xhci: fix endpoint interval calculation
[qemu/ar7.git] / block / qcow2-cluster.c
blobcca76d4fcdd12a1722f21af3ef60297c501eca4c
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
35 BDRVQcowState *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t new_l1_table_offset, new_l1_size;
39 uint8_t data[12];
41 if (min_size <= s->l1_size)
42 return 0;
44 if (exact_size) {
45 new_l1_size = min_size;
46 } else {
47 /* Bump size up to reduce the number of times we have to grow */
48 new_l1_size = s->l1_size;
49 if (new_l1_size == 0) {
50 new_l1_size = 1;
52 while (min_size > new_l1_size) {
53 new_l1_size = (new_l1_size * 3 + 1) / 2;
57 if (new_l1_size > INT_MAX) {
58 return -EFBIG;
61 #ifdef DEBUG_ALLOC2
62 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
63 s->l1_size, new_l1_size);
64 #endif
66 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
67 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
68 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70 /* write new table (align to cluster) */
71 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
72 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
73 if (new_l1_table_offset < 0) {
74 g_free(new_l1_table);
75 return new_l1_table_offset;
78 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
79 if (ret < 0) {
80 goto fail;
83 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
84 for(i = 0; i < s->l1_size; i++)
85 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
86 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
87 if (ret < 0)
88 goto fail;
89 for(i = 0; i < s->l1_size; i++)
90 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
92 /* set new table */
93 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
94 cpu_to_be32w((uint32_t*)data, new_l1_size);
95 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
96 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
97 if (ret < 0) {
98 goto fail;
100 g_free(s->l1_table);
101 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t),
102 QCOW2_DISCARD_OTHER);
103 s->l1_table_offset = new_l1_table_offset;
104 s->l1_table = new_l1_table;
105 s->l1_size = new_l1_size;
106 return 0;
107 fail:
108 g_free(new_l1_table);
109 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
110 QCOW2_DISCARD_OTHER);
111 return ret;
115 * l2_load
117 * Loads a L2 table into memory. If the table is in the cache, the cache
118 * is used; otherwise the L2 table is loaded from the image file.
120 * Returns a pointer to the L2 table on success, or NULL if the read from
121 * the image file failed.
124 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
125 uint64_t **l2_table)
127 BDRVQcowState *s = bs->opaque;
128 int ret;
130 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
132 return ret;
136 * Writes one sector of the L1 table to the disk (can't update single entries
137 * and we really don't want bdrv_pread to perform a read-modify-write)
139 #define L1_ENTRIES_PER_SECTOR (512 / 8)
140 static int write_l1_entry(BlockDriverState *bs, int l1_index)
142 BDRVQcowState *s = bs->opaque;
143 uint64_t buf[L1_ENTRIES_PER_SECTOR];
144 int l1_start_index;
145 int i, ret;
147 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
148 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
149 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
152 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
153 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
154 buf, sizeof(buf));
155 if (ret < 0) {
156 return ret;
159 return 0;
163 * l2_allocate
165 * Allocate a new l2 entry in the file. If l1_index points to an already
166 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
167 * table) copy the contents of the old L2 table into the newly allocated one.
168 * Otherwise the new table is initialized with zeros.
172 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
174 BDRVQcowState *s = bs->opaque;
175 uint64_t old_l2_offset;
176 uint64_t *l2_table;
177 int64_t l2_offset;
178 int ret;
180 old_l2_offset = s->l1_table[l1_index];
182 trace_qcow2_l2_allocate(bs, l1_index);
184 /* allocate a new l2 entry */
186 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
187 if (l2_offset < 0) {
188 return l2_offset;
191 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
192 if (ret < 0) {
193 goto fail;
196 /* allocate a new entry in the l2 cache */
198 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
199 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
200 if (ret < 0) {
201 return ret;
204 l2_table = *table;
206 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
207 /* if there was no old l2 table, clear the new table */
208 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
209 } else {
210 uint64_t* old_table;
212 /* if there was an old l2 table, read it from the disk */
213 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
214 ret = qcow2_cache_get(bs, s->l2_table_cache,
215 old_l2_offset & L1E_OFFSET_MASK,
216 (void**) &old_table);
217 if (ret < 0) {
218 goto fail;
221 memcpy(l2_table, old_table, s->cluster_size);
223 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
224 if (ret < 0) {
225 goto fail;
229 /* write the l2 table to the file */
230 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
232 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
233 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
234 ret = qcow2_cache_flush(bs, s->l2_table_cache);
235 if (ret < 0) {
236 goto fail;
239 /* update the L1 entry */
240 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
241 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
242 ret = write_l1_entry(bs, l1_index);
243 if (ret < 0) {
244 goto fail;
247 *table = l2_table;
248 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
249 return 0;
251 fail:
252 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
253 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
254 s->l1_table[l1_index] = old_l2_offset;
255 return ret;
259 * Checks how many clusters in a given L2 table are contiguous in the image
260 * file. As soon as one of the flags in the bitmask stop_flags changes compared
261 * to the first cluster, the search is stopped and the cluster is not counted
262 * as contiguous. (This allows it, for example, to stop at the first compressed
263 * cluster which may require a different handling)
265 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
266 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
268 int i;
269 uint64_t mask = stop_flags | L2E_OFFSET_MASK;
270 uint64_t offset = be64_to_cpu(l2_table[0]) & mask;
272 if (!offset)
273 return 0;
275 for (i = start; i < start + nb_clusters; i++) {
276 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
277 if (offset + (uint64_t) i * cluster_size != l2_entry) {
278 break;
282 return (i - start);
285 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
287 int i;
289 for (i = 0; i < nb_clusters; i++) {
290 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
292 if (type != QCOW2_CLUSTER_UNALLOCATED) {
293 break;
297 return i;
300 /* The crypt function is compatible with the linux cryptoloop
301 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
302 supported */
303 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
304 uint8_t *out_buf, const uint8_t *in_buf,
305 int nb_sectors, int enc,
306 const AES_KEY *key)
308 union {
309 uint64_t ll[2];
310 uint8_t b[16];
311 } ivec;
312 int i;
314 for(i = 0; i < nb_sectors; i++) {
315 ivec.ll[0] = cpu_to_le64(sector_num);
316 ivec.ll[1] = 0;
317 AES_cbc_encrypt(in_buf, out_buf, 512, key,
318 ivec.b, enc);
319 sector_num++;
320 in_buf += 512;
321 out_buf += 512;
325 static int coroutine_fn copy_sectors(BlockDriverState *bs,
326 uint64_t start_sect,
327 uint64_t cluster_offset,
328 int n_start, int n_end)
330 BDRVQcowState *s = bs->opaque;
331 QEMUIOVector qiov;
332 struct iovec iov;
333 int n, ret;
336 * If this is the last cluster and it is only partially used, we must only
337 * copy until the end of the image, or bdrv_check_request will fail for the
338 * bdrv_read/write calls below.
340 if (start_sect + n_end > bs->total_sectors) {
341 n_end = bs->total_sectors - start_sect;
344 n = n_end - n_start;
345 if (n <= 0) {
346 return 0;
349 iov.iov_len = n * BDRV_SECTOR_SIZE;
350 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
352 qemu_iovec_init_external(&qiov, &iov, 1);
354 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
356 /* Call .bdrv_co_readv() directly instead of using the public block-layer
357 * interface. This avoids double I/O throttling and request tracking,
358 * which can lead to deadlock when block layer copy-on-read is enabled.
360 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
361 if (ret < 0) {
362 goto out;
365 if (s->crypt_method) {
366 qcow2_encrypt_sectors(s, start_sect + n_start,
367 iov.iov_base, iov.iov_base, n, 1,
368 &s->aes_encrypt_key);
371 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
372 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
373 if (ret < 0) {
374 goto out;
377 ret = 0;
378 out:
379 qemu_vfree(iov.iov_base);
380 return ret;
385 * get_cluster_offset
387 * For a given offset of the disk image, find the cluster offset in
388 * qcow2 file. The offset is stored in *cluster_offset.
390 * on entry, *num is the number of contiguous sectors we'd like to
391 * access following offset.
393 * on exit, *num is the number of contiguous sectors we can read.
395 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
396 * cases.
398 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
399 int *num, uint64_t *cluster_offset)
401 BDRVQcowState *s = bs->opaque;
402 unsigned int l2_index;
403 uint64_t l1_index, l2_offset, *l2_table;
404 int l1_bits, c;
405 unsigned int index_in_cluster, nb_clusters;
406 uint64_t nb_available, nb_needed;
407 int ret;
409 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
410 nb_needed = *num + index_in_cluster;
412 l1_bits = s->l2_bits + s->cluster_bits;
414 /* compute how many bytes there are between the offset and
415 * the end of the l1 entry
418 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
420 /* compute the number of available sectors */
422 nb_available = (nb_available >> 9) + index_in_cluster;
424 if (nb_needed > nb_available) {
425 nb_needed = nb_available;
428 *cluster_offset = 0;
430 /* seek the the l2 offset in the l1 table */
432 l1_index = offset >> l1_bits;
433 if (l1_index >= s->l1_size) {
434 ret = QCOW2_CLUSTER_UNALLOCATED;
435 goto out;
438 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
439 if (!l2_offset) {
440 ret = QCOW2_CLUSTER_UNALLOCATED;
441 goto out;
444 /* load the l2 table in memory */
446 ret = l2_load(bs, l2_offset, &l2_table);
447 if (ret < 0) {
448 return ret;
451 /* find the cluster offset for the given disk offset */
453 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
454 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
455 nb_clusters = size_to_clusters(s, nb_needed << 9);
457 ret = qcow2_get_cluster_type(*cluster_offset);
458 switch (ret) {
459 case QCOW2_CLUSTER_COMPRESSED:
460 /* Compressed clusters can only be processed one by one */
461 c = 1;
462 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
463 break;
464 case QCOW2_CLUSTER_ZERO:
465 if (s->qcow_version < 3) {
466 return -EIO;
468 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
469 &l2_table[l2_index], 0,
470 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
471 *cluster_offset = 0;
472 break;
473 case QCOW2_CLUSTER_UNALLOCATED:
474 /* how many empty clusters ? */
475 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
476 *cluster_offset = 0;
477 break;
478 case QCOW2_CLUSTER_NORMAL:
479 /* how many allocated clusters ? */
480 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
481 &l2_table[l2_index], 0,
482 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
483 *cluster_offset &= L2E_OFFSET_MASK;
484 break;
485 default:
486 abort();
489 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
491 nb_available = (c * s->cluster_sectors);
493 out:
494 if (nb_available > nb_needed)
495 nb_available = nb_needed;
497 *num = nb_available - index_in_cluster;
499 return ret;
503 * get_cluster_table
505 * for a given disk offset, load (and allocate if needed)
506 * the l2 table.
508 * the l2 table offset in the qcow2 file and the cluster index
509 * in the l2 table are given to the caller.
511 * Returns 0 on success, -errno in failure case
513 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
514 uint64_t **new_l2_table,
515 int *new_l2_index)
517 BDRVQcowState *s = bs->opaque;
518 unsigned int l2_index;
519 uint64_t l1_index, l2_offset;
520 uint64_t *l2_table = NULL;
521 int ret;
523 /* seek the the l2 offset in the l1 table */
525 l1_index = offset >> (s->l2_bits + s->cluster_bits);
526 if (l1_index >= s->l1_size) {
527 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
528 if (ret < 0) {
529 return ret;
533 assert(l1_index < s->l1_size);
534 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
536 /* seek the l2 table of the given l2 offset */
538 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
539 /* load the l2 table in memory */
540 ret = l2_load(bs, l2_offset, &l2_table);
541 if (ret < 0) {
542 return ret;
544 } else {
545 /* First allocate a new L2 table (and do COW if needed) */
546 ret = l2_allocate(bs, l1_index, &l2_table);
547 if (ret < 0) {
548 return ret;
551 /* Then decrease the refcount of the old table */
552 if (l2_offset) {
553 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
554 QCOW2_DISCARD_OTHER);
558 /* find the cluster offset for the given disk offset */
560 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
562 *new_l2_table = l2_table;
563 *new_l2_index = l2_index;
565 return 0;
569 * alloc_compressed_cluster_offset
571 * For a given offset of the disk image, return cluster offset in
572 * qcow2 file.
574 * If the offset is not found, allocate a new compressed cluster.
576 * Return the cluster offset if successful,
577 * Return 0, otherwise.
581 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
582 uint64_t offset,
583 int compressed_size)
585 BDRVQcowState *s = bs->opaque;
586 int l2_index, ret;
587 uint64_t *l2_table;
588 int64_t cluster_offset;
589 int nb_csectors;
591 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
592 if (ret < 0) {
593 return 0;
596 /* Compression can't overwrite anything. Fail if the cluster was already
597 * allocated. */
598 cluster_offset = be64_to_cpu(l2_table[l2_index]);
599 if (cluster_offset & L2E_OFFSET_MASK) {
600 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
601 return 0;
604 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
605 if (cluster_offset < 0) {
606 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
607 return 0;
610 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
611 (cluster_offset >> 9);
613 cluster_offset |= QCOW_OFLAG_COMPRESSED |
614 ((uint64_t)nb_csectors << s->csize_shift);
616 /* update L2 table */
618 /* compressed clusters never have the copied flag */
620 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
621 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
622 l2_table[l2_index] = cpu_to_be64(cluster_offset);
623 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
624 if (ret < 0) {
625 return 0;
628 return cluster_offset;
631 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
633 BDRVQcowState *s = bs->opaque;
634 int ret;
636 if (r->nb_sectors == 0) {
637 return 0;
640 qemu_co_mutex_unlock(&s->lock);
641 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
642 r->offset / BDRV_SECTOR_SIZE,
643 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
644 qemu_co_mutex_lock(&s->lock);
646 if (ret < 0) {
647 return ret;
651 * Before we update the L2 table to actually point to the new cluster, we
652 * need to be sure that the refcounts have been increased and COW was
653 * handled.
655 qcow2_cache_depends_on_flush(s->l2_table_cache);
657 return 0;
660 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
662 BDRVQcowState *s = bs->opaque;
663 int i, j = 0, l2_index, ret;
664 uint64_t *old_cluster, *l2_table;
665 uint64_t cluster_offset = m->alloc_offset;
667 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
668 assert(m->nb_clusters > 0);
670 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
672 /* copy content of unmodified sectors */
673 ret = perform_cow(bs, m, &m->cow_start);
674 if (ret < 0) {
675 goto err;
678 ret = perform_cow(bs, m, &m->cow_end);
679 if (ret < 0) {
680 goto err;
683 /* Update L2 table. */
684 if (s->use_lazy_refcounts) {
685 qcow2_mark_dirty(bs);
687 if (qcow2_need_accurate_refcounts(s)) {
688 qcow2_cache_set_dependency(bs, s->l2_table_cache,
689 s->refcount_block_cache);
692 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
693 if (ret < 0) {
694 goto err;
696 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
698 for (i = 0; i < m->nb_clusters; i++) {
699 /* if two concurrent writes happen to the same unallocated cluster
700 * each write allocates separate cluster and writes data concurrently.
701 * The first one to complete updates l2 table with pointer to its
702 * cluster the second one has to do RMW (which is done above by
703 * copy_sectors()), update l2 table with its cluster pointer and free
704 * old cluster. This is what this loop does */
705 if(l2_table[l2_index + i] != 0)
706 old_cluster[j++] = l2_table[l2_index + i];
708 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
709 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
713 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
714 if (ret < 0) {
715 goto err;
719 * If this was a COW, we need to decrease the refcount of the old cluster.
720 * Also flush bs->file to get the right order for L2 and refcount update.
722 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
723 * clusters), the next write will reuse them anyway.
725 if (j != 0) {
726 for (i = 0; i < j; i++) {
727 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
728 QCOW2_DISCARD_NEVER);
732 ret = 0;
733 err:
734 g_free(old_cluster);
735 return ret;
739 * Returns the number of contiguous clusters that can be used for an allocating
740 * write, but require COW to be performed (this includes yet unallocated space,
741 * which must copy from the backing file)
743 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
744 uint64_t *l2_table, int l2_index)
746 int i;
748 for (i = 0; i < nb_clusters; i++) {
749 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
750 int cluster_type = qcow2_get_cluster_type(l2_entry);
752 switch(cluster_type) {
753 case QCOW2_CLUSTER_NORMAL:
754 if (l2_entry & QCOW_OFLAG_COPIED) {
755 goto out;
757 break;
758 case QCOW2_CLUSTER_UNALLOCATED:
759 case QCOW2_CLUSTER_COMPRESSED:
760 case QCOW2_CLUSTER_ZERO:
761 break;
762 default:
763 abort();
767 out:
768 assert(i <= nb_clusters);
769 return i;
773 * Check if there already is an AIO write request in flight which allocates
774 * the same cluster. In this case we need to wait until the previous
775 * request has completed and updated the L2 table accordingly.
777 * Returns:
778 * 0 if there was no dependency. *cur_bytes indicates the number of
779 * bytes from guest_offset that can be read before the next
780 * dependency must be processed (or the request is complete)
782 * -EAGAIN if we had to wait for another request, previously gathered
783 * information on cluster allocation may be invalid now. The caller
784 * must start over anyway, so consider *cur_bytes undefined.
786 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
787 uint64_t *cur_bytes, QCowL2Meta **m)
789 BDRVQcowState *s = bs->opaque;
790 QCowL2Meta *old_alloc;
791 uint64_t bytes = *cur_bytes;
793 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
795 uint64_t start = guest_offset;
796 uint64_t end = start + bytes;
797 uint64_t old_start = l2meta_cow_start(old_alloc);
798 uint64_t old_end = l2meta_cow_end(old_alloc);
800 if (end <= old_start || start >= old_end) {
801 /* No intersection */
802 } else {
803 if (start < old_start) {
804 /* Stop at the start of a running allocation */
805 bytes = old_start - start;
806 } else {
807 bytes = 0;
810 /* Stop if already an l2meta exists. After yielding, it wouldn't
811 * be valid any more, so we'd have to clean up the old L2Metas
812 * and deal with requests depending on them before starting to
813 * gather new ones. Not worth the trouble. */
814 if (bytes == 0 && *m) {
815 *cur_bytes = 0;
816 return 0;
819 if (bytes == 0) {
820 /* Wait for the dependency to complete. We need to recheck
821 * the free/allocated clusters when we continue. */
822 qemu_co_mutex_unlock(&s->lock);
823 qemu_co_queue_wait(&old_alloc->dependent_requests);
824 qemu_co_mutex_lock(&s->lock);
825 return -EAGAIN;
830 /* Make sure that existing clusters and new allocations are only used up to
831 * the next dependency if we shortened the request above */
832 *cur_bytes = bytes;
834 return 0;
838 * Checks how many already allocated clusters that don't require a copy on
839 * write there are at the given guest_offset (up to *bytes). If
840 * *host_offset is not zero, only physically contiguous clusters beginning at
841 * this host offset are counted.
843 * Note that guest_offset may not be cluster aligned. In this case, the
844 * returned *host_offset points to exact byte referenced by guest_offset and
845 * therefore isn't cluster aligned as well.
847 * Returns:
848 * 0: if no allocated clusters are available at the given offset.
849 * *bytes is normally unchanged. It is set to 0 if the cluster
850 * is allocated and doesn't need COW, but doesn't have the right
851 * physical offset.
853 * 1: if allocated clusters that don't require a COW are available at
854 * the requested offset. *bytes may have decreased and describes
855 * the length of the area that can be written to.
857 * -errno: in error cases
859 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
860 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
862 BDRVQcowState *s = bs->opaque;
863 int l2_index;
864 uint64_t cluster_offset;
865 uint64_t *l2_table;
866 unsigned int nb_clusters;
867 unsigned int keep_clusters;
868 int ret, pret;
870 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
871 *bytes);
873 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
874 == offset_into_cluster(s, *host_offset));
877 * Calculate the number of clusters to look for. We stop at L2 table
878 * boundaries to keep things simple.
880 nb_clusters =
881 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
883 l2_index = offset_to_l2_index(s, guest_offset);
884 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
886 /* Find L2 entry for the first involved cluster */
887 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
888 if (ret < 0) {
889 return ret;
892 cluster_offset = be64_to_cpu(l2_table[l2_index]);
894 /* Check how many clusters are already allocated and don't need COW */
895 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
896 && (cluster_offset & QCOW_OFLAG_COPIED))
898 /* If a specific host_offset is required, check it */
899 bool offset_matches =
900 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
902 if (*host_offset != 0 && !offset_matches) {
903 *bytes = 0;
904 ret = 0;
905 goto out;
908 /* We keep all QCOW_OFLAG_COPIED clusters */
909 keep_clusters =
910 count_contiguous_clusters(nb_clusters, s->cluster_size,
911 &l2_table[l2_index], 0,
912 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
913 assert(keep_clusters <= nb_clusters);
915 *bytes = MIN(*bytes,
916 keep_clusters * s->cluster_size
917 - offset_into_cluster(s, guest_offset));
919 ret = 1;
920 } else {
921 ret = 0;
924 /* Cleanup */
925 out:
926 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
927 if (pret < 0) {
928 return pret;
931 /* Only return a host offset if we actually made progress. Otherwise we
932 * would make requirements for handle_alloc() that it can't fulfill */
933 if (ret) {
934 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
935 + offset_into_cluster(s, guest_offset);
938 return ret;
942 * Allocates new clusters for the given guest_offset.
944 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
945 * contain the number of clusters that have been allocated and are contiguous
946 * in the image file.
948 * If *host_offset is non-zero, it specifies the offset in the image file at
949 * which the new clusters must start. *nb_clusters can be 0 on return in this
950 * case if the cluster at host_offset is already in use. If *host_offset is
951 * zero, the clusters can be allocated anywhere in the image file.
953 * *host_offset is updated to contain the offset into the image file at which
954 * the first allocated cluster starts.
956 * Return 0 on success and -errno in error cases. -EAGAIN means that the
957 * function has been waiting for another request and the allocation must be
958 * restarted, but the whole request should not be failed.
960 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
961 uint64_t *host_offset, unsigned int *nb_clusters)
963 BDRVQcowState *s = bs->opaque;
965 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
966 *host_offset, *nb_clusters);
968 /* Allocate new clusters */
969 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
970 if (*host_offset == 0) {
971 int64_t cluster_offset =
972 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
973 if (cluster_offset < 0) {
974 return cluster_offset;
976 *host_offset = cluster_offset;
977 return 0;
978 } else {
979 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
980 if (ret < 0) {
981 return ret;
983 *nb_clusters = ret;
984 return 0;
989 * Allocates new clusters for an area that either is yet unallocated or needs a
990 * copy on write. If *host_offset is non-zero, clusters are only allocated if
991 * the new allocation can match the specified host offset.
993 * Note that guest_offset may not be cluster aligned. In this case, the
994 * returned *host_offset points to exact byte referenced by guest_offset and
995 * therefore isn't cluster aligned as well.
997 * Returns:
998 * 0: if no clusters could be allocated. *bytes is set to 0,
999 * *host_offset is left unchanged.
1001 * 1: if new clusters were allocated. *bytes may be decreased if the
1002 * new allocation doesn't cover all of the requested area.
1003 * *host_offset is updated to contain the host offset of the first
1004 * newly allocated cluster.
1006 * -errno: in error cases
1008 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1009 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1011 BDRVQcowState *s = bs->opaque;
1012 int l2_index;
1013 uint64_t *l2_table;
1014 uint64_t entry;
1015 unsigned int nb_clusters;
1016 int ret;
1018 uint64_t alloc_cluster_offset;
1020 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1021 *bytes);
1022 assert(*bytes > 0);
1025 * Calculate the number of clusters to look for. We stop at L2 table
1026 * boundaries to keep things simple.
1028 nb_clusters =
1029 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1031 l2_index = offset_to_l2_index(s, guest_offset);
1032 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1034 /* Find L2 entry for the first involved cluster */
1035 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1036 if (ret < 0) {
1037 return ret;
1040 entry = be64_to_cpu(l2_table[l2_index]);
1042 /* For the moment, overwrite compressed clusters one by one */
1043 if (entry & QCOW_OFLAG_COMPRESSED) {
1044 nb_clusters = 1;
1045 } else {
1046 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1049 /* This function is only called when there were no non-COW clusters, so if
1050 * we can't find any unallocated or COW clusters either, something is
1051 * wrong with our code. */
1052 assert(nb_clusters > 0);
1054 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1055 if (ret < 0) {
1056 return ret;
1059 /* Allocate, if necessary at a given offset in the image file */
1060 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1061 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1062 &nb_clusters);
1063 if (ret < 0) {
1064 goto fail;
1067 /* Can't extend contiguous allocation */
1068 if (nb_clusters == 0) {
1069 *bytes = 0;
1070 return 0;
1074 * Save info needed for meta data update.
1076 * requested_sectors: Number of sectors from the start of the first
1077 * newly allocated cluster to the end of the (possibly shortened
1078 * before) write request.
1080 * avail_sectors: Number of sectors from the start of the first
1081 * newly allocated to the end of the last newly allocated cluster.
1083 * nb_sectors: The number of sectors from the start of the first
1084 * newly allocated cluster to the end of the area that the write
1085 * request actually writes to (excluding COW at the end)
1087 int requested_sectors =
1088 (*bytes + offset_into_cluster(s, guest_offset))
1089 >> BDRV_SECTOR_BITS;
1090 int avail_sectors = nb_clusters
1091 << (s->cluster_bits - BDRV_SECTOR_BITS);
1092 int alloc_n_start = offset_into_cluster(s, guest_offset)
1093 >> BDRV_SECTOR_BITS;
1094 int nb_sectors = MIN(requested_sectors, avail_sectors);
1095 QCowL2Meta *old_m = *m;
1097 *m = g_malloc0(sizeof(**m));
1099 **m = (QCowL2Meta) {
1100 .next = old_m,
1102 .alloc_offset = alloc_cluster_offset,
1103 .offset = start_of_cluster(s, guest_offset),
1104 .nb_clusters = nb_clusters,
1105 .nb_available = nb_sectors,
1107 .cow_start = {
1108 .offset = 0,
1109 .nb_sectors = alloc_n_start,
1111 .cow_end = {
1112 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1113 .nb_sectors = avail_sectors - nb_sectors,
1116 qemu_co_queue_init(&(*m)->dependent_requests);
1117 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1119 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1120 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1121 - offset_into_cluster(s, guest_offset));
1122 assert(*bytes != 0);
1124 return 1;
1126 fail:
1127 if (*m && (*m)->nb_clusters > 0) {
1128 QLIST_REMOVE(*m, next_in_flight);
1130 return ret;
1134 * alloc_cluster_offset
1136 * For a given offset on the virtual disk, find the cluster offset in qcow2
1137 * file. If the offset is not found, allocate a new cluster.
1139 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1140 * other fields in m are meaningless.
1142 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1143 * contiguous clusters that have been allocated. In this case, the other
1144 * fields of m are valid and contain information about the first allocated
1145 * cluster.
1147 * If the request conflicts with another write request in flight, the coroutine
1148 * is queued and will be reentered when the dependency has completed.
1150 * Return 0 on success and -errno in error cases
1152 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1153 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1155 BDRVQcowState *s = bs->opaque;
1156 uint64_t start, remaining;
1157 uint64_t cluster_offset;
1158 uint64_t cur_bytes;
1159 int ret;
1161 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1162 n_start, n_end);
1164 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1165 offset = start_of_cluster(s, offset);
1167 again:
1168 start = offset + (n_start << BDRV_SECTOR_BITS);
1169 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1170 cluster_offset = 0;
1171 *host_offset = 0;
1172 cur_bytes = 0;
1173 *m = NULL;
1175 while (true) {
1177 if (!*host_offset) {
1178 *host_offset = start_of_cluster(s, cluster_offset);
1181 assert(remaining >= cur_bytes);
1183 start += cur_bytes;
1184 remaining -= cur_bytes;
1185 cluster_offset += cur_bytes;
1187 if (remaining == 0) {
1188 break;
1191 cur_bytes = remaining;
1194 * Now start gathering as many contiguous clusters as possible:
1196 * 1. Check for overlaps with in-flight allocations
1198 * a) Overlap not in the first cluster -> shorten this request and
1199 * let the caller handle the rest in its next loop iteration.
1201 * b) Real overlaps of two requests. Yield and restart the search
1202 * for contiguous clusters (the situation could have changed
1203 * while we were sleeping)
1205 * c) TODO: Request starts in the same cluster as the in-flight
1206 * allocation ends. Shorten the COW of the in-fight allocation,
1207 * set cluster_offset to write to the same cluster and set up
1208 * the right synchronisation between the in-flight request and
1209 * the new one.
1211 ret = handle_dependencies(bs, start, &cur_bytes, m);
1212 if (ret == -EAGAIN) {
1213 /* Currently handle_dependencies() doesn't yield if we already had
1214 * an allocation. If it did, we would have to clean up the L2Meta
1215 * structs before starting over. */
1216 assert(*m == NULL);
1217 goto again;
1218 } else if (ret < 0) {
1219 return ret;
1220 } else if (cur_bytes == 0) {
1221 break;
1222 } else {
1223 /* handle_dependencies() may have decreased cur_bytes (shortened
1224 * the allocations below) so that the next dependency is processed
1225 * correctly during the next loop iteration. */
1229 * 2. Count contiguous COPIED clusters.
1231 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1232 if (ret < 0) {
1233 return ret;
1234 } else if (ret) {
1235 continue;
1236 } else if (cur_bytes == 0) {
1237 break;
1241 * 3. If the request still hasn't completed, allocate new clusters,
1242 * considering any cluster_offset of steps 1c or 2.
1244 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1245 if (ret < 0) {
1246 return ret;
1247 } else if (ret) {
1248 continue;
1249 } else {
1250 assert(cur_bytes == 0);
1251 break;
1255 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1256 assert(*num > 0);
1257 assert(*host_offset != 0);
1259 return 0;
1262 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1263 const uint8_t *buf, int buf_size)
1265 z_stream strm1, *strm = &strm1;
1266 int ret, out_len;
1268 memset(strm, 0, sizeof(*strm));
1270 strm->next_in = (uint8_t *)buf;
1271 strm->avail_in = buf_size;
1272 strm->next_out = out_buf;
1273 strm->avail_out = out_buf_size;
1275 ret = inflateInit2(strm, -12);
1276 if (ret != Z_OK)
1277 return -1;
1278 ret = inflate(strm, Z_FINISH);
1279 out_len = strm->next_out - out_buf;
1280 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1281 out_len != out_buf_size) {
1282 inflateEnd(strm);
1283 return -1;
1285 inflateEnd(strm);
1286 return 0;
1289 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1291 BDRVQcowState *s = bs->opaque;
1292 int ret, csize, nb_csectors, sector_offset;
1293 uint64_t coffset;
1295 coffset = cluster_offset & s->cluster_offset_mask;
1296 if (s->cluster_cache_offset != coffset) {
1297 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1298 sector_offset = coffset & 511;
1299 csize = nb_csectors * 512 - sector_offset;
1300 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1301 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1302 if (ret < 0) {
1303 return ret;
1305 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1306 s->cluster_data + sector_offset, csize) < 0) {
1307 return -EIO;
1309 s->cluster_cache_offset = coffset;
1311 return 0;
1315 * This discards as many clusters of nb_clusters as possible at once (i.e.
1316 * all clusters in the same L2 table) and returns the number of discarded
1317 * clusters.
1319 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1320 unsigned int nb_clusters)
1322 BDRVQcowState *s = bs->opaque;
1323 uint64_t *l2_table;
1324 int l2_index;
1325 int ret;
1326 int i;
1328 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1329 if (ret < 0) {
1330 return ret;
1333 /* Limit nb_clusters to one L2 table */
1334 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1336 for (i = 0; i < nb_clusters; i++) {
1337 uint64_t old_offset;
1339 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1340 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1341 continue;
1344 /* First remove L2 entries */
1345 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1346 l2_table[l2_index + i] = cpu_to_be64(0);
1348 /* Then decrease the refcount */
1349 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1352 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1353 if (ret < 0) {
1354 return ret;
1357 return nb_clusters;
1360 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1361 int nb_sectors)
1363 BDRVQcowState *s = bs->opaque;
1364 uint64_t end_offset;
1365 unsigned int nb_clusters;
1366 int ret;
1368 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1370 /* Round start up and end down */
1371 offset = align_offset(offset, s->cluster_size);
1372 end_offset &= ~(s->cluster_size - 1);
1374 if (offset > end_offset) {
1375 return 0;
1378 nb_clusters = size_to_clusters(s, end_offset - offset);
1380 s->cache_discards = true;
1382 /* Each L2 table is handled by its own loop iteration */
1383 while (nb_clusters > 0) {
1384 ret = discard_single_l2(bs, offset, nb_clusters);
1385 if (ret < 0) {
1386 goto fail;
1389 nb_clusters -= ret;
1390 offset += (ret * s->cluster_size);
1393 ret = 0;
1394 fail:
1395 s->cache_discards = false;
1396 qcow2_process_discards(bs, ret);
1398 return ret;
1402 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1403 * all clusters in the same L2 table) and returns the number of zeroed
1404 * clusters.
1406 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1407 unsigned int nb_clusters)
1409 BDRVQcowState *s = bs->opaque;
1410 uint64_t *l2_table;
1411 int l2_index;
1412 int ret;
1413 int i;
1415 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1416 if (ret < 0) {
1417 return ret;
1420 /* Limit nb_clusters to one L2 table */
1421 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1423 for (i = 0; i < nb_clusters; i++) {
1424 uint64_t old_offset;
1426 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1428 /* Update L2 entries */
1429 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1430 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1431 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1432 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1433 } else {
1434 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1438 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1439 if (ret < 0) {
1440 return ret;
1443 return nb_clusters;
1446 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1448 BDRVQcowState *s = bs->opaque;
1449 unsigned int nb_clusters;
1450 int ret;
1452 /* The zero flag is only supported by version 3 and newer */
1453 if (s->qcow_version < 3) {
1454 return -ENOTSUP;
1457 /* Each L2 table is handled by its own loop iteration */
1458 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1460 s->cache_discards = true;
1462 while (nb_clusters > 0) {
1463 ret = zero_single_l2(bs, offset, nb_clusters);
1464 if (ret < 0) {
1465 goto fail;
1468 nb_clusters -= ret;
1469 offset += (ret * s->cluster_size);
1472 ret = 0;
1473 fail:
1474 s->cache_discards = false;
1475 qcow2_process_discards(bs, ret);
1477 return ret;