bits)
11152 int target_bits = 0;
11154 if (host_bits & float_flag_invalid)
11155 target_bits |= 1;
11156 if (host_bits & float_flag_divbyzero)
11157 target_bits |= 2;
11158 if (host_bits & float_flag_overflow)
11159 target_bits |= 4;
11160 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11161 target_bits |= 8;
11162 if (host_bits & float_flag_inexact)
11163 target_bits |= 0x10;
11164 if (host_bits & float_flag_input_denormal)
11165 target_bits |= 0x80;
11166 return target_bits;
11169 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11171 int i;
11172 uint32_t fpscr;
11174 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11175 | (env->vfp.vec_len << 16)
11176 | (env->vfp.vec_stride << 20);
11177 i = get_float_exception_flags(&env->vfp.fp_status);
11178 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11179 i |= get_float_exception_flags(&env->vfp.fp_status_f16);
11180 fpscr |= vfp_exceptbits_from_host(i);
11181 return fpscr;
11184 uint32_t vfp_get_fpscr(CPUARMState *env)
11186 return HELPER(vfp_get_fpscr)(env);
11189 /* Convert vfp exception flags to target form. */
11190 static inline int vfp_exceptbits_to_host(int target_bits)
11192 int host_bits = 0;
11194 if (target_bits & 1)
11195 host_bits |= float_flag_invalid;
11196 if (target_bits & 2)
11197 host_bits |= float_flag_divbyzero;
11198 if (target_bits & 4)
11199 host_bits |= float_flag_overflow;
11200 if (target_bits & 8)
11201 host_bits |= float_flag_underflow;
11202 if (target_bits & 0x10)
11203 host_bits |= float_flag_inexact;
11204 if (target_bits & 0x80)
11205 host_bits |= float_flag_input_denormal;
11206 return host_bits;
11209 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11211 int i;
11212 uint32_t changed;
11214 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11215 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11216 env->vfp.vec_len = (val >> 16) & 7;
11217 env->vfp.vec_stride = (val >> 20) & 3;
11219 changed ^= val;
11220 if (changed & (3 << 22)) {
11221 i = (val >> 22) & 3;
11222 switch (i) {
11223 case FPROUNDING_TIEEVEN:
11224 i = float_round_nearest_even;
11225 break;
11226 case FPROUNDING_POSINF:
11227 i = float_round_up;
11228 break;
11229 case FPROUNDING_NEGINF:
11230 i = float_round_down;
11231 break;
11232 case FPROUNDING_ZERO:
11233 i = float_round_to_zero;
11234 break;
11236 set_float_rounding_mode(i, &env->vfp.fp_status);
11237 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11239 if (changed & FPCR_FZ16) {
11240 bool ftz_enabled = val & FPCR_FZ16;
11241 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11242 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11244 if (changed & FPCR_FZ) {
11245 bool ftz_enabled = val & FPCR_FZ;
11246 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11247 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11249 if (changed & FPCR_DN) {
11250 bool dnan_enabled = val & FPCR_DN;
11251 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11252 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11255 /* The exception flags are ORed together when we read fpscr so we
11256 * only need to preserve the current state in one of our
11257 * float_status values.
11259 i = vfp_exceptbits_to_host(val);
11260 set_float_exception_flags(i, &env->vfp.fp_status);
11261 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11262 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11265 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11267 HELPER(vfp_set_fpscr)(env, val);
11270 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11272 #define VFP_BINOP(name) \
11273 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11275 float_status *fpst = fpstp; \
11276 return float32_ ## name(a, b, fpst); \
11278 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11280 float_status *fpst = fpstp; \
11281 return float64_ ## name(a, b, fpst); \
11283 VFP_BINOP(add)
11284 VFP_BINOP(sub)
11285 VFP_BINOP(mul)
11286 VFP_BINOP(div)
11287 VFP_BINOP(min)
11288 VFP_BINOP(max)
11289 VFP_BINOP(minnum)
11290 VFP_BINOP(maxnum)
11291 #undef VFP_BINOP
11293 float32 VFP_HELPER(neg, s)(float32 a)
11295 return float32_chs(a);
11298 float64 VFP_HELPER(neg, d)(float64 a)
11300 return float64_chs(a);
11303 float32 VFP_HELPER(abs, s)(float32 a)
11305 return float32_abs(a);
11308 float64 VFP_HELPER(abs, d)(float64 a)
11310 return float64_abs(a);
11313 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11315 return float32_sqrt(a, &env->vfp.fp_status);
11318 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11320 return float64_sqrt(a, &env->vfp.fp_status);
11323 /* XXX: check quiet/signaling case */
11324 #define DO_VFP_cmp(p, type) \
11325 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11327 uint32_t flags; \
11328 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11329 case 0: flags = 0x6; break; \
11330 case -1: flags = 0x8; break; \
11331 case 1: flags = 0x2; break; \
11332 default: case 2: flags = 0x3; break; \
11334 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11335 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11337 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11339 uint32_t flags; \
11340 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11341 case 0: flags = 0x6; break; \
11342 case -1: flags = 0x8; break; \
11343 case 1: flags = 0x2; break; \
11344 default: case 2: flags = 0x3; break; \
11346 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11347 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11349 DO_VFP_cmp(s, float32)
11350 DO_VFP_cmp(d, float64)
11351 #undef DO_VFP_cmp
11353 /* Integer to float and float to integer conversions */
11355 #define CONV_ITOF(name, ftype, fsz, sign) \
11356 ftype HELPER(name)(uint32_t x, void *fpstp) \
11358 float_status *fpst = fpstp; \
11359 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11362 #define CONV_FTOI(name, ftype, fsz, sign, round) \
11363 uint32_t HELPER(name)(ftype x, void *fpstp) \
11365 float_status *fpst = fpstp; \
11366 if (float##fsz##_is_any_nan(x)) { \
11367 float_raise(float_flag_invalid, fpst); \
11368 return 0; \
11370 return float##fsz##_to_##sign##int32##round(x, fpst); \
11373 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
11374 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
11375 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
11376 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11378 FLOAT_CONVS(si, h, uint32_t, 16, )
11379 FLOAT_CONVS(si, s, float32, 32, )
11380 FLOAT_CONVS(si, d, float64, 64, )
11381 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11382 FLOAT_CONVS(ui, s, float32, 32, u)
11383 FLOAT_CONVS(ui, d, float64, 64, u)
11385 #undef CONV_ITOF
11386 #undef CONV_FTOI
11387 #undef FLOAT_CONVS
11389 /* floating point conversion */
11390 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11392 return float32_to_float64(x, &env->vfp.fp_status);
11395 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11397 return float64_to_float32(x, &env->vfp.fp_status);
11400 /* VFP3 fixed point conversion. */
11401 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11402 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11403 void *fpstp) \
11405 float_status *fpst = fpstp; \
11406 float##fsz tmp; \
11407 tmp = itype##_to_##float##fsz(x, fpst); \
11408 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11411 /* Notice that we want only input-denormal exception flags from the
11412 * scalbn operation: the other possible flags (overflow+inexact if
11413 * we overflow to infinity, output-denormal) aren't correct for the
11414 * complete scale-and-convert operation.
11416 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11417 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11418 uint32_t shift, \
11419 void *fpstp) \
11421 float_status *fpst = fpstp; \
11422 int old_exc_flags = get_float_exception_flags(fpst); \
11423 float##fsz tmp; \
11424 if (float##fsz##_is_any_nan(x)) { \
11425 float_raise(float_flag_invalid, fpst); \
11426 return 0; \
11428 tmp = float##fsz##_scalbn(x, shift, fpst); \
11429 old_exc_flags |= get_float_exception_flags(fpst) \
11430 & float_flag_input_denormal; \
11431 set_float_exception_flags(old_exc_flags, fpst); \
11432 return float##fsz##_to_##itype##round(tmp, fpst); \
11435 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11436 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11437 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11438 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11440 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11441 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11442 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11444 VFP_CONV_FIX(sh, d, 64, 64, int16)
11445 VFP_CONV_FIX(sl, d, 64, 64, int32)
11446 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11447 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11448 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11449 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11450 VFP_CONV_FIX(sh, s, 32, 32, int16)
11451 VFP_CONV_FIX(sl, s, 32, 32, int32)
11452 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11453 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11454 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11455 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11457 #undef VFP_CONV_FIX
11458 #undef VFP_CONV_FIX_FLOAT
11459 #undef VFP_CONV_FLOAT_FIX_ROUND
11460 #undef VFP_CONV_FIX_A64
11462 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11463 * Therefore we convert to f64, scale, and then convert f64 to f16; or
11464 * vice versa for conversion to integer.
11466 * For 16- and 32-bit integers, the conversion to f64 never rounds.
11467 * For 64-bit integers, any integer that would cause rounding will also
11468 * overflow to f16 infinity, so there is no double rounding problem.
11471 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11473 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11476 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11478 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11481 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11483 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11486 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11488 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11491 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11493 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11496 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11498 if (unlikely(float16_is_any_nan(f))) {
11499 float_raise(float_flag_invalid, fpst);
11500 return 0;
11501 } else {
11502 int old_exc_flags = get_float_exception_flags(fpst);
11503 float64 ret;
11505 ret = float16_to_float64(f, true, fpst);
11506 ret = float64_scalbn(ret, shift, fpst);
11507 old_exc_flags |= get_float_exception_flags(fpst)
11508 & float_flag_input_denormal;
11509 set_float_exception_flags(old_exc_flags, fpst);
11511 return ret;
11515 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11517 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11520 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11522 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11525 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11527 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11530 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11532 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11535 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11537 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11540 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11542 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11545 /* Set the current fp rounding mode and return the old one.
11546 * The argument is a softfloat float_round_ value.
11548 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11550 float_status *fp_status = fpstp;
11552 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11553 set_float_rounding_mode(rmode, fp_status);
11555 return prev_rmode;
11558 /* Set the current fp rounding mode in the standard fp status and return
11559 * the old one. This is for NEON instructions that need to change the
11560 * rounding mode but wish to use the standard FPSCR values for everything
11561 * else. Always set the rounding mode back to the correct value after
11562 * modifying it.
11563 * The argument is a softfloat float_round_ value.
11565 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11567 float_status *fp_status = &env->vfp.standard_fp_status;
11569 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11570 set_float_rounding_mode(rmode, fp_status);
11572 return prev_rmode;
11575 /* Half precision conversions. */
11576 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11578 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11579 * it would affect flushing input denormals.
11581 float_status *fpst = fpstp;
11582 flag save = get_flush_inputs_to_zero(fpst);
11583 set_flush_inputs_to_zero(false, fpst);
11584 float32 r = float16_to_float32(a, !ahp_mode, fpst);
11585 set_flush_inputs_to_zero(save, fpst);
11586 return r;
11589 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11591 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11592 * it would affect flushing output denormals.
11594 float_status *fpst = fpstp;
11595 flag save = get_flush_to_zero(fpst);
11596 set_flush_to_zero(false, fpst);
11597 float16 r = float32_to_float16(a, !ahp_mode, fpst);
11598 set_flush_to_zero(save, fpst);
11599 return r;
11602 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11604 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11605 * it would affect flushing input denormals.
11607 float_status *fpst = fpstp;
11608 flag save = get_flush_inputs_to_zero(fpst);
11609 set_flush_inputs_to_zero(false, fpst);
11610 float64 r = float16_to_float64(a, !ahp_mode, fpst);
11611 set_flush_inputs_to_zero(save, fpst);
11612 return r;
11615 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11617 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11618 * it would affect flushing output denormals.
11620 float_status *fpst = fpstp;
11621 flag save = get_flush_to_zero(fpst);
11622 set_flush_to_zero(false, fpst);
11623 float16 r = float64_to_float16(a, !ahp_mode, fpst);
11624 set_flush_to_zero(save, fpst);
11625 return r;
11628 #define float32_two make_float32(0x40000000)
11629 #define float32_three make_float32(0x40400000)
11630 #define float32_one_point_five make_float32(0x3fc00000)
11632 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11634 float_status *s = &env->vfp.standard_fp_status;
11635 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11636 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11637 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11638 float_raise(float_flag_input_denormal, s);
11640 return float32_two;
11642 return float32_sub(float32_two, float32_mul(a, b, s), s);
11645 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11647 float_status *s = &env->vfp.standard_fp_status;
11648 float32 product;
11649 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11650 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11651 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11652 float_raise(float_flag_input_denormal, s);
11654 return float32_one_point_five;
11656 product = float32_mul(a, b, s);
11657 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11660 /* NEON helpers. */
11662 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11663 * int->float conversions at run-time. */
11664 #define float64_256 make_float64(0x4070000000000000LL)
11665 #define float64_512 make_float64(0x4080000000000000LL)
11666 #define float16_maxnorm make_float16(0x7bff)
11667 #define float32_maxnorm make_float32(0x7f7fffff)
11668 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11670 /* Reciprocal functions
11672 * The algorithm that must be used to calculate the estimate
11673 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11676 /* See RecipEstimate()
11678 * input is a 9 bit fixed point number
11679 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11680 * result range 256 .. 511 for a number from 1.0 to 511/256.
11683 static int recip_estimate(int input)
11685 int a, b, r;
11686 assert(256 <= input && input < 512);
11687 a = (input * 2) + 1;
11688 b = (1 << 19) / a;
11689 r = (b + 1) >> 1;
11690 assert(256 <= r && r < 512);
11691 return r;
11695 * Common wrapper to call recip_estimate
11697 * The parameters are exponent and 64 bit fraction (without implicit
11698 * bit) where the binary point is nominally at bit 52. Returns a
11699 * float64 which can then be rounded to the appropriate size by the
11700 * callee.
11703 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11705 uint32_t scaled, estimate;
11706 uint64_t result_frac;
11707 int result_exp;
11709 /* Handle sub-normals */
11710 if (*exp == 0) {
11711 if (extract64(frac, 51, 1) == 0) {
11712 *exp = -1;
11713 frac <<= 2;
11714 } else {
11715 frac <<= 1;
11719 /* scaled = UInt('1':fraction<51:44>) */
11720 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11721 estimate = recip_estimate(scaled);
11723 result_exp = exp_off - *exp;
11724 result_frac = deposit64(0, 44, 8, estimate);
11725 if (result_exp == 0) {
11726 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11727 } else if (result_exp == -1) {
11728 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11729 result_exp = 0;
11732 *exp = result_exp;
11734 return result_frac;
11737 static bool round_to_inf(float_status *fpst, bool sign_bit)
11739 switch (fpst->float_rounding_mode) {
11740 case float_round_nearest_even: /* Round to Nearest */
11741 return true;
11742 case float_round_up: /* Round to +Inf */
11743 return !sign_bit;
11744 case float_round_down: /* Round to -Inf */
11745 return sign_bit;
11746 case float_round_to_zero: /* Round to Zero */
11747 return false;
11750 g_assert_not_reached();
11753 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11755 float_status *fpst = fpstp;
11756 float16 f16 = float16_squash_input_denormal(input, fpst);
11757 uint32_t f16_val = float16_val(f16);
11758 uint32_t f16_sign = float16_is_neg(f16);
11759 int f16_exp = extract32(f16_val, 10, 5);
11760 uint32_t f16_frac = extract32(f16_val, 0, 10);
11761 uint64_t f64_frac;
11763 if (float16_is_any_nan(f16)) {
11764 float16 nan = f16;
11765 if (float16_is_signaling_nan(f16, fpst)) {
11766 float_raise(float_flag_invalid, fpst);
11767 nan = float16_silence_nan(f16, fpst);
11769 if (fpst->default_nan_mode) {
11770 nan = float16_default_nan(fpst);
11772 return nan;
11773 } else if (float16_is_infinity(f16)) {
11774 return float16_set_sign(float16_zero, float16_is_neg(f16));
11775 } else if (float16_is_zero(f16)) {
11776 float_raise(float_flag_divbyzero, fpst);
11777 return float16_set_sign(float16_infinity, float16_is_neg(f16));
11778 } else if (float16_abs(f16) < (1 << 8)) {
11779 /* Abs(value) < 2.0^-16 */
11780 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11781 if (round_to_inf(fpst, f16_sign)) {
11782 return float16_set_sign(float16_infinity, f16_sign);
11783 } else {
11784 return float16_set_sign(float16_maxnorm, f16_sign);
11786 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11787 float_raise(float_flag_underflow, fpst);
11788 return float16_set_sign(float16_zero, float16_is_neg(f16));
11791 f64_frac = call_recip_estimate(&f16_exp, 29,
11792 ((uint64_t) f16_frac) << (52 - 10));
11794 /* result = sign : result_exp<4:0> : fraction<51:42> */
11795 f16_val = deposit32(0, 15, 1, f16_sign);
11796 f16_val = deposit32(f16_val, 10, 5, f16_exp);
11797 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11798 return make_float16(f16_val);
11801 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11803 float_status *fpst = fpstp;
11804 float32 f32 = float32_squash_input_denormal(input, fpst);
11805 uint32_t f32_val = float32_val(f32);
11806 bool f32_sign = float32_is_neg(f32);
11807 int f32_exp = extract32(f32_val, 23, 8);
11808 uint32_t f32_frac = extract32(f32_val, 0, 23);
11809 uint64_t f64_frac;
11811 if (float32_is_any_nan(f32)) {
11812 float32 nan = f32;
11813 if (float32_is_signaling_nan(f32, fpst)) {
11814 float_raise(float_flag_invalid, fpst);
11815 nan = float32_silence_nan(f32, fpst);
11817 if (fpst->default_nan_mode) {
11818 nan = float32_default_nan(fpst);
11820 return nan;
11821 } else if (float32_is_infinity(f32)) {
11822 return float32_set_sign(float32_zero, float32_is_neg(f32));
11823 } else if (float32_is_zero(f32)) {
11824 float_raise(float_flag_divbyzero, fpst);
11825 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11826 } else if (float32_abs(f32) < (1ULL << 21)) {
11827 /* Abs(value) < 2.0^-128 */
11828 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11829 if (round_to_inf(fpst, f32_sign)) {
11830 return float32_set_sign(float32_infinity, f32_sign);
11831 } else {
11832 return float32_set_sign(float32_maxnorm, f32_sign);
11834 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11835 float_raise(float_flag_underflow, fpst);
11836 return float32_set_sign(float32_zero, float32_is_neg(f32));
11839 f64_frac = call_recip_estimate(&f32_exp, 253,
11840 ((uint64_t) f32_frac) << (52 - 23));
11842 /* result = sign : result_exp<7:0> : fraction<51:29> */
11843 f32_val = deposit32(0, 31, 1, f32_sign);
11844 f32_val = deposit32(f32_val, 23, 8, f32_exp);
11845 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
11846 return make_float32(f32_val);
11849 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11851 float_status *fpst = fpstp;
11852 float64 f64 = float64_squash_input_denormal(input, fpst);
11853 uint64_t f64_val = float64_val(f64);
11854 bool f64_sign = float64_is_neg(f64);
11855 int f64_exp = extract64(f64_val, 52, 11);
11856 uint64_t f64_frac = extract64(f64_val, 0, 52);
11858 /* Deal with any special cases */
11859 if (float64_is_any_nan(f64)) {
11860 float64 nan = f64;
11861 if (float64_is_signaling_nan(f64, fpst)) {
11862 float_raise(float_flag_invalid, fpst);
11863 nan = float64_silence_nan(f64, fpst);
11865 if (fpst->default_nan_mode) {
11866 nan = float64_default_nan(fpst);
11868 return nan;
11869 } else if (float64_is_infinity(f64)) {
11870 return float64_set_sign(float64_zero, float64_is_neg(f64));
11871 } else if (float64_is_zero(f64)) {
11872 float_raise(float_flag_divbyzero, fpst);
11873 return float64_set_sign(float64_infinity, float64_is_neg(f64));
11874 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11875 /* Abs(value) < 2.0^-1024 */
11876 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11877 if (round_to_inf(fpst, f64_sign)) {
11878 return float64_set_sign(float64_infinity, f64_sign);
11879 } else {
11880 return float64_set_sign(float64_maxnorm, f64_sign);
11882 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11883 float_raise(float_flag_underflow, fpst);
11884 return float64_set_sign(float64_zero, float64_is_neg(f64));
11887 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
11889 /* result = sign : result_exp<10:0> : fraction<51:0>; */
11890 f64_val = deposit64(0, 63, 1, f64_sign);
11891 f64_val = deposit64(f64_val, 52, 11, f64_exp);
11892 f64_val = deposit64(f64_val, 0, 52, f64_frac);
11893 return make_float64(f64_val);
11896 /* The algorithm that must be used to calculate the estimate
11897 * is specified by the ARM ARM.
11900 static int do_recip_sqrt_estimate(int a)
11902 int b, estimate;
11904 assert(128 <= a && a < 512);
11905 if (a < 256) {
11906 a = a * 2 + 1;
11907 } else {
11908 a = (a >> 1) << 1;
11909 a = (a + 1) * 2;
11911 b = 512;
11912 while (a * (b + 1) * (b + 1) < (1 << 28)) {
11913 b += 1;
11915 estimate = (b + 1) / 2;
11916 assert(256 <= estimate && estimate < 512);
11918 return estimate;
11922 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
11924 int estimate;
11925 uint32_t scaled;
11927 if (*exp == 0) {
11928 while (extract64(frac, 51, 1) == 0) {
11929 frac = frac << 1;
11930 *exp -= 1;
11932 frac = extract64(frac, 0, 51) << 1;
11935 if (*exp & 1) {
11936 /* scaled = UInt('01':fraction<51:45>) */
11937 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
11938 } else {
11939 /* scaled = UInt('1':fraction<51:44>) */
11940 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11942 estimate = do_recip_sqrt_estimate(scaled);
11944 *exp = (exp_off - *exp) / 2;
11945 return extract64(estimate, 0, 8) << 44;
11948 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
11950 float_status *s = fpstp;
11951 float16 f16 = float16_squash_input_denormal(input, s);
11952 uint16_t val = float16_val(f16);
11953 bool f16_sign = float16_is_neg(f16);
11954 int f16_exp = extract32(val, 10, 5);
11955 uint16_t f16_frac = extract32(val, 0, 10);
11956 uint64_t f64_frac;
11958 if (float16_is_any_nan(f16)) {
11959 float16 nan = f16;
11960 if (float16_is_signaling_nan(f16, s)) {
11961 float_raise(float_flag_invalid, s);
11962 nan = float16_silence_nan(f16, s);
11964 if (s->default_nan_mode) {
11965 nan = float16_default_nan(s);
11967 return nan;
11968 } else if (float16_is_zero(f16)) {
11969 float_raise(float_flag_divbyzero, s);
11970 return float16_set_sign(float16_infinity, f16_sign);
11971 } else if (f16_sign) {
11972 float_raise(float_flag_invalid, s);
11973 return float16_default_nan(s);
11974 } else if (float16_is_infinity(f16)) {
11975 return float16_zero;
11978 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11979 * preserving the parity of the exponent. */
11981 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
11983 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
11985 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
11986 val = deposit32(0, 15, 1, f16_sign);
11987 val = deposit32(val, 10, 5, f16_exp);
11988 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
11989 return make_float16(val);
11992 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11994 float_status *s = fpstp;
11995 float32 f32 = float32_squash_input_denormal(input, s);
11996 uint32_t val = float32_val(f32);
11997 uint32_t f32_sign = float32_is_neg(f32);
11998 int f32_exp = extract32(val, 23, 8);
11999 uint32_t f32_frac = extract32(val, 0, 23);
12000 uint64_t f64_frac;
12002 if (float32_is_any_nan(f32)) {
12003 float32 nan = f32;
12004 if (float32_is_signaling_nan(f32, s)) {
12005 float_raise(float_flag_invalid, s);
12006 nan = float32_silence_nan(f32, s);
12008 if (s->default_nan_mode) {
12009 nan = float32_default_nan(s);
12011 return nan;
12012 } else if (float32_is_zero(f32)) {
12013 float_raise(float_flag_divbyzero, s);
12014 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12015 } else if (float32_is_neg(f32)) {
12016 float_raise(float_flag_invalid, s);
12017 return float32_default_nan(s);
12018 } else if (float32_is_infinity(f32)) {
12019 return float32_zero;
12022 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12023 * preserving the parity of the exponent. */
12025 f64_frac = ((uint64_t) f32_frac) << 29;
12027 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12029 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12030 val = deposit32(0, 31, 1, f32_sign);
12031 val = deposit32(val, 23, 8, f32_exp);
12032 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12033 return make_float32(val);
12036 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12038 float_status *s = fpstp;
12039 float64 f64 = float64_squash_input_denormal(input, s);
12040 uint64_t val = float64_val(f64);
12041 bool f64_sign = float64_is_neg(f64);
12042 int f64_exp = extract64(val, 52, 11);
12043 uint64_t f64_frac = extract64(val, 0, 52);
12045 if (float64_is_any_nan(f64)) {
12046 float64 nan = f64;
12047 if (float64_is_signaling_nan(f64, s)) {
12048 float_raise(float_flag_invalid, s);
12049 nan = float64_silence_nan(f64, s);
12051 if (s->default_nan_mode) {
12052 nan = float64_default_nan(s);
12054 return nan;
12055 } else if (float64_is_zero(f64)) {
12056 float_raise(float_flag_divbyzero, s);
12057 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12058 } else if (float64_is_neg(f64)) {
12059 float_raise(float_flag_invalid, s);
12060 return float64_default_nan(s);
12061 } else if (float64_is_infinity(f64)) {
12062 return float64_zero;
12065 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12067 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12068 val = deposit64(0, 61, 1, f64_sign);
12069 val = deposit64(val, 52, 11, f64_exp);
12070 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12071 return make_float64(val);
12074 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12076 /* float_status *s = fpstp; */
12077 int input, estimate;
12079 if ((a & 0x80000000) == 0) {
12080 return 0xffffffff;
12083 input = extract32(a, 23, 9);
12084 estimate = recip_estimate(input);
12086 return deposit32(0, (32 - 9), 9, estimate);
12089 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12091 int estimate;
12093 if ((a & 0xc0000000) == 0) {
12094 return 0xffffffff;
12097 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12099 return deposit32(0, 23, 9, estimate);
12102 /* VFPv4 fused multiply-accumulate */
12103 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12105 float_status *fpst = fpstp;
12106 return float32_muladd(a, b, c, 0, fpst);
12109 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12111 float_status *fpst = fpstp;
12112 return float64_muladd(a, b, c, 0, fpst);
12115 /* ARMv8 round to integral */
12116 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12118 return float32_round_to_int(x, fp_status);
12121 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12123 return float64_round_to_int(x, fp_status);
12126 float32 HELPER(rints)(float32 x, void *fp_status)
12128 int old_flags = get_float_exception_flags(fp_status), new_flags;
12129 float32 ret;
12131 ret = float32_round_to_int(x, fp_status);
12133 /* Suppress any inexact exceptions the conversion produced */
12134 if (!(old_flags & float_flag_inexact)) {
12135 new_flags = get_float_exception_flags(fp_status);
12136 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12139 return ret;
12142 float64 HELPER(rintd)(float64 x, void *fp_status)
12144 int old_flags = get_float_exception_flags(fp_status), new_flags;
12145 float64 ret;
12147 ret = float64_round_to_int(x, fp_status);
12149 new_flags = get_float_exception_flags(fp_status);
12151 /* Suppress any inexact exceptions the conversion produced */
12152 if (!(old_flags & float_flag_inexact)) {
12153 new_flags = get_float_exception_flags(fp_status);
12154 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12157 return ret;
12160 /* Convert ARM rounding mode to softfloat */
12161 int arm_rmode_to_sf(int rmode)
12163 switch (rmode) {
12164 case FPROUNDING_TIEAWAY:
12165 rmode = float_round_ties_away;
12166 break;
12167 case FPROUNDING_ODD:
12168 /* FIXME: add support for TIEAWAY and ODD */
12169 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12170 rmode);
12171 case FPROUNDING_TIEEVEN:
12172 default:
12173 rmode = float_round_nearest_even;
12174 break;
12175 case FPROUNDING_POSINF:
12176 rmode = float_round_up;
12177 break;
12178 case FPROUNDING_NEGINF:
12179 rmode = float_round_down;
12180 break;
12181 case FPROUNDING_ZERO:
12182 rmode = float_round_to_zero;
12183 break;
12185 return rmode;
12188 /* CRC helpers.
12189 * The upper bytes of val (above the number specified by 'bytes') must have
12190 * been zeroed out by the caller.
12192 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12194 uint8_t buf[4];
12196 stl_le_p(buf, val);
12198 /* zlib crc32 converts the accumulator and output to one's complement. */
12199 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12202 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12204 uint8_t buf[4];
12206 stl_le_p(buf, val);
12208 /* Linux crc32c converts the output to one's complement. */
12209 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12212 /* Return the exception level to which FP-disabled exceptions should
12213 * be taken, or 0 if FP is enabled.
12215 static inline int fp_exception_el(CPUARMState *env)
12217 #ifndef CONFIG_USER_ONLY
12218 int fpen;
12219 int cur_el = arm_current_el(env);
12221 /* CPACR and the CPTR registers don't exist before v6, so FP is
12222 * always accessible
12224 if (!arm_feature(env, ARM_FEATURE_V6)) {
12225 return 0;
12228 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12229 * 0, 2 : trap EL0 and EL1/PL1 accesses
12230 * 1 : trap only EL0 accesses
12231 * 3 : trap no accesses
12233 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12234 switch (fpen) {
12235 case 0:
12236 case 2:
12237 if (cur_el == 0 || cur_el == 1) {
12238 /* Trap to PL1, which might be EL1 or EL3 */
12239 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12240 return 3;
12242 return 1;
12244 if (cur_el == 3 && !is_a64(env)) {
12245 /* Secure PL1 running at EL3 */
12246 return 3;
12248 break;
12249 case 1:
12250 if (cur_el == 0) {
12251 return 1;
12253 break;
12254 case 3:
12255 break;
12258 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12259 * check because zero bits in the registers mean "don't trap".
12262 /* CPTR_EL2 : present in v7VE or v8 */
12263 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12264 && !arm_is_secure_below_el3(env)) {
12265 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12266 return 2;
12269 /* CPTR_EL3 : present in v8 */
12270 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12271 /* Trap all FP ops to EL3 */
12272 return 3;
12274 #endif
12275 return 0;
12278 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12279 target_ulong *cs_base, uint32_t *pflags)
12281 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12282 int fp_el = fp_exception_el(env);
12283 uint32_t flags;
12285 if (is_a64(env)) {
12286 int sve_el = sve_exception_el(env);
12287 uint32_t zcr_len;
12289 *pc = env->pc;
12290 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12291 /* Get control bits for tagged addresses */
12292 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12293 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12294 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12296 /* If SVE is disabled, but FP is enabled,
12297 then the effective len is 0. */
12298 if (sve_el != 0 && fp_el == 0) {
12299 zcr_len = 0;
12300 } else {
12301 int current_el = arm_current_el(env);
12303 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12304 zcr_len &= 0xf;
12305 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12306 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12308 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12309 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12312 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12313 } else {
12314 *pc = env->regs[15];
12315 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12316 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12317 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12318 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12319 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12320 if (!(access_secure_reg(env))) {
12321 flags |= ARM_TBFLAG_NS_MASK;
12323 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12324 || arm_el_is_aa64(env, 1)) {
12325 flags |= ARM_TBFLAG_VFPEN_MASK;
12327 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12328 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12331 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12333 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12334 * states defined in the ARM ARM for software singlestep:
12335 * SS_ACTIVE PSTATE.SS State
12336 * 0 x Inactive (the TB flag for SS is always 0)
12337 * 1 0 Active-pending
12338 * 1 1 Active-not-pending
12340 if (arm_singlestep_active(env)) {
12341 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12342 if (is_a64(env)) {
12343 if (env->pstate & PSTATE_SS) {
12344 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12346 } else {
12347 if (env->uncached_cpsr & PSTATE_SS) {
12348 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12352 if (arm_cpu_data_is_big_endian(env)) {
12353 flags |= ARM_TBFLAG_BE_DATA_MASK;
12355 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12357 if (arm_v7m_is_handler_mode(env)) {
12358 flags |= ARM_TBFLAG_HANDLER_MASK;
12361 *pflags = flags;
12362 *cs_base = 0;