spapr: Use less cryptic representation of which irq backends are supported
[qemu/ar7.git] / hw / ppc / spapr.c
blob514a17ae74d600edc6888fb410b4e7fb06444ed0
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "monitor/monitor.h"
86 #include <libfdt.h>
88 /* SLOF memory layout:
90 * SLOF raw image loaded at 0, copies its romfs right below the flat
91 * device-tree, then position SLOF itself 31M below that
93 * So we set FW_OVERHEAD to 40MB which should account for all of that
94 * and more
96 * We load our kernel at 4M, leaving space for SLOF initial image
98 #define FDT_MAX_SIZE 0x100000
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF 128UL
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 /* Populate the "ibm,pa-features" property */
220 static void spapr_populate_pa_features(SpaprMachineState *spapr,
221 PowerPCCPU *cpu,
222 void *fdt, int offset)
224 uint8_t pa_features_206[] = { 6, 0,
225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226 uint8_t pa_features_207[] = { 24, 0,
227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231 uint8_t pa_features_300[] = { 66, 0,
232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 /* 6: DS207 */
236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 /* 16: Vector */
238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247 /* 42: PM, 44: PC RA, 46: SC vec'd */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249 /* 48: SIMD, 50: QP BFP, 52: String */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251 /* 54: DecFP, 56: DecI, 58: SHA */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253 /* 60: NM atomic, 62: RNG */
254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
271 if (!pa_features) {
272 return;
275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277 * Note: we keep CI large pages off by default because a 64K capable
278 * guest provisioned with large pages might otherwise try to map a qemu
279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280 * even if that qemu runs on a 4k host.
281 * We dd this bit back here if we are confident this is not an issue
283 pa_features[3] |= 0x20;
285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286 pa_features[24] |= 0x80; /* Transactional memory support */
288 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289 /* Workaround for broken kernels that attempt (guest) radix
290 * mode when they can't handle it, if they see the radix bit set
291 * in pa-features. So hide it from them. */
292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
298 static hwaddr spapr_node0_size(MachineState *machine)
300 if (machine->numa_state->num_nodes) {
301 int i;
302 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303 if (machine->numa_state->nodes[i].node_mem) {
304 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305 machine->ram_size);
309 return machine->ram_size;
312 static void add_str(GString *s, const gchar *s1)
314 g_string_append_len(s, s1, strlen(s1) + 1);
317 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
318 hwaddr size)
320 uint32_t associativity[] = {
321 cpu_to_be32(0x4), /* length */
322 cpu_to_be32(0x0), cpu_to_be32(0x0),
323 cpu_to_be32(0x0), cpu_to_be32(nodeid)
325 char mem_name[32];
326 uint64_t mem_reg_property[2];
327 int off;
329 mem_reg_property[0] = cpu_to_be64(start);
330 mem_reg_property[1] = cpu_to_be64(size);
332 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333 off = fdt_add_subnode(fdt, 0, mem_name);
334 _FDT(off);
335 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337 sizeof(mem_reg_property))));
338 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339 sizeof(associativity))));
340 return off;
343 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
345 MachineState *machine = MACHINE(spapr);
346 hwaddr mem_start, node_size;
347 int i, nb_nodes = machine->numa_state->num_nodes;
348 NodeInfo *nodes = machine->numa_state->nodes;
349 NodeInfo ramnode;
351 /* No NUMA nodes, assume there is just one node with whole RAM */
352 if (!nb_nodes) {
353 nb_nodes = 1;
354 ramnode.node_mem = machine->ram_size;
355 nodes = &ramnode;
358 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
359 if (!nodes[i].node_mem) {
360 continue;
362 if (mem_start >= machine->ram_size) {
363 node_size = 0;
364 } else {
365 node_size = nodes[i].node_mem;
366 if (node_size > machine->ram_size - mem_start) {
367 node_size = machine->ram_size - mem_start;
370 if (!mem_start) {
371 /* spapr_machine_init() checks for rma_size <= node0_size
372 * already */
373 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
374 mem_start += spapr->rma_size;
375 node_size -= spapr->rma_size;
377 for ( ; node_size; ) {
378 hwaddr sizetmp = pow2floor(node_size);
380 /* mem_start != 0 here */
381 if (ctzl(mem_start) < ctzl(sizetmp)) {
382 sizetmp = 1ULL << ctzl(mem_start);
385 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
386 node_size -= sizetmp;
387 mem_start += sizetmp;
391 return 0;
394 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395 SpaprMachineState *spapr)
397 MachineState *ms = MACHINE(spapr);
398 PowerPCCPU *cpu = POWERPC_CPU(cs);
399 CPUPPCState *env = &cpu->env;
400 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
401 int index = spapr_get_vcpu_id(cpu);
402 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
403 0xffffffff, 0xffffffff};
404 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
405 : SPAPR_TIMEBASE_FREQ;
406 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
407 uint32_t page_sizes_prop[64];
408 size_t page_sizes_prop_size;
409 unsigned int smp_threads = ms->smp.threads;
410 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
411 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
412 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
413 SpaprDrc *drc;
414 int drc_index;
415 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
416 int i;
418 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
419 if (drc) {
420 drc_index = spapr_drc_index(drc);
421 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
424 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
425 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
427 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
428 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
429 env->dcache_line_size)));
430 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
431 env->dcache_line_size)));
432 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
433 env->icache_line_size)));
434 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
435 env->icache_line_size)));
437 if (pcc->l1_dcache_size) {
438 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
439 pcc->l1_dcache_size)));
440 } else {
441 warn_report("Unknown L1 dcache size for cpu");
443 if (pcc->l1_icache_size) {
444 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
445 pcc->l1_icache_size)));
446 } else {
447 warn_report("Unknown L1 icache size for cpu");
450 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
451 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
452 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
453 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
454 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
455 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
457 if (env->spr_cb[SPR_PURR].oea_read) {
458 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
460 if (env->spr_cb[SPR_SPURR].oea_read) {
461 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
464 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
465 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
466 segs, sizeof(segs))));
469 /* Advertise VSX (vector extensions) if available
470 * 1 == VMX / Altivec available
471 * 2 == VSX available
473 * Only CPUs for which we create core types in spapr_cpu_core.c
474 * are possible, and all of those have VMX */
475 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
476 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
477 } else {
478 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
481 /* Advertise DFP (Decimal Floating Point) if available
482 * 0 / no property == no DFP
483 * 1 == DFP available */
484 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
485 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
488 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
489 sizeof(page_sizes_prop));
490 if (page_sizes_prop_size) {
491 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
492 page_sizes_prop, page_sizes_prop_size)));
495 spapr_populate_pa_features(spapr, cpu, fdt, offset);
497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
498 cs->cpu_index / vcpus_per_socket)));
500 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
501 pft_size_prop, sizeof(pft_size_prop))));
503 if (ms->numa_state->num_nodes > 1) {
504 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
507 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
509 if (pcc->radix_page_info) {
510 for (i = 0; i < pcc->radix_page_info->count; i++) {
511 radix_AP_encodings[i] =
512 cpu_to_be32(pcc->radix_page_info->entries[i]);
514 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
515 radix_AP_encodings,
516 pcc->radix_page_info->count *
517 sizeof(radix_AP_encodings[0]))));
521 * We set this property to let the guest know that it can use the large
522 * decrementer and its width in bits.
524 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
525 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
526 pcc->lrg_decr_bits)));
529 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
531 CPUState **rev;
532 CPUState *cs;
533 int n_cpus;
534 int cpus_offset;
535 char *nodename;
536 int i;
538 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
539 _FDT(cpus_offset);
540 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
541 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
544 * We walk the CPUs in reverse order to ensure that CPU DT nodes
545 * created by fdt_add_subnode() end up in the right order in FDT
546 * for the guest kernel the enumerate the CPUs correctly.
548 * The CPU list cannot be traversed in reverse order, so we need
549 * to do extra work.
551 n_cpus = 0;
552 rev = NULL;
553 CPU_FOREACH(cs) {
554 rev = g_renew(CPUState *, rev, n_cpus + 1);
555 rev[n_cpus++] = cs;
558 for (i = n_cpus - 1; i >= 0; i--) {
559 CPUState *cs = rev[i];
560 PowerPCCPU *cpu = POWERPC_CPU(cs);
561 int index = spapr_get_vcpu_id(cpu);
562 DeviceClass *dc = DEVICE_GET_CLASS(cs);
563 int offset;
565 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
566 continue;
569 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
570 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
571 g_free(nodename);
572 _FDT(offset);
573 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
576 g_free(rev);
579 static int spapr_rng_populate_dt(void *fdt)
581 int node;
582 int ret;
584 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
585 if (node <= 0) {
586 return -1;
588 ret = fdt_setprop_string(fdt, node, "device_type",
589 "ibm,platform-facilities");
590 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
591 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
593 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
594 if (node <= 0) {
595 return -1;
597 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
599 return ret ? -1 : 0;
602 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
604 MemoryDeviceInfoList *info;
606 for (info = list; info; info = info->next) {
607 MemoryDeviceInfo *value = info->value;
609 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
610 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
612 if (addr >= pcdimm_info->addr &&
613 addr < (pcdimm_info->addr + pcdimm_info->size)) {
614 return pcdimm_info->node;
619 return -1;
622 struct sPAPRDrconfCellV2 {
623 uint32_t seq_lmbs;
624 uint64_t base_addr;
625 uint32_t drc_index;
626 uint32_t aa_index;
627 uint32_t flags;
628 } QEMU_PACKED;
630 typedef struct DrconfCellQueue {
631 struct sPAPRDrconfCellV2 cell;
632 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
633 } DrconfCellQueue;
635 static DrconfCellQueue *
636 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
637 uint32_t drc_index, uint32_t aa_index,
638 uint32_t flags)
640 DrconfCellQueue *elem;
642 elem = g_malloc0(sizeof(*elem));
643 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
644 elem->cell.base_addr = cpu_to_be64(base_addr);
645 elem->cell.drc_index = cpu_to_be32(drc_index);
646 elem->cell.aa_index = cpu_to_be32(aa_index);
647 elem->cell.flags = cpu_to_be32(flags);
649 return elem;
652 /* ibm,dynamic-memory-v2 */
653 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
654 int offset, MemoryDeviceInfoList *dimms)
656 MachineState *machine = MACHINE(spapr);
657 uint8_t *int_buf, *cur_index;
658 int ret;
659 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
660 uint64_t addr, cur_addr, size;
661 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
662 uint64_t mem_end = machine->device_memory->base +
663 memory_region_size(&machine->device_memory->mr);
664 uint32_t node, buf_len, nr_entries = 0;
665 SpaprDrc *drc;
666 DrconfCellQueue *elem, *next;
667 MemoryDeviceInfoList *info;
668 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
669 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
671 /* Entry to cover RAM and the gap area */
672 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
673 SPAPR_LMB_FLAGS_RESERVED |
674 SPAPR_LMB_FLAGS_DRC_INVALID);
675 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
676 nr_entries++;
678 cur_addr = machine->device_memory->base;
679 for (info = dimms; info; info = info->next) {
680 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
682 addr = di->addr;
683 size = di->size;
684 node = di->node;
686 /* Entry for hot-pluggable area */
687 if (cur_addr < addr) {
688 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
689 g_assert(drc);
690 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
691 cur_addr, spapr_drc_index(drc), -1, 0);
692 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
693 nr_entries++;
696 /* Entry for DIMM */
697 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
698 g_assert(drc);
699 elem = spapr_get_drconf_cell(size / lmb_size, addr,
700 spapr_drc_index(drc), node,
701 SPAPR_LMB_FLAGS_ASSIGNED);
702 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
703 nr_entries++;
704 cur_addr = addr + size;
707 /* Entry for remaining hotpluggable area */
708 if (cur_addr < mem_end) {
709 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
710 g_assert(drc);
711 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
712 cur_addr, spapr_drc_index(drc), -1, 0);
713 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
714 nr_entries++;
717 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
718 int_buf = cur_index = g_malloc0(buf_len);
719 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
720 cur_index += sizeof(nr_entries);
722 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
723 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
724 cur_index += sizeof(elem->cell);
725 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
726 g_free(elem);
729 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
730 g_free(int_buf);
731 if (ret < 0) {
732 return -1;
734 return 0;
737 /* ibm,dynamic-memory */
738 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
739 int offset, MemoryDeviceInfoList *dimms)
741 MachineState *machine = MACHINE(spapr);
742 int i, ret;
743 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
744 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
745 uint32_t nr_lmbs = (machine->device_memory->base +
746 memory_region_size(&machine->device_memory->mr)) /
747 lmb_size;
748 uint32_t *int_buf, *cur_index, buf_len;
751 * Allocate enough buffer size to fit in ibm,dynamic-memory
753 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
754 cur_index = int_buf = g_malloc0(buf_len);
755 int_buf[0] = cpu_to_be32(nr_lmbs);
756 cur_index++;
757 for (i = 0; i < nr_lmbs; i++) {
758 uint64_t addr = i * lmb_size;
759 uint32_t *dynamic_memory = cur_index;
761 if (i >= device_lmb_start) {
762 SpaprDrc *drc;
764 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
765 g_assert(drc);
767 dynamic_memory[0] = cpu_to_be32(addr >> 32);
768 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
769 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
770 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
771 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
772 if (memory_region_present(get_system_memory(), addr)) {
773 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
774 } else {
775 dynamic_memory[5] = cpu_to_be32(0);
777 } else {
779 * LMB information for RMA, boot time RAM and gap b/n RAM and
780 * device memory region -- all these are marked as reserved
781 * and as having no valid DRC.
783 dynamic_memory[0] = cpu_to_be32(addr >> 32);
784 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
785 dynamic_memory[2] = cpu_to_be32(0);
786 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
787 dynamic_memory[4] = cpu_to_be32(-1);
788 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
789 SPAPR_LMB_FLAGS_DRC_INVALID);
792 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
794 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
795 g_free(int_buf);
796 if (ret < 0) {
797 return -1;
799 return 0;
803 * Adds ibm,dynamic-reconfiguration-memory node.
804 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
805 * of this device tree node.
807 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
809 MachineState *machine = MACHINE(spapr);
810 int nb_numa_nodes = machine->numa_state->num_nodes;
811 int ret, i, offset;
812 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
813 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
814 uint32_t *int_buf, *cur_index, buf_len;
815 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
816 MemoryDeviceInfoList *dimms = NULL;
819 * Don't create the node if there is no device memory
821 if (machine->ram_size == machine->maxram_size) {
822 return 0;
825 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
827 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
828 sizeof(prop_lmb_size));
829 if (ret < 0) {
830 return ret;
833 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
834 if (ret < 0) {
835 return ret;
838 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
839 if (ret < 0) {
840 return ret;
843 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
844 dimms = qmp_memory_device_list();
845 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
846 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
847 } else {
848 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
850 qapi_free_MemoryDeviceInfoList(dimms);
852 if (ret < 0) {
853 return ret;
856 /* ibm,associativity-lookup-arrays */
857 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
858 cur_index = int_buf = g_malloc0(buf_len);
859 int_buf[0] = cpu_to_be32(nr_nodes);
860 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
861 cur_index += 2;
862 for (i = 0; i < nr_nodes; i++) {
863 uint32_t associativity[] = {
864 cpu_to_be32(0x0),
865 cpu_to_be32(0x0),
866 cpu_to_be32(0x0),
867 cpu_to_be32(i)
869 memcpy(cur_index, associativity, sizeof(associativity));
870 cur_index += 4;
872 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
873 (cur_index - int_buf) * sizeof(uint32_t));
874 g_free(int_buf);
876 return ret;
879 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
880 SpaprOptionVector *ov5_updates)
882 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
883 int ret = 0, offset;
885 /* Generate ibm,dynamic-reconfiguration-memory node if required */
886 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
887 g_assert(smc->dr_lmb_enabled);
888 ret = spapr_populate_drconf_memory(spapr, fdt);
889 if (ret) {
890 goto out;
894 offset = fdt_path_offset(fdt, "/chosen");
895 if (offset < 0) {
896 offset = fdt_add_subnode(fdt, 0, "chosen");
897 if (offset < 0) {
898 return offset;
901 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
902 "ibm,architecture-vec-5");
904 out:
905 return ret;
908 static bool spapr_hotplugged_dev_before_cas(void)
910 Object *drc_container, *obj;
911 ObjectProperty *prop;
912 ObjectPropertyIterator iter;
914 drc_container = container_get(object_get_root(), "/dr-connector");
915 object_property_iter_init(&iter, drc_container);
916 while ((prop = object_property_iter_next(&iter))) {
917 if (!strstart(prop->type, "link<", NULL)) {
918 continue;
920 obj = object_property_get_link(drc_container, prop->name, NULL);
921 if (spapr_drc_needed(obj)) {
922 return true;
925 return false;
928 static void *spapr_build_fdt(SpaprMachineState *spapr);
930 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
931 target_ulong addr, target_ulong size,
932 SpaprOptionVector *ov5_updates)
934 void *fdt;
935 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
937 if (spapr_hotplugged_dev_before_cas()) {
938 return 1;
941 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
942 error_report("SLOF provided an unexpected CAS buffer size "
943 TARGET_FMT_lu " (min: %zu, max: %u)",
944 size, sizeof(hdr), FW_MAX_SIZE);
945 exit(EXIT_FAILURE);
948 size -= sizeof(hdr);
950 fdt = spapr_build_fdt(spapr);
951 _FDT((fdt_pack(fdt)));
953 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
954 g_free(fdt);
955 trace_spapr_cas_failed(size);
956 return -1;
959 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
960 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
961 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
963 g_free(spapr->fdt_blob);
964 spapr->fdt_size = fdt_totalsize(fdt);
965 spapr->fdt_initial_size = spapr->fdt_size;
966 spapr->fdt_blob = fdt;
968 return 0;
971 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
973 MachineState *ms = MACHINE(spapr);
974 int rtas;
975 GString *hypertas = g_string_sized_new(256);
976 GString *qemu_hypertas = g_string_sized_new(256);
977 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
978 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
979 memory_region_size(&MACHINE(spapr)->device_memory->mr);
980 uint32_t lrdr_capacity[] = {
981 cpu_to_be32(max_device_addr >> 32),
982 cpu_to_be32(max_device_addr & 0xffffffff),
983 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
984 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
986 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
987 uint32_t maxdomains[] = {
988 cpu_to_be32(4),
989 maxdomain,
990 maxdomain,
991 maxdomain,
992 cpu_to_be32(spapr->gpu_numa_id),
995 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
997 /* hypertas */
998 add_str(hypertas, "hcall-pft");
999 add_str(hypertas, "hcall-term");
1000 add_str(hypertas, "hcall-dabr");
1001 add_str(hypertas, "hcall-interrupt");
1002 add_str(hypertas, "hcall-tce");
1003 add_str(hypertas, "hcall-vio");
1004 add_str(hypertas, "hcall-splpar");
1005 add_str(hypertas, "hcall-join");
1006 add_str(hypertas, "hcall-bulk");
1007 add_str(hypertas, "hcall-set-mode");
1008 add_str(hypertas, "hcall-sprg0");
1009 add_str(hypertas, "hcall-copy");
1010 add_str(hypertas, "hcall-debug");
1011 add_str(hypertas, "hcall-vphn");
1012 add_str(qemu_hypertas, "hcall-memop1");
1014 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1015 add_str(hypertas, "hcall-multi-tce");
1018 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1019 add_str(hypertas, "hcall-hpt-resize");
1022 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1023 hypertas->str, hypertas->len));
1024 g_string_free(hypertas, TRUE);
1025 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1026 qemu_hypertas->str, qemu_hypertas->len));
1027 g_string_free(qemu_hypertas, TRUE);
1029 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1030 refpoints, sizeof(refpoints)));
1032 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1033 maxdomains, sizeof(maxdomains)));
1035 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1036 RTAS_ERROR_LOG_MAX));
1037 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1038 RTAS_EVENT_SCAN_RATE));
1040 g_assert(msi_nonbroken);
1041 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1044 * According to PAPR, rtas ibm,os-term does not guarantee a return
1045 * back to the guest cpu.
1047 * While an additional ibm,extended-os-term property indicates
1048 * that rtas call return will always occur. Set this property.
1050 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1052 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1053 lrdr_capacity, sizeof(lrdr_capacity)));
1055 spapr_dt_rtas_tokens(fdt, rtas);
1059 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1060 * and the XIVE features that the guest may request and thus the valid
1061 * values for bytes 23..26 of option vector 5:
1063 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1064 int chosen)
1066 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1068 char val[2 * 4] = {
1069 23, 0x00, /* XICS / XIVE mode */
1070 24, 0x00, /* Hash/Radix, filled in below. */
1071 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1072 26, 0x40, /* Radix options: GTSE == yes. */
1075 if (spapr->irq->xics && spapr->irq->xive) {
1076 val[1] = SPAPR_OV5_XIVE_BOTH;
1077 } else if (spapr->irq->xive) {
1078 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1079 } else {
1080 assert(spapr->irq->xics);
1081 val[1] = SPAPR_OV5_XIVE_LEGACY;
1084 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1085 first_ppc_cpu->compat_pvr)) {
1087 * If we're in a pre POWER9 compat mode then the guest should
1088 * do hash and use the legacy interrupt mode
1090 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1091 val[3] = 0x00; /* Hash */
1092 } else if (kvm_enabled()) {
1093 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1094 val[3] = 0x80; /* OV5_MMU_BOTH */
1095 } else if (kvmppc_has_cap_mmu_radix()) {
1096 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1097 } else {
1098 val[3] = 0x00; /* Hash */
1100 } else {
1101 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1102 val[3] = 0xC0;
1104 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1105 val, sizeof(val)));
1108 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1110 MachineState *machine = MACHINE(spapr);
1111 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1112 int chosen;
1113 const char *boot_device = machine->boot_order;
1114 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1115 size_t cb = 0;
1116 char *bootlist = get_boot_devices_list(&cb);
1118 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1120 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1121 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1122 machine->kernel_cmdline));
1124 if (spapr->initrd_size) {
1125 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1126 spapr->initrd_base));
1127 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1128 spapr->initrd_base + spapr->initrd_size));
1131 if (spapr->kernel_size) {
1132 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1133 cpu_to_be64(spapr->kernel_size) };
1135 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1136 &kprop, sizeof(kprop)));
1137 if (spapr->kernel_le) {
1138 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1141 if (boot_menu) {
1142 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1144 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1145 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1146 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1148 if (cb && bootlist) {
1149 int i;
1151 for (i = 0; i < cb; i++) {
1152 if (bootlist[i] == '\n') {
1153 bootlist[i] = ' ';
1156 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1159 if (boot_device && strlen(boot_device)) {
1160 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1163 if (!spapr->has_graphics && stdout_path) {
1165 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1166 * kernel. New platforms should only use the "stdout-path" property. Set
1167 * the new property and continue using older property to remain
1168 * compatible with the existing firmware.
1170 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1171 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1174 /* We can deal with BAR reallocation just fine, advertise it to the guest */
1175 if (smc->linux_pci_probe) {
1176 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1179 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1181 g_free(stdout_path);
1182 g_free(bootlist);
1185 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1187 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1188 * KVM to work under pHyp with some guest co-operation */
1189 int hypervisor;
1190 uint8_t hypercall[16];
1192 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1193 /* indicate KVM hypercall interface */
1194 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1195 if (kvmppc_has_cap_fixup_hcalls()) {
1197 * Older KVM versions with older guest kernels were broken
1198 * with the magic page, don't allow the guest to map it.
1200 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1201 sizeof(hypercall))) {
1202 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1203 hypercall, sizeof(hypercall)));
1208 static void *spapr_build_fdt(SpaprMachineState *spapr)
1210 MachineState *machine = MACHINE(spapr);
1211 MachineClass *mc = MACHINE_GET_CLASS(machine);
1212 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1213 int ret;
1214 void *fdt;
1215 SpaprPhbState *phb;
1216 char *buf;
1218 fdt = g_malloc0(FDT_MAX_SIZE);
1219 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1221 /* Root node */
1222 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1223 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1224 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1226 /* Guest UUID & Name*/
1227 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1228 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1229 if (qemu_uuid_set) {
1230 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1232 g_free(buf);
1234 if (qemu_get_vm_name()) {
1235 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1236 qemu_get_vm_name()));
1239 /* Host Model & Serial Number */
1240 if (spapr->host_model) {
1241 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1242 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1243 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1244 g_free(buf);
1247 if (spapr->host_serial) {
1248 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1249 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1250 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1251 g_free(buf);
1254 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1255 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1257 /* /interrupt controller */
1258 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1259 PHANDLE_INTC);
1261 ret = spapr_populate_memory(spapr, fdt);
1262 if (ret < 0) {
1263 error_report("couldn't setup memory nodes in fdt");
1264 exit(1);
1267 /* /vdevice */
1268 spapr_dt_vdevice(spapr->vio_bus, fdt);
1270 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1271 ret = spapr_rng_populate_dt(fdt);
1272 if (ret < 0) {
1273 error_report("could not set up rng device in the fdt");
1274 exit(1);
1278 QLIST_FOREACH(phb, &spapr->phbs, list) {
1279 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1280 if (ret < 0) {
1281 error_report("couldn't setup PCI devices in fdt");
1282 exit(1);
1286 /* cpus */
1287 spapr_populate_cpus_dt_node(fdt, spapr);
1289 if (smc->dr_lmb_enabled) {
1290 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1293 if (mc->has_hotpluggable_cpus) {
1294 int offset = fdt_path_offset(fdt, "/cpus");
1295 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1296 if (ret < 0) {
1297 error_report("Couldn't set up CPU DR device tree properties");
1298 exit(1);
1302 /* /event-sources */
1303 spapr_dt_events(spapr, fdt);
1305 /* /rtas */
1306 spapr_dt_rtas(spapr, fdt);
1308 /* /chosen */
1309 spapr_dt_chosen(spapr, fdt);
1311 /* /hypervisor */
1312 if (kvm_enabled()) {
1313 spapr_dt_hypervisor(spapr, fdt);
1316 /* Build memory reserve map */
1317 if (spapr->kernel_size) {
1318 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1320 if (spapr->initrd_size) {
1321 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1324 /* ibm,client-architecture-support updates */
1325 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1326 if (ret < 0) {
1327 error_report("couldn't setup CAS properties fdt");
1328 exit(1);
1331 if (smc->dr_phb_enabled) {
1332 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1333 if (ret < 0) {
1334 error_report("Couldn't set up PHB DR device tree properties");
1335 exit(1);
1339 return fdt;
1342 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1344 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1347 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1348 PowerPCCPU *cpu)
1350 CPUPPCState *env = &cpu->env;
1352 /* The TCG path should also be holding the BQL at this point */
1353 g_assert(qemu_mutex_iothread_locked());
1355 if (msr_pr) {
1356 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1357 env->gpr[3] = H_PRIVILEGE;
1358 } else {
1359 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1363 struct LPCRSyncState {
1364 target_ulong value;
1365 target_ulong mask;
1368 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1370 struct LPCRSyncState *s = arg.host_ptr;
1371 PowerPCCPU *cpu = POWERPC_CPU(cs);
1372 CPUPPCState *env = &cpu->env;
1373 target_ulong lpcr;
1375 cpu_synchronize_state(cs);
1376 lpcr = env->spr[SPR_LPCR];
1377 lpcr &= ~s->mask;
1378 lpcr |= s->value;
1379 ppc_store_lpcr(cpu, lpcr);
1382 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1384 CPUState *cs;
1385 struct LPCRSyncState s = {
1386 .value = value,
1387 .mask = mask
1389 CPU_FOREACH(cs) {
1390 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1394 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1396 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1398 /* Copy PATE1:GR into PATE0:HR */
1399 entry->dw0 = spapr->patb_entry & PATE0_HR;
1400 entry->dw1 = spapr->patb_entry;
1403 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1404 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1405 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1406 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1407 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1410 * Get the fd to access the kernel htab, re-opening it if necessary
1412 static int get_htab_fd(SpaprMachineState *spapr)
1414 Error *local_err = NULL;
1416 if (spapr->htab_fd >= 0) {
1417 return spapr->htab_fd;
1420 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1421 if (spapr->htab_fd < 0) {
1422 error_report_err(local_err);
1425 return spapr->htab_fd;
1428 void close_htab_fd(SpaprMachineState *spapr)
1430 if (spapr->htab_fd >= 0) {
1431 close(spapr->htab_fd);
1433 spapr->htab_fd = -1;
1436 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1443 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1447 assert(kvm_enabled());
1449 if (!spapr->htab) {
1450 return 0;
1453 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1456 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1457 hwaddr ptex, int n)
1459 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1460 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1462 if (!spapr->htab) {
1464 * HTAB is controlled by KVM. Fetch into temporary buffer
1466 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1467 kvmppc_read_hptes(hptes, ptex, n);
1468 return hptes;
1472 * HTAB is controlled by QEMU. Just point to the internally
1473 * accessible PTEG.
1475 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1478 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1479 const ppc_hash_pte64_t *hptes,
1480 hwaddr ptex, int n)
1482 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1484 if (!spapr->htab) {
1485 g_free((void *)hptes);
1488 /* Nothing to do for qemu managed HPT */
1491 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1492 uint64_t pte0, uint64_t pte1)
1494 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1495 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1497 if (!spapr->htab) {
1498 kvmppc_write_hpte(ptex, pte0, pte1);
1499 } else {
1500 if (pte0 & HPTE64_V_VALID) {
1501 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1503 * When setting valid, we write PTE1 first. This ensures
1504 * proper synchronization with the reading code in
1505 * ppc_hash64_pteg_search()
1507 smp_wmb();
1508 stq_p(spapr->htab + offset, pte0);
1509 } else {
1510 stq_p(spapr->htab + offset, pte0);
1512 * When clearing it we set PTE0 first. This ensures proper
1513 * synchronization with the reading code in
1514 * ppc_hash64_pteg_search()
1516 smp_wmb();
1517 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1522 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1523 uint64_t pte1)
1525 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1526 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1528 if (!spapr->htab) {
1529 /* There should always be a hash table when this is called */
1530 error_report("spapr_hpte_set_c called with no hash table !");
1531 return;
1534 /* The HW performs a non-atomic byte update */
1535 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1538 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1539 uint64_t pte1)
1541 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1542 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1544 if (!spapr->htab) {
1545 /* There should always be a hash table when this is called */
1546 error_report("spapr_hpte_set_r called with no hash table !");
1547 return;
1550 /* The HW performs a non-atomic byte update */
1551 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1554 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1556 int shift;
1558 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1559 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1560 * that's much more than is needed for Linux guests */
1561 shift = ctz64(pow2ceil(ramsize)) - 7;
1562 shift = MAX(shift, 18); /* Minimum architected size */
1563 shift = MIN(shift, 46); /* Maximum architected size */
1564 return shift;
1567 void spapr_free_hpt(SpaprMachineState *spapr)
1569 g_free(spapr->htab);
1570 spapr->htab = NULL;
1571 spapr->htab_shift = 0;
1572 close_htab_fd(spapr);
1575 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1576 Error **errp)
1578 long rc;
1580 /* Clean up any HPT info from a previous boot */
1581 spapr_free_hpt(spapr);
1583 rc = kvmppc_reset_htab(shift);
1584 if (rc < 0) {
1585 /* kernel-side HPT needed, but couldn't allocate one */
1586 error_setg_errno(errp, errno,
1587 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1588 shift);
1589 /* This is almost certainly fatal, but if the caller really
1590 * wants to carry on with shift == 0, it's welcome to try */
1591 } else if (rc > 0) {
1592 /* kernel-side HPT allocated */
1593 if (rc != shift) {
1594 error_setg(errp,
1595 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1596 shift, rc);
1599 spapr->htab_shift = shift;
1600 spapr->htab = NULL;
1601 } else {
1602 /* kernel-side HPT not needed, allocate in userspace instead */
1603 size_t size = 1ULL << shift;
1604 int i;
1606 spapr->htab = qemu_memalign(size, size);
1607 if (!spapr->htab) {
1608 error_setg_errno(errp, errno,
1609 "Could not allocate HPT of order %d", shift);
1610 return;
1613 memset(spapr->htab, 0, size);
1614 spapr->htab_shift = shift;
1616 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1617 DIRTY_HPTE(HPTE(spapr->htab, i));
1620 /* We're setting up a hash table, so that means we're not radix */
1621 spapr->patb_entry = 0;
1622 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1625 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1627 int hpt_shift;
1629 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1630 || (spapr->cas_reboot
1631 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1632 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1633 } else {
1634 uint64_t current_ram_size;
1636 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1637 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1639 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1641 if (spapr->vrma_adjust) {
1642 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1643 spapr->htab_shift);
1647 static int spapr_reset_drcs(Object *child, void *opaque)
1649 SpaprDrc *drc =
1650 (SpaprDrc *) object_dynamic_cast(child,
1651 TYPE_SPAPR_DR_CONNECTOR);
1653 if (drc) {
1654 spapr_drc_reset(drc);
1657 return 0;
1660 static void spapr_machine_reset(MachineState *machine)
1662 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1663 PowerPCCPU *first_ppc_cpu;
1664 hwaddr fdt_addr;
1665 void *fdt;
1666 int rc;
1668 spapr_caps_apply(spapr);
1670 first_ppc_cpu = POWERPC_CPU(first_cpu);
1671 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1672 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1673 spapr->max_compat_pvr)) {
1675 * If using KVM with radix mode available, VCPUs can be started
1676 * without a HPT because KVM will start them in radix mode.
1677 * Set the GR bit in PATE so that we know there is no HPT.
1679 spapr->patb_entry = PATE1_GR;
1680 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1681 } else {
1682 spapr_setup_hpt_and_vrma(spapr);
1685 qemu_devices_reset();
1688 * If this reset wasn't generated by CAS, we should reset our
1689 * negotiated options and start from scratch
1691 if (!spapr->cas_reboot) {
1692 spapr_ovec_cleanup(spapr->ov5_cas);
1693 spapr->ov5_cas = spapr_ovec_new();
1695 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1699 * This is fixing some of the default configuration of the XIVE
1700 * devices. To be called after the reset of the machine devices.
1702 spapr_irq_reset(spapr, &error_fatal);
1705 * There is no CAS under qtest. Simulate one to please the code that
1706 * depends on spapr->ov5_cas. This is especially needed to test device
1707 * unplug, so we do that before resetting the DRCs.
1709 if (qtest_enabled()) {
1710 spapr_ovec_cleanup(spapr->ov5_cas);
1711 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1714 /* DRC reset may cause a device to be unplugged. This will cause troubles
1715 * if this device is used by another device (eg, a running vhost backend
1716 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1717 * situations, we reset DRCs after all devices have been reset.
1719 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1721 spapr_clear_pending_events(spapr);
1724 * We place the device tree and RTAS just below either the top of the RMA,
1725 * or just below 2GB, whichever is lower, so that it can be
1726 * processed with 32-bit real mode code if necessary
1728 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1730 fdt = spapr_build_fdt(spapr);
1732 rc = fdt_pack(fdt);
1734 /* Should only fail if we've built a corrupted tree */
1735 assert(rc == 0);
1737 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1738 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1739 fdt_totalsize(fdt), FDT_MAX_SIZE);
1740 exit(1);
1743 /* Load the fdt */
1744 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1745 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1746 g_free(spapr->fdt_blob);
1747 spapr->fdt_size = fdt_totalsize(fdt);
1748 spapr->fdt_initial_size = spapr->fdt_size;
1749 spapr->fdt_blob = fdt;
1751 /* Set up the entry state */
1752 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1753 first_ppc_cpu->env.gpr[5] = 0;
1755 spapr->cas_reboot = false;
1758 static void spapr_create_nvram(SpaprMachineState *spapr)
1760 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1761 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1763 if (dinfo) {
1764 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1765 &error_fatal);
1768 qdev_init_nofail(dev);
1770 spapr->nvram = (struct SpaprNvram *)dev;
1773 static void spapr_rtc_create(SpaprMachineState *spapr)
1775 object_initialize_child(OBJECT(spapr), "rtc",
1776 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1777 &error_fatal, NULL);
1778 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1779 &error_fatal);
1780 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1781 "date", &error_fatal);
1784 /* Returns whether we want to use VGA or not */
1785 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1787 switch (vga_interface_type) {
1788 case VGA_NONE:
1789 return false;
1790 case VGA_DEVICE:
1791 return true;
1792 case VGA_STD:
1793 case VGA_VIRTIO:
1794 case VGA_CIRRUS:
1795 return pci_vga_init(pci_bus) != NULL;
1796 default:
1797 error_setg(errp,
1798 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1799 return false;
1803 static int spapr_pre_load(void *opaque)
1805 int rc;
1807 rc = spapr_caps_pre_load(opaque);
1808 if (rc) {
1809 return rc;
1812 return 0;
1815 static int spapr_post_load(void *opaque, int version_id)
1817 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1818 int err = 0;
1820 err = spapr_caps_post_migration(spapr);
1821 if (err) {
1822 return err;
1826 * In earlier versions, there was no separate qdev for the PAPR
1827 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1828 * So when migrating from those versions, poke the incoming offset
1829 * value into the RTC device
1831 if (version_id < 3) {
1832 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1833 if (err) {
1834 return err;
1838 if (kvm_enabled() && spapr->patb_entry) {
1839 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1840 bool radix = !!(spapr->patb_entry & PATE1_GR);
1841 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1844 * Update LPCR:HR and UPRT as they may not be set properly in
1845 * the stream
1847 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1848 LPCR_HR | LPCR_UPRT);
1850 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1851 if (err) {
1852 error_report("Process table config unsupported by the host");
1853 return -EINVAL;
1857 err = spapr_irq_post_load(spapr, version_id);
1858 if (err) {
1859 return err;
1862 return err;
1865 static int spapr_pre_save(void *opaque)
1867 int rc;
1869 rc = spapr_caps_pre_save(opaque);
1870 if (rc) {
1871 return rc;
1874 return 0;
1877 static bool version_before_3(void *opaque, int version_id)
1879 return version_id < 3;
1882 static bool spapr_pending_events_needed(void *opaque)
1884 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1885 return !QTAILQ_EMPTY(&spapr->pending_events);
1888 static const VMStateDescription vmstate_spapr_event_entry = {
1889 .name = "spapr_event_log_entry",
1890 .version_id = 1,
1891 .minimum_version_id = 1,
1892 .fields = (VMStateField[]) {
1893 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1894 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1895 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1896 NULL, extended_length),
1897 VMSTATE_END_OF_LIST()
1901 static const VMStateDescription vmstate_spapr_pending_events = {
1902 .name = "spapr_pending_events",
1903 .version_id = 1,
1904 .minimum_version_id = 1,
1905 .needed = spapr_pending_events_needed,
1906 .fields = (VMStateField[]) {
1907 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1908 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1909 VMSTATE_END_OF_LIST()
1913 static bool spapr_ov5_cas_needed(void *opaque)
1915 SpaprMachineState *spapr = opaque;
1916 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1917 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1918 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1919 bool cas_needed;
1921 /* Prior to the introduction of SpaprOptionVector, we had two option
1922 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1923 * Both of these options encode machine topology into the device-tree
1924 * in such a way that the now-booted OS should still be able to interact
1925 * appropriately with QEMU regardless of what options were actually
1926 * negotiatied on the source side.
1928 * As such, we can avoid migrating the CAS-negotiated options if these
1929 * are the only options available on the current machine/platform.
1930 * Since these are the only options available for pseries-2.7 and
1931 * earlier, this allows us to maintain old->new/new->old migration
1932 * compatibility.
1934 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1935 * via default pseries-2.8 machines and explicit command-line parameters.
1936 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1937 * of the actual CAS-negotiated values to continue working properly. For
1938 * example, availability of memory unplug depends on knowing whether
1939 * OV5_HP_EVT was negotiated via CAS.
1941 * Thus, for any cases where the set of available CAS-negotiatable
1942 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1943 * include the CAS-negotiated options in the migration stream, unless
1944 * if they affect boot time behaviour only.
1946 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1947 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1948 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1950 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1951 * the mask itself since in the future it's possible "legacy" bits may be
1952 * removed via machine options, which could generate a false positive
1953 * that breaks migration.
1955 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1956 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1958 spapr_ovec_cleanup(ov5_mask);
1959 spapr_ovec_cleanup(ov5_legacy);
1960 spapr_ovec_cleanup(ov5_removed);
1962 return cas_needed;
1965 static const VMStateDescription vmstate_spapr_ov5_cas = {
1966 .name = "spapr_option_vector_ov5_cas",
1967 .version_id = 1,
1968 .minimum_version_id = 1,
1969 .needed = spapr_ov5_cas_needed,
1970 .fields = (VMStateField[]) {
1971 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1972 vmstate_spapr_ovec, SpaprOptionVector),
1973 VMSTATE_END_OF_LIST()
1977 static bool spapr_patb_entry_needed(void *opaque)
1979 SpaprMachineState *spapr = opaque;
1981 return !!spapr->patb_entry;
1984 static const VMStateDescription vmstate_spapr_patb_entry = {
1985 .name = "spapr_patb_entry",
1986 .version_id = 1,
1987 .minimum_version_id = 1,
1988 .needed = spapr_patb_entry_needed,
1989 .fields = (VMStateField[]) {
1990 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1991 VMSTATE_END_OF_LIST()
1995 static bool spapr_irq_map_needed(void *opaque)
1997 SpaprMachineState *spapr = opaque;
1999 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2002 static const VMStateDescription vmstate_spapr_irq_map = {
2003 .name = "spapr_irq_map",
2004 .version_id = 1,
2005 .minimum_version_id = 1,
2006 .needed = spapr_irq_map_needed,
2007 .fields = (VMStateField[]) {
2008 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2009 VMSTATE_END_OF_LIST()
2013 static bool spapr_dtb_needed(void *opaque)
2015 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2017 return smc->update_dt_enabled;
2020 static int spapr_dtb_pre_load(void *opaque)
2022 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2024 g_free(spapr->fdt_blob);
2025 spapr->fdt_blob = NULL;
2026 spapr->fdt_size = 0;
2028 return 0;
2031 static const VMStateDescription vmstate_spapr_dtb = {
2032 .name = "spapr_dtb",
2033 .version_id = 1,
2034 .minimum_version_id = 1,
2035 .needed = spapr_dtb_needed,
2036 .pre_load = spapr_dtb_pre_load,
2037 .fields = (VMStateField[]) {
2038 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2039 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2040 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2041 fdt_size),
2042 VMSTATE_END_OF_LIST()
2046 static const VMStateDescription vmstate_spapr = {
2047 .name = "spapr",
2048 .version_id = 3,
2049 .minimum_version_id = 1,
2050 .pre_load = spapr_pre_load,
2051 .post_load = spapr_post_load,
2052 .pre_save = spapr_pre_save,
2053 .fields = (VMStateField[]) {
2054 /* used to be @next_irq */
2055 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2057 /* RTC offset */
2058 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2060 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2061 VMSTATE_END_OF_LIST()
2063 .subsections = (const VMStateDescription*[]) {
2064 &vmstate_spapr_ov5_cas,
2065 &vmstate_spapr_patb_entry,
2066 &vmstate_spapr_pending_events,
2067 &vmstate_spapr_cap_htm,
2068 &vmstate_spapr_cap_vsx,
2069 &vmstate_spapr_cap_dfp,
2070 &vmstate_spapr_cap_cfpc,
2071 &vmstate_spapr_cap_sbbc,
2072 &vmstate_spapr_cap_ibs,
2073 &vmstate_spapr_cap_hpt_maxpagesize,
2074 &vmstate_spapr_irq_map,
2075 &vmstate_spapr_cap_nested_kvm_hv,
2076 &vmstate_spapr_dtb,
2077 &vmstate_spapr_cap_large_decr,
2078 &vmstate_spapr_cap_ccf_assist,
2079 NULL
2083 static int htab_save_setup(QEMUFile *f, void *opaque)
2085 SpaprMachineState *spapr = opaque;
2087 /* "Iteration" header */
2088 if (!spapr->htab_shift) {
2089 qemu_put_be32(f, -1);
2090 } else {
2091 qemu_put_be32(f, spapr->htab_shift);
2094 if (spapr->htab) {
2095 spapr->htab_save_index = 0;
2096 spapr->htab_first_pass = true;
2097 } else {
2098 if (spapr->htab_shift) {
2099 assert(kvm_enabled());
2104 return 0;
2107 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2108 int chunkstart, int n_valid, int n_invalid)
2110 qemu_put_be32(f, chunkstart);
2111 qemu_put_be16(f, n_valid);
2112 qemu_put_be16(f, n_invalid);
2113 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2114 HASH_PTE_SIZE_64 * n_valid);
2117 static void htab_save_end_marker(QEMUFile *f)
2119 qemu_put_be32(f, 0);
2120 qemu_put_be16(f, 0);
2121 qemu_put_be16(f, 0);
2124 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2125 int64_t max_ns)
2127 bool has_timeout = max_ns != -1;
2128 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2129 int index = spapr->htab_save_index;
2130 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2132 assert(spapr->htab_first_pass);
2134 do {
2135 int chunkstart;
2137 /* Consume invalid HPTEs */
2138 while ((index < htabslots)
2139 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2140 CLEAN_HPTE(HPTE(spapr->htab, index));
2141 index++;
2144 /* Consume valid HPTEs */
2145 chunkstart = index;
2146 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2147 && HPTE_VALID(HPTE(spapr->htab, index))) {
2148 CLEAN_HPTE(HPTE(spapr->htab, index));
2149 index++;
2152 if (index > chunkstart) {
2153 int n_valid = index - chunkstart;
2155 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2157 if (has_timeout &&
2158 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2159 break;
2162 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2164 if (index >= htabslots) {
2165 assert(index == htabslots);
2166 index = 0;
2167 spapr->htab_first_pass = false;
2169 spapr->htab_save_index = index;
2172 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2173 int64_t max_ns)
2175 bool final = max_ns < 0;
2176 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2177 int examined = 0, sent = 0;
2178 int index = spapr->htab_save_index;
2179 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2181 assert(!spapr->htab_first_pass);
2183 do {
2184 int chunkstart, invalidstart;
2186 /* Consume non-dirty HPTEs */
2187 while ((index < htabslots)
2188 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2189 index++;
2190 examined++;
2193 chunkstart = index;
2194 /* Consume valid dirty HPTEs */
2195 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2196 && HPTE_DIRTY(HPTE(spapr->htab, index))
2197 && HPTE_VALID(HPTE(spapr->htab, index))) {
2198 CLEAN_HPTE(HPTE(spapr->htab, index));
2199 index++;
2200 examined++;
2203 invalidstart = index;
2204 /* Consume invalid dirty HPTEs */
2205 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2206 && HPTE_DIRTY(HPTE(spapr->htab, index))
2207 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2208 CLEAN_HPTE(HPTE(spapr->htab, index));
2209 index++;
2210 examined++;
2213 if (index > chunkstart) {
2214 int n_valid = invalidstart - chunkstart;
2215 int n_invalid = index - invalidstart;
2217 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2218 sent += index - chunkstart;
2220 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221 break;
2225 if (examined >= htabslots) {
2226 break;
2229 if (index >= htabslots) {
2230 assert(index == htabslots);
2231 index = 0;
2233 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2235 if (index >= htabslots) {
2236 assert(index == htabslots);
2237 index = 0;
2240 spapr->htab_save_index = index;
2242 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2245 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2246 #define MAX_KVM_BUF_SIZE 2048
2248 static int htab_save_iterate(QEMUFile *f, void *opaque)
2250 SpaprMachineState *spapr = opaque;
2251 int fd;
2252 int rc = 0;
2254 /* Iteration header */
2255 if (!spapr->htab_shift) {
2256 qemu_put_be32(f, -1);
2257 return 1;
2258 } else {
2259 qemu_put_be32(f, 0);
2262 if (!spapr->htab) {
2263 assert(kvm_enabled());
2265 fd = get_htab_fd(spapr);
2266 if (fd < 0) {
2267 return fd;
2270 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2271 if (rc < 0) {
2272 return rc;
2274 } else if (spapr->htab_first_pass) {
2275 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2276 } else {
2277 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2280 htab_save_end_marker(f);
2282 return rc;
2285 static int htab_save_complete(QEMUFile *f, void *opaque)
2287 SpaprMachineState *spapr = opaque;
2288 int fd;
2290 /* Iteration header */
2291 if (!spapr->htab_shift) {
2292 qemu_put_be32(f, -1);
2293 return 0;
2294 } else {
2295 qemu_put_be32(f, 0);
2298 if (!spapr->htab) {
2299 int rc;
2301 assert(kvm_enabled());
2303 fd = get_htab_fd(spapr);
2304 if (fd < 0) {
2305 return fd;
2308 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2309 if (rc < 0) {
2310 return rc;
2312 } else {
2313 if (spapr->htab_first_pass) {
2314 htab_save_first_pass(f, spapr, -1);
2316 htab_save_later_pass(f, spapr, -1);
2319 /* End marker */
2320 htab_save_end_marker(f);
2322 return 0;
2325 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2327 SpaprMachineState *spapr = opaque;
2328 uint32_t section_hdr;
2329 int fd = -1;
2330 Error *local_err = NULL;
2332 if (version_id < 1 || version_id > 1) {
2333 error_report("htab_load() bad version");
2334 return -EINVAL;
2337 section_hdr = qemu_get_be32(f);
2339 if (section_hdr == -1) {
2340 spapr_free_hpt(spapr);
2341 return 0;
2344 if (section_hdr) {
2345 /* First section gives the htab size */
2346 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2347 if (local_err) {
2348 error_report_err(local_err);
2349 return -EINVAL;
2351 return 0;
2354 if (!spapr->htab) {
2355 assert(kvm_enabled());
2357 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2358 if (fd < 0) {
2359 error_report_err(local_err);
2360 return fd;
2364 while (true) {
2365 uint32_t index;
2366 uint16_t n_valid, n_invalid;
2368 index = qemu_get_be32(f);
2369 n_valid = qemu_get_be16(f);
2370 n_invalid = qemu_get_be16(f);
2372 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2373 /* End of Stream */
2374 break;
2377 if ((index + n_valid + n_invalid) >
2378 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2379 /* Bad index in stream */
2380 error_report(
2381 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2382 index, n_valid, n_invalid, spapr->htab_shift);
2383 return -EINVAL;
2386 if (spapr->htab) {
2387 if (n_valid) {
2388 qemu_get_buffer(f, HPTE(spapr->htab, index),
2389 HASH_PTE_SIZE_64 * n_valid);
2391 if (n_invalid) {
2392 memset(HPTE(spapr->htab, index + n_valid), 0,
2393 HASH_PTE_SIZE_64 * n_invalid);
2395 } else {
2396 int rc;
2398 assert(fd >= 0);
2400 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2401 if (rc < 0) {
2402 return rc;
2407 if (!spapr->htab) {
2408 assert(fd >= 0);
2409 close(fd);
2412 return 0;
2415 static void htab_save_cleanup(void *opaque)
2417 SpaprMachineState *spapr = opaque;
2419 close_htab_fd(spapr);
2422 static SaveVMHandlers savevm_htab_handlers = {
2423 .save_setup = htab_save_setup,
2424 .save_live_iterate = htab_save_iterate,
2425 .save_live_complete_precopy = htab_save_complete,
2426 .save_cleanup = htab_save_cleanup,
2427 .load_state = htab_load,
2430 static void spapr_boot_set(void *opaque, const char *boot_device,
2431 Error **errp)
2433 MachineState *machine = MACHINE(opaque);
2434 machine->boot_order = g_strdup(boot_device);
2437 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2439 MachineState *machine = MACHINE(spapr);
2440 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2441 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2442 int i;
2444 for (i = 0; i < nr_lmbs; i++) {
2445 uint64_t addr;
2447 addr = i * lmb_size + machine->device_memory->base;
2448 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2449 addr / lmb_size);
2454 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2455 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2456 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2458 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2460 int i;
2462 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2463 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2464 " is not aligned to %" PRIu64 " MiB",
2465 machine->ram_size,
2466 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2467 return;
2470 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2471 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2472 " is not aligned to %" PRIu64 " MiB",
2473 machine->ram_size,
2474 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2475 return;
2478 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2479 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2480 error_setg(errp,
2481 "Node %d memory size 0x%" PRIx64
2482 " is not aligned to %" PRIu64 " MiB",
2483 i, machine->numa_state->nodes[i].node_mem,
2484 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2485 return;
2490 /* find cpu slot in machine->possible_cpus by core_id */
2491 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2493 int index = id / ms->smp.threads;
2495 if (index >= ms->possible_cpus->len) {
2496 return NULL;
2498 if (idx) {
2499 *idx = index;
2501 return &ms->possible_cpus->cpus[index];
2504 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2506 MachineState *ms = MACHINE(spapr);
2507 Error *local_err = NULL;
2508 bool vsmt_user = !!spapr->vsmt;
2509 int kvm_smt = kvmppc_smt_threads();
2510 int ret;
2511 unsigned int smp_threads = ms->smp.threads;
2513 if (!kvm_enabled() && (smp_threads > 1)) {
2514 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2515 "on a pseries machine");
2516 goto out;
2518 if (!is_power_of_2(smp_threads)) {
2519 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2520 "machine because it must be a power of 2", smp_threads);
2521 goto out;
2524 /* Detemine the VSMT mode to use: */
2525 if (vsmt_user) {
2526 if (spapr->vsmt < smp_threads) {
2527 error_setg(&local_err, "Cannot support VSMT mode %d"
2528 " because it must be >= threads/core (%d)",
2529 spapr->vsmt, smp_threads);
2530 goto out;
2532 /* In this case, spapr->vsmt has been set by the command line */
2533 } else {
2535 * Default VSMT value is tricky, because we need it to be as
2536 * consistent as possible (for migration), but this requires
2537 * changing it for at least some existing cases. We pick 8 as
2538 * the value that we'd get with KVM on POWER8, the
2539 * overwhelmingly common case in production systems.
2541 spapr->vsmt = MAX(8, smp_threads);
2544 /* KVM: If necessary, set the SMT mode: */
2545 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2546 ret = kvmppc_set_smt_threads(spapr->vsmt);
2547 if (ret) {
2548 /* Looks like KVM isn't able to change VSMT mode */
2549 error_setg(&local_err,
2550 "Failed to set KVM's VSMT mode to %d (errno %d)",
2551 spapr->vsmt, ret);
2552 /* We can live with that if the default one is big enough
2553 * for the number of threads, and a submultiple of the one
2554 * we want. In this case we'll waste some vcpu ids, but
2555 * behaviour will be correct */
2556 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2557 warn_report_err(local_err);
2558 local_err = NULL;
2559 goto out;
2560 } else {
2561 if (!vsmt_user) {
2562 error_append_hint(&local_err,
2563 "On PPC, a VM with %d threads/core"
2564 " on a host with %d threads/core"
2565 " requires the use of VSMT mode %d.\n",
2566 smp_threads, kvm_smt, spapr->vsmt);
2568 kvmppc_hint_smt_possible(&local_err);
2569 goto out;
2573 /* else TCG: nothing to do currently */
2574 out:
2575 error_propagate(errp, local_err);
2578 static void spapr_init_cpus(SpaprMachineState *spapr)
2580 MachineState *machine = MACHINE(spapr);
2581 MachineClass *mc = MACHINE_GET_CLASS(machine);
2582 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2583 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2584 const CPUArchIdList *possible_cpus;
2585 unsigned int smp_cpus = machine->smp.cpus;
2586 unsigned int smp_threads = machine->smp.threads;
2587 unsigned int max_cpus = machine->smp.max_cpus;
2588 int boot_cores_nr = smp_cpus / smp_threads;
2589 int i;
2591 possible_cpus = mc->possible_cpu_arch_ids(machine);
2592 if (mc->has_hotpluggable_cpus) {
2593 if (smp_cpus % smp_threads) {
2594 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2595 smp_cpus, smp_threads);
2596 exit(1);
2598 if (max_cpus % smp_threads) {
2599 error_report("max_cpus (%u) must be multiple of threads (%u)",
2600 max_cpus, smp_threads);
2601 exit(1);
2603 } else {
2604 if (max_cpus != smp_cpus) {
2605 error_report("This machine version does not support CPU hotplug");
2606 exit(1);
2608 boot_cores_nr = possible_cpus->len;
2611 if (smc->pre_2_10_has_unused_icps) {
2612 int i;
2614 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2615 /* Dummy entries get deregistered when real ICPState objects
2616 * are registered during CPU core hotplug.
2618 pre_2_10_vmstate_register_dummy_icp(i);
2622 for (i = 0; i < possible_cpus->len; i++) {
2623 int core_id = i * smp_threads;
2625 if (mc->has_hotpluggable_cpus) {
2626 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2627 spapr_vcpu_id(spapr, core_id));
2630 if (i < boot_cores_nr) {
2631 Object *core = object_new(type);
2632 int nr_threads = smp_threads;
2634 /* Handle the partially filled core for older machine types */
2635 if ((i + 1) * smp_threads >= smp_cpus) {
2636 nr_threads = smp_cpus - i * smp_threads;
2639 object_property_set_int(core, nr_threads, "nr-threads",
2640 &error_fatal);
2641 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2642 &error_fatal);
2643 object_property_set_bool(core, true, "realized", &error_fatal);
2645 object_unref(core);
2650 static PCIHostState *spapr_create_default_phb(void)
2652 DeviceState *dev;
2654 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2655 qdev_prop_set_uint32(dev, "index", 0);
2656 qdev_init_nofail(dev);
2658 return PCI_HOST_BRIDGE(dev);
2661 /* pSeries LPAR / sPAPR hardware init */
2662 static void spapr_machine_init(MachineState *machine)
2664 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2665 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2666 const char *kernel_filename = machine->kernel_filename;
2667 const char *initrd_filename = machine->initrd_filename;
2668 PCIHostState *phb;
2669 int i;
2670 MemoryRegion *sysmem = get_system_memory();
2671 MemoryRegion *ram = g_new(MemoryRegion, 1);
2672 hwaddr node0_size = spapr_node0_size(machine);
2673 long load_limit, fw_size;
2674 char *filename;
2675 Error *resize_hpt_err = NULL;
2677 msi_nonbroken = true;
2679 QLIST_INIT(&spapr->phbs);
2680 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2682 /* Determine capabilities to run with */
2683 spapr_caps_init(spapr);
2685 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2686 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2688 * If the user explicitly requested a mode we should either
2689 * supply it, or fail completely (which we do below). But if
2690 * it's not set explicitly, we reset our mode to something
2691 * that works
2693 if (resize_hpt_err) {
2694 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2695 error_free(resize_hpt_err);
2696 resize_hpt_err = NULL;
2697 } else {
2698 spapr->resize_hpt = smc->resize_hpt_default;
2702 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2704 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2706 * User requested HPT resize, but this host can't supply it. Bail out
2708 error_report_err(resize_hpt_err);
2709 exit(1);
2712 spapr->rma_size = node0_size;
2714 /* With KVM, we don't actually know whether KVM supports an
2715 * unbounded RMA (PR KVM) or is limited by the hash table size
2716 * (HV KVM using VRMA), so we always assume the latter
2718 * In that case, we also limit the initial allocations for RTAS
2719 * etc... to 256M since we have no way to know what the VRMA size
2720 * is going to be as it depends on the size of the hash table
2721 * which isn't determined yet.
2723 if (kvm_enabled()) {
2724 spapr->vrma_adjust = 1;
2725 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2728 /* Actually we don't support unbounded RMA anymore since we added
2729 * proper emulation of HV mode. The max we can get is 16G which
2730 * also happens to be what we configure for PAPR mode so make sure
2731 * we don't do anything bigger than that
2733 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2735 if (spapr->rma_size > node0_size) {
2736 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2737 spapr->rma_size);
2738 exit(1);
2741 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2742 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2745 * VSMT must be set in order to be able to compute VCPU ids, ie to
2746 * call spapr_max_server_number() or spapr_vcpu_id().
2748 spapr_set_vsmt_mode(spapr, &error_fatal);
2750 /* Set up Interrupt Controller before we create the VCPUs */
2751 spapr_irq_init(spapr, &error_fatal);
2753 /* Set up containers for ibm,client-architecture-support negotiated options
2755 spapr->ov5 = spapr_ovec_new();
2756 spapr->ov5_cas = spapr_ovec_new();
2758 if (smc->dr_lmb_enabled) {
2759 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2760 spapr_validate_node_memory(machine, &error_fatal);
2763 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2765 /* advertise support for dedicated HP event source to guests */
2766 if (spapr->use_hotplug_event_source) {
2767 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2770 /* advertise support for HPT resizing */
2771 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2772 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2775 /* advertise support for ibm,dyamic-memory-v2 */
2776 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2778 /* advertise XIVE on POWER9 machines */
2779 if (spapr->irq->xive) {
2780 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2783 /* init CPUs */
2784 spapr_init_cpus(spapr);
2787 * check we don't have a memory-less/cpu-less NUMA node
2788 * Firmware relies on the existing memory/cpu topology to provide the
2789 * NUMA topology to the kernel.
2790 * And the linux kernel needs to know the NUMA topology at start
2791 * to be able to hotplug CPUs later.
2793 if (machine->numa_state->num_nodes) {
2794 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2795 /* check for memory-less node */
2796 if (machine->numa_state->nodes[i].node_mem == 0) {
2797 CPUState *cs;
2798 int found = 0;
2799 /* check for cpu-less node */
2800 CPU_FOREACH(cs) {
2801 PowerPCCPU *cpu = POWERPC_CPU(cs);
2802 if (cpu->node_id == i) {
2803 found = 1;
2804 break;
2807 /* memory-less and cpu-less node */
2808 if (!found) {
2809 error_report(
2810 "Memory-less/cpu-less nodes are not supported (node %d)",
2812 exit(1);
2820 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2821 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2822 * called from vPHB reset handler so we initialize the counter here.
2823 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2824 * must be equally distant from any other node.
2825 * The final value of spapr->gpu_numa_id is going to be written to
2826 * max-associativity-domains in spapr_build_fdt().
2828 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2830 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2831 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2832 spapr->max_compat_pvr)) {
2833 /* KVM and TCG always allow GTSE with radix... */
2834 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2836 /* ... but not with hash (currently). */
2838 if (kvm_enabled()) {
2839 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2840 kvmppc_enable_logical_ci_hcalls();
2841 kvmppc_enable_set_mode_hcall();
2843 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2844 kvmppc_enable_clear_ref_mod_hcalls();
2846 /* Enable H_PAGE_INIT */
2847 kvmppc_enable_h_page_init();
2850 /* allocate RAM */
2851 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2852 machine->ram_size);
2853 memory_region_add_subregion(sysmem, 0, ram);
2855 /* always allocate the device memory information */
2856 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2858 /* initialize hotplug memory address space */
2859 if (machine->ram_size < machine->maxram_size) {
2860 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2862 * Limit the number of hotpluggable memory slots to half the number
2863 * slots that KVM supports, leaving the other half for PCI and other
2864 * devices. However ensure that number of slots doesn't drop below 32.
2866 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2867 SPAPR_MAX_RAM_SLOTS;
2869 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2870 max_memslots = SPAPR_MAX_RAM_SLOTS;
2872 if (machine->ram_slots > max_memslots) {
2873 error_report("Specified number of memory slots %"
2874 PRIu64" exceeds max supported %d",
2875 machine->ram_slots, max_memslots);
2876 exit(1);
2879 machine->device_memory->base = ROUND_UP(machine->ram_size,
2880 SPAPR_DEVICE_MEM_ALIGN);
2881 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2882 "device-memory", device_mem_size);
2883 memory_region_add_subregion(sysmem, machine->device_memory->base,
2884 &machine->device_memory->mr);
2887 if (smc->dr_lmb_enabled) {
2888 spapr_create_lmb_dr_connectors(spapr);
2891 /* Set up RTAS event infrastructure */
2892 spapr_events_init(spapr);
2894 /* Set up the RTC RTAS interfaces */
2895 spapr_rtc_create(spapr);
2897 /* Set up VIO bus */
2898 spapr->vio_bus = spapr_vio_bus_init();
2900 for (i = 0; i < serial_max_hds(); i++) {
2901 if (serial_hd(i)) {
2902 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2906 /* We always have at least the nvram device on VIO */
2907 spapr_create_nvram(spapr);
2910 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2911 * connectors (described in root DT node's "ibm,drc-types" property)
2912 * are pre-initialized here. additional child connectors (such as
2913 * connectors for a PHBs PCI slots) are added as needed during their
2914 * parent's realization.
2916 if (smc->dr_phb_enabled) {
2917 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2918 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2922 /* Set up PCI */
2923 spapr_pci_rtas_init();
2925 phb = spapr_create_default_phb();
2927 for (i = 0; i < nb_nics; i++) {
2928 NICInfo *nd = &nd_table[i];
2930 if (!nd->model) {
2931 nd->model = g_strdup("spapr-vlan");
2934 if (g_str_equal(nd->model, "spapr-vlan") ||
2935 g_str_equal(nd->model, "ibmveth")) {
2936 spapr_vlan_create(spapr->vio_bus, nd);
2937 } else {
2938 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2942 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2943 spapr_vscsi_create(spapr->vio_bus);
2946 /* Graphics */
2947 if (spapr_vga_init(phb->bus, &error_fatal)) {
2948 spapr->has_graphics = true;
2949 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2952 if (machine->usb) {
2953 if (smc->use_ohci_by_default) {
2954 pci_create_simple(phb->bus, -1, "pci-ohci");
2955 } else {
2956 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2959 if (spapr->has_graphics) {
2960 USBBus *usb_bus = usb_bus_find(-1);
2962 usb_create_simple(usb_bus, "usb-kbd");
2963 usb_create_simple(usb_bus, "usb-mouse");
2967 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2968 error_report(
2969 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2970 MIN_RMA_SLOF);
2971 exit(1);
2974 if (kernel_filename) {
2975 uint64_t lowaddr = 0;
2977 spapr->kernel_size = load_elf(kernel_filename, NULL,
2978 translate_kernel_address, NULL,
2979 NULL, &lowaddr, NULL, 1,
2980 PPC_ELF_MACHINE, 0, 0);
2981 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2982 spapr->kernel_size = load_elf(kernel_filename, NULL,
2983 translate_kernel_address, NULL, NULL,
2984 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2985 0, 0);
2986 spapr->kernel_le = spapr->kernel_size > 0;
2988 if (spapr->kernel_size < 0) {
2989 error_report("error loading %s: %s", kernel_filename,
2990 load_elf_strerror(spapr->kernel_size));
2991 exit(1);
2994 /* load initrd */
2995 if (initrd_filename) {
2996 /* Try to locate the initrd in the gap between the kernel
2997 * and the firmware. Add a bit of space just in case
2999 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3000 + 0x1ffff) & ~0xffff;
3001 spapr->initrd_size = load_image_targphys(initrd_filename,
3002 spapr->initrd_base,
3003 load_limit
3004 - spapr->initrd_base);
3005 if (spapr->initrd_size < 0) {
3006 error_report("could not load initial ram disk '%s'",
3007 initrd_filename);
3008 exit(1);
3013 if (bios_name == NULL) {
3014 bios_name = FW_FILE_NAME;
3016 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3017 if (!filename) {
3018 error_report("Could not find LPAR firmware '%s'", bios_name);
3019 exit(1);
3021 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3022 if (fw_size <= 0) {
3023 error_report("Could not load LPAR firmware '%s'", filename);
3024 exit(1);
3026 g_free(filename);
3028 /* FIXME: Should register things through the MachineState's qdev
3029 * interface, this is a legacy from the sPAPREnvironment structure
3030 * which predated MachineState but had a similar function */
3031 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3032 register_savevm_live("spapr/htab", -1, 1,
3033 &savevm_htab_handlers, spapr);
3035 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3036 &error_fatal);
3038 qemu_register_boot_set(spapr_boot_set, spapr);
3041 * Nothing needs to be done to resume a suspended guest because
3042 * suspending does not change the machine state, so no need for
3043 * a ->wakeup method.
3045 qemu_register_wakeup_support();
3047 if (kvm_enabled()) {
3048 /* to stop and start vmclock */
3049 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3050 &spapr->tb);
3052 kvmppc_spapr_enable_inkernel_multitce();
3056 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3058 if (!vm_type) {
3059 return 0;
3062 if (!strcmp(vm_type, "HV")) {
3063 return 1;
3066 if (!strcmp(vm_type, "PR")) {
3067 return 2;
3070 error_report("Unknown kvm-type specified '%s'", vm_type);
3071 exit(1);
3075 * Implementation of an interface to adjust firmware path
3076 * for the bootindex property handling.
3078 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3079 DeviceState *dev)
3081 #define CAST(type, obj, name) \
3082 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3083 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3084 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3085 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3087 if (d) {
3088 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3089 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3090 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3092 if (spapr) {
3094 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3095 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3096 * 0x8000 | (target << 8) | (bus << 5) | lun
3097 * (see the "Logical unit addressing format" table in SAM5)
3099 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3100 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3101 (uint64_t)id << 48);
3102 } else if (virtio) {
3104 * We use SRP luns of the form 01000000 | (target << 8) | lun
3105 * in the top 32 bits of the 64-bit LUN
3106 * Note: the quote above is from SLOF and it is wrong,
3107 * the actual binding is:
3108 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3110 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3111 if (d->lun >= 256) {
3112 /* Use the LUN "flat space addressing method" */
3113 id |= 0x4000;
3115 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3116 (uint64_t)id << 32);
3117 } else if (usb) {
3119 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3120 * in the top 32 bits of the 64-bit LUN
3122 unsigned usb_port = atoi(usb->port->path);
3123 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3124 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3125 (uint64_t)id << 32);
3130 * SLOF probes the USB devices, and if it recognizes that the device is a
3131 * storage device, it changes its name to "storage" instead of "usb-host",
3132 * and additionally adds a child node for the SCSI LUN, so the correct
3133 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3135 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3136 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3137 if (usb_host_dev_is_scsi_storage(usbdev)) {
3138 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3142 if (phb) {
3143 /* Replace "pci" with "pci@800000020000000" */
3144 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3147 if (vsc) {
3148 /* Same logic as virtio above */
3149 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3150 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3153 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3154 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3155 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3156 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3159 return NULL;
3162 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3164 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3166 return g_strdup(spapr->kvm_type);
3169 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3171 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 g_free(spapr->kvm_type);
3174 spapr->kvm_type = g_strdup(value);
3177 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3181 return spapr->use_hotplug_event_source;
3184 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3185 Error **errp)
3187 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3189 spapr->use_hotplug_event_source = value;
3192 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3194 return true;
3197 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3201 switch (spapr->resize_hpt) {
3202 case SPAPR_RESIZE_HPT_DEFAULT:
3203 return g_strdup("default");
3204 case SPAPR_RESIZE_HPT_DISABLED:
3205 return g_strdup("disabled");
3206 case SPAPR_RESIZE_HPT_ENABLED:
3207 return g_strdup("enabled");
3208 case SPAPR_RESIZE_HPT_REQUIRED:
3209 return g_strdup("required");
3211 g_assert_not_reached();
3214 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 if (strcmp(value, "default") == 0) {
3219 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3220 } else if (strcmp(value, "disabled") == 0) {
3221 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3222 } else if (strcmp(value, "enabled") == 0) {
3223 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3224 } else if (strcmp(value, "required") == 0) {
3225 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3226 } else {
3227 error_setg(errp, "Bad value for \"resize-hpt\" property");
3231 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3232 void *opaque, Error **errp)
3234 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3237 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3238 void *opaque, Error **errp)
3240 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3243 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 if (spapr->irq == &spapr_irq_xics_legacy) {
3248 return g_strdup("legacy");
3249 } else if (spapr->irq == &spapr_irq_xics) {
3250 return g_strdup("xics");
3251 } else if (spapr->irq == &spapr_irq_xive) {
3252 return g_strdup("xive");
3253 } else if (spapr->irq == &spapr_irq_dual) {
3254 return g_strdup("dual");
3256 g_assert_not_reached();
3259 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3263 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3264 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3265 return;
3268 /* The legacy IRQ backend can not be set */
3269 if (strcmp(value, "xics") == 0) {
3270 spapr->irq = &spapr_irq_xics;
3271 } else if (strcmp(value, "xive") == 0) {
3272 spapr->irq = &spapr_irq_xive;
3273 } else if (strcmp(value, "dual") == 0) {
3274 spapr->irq = &spapr_irq_dual;
3275 } else {
3276 error_setg(errp, "Bad value for \"ic-mode\" property");
3280 static char *spapr_get_host_model(Object *obj, Error **errp)
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 return g_strdup(spapr->host_model);
3287 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3291 g_free(spapr->host_model);
3292 spapr->host_model = g_strdup(value);
3295 static char *spapr_get_host_serial(Object *obj, Error **errp)
3297 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 return g_strdup(spapr->host_serial);
3302 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3306 g_free(spapr->host_serial);
3307 spapr->host_serial = g_strdup(value);
3310 static void spapr_instance_init(Object *obj)
3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3315 spapr->htab_fd = -1;
3316 spapr->use_hotplug_event_source = true;
3317 object_property_add_str(obj, "kvm-type",
3318 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3319 object_property_set_description(obj, "kvm-type",
3320 "Specifies the KVM virtualization mode (HV, PR)",
3321 NULL);
3322 object_property_add_bool(obj, "modern-hotplug-events",
3323 spapr_get_modern_hotplug_events,
3324 spapr_set_modern_hotplug_events,
3325 NULL);
3326 object_property_set_description(obj, "modern-hotplug-events",
3327 "Use dedicated hotplug event mechanism in"
3328 " place of standard EPOW events when possible"
3329 " (required for memory hot-unplug support)",
3330 NULL);
3331 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3332 "Maximum permitted CPU compatibility mode",
3333 &error_fatal);
3335 object_property_add_str(obj, "resize-hpt",
3336 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3337 object_property_set_description(obj, "resize-hpt",
3338 "Resizing of the Hash Page Table (enabled, disabled, required)",
3339 NULL);
3340 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3341 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3342 object_property_set_description(obj, "vsmt",
3343 "Virtual SMT: KVM behaves as if this were"
3344 " the host's SMT mode", &error_abort);
3345 object_property_add_bool(obj, "vfio-no-msix-emulation",
3346 spapr_get_msix_emulation, NULL, NULL);
3348 /* The machine class defines the default interrupt controller mode */
3349 spapr->irq = smc->irq;
3350 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3351 spapr_set_ic_mode, NULL);
3352 object_property_set_description(obj, "ic-mode",
3353 "Specifies the interrupt controller mode (xics, xive, dual)",
3354 NULL);
3356 object_property_add_str(obj, "host-model",
3357 spapr_get_host_model, spapr_set_host_model,
3358 &error_abort);
3359 object_property_set_description(obj, "host-model",
3360 "Host model to advertise in guest device tree", &error_abort);
3361 object_property_add_str(obj, "host-serial",
3362 spapr_get_host_serial, spapr_set_host_serial,
3363 &error_abort);
3364 object_property_set_description(obj, "host-serial",
3365 "Host serial number to advertise in guest device tree", &error_abort);
3368 static void spapr_machine_finalizefn(Object *obj)
3370 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3372 g_free(spapr->kvm_type);
3375 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3377 cpu_synchronize_state(cs);
3378 ppc_cpu_do_system_reset(cs);
3381 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3383 CPUState *cs;
3385 CPU_FOREACH(cs) {
3386 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3390 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3391 void *fdt, int *fdt_start_offset, Error **errp)
3393 uint64_t addr;
3394 uint32_t node;
3396 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3397 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3398 &error_abort);
3399 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3400 SPAPR_MEMORY_BLOCK_SIZE);
3401 return 0;
3404 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3405 bool dedicated_hp_event_source, Error **errp)
3407 SpaprDrc *drc;
3408 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3409 int i;
3410 uint64_t addr = addr_start;
3411 bool hotplugged = spapr_drc_hotplugged(dev);
3412 Error *local_err = NULL;
3414 for (i = 0; i < nr_lmbs; i++) {
3415 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3416 addr / SPAPR_MEMORY_BLOCK_SIZE);
3417 g_assert(drc);
3419 spapr_drc_attach(drc, dev, &local_err);
3420 if (local_err) {
3421 while (addr > addr_start) {
3422 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3423 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3424 addr / SPAPR_MEMORY_BLOCK_SIZE);
3425 spapr_drc_detach(drc);
3427 error_propagate(errp, local_err);
3428 return;
3430 if (!hotplugged) {
3431 spapr_drc_reset(drc);
3433 addr += SPAPR_MEMORY_BLOCK_SIZE;
3435 /* send hotplug notification to the
3436 * guest only in case of hotplugged memory
3438 if (hotplugged) {
3439 if (dedicated_hp_event_source) {
3440 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3441 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3442 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3443 nr_lmbs,
3444 spapr_drc_index(drc));
3445 } else {
3446 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3447 nr_lmbs);
3452 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3453 Error **errp)
3455 Error *local_err = NULL;
3456 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3457 PCDIMMDevice *dimm = PC_DIMM(dev);
3458 uint64_t size, addr;
3460 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3462 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3463 if (local_err) {
3464 goto out;
3467 addr = object_property_get_uint(OBJECT(dimm),
3468 PC_DIMM_ADDR_PROP, &local_err);
3469 if (local_err) {
3470 goto out_unplug;
3473 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3474 &local_err);
3475 if (local_err) {
3476 goto out_unplug;
3479 return;
3481 out_unplug:
3482 pc_dimm_unplug(dimm, MACHINE(ms));
3483 out:
3484 error_propagate(errp, local_err);
3487 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3488 Error **errp)
3490 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3491 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3492 PCDIMMDevice *dimm = PC_DIMM(dev);
3493 Error *local_err = NULL;
3494 uint64_t size;
3495 Object *memdev;
3496 hwaddr pagesize;
3498 if (!smc->dr_lmb_enabled) {
3499 error_setg(errp, "Memory hotplug not supported for this machine");
3500 return;
3503 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3504 if (local_err) {
3505 error_propagate(errp, local_err);
3506 return;
3509 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3510 error_setg(errp, "Hotplugged memory size must be a multiple of "
3511 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3512 return;
3515 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3516 &error_abort);
3517 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3518 spapr_check_pagesize(spapr, pagesize, &local_err);
3519 if (local_err) {
3520 error_propagate(errp, local_err);
3521 return;
3524 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3527 struct SpaprDimmState {
3528 PCDIMMDevice *dimm;
3529 uint32_t nr_lmbs;
3530 QTAILQ_ENTRY(SpaprDimmState) next;
3533 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3534 PCDIMMDevice *dimm)
3536 SpaprDimmState *dimm_state = NULL;
3538 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3539 if (dimm_state->dimm == dimm) {
3540 break;
3543 return dimm_state;
3546 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3547 uint32_t nr_lmbs,
3548 PCDIMMDevice *dimm)
3550 SpaprDimmState *ds = NULL;
3553 * If this request is for a DIMM whose removal had failed earlier
3554 * (due to guest's refusal to remove the LMBs), we would have this
3555 * dimm already in the pending_dimm_unplugs list. In that
3556 * case don't add again.
3558 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3559 if (!ds) {
3560 ds = g_malloc0(sizeof(SpaprDimmState));
3561 ds->nr_lmbs = nr_lmbs;
3562 ds->dimm = dimm;
3563 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3565 return ds;
3568 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3569 SpaprDimmState *dimm_state)
3571 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3572 g_free(dimm_state);
3575 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3576 PCDIMMDevice *dimm)
3578 SpaprDrc *drc;
3579 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3580 &error_abort);
3581 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3582 uint32_t avail_lmbs = 0;
3583 uint64_t addr_start, addr;
3584 int i;
3586 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3587 &error_abort);
3589 addr = addr_start;
3590 for (i = 0; i < nr_lmbs; i++) {
3591 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3592 addr / SPAPR_MEMORY_BLOCK_SIZE);
3593 g_assert(drc);
3594 if (drc->dev) {
3595 avail_lmbs++;
3597 addr += SPAPR_MEMORY_BLOCK_SIZE;
3600 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3603 /* Callback to be called during DRC release. */
3604 void spapr_lmb_release(DeviceState *dev)
3606 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3607 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3608 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3610 /* This information will get lost if a migration occurs
3611 * during the unplug process. In this case recover it. */
3612 if (ds == NULL) {
3613 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3614 g_assert(ds);
3615 /* The DRC being examined by the caller at least must be counted */
3616 g_assert(ds->nr_lmbs);
3619 if (--ds->nr_lmbs) {
3620 return;
3624 * Now that all the LMBs have been removed by the guest, call the
3625 * unplug handler chain. This can never fail.
3627 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3628 object_unparent(OBJECT(dev));
3631 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3633 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3634 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3636 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3637 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3638 spapr_pending_dimm_unplugs_remove(spapr, ds);
3641 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3642 DeviceState *dev, Error **errp)
3644 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3645 Error *local_err = NULL;
3646 PCDIMMDevice *dimm = PC_DIMM(dev);
3647 uint32_t nr_lmbs;
3648 uint64_t size, addr_start, addr;
3649 int i;
3650 SpaprDrc *drc;
3652 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3653 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3655 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3656 &local_err);
3657 if (local_err) {
3658 goto out;
3662 * An existing pending dimm state for this DIMM means that there is an
3663 * unplug operation in progress, waiting for the spapr_lmb_release
3664 * callback to complete the job (BQL can't cover that far). In this case,
3665 * bail out to avoid detaching DRCs that were already released.
3667 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3668 error_setg(&local_err,
3669 "Memory unplug already in progress for device %s",
3670 dev->id);
3671 goto out;
3674 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3676 addr = addr_start;
3677 for (i = 0; i < nr_lmbs; i++) {
3678 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3679 addr / SPAPR_MEMORY_BLOCK_SIZE);
3680 g_assert(drc);
3682 spapr_drc_detach(drc);
3683 addr += SPAPR_MEMORY_BLOCK_SIZE;
3686 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3687 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3688 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3689 nr_lmbs, spapr_drc_index(drc));
3690 out:
3691 error_propagate(errp, local_err);
3694 /* Callback to be called during DRC release. */
3695 void spapr_core_release(DeviceState *dev)
3697 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3699 /* Call the unplug handler chain. This can never fail. */
3700 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3701 object_unparent(OBJECT(dev));
3704 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3706 MachineState *ms = MACHINE(hotplug_dev);
3707 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3708 CPUCore *cc = CPU_CORE(dev);
3709 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3711 if (smc->pre_2_10_has_unused_icps) {
3712 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3713 int i;
3715 for (i = 0; i < cc->nr_threads; i++) {
3716 CPUState *cs = CPU(sc->threads[i]);
3718 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3722 assert(core_slot);
3723 core_slot->cpu = NULL;
3724 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3727 static
3728 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3729 Error **errp)
3731 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3732 int index;
3733 SpaprDrc *drc;
3734 CPUCore *cc = CPU_CORE(dev);
3736 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3737 error_setg(errp, "Unable to find CPU core with core-id: %d",
3738 cc->core_id);
3739 return;
3741 if (index == 0) {
3742 error_setg(errp, "Boot CPU core may not be unplugged");
3743 return;
3746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3747 spapr_vcpu_id(spapr, cc->core_id));
3748 g_assert(drc);
3750 spapr_drc_detach(drc);
3752 spapr_hotplug_req_remove_by_index(drc);
3755 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3756 void *fdt, int *fdt_start_offset, Error **errp)
3758 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3759 CPUState *cs = CPU(core->threads[0]);
3760 PowerPCCPU *cpu = POWERPC_CPU(cs);
3761 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3762 int id = spapr_get_vcpu_id(cpu);
3763 char *nodename;
3764 int offset;
3766 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3767 offset = fdt_add_subnode(fdt, 0, nodename);
3768 g_free(nodename);
3770 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3772 *fdt_start_offset = offset;
3773 return 0;
3776 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3777 Error **errp)
3779 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3780 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3782 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3783 CPUCore *cc = CPU_CORE(dev);
3784 CPUState *cs;
3785 SpaprDrc *drc;
3786 Error *local_err = NULL;
3787 CPUArchId *core_slot;
3788 int index;
3789 bool hotplugged = spapr_drc_hotplugged(dev);
3790 int i;
3792 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3793 if (!core_slot) {
3794 error_setg(errp, "Unable to find CPU core with core-id: %d",
3795 cc->core_id);
3796 return;
3798 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3799 spapr_vcpu_id(spapr, cc->core_id));
3801 g_assert(drc || !mc->has_hotpluggable_cpus);
3803 if (drc) {
3804 spapr_drc_attach(drc, dev, &local_err);
3805 if (local_err) {
3806 error_propagate(errp, local_err);
3807 return;
3810 if (hotplugged) {
3812 * Send hotplug notification interrupt to the guest only
3813 * in case of hotplugged CPUs.
3815 spapr_hotplug_req_add_by_index(drc);
3816 } else {
3817 spapr_drc_reset(drc);
3821 core_slot->cpu = OBJECT(dev);
3823 if (smc->pre_2_10_has_unused_icps) {
3824 for (i = 0; i < cc->nr_threads; i++) {
3825 cs = CPU(core->threads[i]);
3826 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3831 * Set compatibility mode to match the boot CPU, which was either set
3832 * by the machine reset code or by CAS.
3834 if (hotplugged) {
3835 for (i = 0; i < cc->nr_threads; i++) {
3836 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3837 &local_err);
3838 if (local_err) {
3839 error_propagate(errp, local_err);
3840 return;
3846 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3847 Error **errp)
3849 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3850 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3851 Error *local_err = NULL;
3852 CPUCore *cc = CPU_CORE(dev);
3853 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3854 const char *type = object_get_typename(OBJECT(dev));
3855 CPUArchId *core_slot;
3856 int index;
3857 unsigned int smp_threads = machine->smp.threads;
3859 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3860 error_setg(&local_err, "CPU hotplug not supported for this machine");
3861 goto out;
3864 if (strcmp(base_core_type, type)) {
3865 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3866 goto out;
3869 if (cc->core_id % smp_threads) {
3870 error_setg(&local_err, "invalid core id %d", cc->core_id);
3871 goto out;
3875 * In general we should have homogeneous threads-per-core, but old
3876 * (pre hotplug support) machine types allow the last core to have
3877 * reduced threads as a compatibility hack for when we allowed
3878 * total vcpus not a multiple of threads-per-core.
3880 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3881 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3882 cc->nr_threads, smp_threads);
3883 goto out;
3886 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3887 if (!core_slot) {
3888 error_setg(&local_err, "core id %d out of range", cc->core_id);
3889 goto out;
3892 if (core_slot->cpu) {
3893 error_setg(&local_err, "core %d already populated", cc->core_id);
3894 goto out;
3897 numa_cpu_pre_plug(core_slot, dev, &local_err);
3899 out:
3900 error_propagate(errp, local_err);
3903 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3904 void *fdt, int *fdt_start_offset, Error **errp)
3906 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3907 int intc_phandle;
3909 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3910 if (intc_phandle <= 0) {
3911 return -1;
3914 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3915 fdt_start_offset)) {
3916 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3917 return -1;
3920 /* generally SLOF creates these, for hotplug it's up to QEMU */
3921 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3923 return 0;
3926 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3927 Error **errp)
3929 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3930 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3931 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3932 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3934 if (dev->hotplugged && !smc->dr_phb_enabled) {
3935 error_setg(errp, "PHB hotplug not supported for this machine");
3936 return;
3939 if (sphb->index == (uint32_t)-1) {
3940 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3941 return;
3945 * This will check that sphb->index doesn't exceed the maximum number of
3946 * PHBs for the current machine type.
3948 smc->phb_placement(spapr, sphb->index,
3949 &sphb->buid, &sphb->io_win_addr,
3950 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3951 windows_supported, sphb->dma_liobn,
3952 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3953 errp);
3956 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3957 Error **errp)
3959 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3960 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3961 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3962 SpaprDrc *drc;
3963 bool hotplugged = spapr_drc_hotplugged(dev);
3964 Error *local_err = NULL;
3966 if (!smc->dr_phb_enabled) {
3967 return;
3970 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3971 /* hotplug hooks should check it's enabled before getting this far */
3972 assert(drc);
3974 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3975 if (local_err) {
3976 error_propagate(errp, local_err);
3977 return;
3980 if (hotplugged) {
3981 spapr_hotplug_req_add_by_index(drc);
3982 } else {
3983 spapr_drc_reset(drc);
3987 void spapr_phb_release(DeviceState *dev)
3989 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3991 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3992 object_unparent(OBJECT(dev));
3995 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3997 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4000 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4001 DeviceState *dev, Error **errp)
4003 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4004 SpaprDrc *drc;
4006 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4007 assert(drc);
4009 if (!spapr_drc_unplug_requested(drc)) {
4010 spapr_drc_detach(drc);
4011 spapr_hotplug_req_remove_by_index(drc);
4015 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4016 Error **errp)
4018 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4021 if (spapr->tpm_proxy != NULL) {
4022 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4023 return;
4026 spapr->tpm_proxy = tpm_proxy;
4029 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4031 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4033 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4034 object_unparent(OBJECT(dev));
4035 spapr->tpm_proxy = NULL;
4038 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4039 DeviceState *dev, Error **errp)
4041 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4042 spapr_memory_plug(hotplug_dev, dev, errp);
4043 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4044 spapr_core_plug(hotplug_dev, dev, errp);
4045 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4046 spapr_phb_plug(hotplug_dev, dev, errp);
4047 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4048 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4052 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4053 DeviceState *dev, Error **errp)
4055 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4056 spapr_memory_unplug(hotplug_dev, dev);
4057 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4058 spapr_core_unplug(hotplug_dev, dev);
4059 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4060 spapr_phb_unplug(hotplug_dev, dev);
4061 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4062 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4066 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4067 DeviceState *dev, Error **errp)
4069 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4070 MachineClass *mc = MACHINE_GET_CLASS(sms);
4071 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4073 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4074 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4075 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4076 } else {
4077 /* NOTE: this means there is a window after guest reset, prior to
4078 * CAS negotiation, where unplug requests will fail due to the
4079 * capability not being detected yet. This is a bit different than
4080 * the case with PCI unplug, where the events will be queued and
4081 * eventually handled by the guest after boot
4083 error_setg(errp, "Memory hot unplug not supported for this guest");
4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4086 if (!mc->has_hotpluggable_cpus) {
4087 error_setg(errp, "CPU hot unplug not supported on this machine");
4088 return;
4090 spapr_core_unplug_request(hotplug_dev, dev, errp);
4091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4092 if (!smc->dr_phb_enabled) {
4093 error_setg(errp, "PHB hot unplug not supported on this machine");
4094 return;
4096 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4098 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4102 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4103 DeviceState *dev, Error **errp)
4105 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4106 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4107 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4108 spapr_core_pre_plug(hotplug_dev, dev, errp);
4109 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4110 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4114 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4115 DeviceState *dev)
4117 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4118 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4119 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4120 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4121 return HOTPLUG_HANDLER(machine);
4123 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4124 PCIDevice *pcidev = PCI_DEVICE(dev);
4125 PCIBus *root = pci_device_root_bus(pcidev);
4126 SpaprPhbState *phb =
4127 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4128 TYPE_SPAPR_PCI_HOST_BRIDGE);
4130 if (phb) {
4131 return HOTPLUG_HANDLER(phb);
4134 return NULL;
4137 static CpuInstanceProperties
4138 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4140 CPUArchId *core_slot;
4141 MachineClass *mc = MACHINE_GET_CLASS(machine);
4143 /* make sure possible_cpu are intialized */
4144 mc->possible_cpu_arch_ids(machine);
4145 /* get CPU core slot containing thread that matches cpu_index */
4146 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4147 assert(core_slot);
4148 return core_slot->props;
4151 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4153 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4156 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4158 int i;
4159 unsigned int smp_threads = machine->smp.threads;
4160 unsigned int smp_cpus = machine->smp.cpus;
4161 const char *core_type;
4162 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4163 MachineClass *mc = MACHINE_GET_CLASS(machine);
4165 if (!mc->has_hotpluggable_cpus) {
4166 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4168 if (machine->possible_cpus) {
4169 assert(machine->possible_cpus->len == spapr_max_cores);
4170 return machine->possible_cpus;
4173 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4174 if (!core_type) {
4175 error_report("Unable to find sPAPR CPU Core definition");
4176 exit(1);
4179 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4180 sizeof(CPUArchId) * spapr_max_cores);
4181 machine->possible_cpus->len = spapr_max_cores;
4182 for (i = 0; i < machine->possible_cpus->len; i++) {
4183 int core_id = i * smp_threads;
4185 machine->possible_cpus->cpus[i].type = core_type;
4186 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4187 machine->possible_cpus->cpus[i].arch_id = core_id;
4188 machine->possible_cpus->cpus[i].props.has_core_id = true;
4189 machine->possible_cpus->cpus[i].props.core_id = core_id;
4191 return machine->possible_cpus;
4194 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4195 uint64_t *buid, hwaddr *pio,
4196 hwaddr *mmio32, hwaddr *mmio64,
4197 unsigned n_dma, uint32_t *liobns,
4198 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4201 * New-style PHB window placement.
4203 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4204 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4205 * windows.
4207 * Some guest kernels can't work with MMIO windows above 1<<46
4208 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4210 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4211 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4212 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4213 * 1TiB 64-bit MMIO windows for each PHB.
4215 const uint64_t base_buid = 0x800000020000000ULL;
4216 int i;
4218 /* Sanity check natural alignments */
4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4220 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4221 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4222 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4223 /* Sanity check bounds */
4224 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4225 SPAPR_PCI_MEM32_WIN_SIZE);
4226 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4227 SPAPR_PCI_MEM64_WIN_SIZE);
4229 if (index >= SPAPR_MAX_PHBS) {
4230 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4231 SPAPR_MAX_PHBS - 1);
4232 return;
4235 *buid = base_buid + index;
4236 for (i = 0; i < n_dma; ++i) {
4237 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4240 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4241 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4242 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4244 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4245 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4248 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4250 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4252 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4255 static void spapr_ics_resend(XICSFabric *dev)
4257 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4259 ics_resend(spapr->ics);
4262 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4264 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4266 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4269 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4270 Monitor *mon)
4272 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4274 spapr->irq->print_info(spapr, mon);
4275 monitor_printf(mon, "irqchip: %s\n",
4276 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4279 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4281 return cpu->vcpu_id;
4284 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4286 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4287 MachineState *ms = MACHINE(spapr);
4288 int vcpu_id;
4290 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4292 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4293 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4294 error_append_hint(errp, "Adjust the number of cpus to %d "
4295 "or try to raise the number of threads per core\n",
4296 vcpu_id * ms->smp.threads / spapr->vsmt);
4297 return;
4300 cpu->vcpu_id = vcpu_id;
4303 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4305 CPUState *cs;
4307 CPU_FOREACH(cs) {
4308 PowerPCCPU *cpu = POWERPC_CPU(cs);
4310 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4311 return cpu;
4315 return NULL;
4318 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4320 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4322 /* These are only called by TCG, KVM maintains dispatch state */
4324 spapr_cpu->prod = false;
4325 if (spapr_cpu->vpa_addr) {
4326 CPUState *cs = CPU(cpu);
4327 uint32_t dispatch;
4329 dispatch = ldl_be_phys(cs->as,
4330 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4331 dispatch++;
4332 if ((dispatch & 1) != 0) {
4333 qemu_log_mask(LOG_GUEST_ERROR,
4334 "VPA: incorrect dispatch counter value for "
4335 "dispatched partition %u, correcting.\n", dispatch);
4336 dispatch++;
4338 stl_be_phys(cs->as,
4339 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4343 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4345 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4347 if (spapr_cpu->vpa_addr) {
4348 CPUState *cs = CPU(cpu);
4349 uint32_t dispatch;
4351 dispatch = ldl_be_phys(cs->as,
4352 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4353 dispatch++;
4354 if ((dispatch & 1) != 1) {
4355 qemu_log_mask(LOG_GUEST_ERROR,
4356 "VPA: incorrect dispatch counter value for "
4357 "preempted partition %u, correcting.\n", dispatch);
4358 dispatch++;
4360 stl_be_phys(cs->as,
4361 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4365 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4367 MachineClass *mc = MACHINE_CLASS(oc);
4368 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4369 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4370 NMIClass *nc = NMI_CLASS(oc);
4371 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4372 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4373 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4374 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4376 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4377 mc->ignore_boot_device_suffixes = true;
4380 * We set up the default / latest behaviour here. The class_init
4381 * functions for the specific versioned machine types can override
4382 * these details for backwards compatibility
4384 mc->init = spapr_machine_init;
4385 mc->reset = spapr_machine_reset;
4386 mc->block_default_type = IF_SCSI;
4387 mc->max_cpus = 1024;
4388 mc->no_parallel = 1;
4389 mc->default_boot_order = "";
4390 mc->default_ram_size = 512 * MiB;
4391 mc->default_display = "std";
4392 mc->kvm_type = spapr_kvm_type;
4393 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4394 mc->pci_allow_0_address = true;
4395 assert(!mc->get_hotplug_handler);
4396 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4397 hc->pre_plug = spapr_machine_device_pre_plug;
4398 hc->plug = spapr_machine_device_plug;
4399 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4400 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4401 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4402 hc->unplug_request = spapr_machine_device_unplug_request;
4403 hc->unplug = spapr_machine_device_unplug;
4405 smc->dr_lmb_enabled = true;
4406 smc->update_dt_enabled = true;
4407 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4408 mc->has_hotpluggable_cpus = true;
4409 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4410 fwc->get_dev_path = spapr_get_fw_dev_path;
4411 nc->nmi_monitor_handler = spapr_nmi;
4412 smc->phb_placement = spapr_phb_placement;
4413 vhc->hypercall = emulate_spapr_hypercall;
4414 vhc->hpt_mask = spapr_hpt_mask;
4415 vhc->map_hptes = spapr_map_hptes;
4416 vhc->unmap_hptes = spapr_unmap_hptes;
4417 vhc->hpte_set_c = spapr_hpte_set_c;
4418 vhc->hpte_set_r = spapr_hpte_set_r;
4419 vhc->get_pate = spapr_get_pate;
4420 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4421 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4422 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4423 xic->ics_get = spapr_ics_get;
4424 xic->ics_resend = spapr_ics_resend;
4425 xic->icp_get = spapr_icp_get;
4426 ispc->print_info = spapr_pic_print_info;
4427 /* Force NUMA node memory size to be a multiple of
4428 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4429 * in which LMBs are represented and hot-added
4431 mc->numa_mem_align_shift = 28;
4432 mc->numa_mem_supported = true;
4434 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4435 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4436 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4437 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4438 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4439 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4440 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4441 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4442 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4443 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4444 spapr_caps_add_properties(smc, &error_abort);
4445 smc->irq = &spapr_irq_dual;
4446 smc->dr_phb_enabled = true;
4447 smc->linux_pci_probe = true;
4450 static const TypeInfo spapr_machine_info = {
4451 .name = TYPE_SPAPR_MACHINE,
4452 .parent = TYPE_MACHINE,
4453 .abstract = true,
4454 .instance_size = sizeof(SpaprMachineState),
4455 .instance_init = spapr_instance_init,
4456 .instance_finalize = spapr_machine_finalizefn,
4457 .class_size = sizeof(SpaprMachineClass),
4458 .class_init = spapr_machine_class_init,
4459 .interfaces = (InterfaceInfo[]) {
4460 { TYPE_FW_PATH_PROVIDER },
4461 { TYPE_NMI },
4462 { TYPE_HOTPLUG_HANDLER },
4463 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4464 { TYPE_XICS_FABRIC },
4465 { TYPE_INTERRUPT_STATS_PROVIDER },
4470 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4471 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4472 void *data) \
4474 MachineClass *mc = MACHINE_CLASS(oc); \
4475 spapr_machine_##suffix##_class_options(mc); \
4476 if (latest) { \
4477 mc->alias = "pseries"; \
4478 mc->is_default = 1; \
4481 static const TypeInfo spapr_machine_##suffix##_info = { \
4482 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4483 .parent = TYPE_SPAPR_MACHINE, \
4484 .class_init = spapr_machine_##suffix##_class_init, \
4485 }; \
4486 static void spapr_machine_register_##suffix(void) \
4488 type_register(&spapr_machine_##suffix##_info); \
4490 type_init(spapr_machine_register_##suffix)
4493 * pseries-4.2
4495 static void spapr_machine_4_2_class_options(MachineClass *mc)
4497 /* Defaults for the latest behaviour inherited from the base class */
4500 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4503 * pseries-4.1
4505 static void spapr_machine_4_1_class_options(MachineClass *mc)
4507 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4508 static GlobalProperty compat[] = {
4509 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4510 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4513 spapr_machine_4_2_class_options(mc);
4514 smc->linux_pci_probe = false;
4515 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4516 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4519 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4522 * pseries-4.0
4524 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4525 uint64_t *buid, hwaddr *pio,
4526 hwaddr *mmio32, hwaddr *mmio64,
4527 unsigned n_dma, uint32_t *liobns,
4528 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4530 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4531 nv2gpa, nv2atsd, errp);
4532 *nv2gpa = 0;
4533 *nv2atsd = 0;
4536 static void spapr_machine_4_0_class_options(MachineClass *mc)
4538 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4540 spapr_machine_4_1_class_options(mc);
4541 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4542 smc->phb_placement = phb_placement_4_0;
4543 smc->irq = &spapr_irq_xics;
4544 smc->pre_4_1_migration = true;
4547 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4550 * pseries-3.1
4552 static void spapr_machine_3_1_class_options(MachineClass *mc)
4554 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4556 spapr_machine_4_0_class_options(mc);
4557 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4559 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4560 smc->update_dt_enabled = false;
4561 smc->dr_phb_enabled = false;
4562 smc->broken_host_serial_model = true;
4563 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4564 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4565 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4566 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4569 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4572 * pseries-3.0
4575 static void spapr_machine_3_0_class_options(MachineClass *mc)
4577 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4579 spapr_machine_3_1_class_options(mc);
4580 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4582 smc->legacy_irq_allocation = true;
4583 smc->irq = &spapr_irq_xics_legacy;
4586 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4589 * pseries-2.12
4591 static void spapr_machine_2_12_class_options(MachineClass *mc)
4593 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4594 static GlobalProperty compat[] = {
4595 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4596 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4599 spapr_machine_3_0_class_options(mc);
4600 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4601 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4603 /* We depend on kvm_enabled() to choose a default value for the
4604 * hpt-max-page-size capability. Of course we can't do it here
4605 * because this is too early and the HW accelerator isn't initialzed
4606 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4608 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4611 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4613 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4615 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4617 spapr_machine_2_12_class_options(mc);
4618 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4619 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4620 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4623 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4626 * pseries-2.11
4629 static void spapr_machine_2_11_class_options(MachineClass *mc)
4631 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4633 spapr_machine_2_12_class_options(mc);
4634 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4635 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4638 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4641 * pseries-2.10
4644 static void spapr_machine_2_10_class_options(MachineClass *mc)
4646 spapr_machine_2_11_class_options(mc);
4647 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4650 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4653 * pseries-2.9
4656 static void spapr_machine_2_9_class_options(MachineClass *mc)
4658 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4659 static GlobalProperty compat[] = {
4660 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4663 spapr_machine_2_10_class_options(mc);
4664 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4665 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4666 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4667 smc->pre_2_10_has_unused_icps = true;
4668 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4671 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4674 * pseries-2.8
4677 static void spapr_machine_2_8_class_options(MachineClass *mc)
4679 static GlobalProperty compat[] = {
4680 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4683 spapr_machine_2_9_class_options(mc);
4684 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4685 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686 mc->numa_mem_align_shift = 23;
4689 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4692 * pseries-2.7
4695 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4696 uint64_t *buid, hwaddr *pio,
4697 hwaddr *mmio32, hwaddr *mmio64,
4698 unsigned n_dma, uint32_t *liobns,
4699 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4701 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4702 const uint64_t base_buid = 0x800000020000000ULL;
4703 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4704 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4705 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4706 const uint32_t max_index = 255;
4707 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4709 uint64_t ram_top = MACHINE(spapr)->ram_size;
4710 hwaddr phb0_base, phb_base;
4711 int i;
4713 /* Do we have device memory? */
4714 if (MACHINE(spapr)->maxram_size > ram_top) {
4715 /* Can't just use maxram_size, because there may be an
4716 * alignment gap between normal and device memory regions
4718 ram_top = MACHINE(spapr)->device_memory->base +
4719 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4722 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4724 if (index > max_index) {
4725 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4726 max_index);
4727 return;
4730 *buid = base_buid + index;
4731 for (i = 0; i < n_dma; ++i) {
4732 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4735 phb_base = phb0_base + index * phb_spacing;
4736 *pio = phb_base + pio_offset;
4737 *mmio32 = phb_base + mmio_offset;
4739 * We don't set the 64-bit MMIO window, relying on the PHB's
4740 * fallback behaviour of automatically splitting a large "32-bit"
4741 * window into contiguous 32-bit and 64-bit windows
4744 *nv2gpa = 0;
4745 *nv2atsd = 0;
4748 static void spapr_machine_2_7_class_options(MachineClass *mc)
4750 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4751 static GlobalProperty compat[] = {
4752 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4753 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4754 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4755 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4758 spapr_machine_2_8_class_options(mc);
4759 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4760 mc->default_machine_opts = "modern-hotplug-events=off";
4761 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4762 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4763 smc->phb_placement = phb_placement_2_7;
4766 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4769 * pseries-2.6
4772 static void spapr_machine_2_6_class_options(MachineClass *mc)
4774 static GlobalProperty compat[] = {
4775 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4778 spapr_machine_2_7_class_options(mc);
4779 mc->has_hotpluggable_cpus = false;
4780 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4781 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4784 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4787 * pseries-2.5
4790 static void spapr_machine_2_5_class_options(MachineClass *mc)
4792 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4793 static GlobalProperty compat[] = {
4794 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4797 spapr_machine_2_6_class_options(mc);
4798 smc->use_ohci_by_default = true;
4799 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4800 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4803 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4806 * pseries-2.4
4809 static void spapr_machine_2_4_class_options(MachineClass *mc)
4811 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4813 spapr_machine_2_5_class_options(mc);
4814 smc->dr_lmb_enabled = false;
4815 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4818 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4821 * pseries-2.3
4824 static void spapr_machine_2_3_class_options(MachineClass *mc)
4826 static GlobalProperty compat[] = {
4827 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4829 spapr_machine_2_4_class_options(mc);
4830 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4831 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4833 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4836 * pseries-2.2
4839 static void spapr_machine_2_2_class_options(MachineClass *mc)
4841 static GlobalProperty compat[] = {
4842 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4845 spapr_machine_2_3_class_options(mc);
4846 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4847 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4848 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4850 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4853 * pseries-2.1
4856 static void spapr_machine_2_1_class_options(MachineClass *mc)
4858 spapr_machine_2_2_class_options(mc);
4859 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4861 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4863 static void spapr_machine_register_types(void)
4865 type_register_static(&spapr_machine_info);
4868 type_init(spapr_machine_register_types)