3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
17 #ifndef CONFIG_USER_ONLY
18 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
19 int access_type
, ARMMMUIdx mmu_idx
,
20 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
21 target_ulong
*page_size
, uint32_t *fsr
,
24 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
25 int access_type
, ARMMMUIdx mmu_idx
,
26 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
27 target_ulong
*page_size_ptr
, uint32_t *fsr
,
30 /* Definitions for the PMCCNTR and PMCR registers */
36 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
40 /* VFP data registers are always little-endian. */
41 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
43 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
46 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
47 /* Aliases for Q regs. */
50 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
51 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
55 switch (reg
- nregs
) {
56 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
57 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
58 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
63 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
67 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
69 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
72 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
75 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
76 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
80 switch (reg
- nregs
) {
81 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
82 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
83 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
88 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
92 /* 128 bit FP register */
93 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
94 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
98 stl_p(buf
, vfp_get_fpsr(env
));
102 stl_p(buf
, vfp_get_fpcr(env
));
109 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
113 /* 128 bit FP register */
114 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
115 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
119 vfp_set_fpsr(env
, ldl_p(buf
));
123 vfp_set_fpcr(env
, ldl_p(buf
));
130 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
132 assert(ri
->fieldoffset
);
133 if (cpreg_field_is_64bit(ri
)) {
134 return CPREG_FIELD64(env
, ri
);
136 return CPREG_FIELD32(env
, ri
);
140 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
143 assert(ri
->fieldoffset
);
144 if (cpreg_field_is_64bit(ri
)) {
145 CPREG_FIELD64(env
, ri
) = value
;
147 CPREG_FIELD32(env
, ri
) = value
;
151 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
153 return (char *)env
+ ri
->fieldoffset
;
156 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
158 /* Raw read of a coprocessor register (as needed for migration, etc). */
159 if (ri
->type
& ARM_CP_CONST
) {
160 return ri
->resetvalue
;
161 } else if (ri
->raw_readfn
) {
162 return ri
->raw_readfn(env
, ri
);
163 } else if (ri
->readfn
) {
164 return ri
->readfn(env
, ri
);
166 return raw_read(env
, ri
);
170 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
173 /* Raw write of a coprocessor register (as needed for migration, etc).
174 * Note that constant registers are treated as write-ignored; the
175 * caller should check for success by whether a readback gives the
178 if (ri
->type
& ARM_CP_CONST
) {
180 } else if (ri
->raw_writefn
) {
181 ri
->raw_writefn(env
, ri
, v
);
182 } else if (ri
->writefn
) {
183 ri
->writefn(env
, ri
, v
);
185 raw_write(env
, ri
, v
);
189 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
191 /* Return true if the regdef would cause an assertion if you called
192 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
193 * program bug for it not to have the NO_RAW flag).
194 * NB that returning false here doesn't necessarily mean that calling
195 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
196 * read/write access functions which are safe for raw use" from "has
197 * read/write access functions which have side effects but has forgotten
198 * to provide raw access functions".
199 * The tests here line up with the conditions in read/write_raw_cp_reg()
200 * and assertions in raw_read()/raw_write().
202 if ((ri
->type
& ARM_CP_CONST
) ||
204 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
210 bool write_cpustate_to_list(ARMCPU
*cpu
)
212 /* Write the coprocessor state from cpu->env to the (index,value) list. */
216 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
217 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
218 const ARMCPRegInfo
*ri
;
220 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
225 if (ri
->type
& ARM_CP_NO_RAW
) {
228 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
233 bool write_list_to_cpustate(ARMCPU
*cpu
)
238 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
239 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
240 uint64_t v
= cpu
->cpreg_values
[i
];
241 const ARMCPRegInfo
*ri
;
243 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
248 if (ri
->type
& ARM_CP_NO_RAW
) {
251 /* Write value and confirm it reads back as written
252 * (to catch read-only registers and partially read-only
253 * registers where the incoming migration value doesn't match)
255 write_raw_cp_reg(&cpu
->env
, ri
, v
);
256 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
263 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
265 ARMCPU
*cpu
= opaque
;
267 const ARMCPRegInfo
*ri
;
269 regidx
= *(uint32_t *)key
;
270 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
272 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
273 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
274 /* The value array need not be initialized at this point */
275 cpu
->cpreg_array_len
++;
279 static void count_cpreg(gpointer key
, gpointer opaque
)
281 ARMCPU
*cpu
= opaque
;
283 const ARMCPRegInfo
*ri
;
285 regidx
= *(uint32_t *)key
;
286 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
288 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
289 cpu
->cpreg_array_len
++;
293 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
295 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
296 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
307 void init_cpreg_list(ARMCPU
*cpu
)
309 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
310 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
316 keys
= g_list_sort(keys
, cpreg_key_compare
);
318 cpu
->cpreg_array_len
= 0;
320 g_list_foreach(keys
, count_cpreg
, cpu
);
322 arraylen
= cpu
->cpreg_array_len
;
323 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
324 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
325 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
326 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
327 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
328 cpu
->cpreg_array_len
= 0;
330 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
332 assert(cpu
->cpreg_array_len
== arraylen
);
338 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
339 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
341 * access_el3_aa32ns: Used to check AArch32 register views.
342 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
344 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
345 const ARMCPRegInfo
*ri
)
347 bool secure
= arm_is_secure_below_el3(env
);
349 assert(!arm_el_is_aa64(env
, 3));
351 return CP_ACCESS_TRAP_UNCATEGORIZED
;
356 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
357 const ARMCPRegInfo
*ri
)
359 if (!arm_el_is_aa64(env
, 3)) {
360 return access_el3_aa32ns(env
, ri
);
365 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
367 ARMCPU
*cpu
= arm_env_get_cpu(env
);
369 raw_write(env
, ri
, value
);
370 tlb_flush(CPU(cpu
), 1); /* Flush TLB as domain not tracked in TLB */
373 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
375 ARMCPU
*cpu
= arm_env_get_cpu(env
);
377 if (raw_read(env
, ri
) != value
) {
378 /* Unlike real hardware the qemu TLB uses virtual addresses,
379 * not modified virtual addresses, so this causes a TLB flush.
381 tlb_flush(CPU(cpu
), 1);
382 raw_write(env
, ri
, value
);
386 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
389 ARMCPU
*cpu
= arm_env_get_cpu(env
);
391 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_MPU
)
392 && !extended_addresses_enabled(env
)) {
393 /* For VMSA (when not using the LPAE long descriptor page table
394 * format) this register includes the ASID, so do a TLB flush.
395 * For PMSA it is purely a process ID and no action is needed.
397 tlb_flush(CPU(cpu
), 1);
399 raw_write(env
, ri
, value
);
402 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
405 /* Invalidate all (TLBIALL) */
406 ARMCPU
*cpu
= arm_env_get_cpu(env
);
408 tlb_flush(CPU(cpu
), 1);
411 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
414 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
415 ARMCPU
*cpu
= arm_env_get_cpu(env
);
417 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
420 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
423 /* Invalidate by ASID (TLBIASID) */
424 ARMCPU
*cpu
= arm_env_get_cpu(env
);
426 tlb_flush(CPU(cpu
), value
== 0);
429 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
432 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
433 ARMCPU
*cpu
= arm_env_get_cpu(env
);
435 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
438 /* IS variants of TLB operations must affect all cores */
439 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
444 CPU_FOREACH(other_cs
) {
445 tlb_flush(other_cs
, 1);
449 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
454 CPU_FOREACH(other_cs
) {
455 tlb_flush(other_cs
, value
== 0);
459 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
464 CPU_FOREACH(other_cs
) {
465 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
469 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
474 CPU_FOREACH(other_cs
) {
475 tlb_flush_page(other_cs
, value
& TARGET_PAGE_MASK
);
479 static const ARMCPRegInfo cp_reginfo
[] = {
480 /* Define the secure and non-secure FCSE identifier CP registers
481 * separately because there is no secure bank in V8 (no _EL3). This allows
482 * the secure register to be properly reset and migrated. There is also no
483 * v8 EL1 version of the register so the non-secure instance stands alone.
485 { .name
= "FCSEIDR(NS)",
486 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
487 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
488 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
489 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
490 { .name
= "FCSEIDR(S)",
491 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
492 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
493 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
494 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
495 /* Define the secure and non-secure context identifier CP registers
496 * separately because there is no secure bank in V8 (no _EL3). This allows
497 * the secure register to be properly reset and migrated. In the
498 * non-secure case, the 32-bit register will have reset and migration
499 * disabled during registration as it is handled by the 64-bit instance.
501 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
502 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
503 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
504 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
505 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
506 { .name
= "CONTEXTIDR(S)", .state
= ARM_CP_STATE_AA32
,
507 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
508 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
509 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
510 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
514 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
515 /* NB: Some of these registers exist in v8 but with more precise
516 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
518 /* MMU Domain access control / MPU write buffer control */
520 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
521 .access
= PL1_RW
, .resetvalue
= 0,
522 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
523 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
524 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
525 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
526 * For v6 and v5, these mappings are overly broad.
528 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
529 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
530 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
531 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
532 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
533 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
534 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
535 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
536 /* Cache maintenance ops; some of this space may be overridden later. */
537 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
538 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
539 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
543 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
544 /* Not all pre-v6 cores implemented this WFI, so this is slightly
547 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
548 .access
= PL1_W
, .type
= ARM_CP_WFI
},
552 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
553 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
554 * is UNPREDICTABLE; we choose to NOP as most implementations do).
556 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
557 .access
= PL1_W
, .type
= ARM_CP_WFI
},
558 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
559 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
560 * OMAPCP will override this space.
562 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
563 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
565 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
566 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
568 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
569 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
570 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
572 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
573 * implementing it as RAZ means the "debug architecture version" bits
574 * will read as a reserved value, which should cause Linux to not try
575 * to use the debug hardware.
577 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
578 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
579 /* MMU TLB control. Note that the wildcarding means we cover not just
580 * the unified TLB ops but also the dside/iside/inner-shareable variants.
582 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
583 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
584 .type
= ARM_CP_NO_RAW
},
585 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
586 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
587 .type
= ARM_CP_NO_RAW
},
588 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
589 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
590 .type
= ARM_CP_NO_RAW
},
591 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
592 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
593 .type
= ARM_CP_NO_RAW
},
594 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
595 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
596 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
597 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
601 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
606 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
607 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
608 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
609 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
610 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
612 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
613 /* VFP coprocessor: cp10 & cp11 [23:20] */
614 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
616 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
617 /* ASEDIS [31] bit is RAO/WI */
621 /* VFPv3 and upwards with NEON implement 32 double precision
622 * registers (D0-D31).
624 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
625 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
626 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
632 env
->cp15
.cpacr_el1
= value
;
635 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
637 if (arm_feature(env
, ARM_FEATURE_V8
)) {
638 /* Check if CPACR accesses are to be trapped to EL2 */
639 if (arm_current_el(env
) == 1 &&
640 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
641 return CP_ACCESS_TRAP_EL2
;
642 /* Check if CPACR accesses are to be trapped to EL3 */
643 } else if (arm_current_el(env
) < 3 &&
644 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
645 return CP_ACCESS_TRAP_EL3
;
652 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
654 /* Check if CPTR accesses are set to trap to EL3 */
655 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
656 return CP_ACCESS_TRAP_EL3
;
662 static const ARMCPRegInfo v6_cp_reginfo
[] = {
663 /* prefetch by MVA in v6, NOP in v7 */
664 { .name
= "MVA_prefetch",
665 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
666 .access
= PL1_W
, .type
= ARM_CP_NOP
},
667 /* We need to break the TB after ISB to execute self-modifying code
668 * correctly and also to take any pending interrupts immediately.
669 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
671 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
672 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
673 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
674 .access
= PL0_W
, .type
= ARM_CP_NOP
},
675 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
676 .access
= PL0_W
, .type
= ARM_CP_NOP
},
677 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
679 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
680 offsetof(CPUARMState
, cp15
.ifar_ns
) },
682 /* Watchpoint Fault Address Register : should actually only be present
683 * for 1136, 1176, 11MPCore.
685 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
686 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
687 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
688 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
689 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
690 .resetvalue
= 0, .writefn
= cpacr_write
},
694 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
696 /* Performance monitor registers user accessibility is controlled
699 if (arm_current_el(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
700 return CP_ACCESS_TRAP
;
705 #ifndef CONFIG_USER_ONLY
707 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
709 /* This does not support checking PMCCFILTR_EL0 register */
711 if (!(env
->cp15
.c9_pmcr
& PMCRE
)) {
718 void pmccntr_sync(CPUARMState
*env
)
722 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
723 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
725 if (env
->cp15
.c9_pmcr
& PMCRD
) {
726 /* Increment once every 64 processor clock cycles */
730 if (arm_ccnt_enabled(env
)) {
731 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
735 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
741 /* The counter has been reset */
742 env
->cp15
.c15_ccnt
= 0;
745 /* only the DP, X, D and E bits are writable */
746 env
->cp15
.c9_pmcr
&= ~0x39;
747 env
->cp15
.c9_pmcr
|= (value
& 0x39);
752 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
754 uint64_t total_ticks
;
756 if (!arm_ccnt_enabled(env
)) {
757 /* Counter is disabled, do not change value */
758 return env
->cp15
.c15_ccnt
;
761 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
762 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
764 if (env
->cp15
.c9_pmcr
& PMCRD
) {
765 /* Increment once every 64 processor clock cycles */
768 return total_ticks
- env
->cp15
.c15_ccnt
;
771 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
774 uint64_t total_ticks
;
776 if (!arm_ccnt_enabled(env
)) {
777 /* Counter is disabled, set the absolute value */
778 env
->cp15
.c15_ccnt
= value
;
782 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
783 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
785 if (env
->cp15
.c9_pmcr
& PMCRD
) {
786 /* Increment once every 64 processor clock cycles */
789 env
->cp15
.c15_ccnt
= total_ticks
- value
;
792 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
795 uint64_t cur_val
= pmccntr_read(env
, NULL
);
797 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
800 #else /* CONFIG_USER_ONLY */
802 void pmccntr_sync(CPUARMState
*env
)
808 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
812 env
->cp15
.pmccfiltr_el0
= value
& 0x7E000000;
816 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
820 env
->cp15
.c9_pmcnten
|= value
;
823 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
827 env
->cp15
.c9_pmcnten
&= ~value
;
830 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
833 env
->cp15
.c9_pmovsr
&= ~value
;
836 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
839 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
842 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
845 env
->cp15
.c9_pmuserenr
= value
& 1;
848 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
851 /* We have no event counters so only the C bit can be changed */
853 env
->cp15
.c9_pminten
|= value
;
856 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
860 env
->cp15
.c9_pminten
&= ~value
;
863 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
866 /* Note that even though the AArch64 view of this register has bits
867 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
868 * architectural requirements for bits which are RES0 only in some
869 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
870 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
872 raw_write(env
, ri
, value
& ~0x1FULL
);
875 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
877 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
878 * For bits that vary between AArch32/64, code needs to check the
879 * current execution mode before directly using the feature bit.
881 uint32_t valid_mask
= SCR_AARCH64_MASK
| SCR_AARCH32_MASK
;
883 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
884 valid_mask
&= ~SCR_HCE
;
886 /* On ARMv7, SMD (or SCD as it is called in v7) is only
887 * supported if EL2 exists. The bit is UNK/SBZP when
888 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
889 * when EL2 is unavailable.
890 * On ARMv8, this bit is always available.
892 if (arm_feature(env
, ARM_FEATURE_V7
) &&
893 !arm_feature(env
, ARM_FEATURE_V8
)) {
894 valid_mask
&= ~SCR_SMD
;
898 /* Clear all-context RES0 bits. */
900 raw_write(env
, ri
, value
);
903 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
905 ARMCPU
*cpu
= arm_env_get_cpu(env
);
907 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
910 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
911 ri
->secure
& ARM_CP_SECSTATE_S
);
913 return cpu
->ccsidr
[index
];
916 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
919 raw_write(env
, ri
, value
& 0xf);
922 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
924 CPUState
*cs
= ENV_GET_CPU(env
);
927 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
930 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
933 /* External aborts are not possible in QEMU so A bit is always clear */
937 static const ARMCPRegInfo v7_cp_reginfo
[] = {
938 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
939 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
940 .access
= PL1_W
, .type
= ARM_CP_NOP
},
941 /* Performance monitors are implementation defined in v7,
942 * but with an ARM recommended set of registers, which we
943 * follow (although we don't actually implement any counters)
945 * Performance registers fall into three categories:
946 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
947 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
948 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
949 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
950 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
952 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
953 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
954 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
955 .writefn
= pmcntenset_write
,
956 .accessfn
= pmreg_access
,
957 .raw_writefn
= raw_write
},
958 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
959 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
960 .access
= PL0_RW
, .accessfn
= pmreg_access
,
961 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
962 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
963 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
965 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
966 .accessfn
= pmreg_access
,
967 .writefn
= pmcntenclr_write
,
968 .type
= ARM_CP_ALIAS
},
969 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
970 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
971 .access
= PL0_RW
, .accessfn
= pmreg_access
,
972 .type
= ARM_CP_ALIAS
,
973 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
974 .writefn
= pmcntenclr_write
},
975 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
976 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
977 .accessfn
= pmreg_access
,
978 .writefn
= pmovsr_write
,
979 .raw_writefn
= raw_write
},
980 /* Unimplemented so WI. */
981 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
982 .access
= PL0_W
, .accessfn
= pmreg_access
, .type
= ARM_CP_NOP
},
983 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
984 * We choose to RAZ/WI.
986 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
987 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
988 .accessfn
= pmreg_access
},
989 #ifndef CONFIG_USER_ONLY
990 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
991 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_IO
,
992 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
993 .accessfn
= pmreg_access
},
994 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
995 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
996 .access
= PL0_RW
, .accessfn
= pmreg_access
,
998 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1000 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1001 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1002 .writefn
= pmccfiltr_write
,
1003 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1005 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1007 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1009 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
1010 .accessfn
= pmreg_access
, .writefn
= pmxevtyper_write
,
1011 .raw_writefn
= raw_write
},
1012 /* Unimplemented, RAZ/WI. */
1013 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1014 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1015 .accessfn
= pmreg_access
},
1016 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1017 .access
= PL0_R
| PL1_RW
,
1018 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1020 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1021 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1023 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1025 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1026 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1027 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
1028 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1029 .writefn
= pmintenclr_write
, },
1030 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
1031 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
1032 .access
= PL1_RW
, .writefn
= vbar_write
,
1033 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
1034 offsetof(CPUARMState
, cp15
.vbar_ns
) },
1036 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1037 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1038 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1039 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1040 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1041 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1042 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1043 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1044 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1045 * just RAZ for all cores:
1047 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1048 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1049 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1050 /* Auxiliary fault status registers: these also are IMPDEF, and we
1051 * choose to RAZ/WI for all cores.
1053 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1054 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1055 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1056 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1057 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1058 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1059 /* MAIR can just read-as-written because we don't implement caches
1060 * and so don't need to care about memory attributes.
1062 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1063 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1064 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1066 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1067 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1068 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1070 /* For non-long-descriptor page tables these are PRRR and NMRR;
1071 * regardless they still act as reads-as-written for QEMU.
1073 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1074 * allows them to assign the correct fieldoffset based on the endianness
1075 * handled in the field definitions.
1077 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1078 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1079 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1080 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1081 .resetfn
= arm_cp_reset_ignore
},
1082 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1083 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1084 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1085 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1086 .resetfn
= arm_cp_reset_ignore
},
1087 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1088 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1089 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1090 /* 32 bit ITLB invalidates */
1091 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1092 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1093 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1094 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1095 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1096 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1097 /* 32 bit DTLB invalidates */
1098 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1099 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1100 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1101 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1102 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1103 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1104 /* 32 bit TLB invalidates */
1105 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1106 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1107 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1108 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1109 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1110 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1111 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1112 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1116 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1117 /* 32 bit TLB invalidates, Inner Shareable */
1118 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1119 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1120 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1121 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1122 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1123 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1124 .writefn
= tlbiasid_is_write
},
1125 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1126 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1127 .writefn
= tlbimvaa_is_write
},
1131 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1138 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1140 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1141 return CP_ACCESS_TRAP
;
1143 return CP_ACCESS_OK
;
1146 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1147 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1148 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1150 .writefn
= teecr_write
},
1151 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1152 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1153 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1157 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1158 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1159 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1161 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1162 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1164 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1165 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1166 .resetfn
= arm_cp_reset_ignore
},
1167 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1168 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1169 .access
= PL0_R
|PL1_W
,
1170 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1172 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1173 .access
= PL0_R
|PL1_W
,
1174 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1175 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1176 .resetfn
= arm_cp_reset_ignore
},
1177 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1178 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1180 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1181 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1183 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1184 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1189 #ifndef CONFIG_USER_ONLY
1191 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1193 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1194 if (arm_current_el(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1195 return CP_ACCESS_TRAP
;
1197 return CP_ACCESS_OK
;
1200 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
)
1202 unsigned int cur_el
= arm_current_el(env
);
1203 bool secure
= arm_is_secure(env
);
1205 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1207 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1208 return CP_ACCESS_TRAP
;
1211 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1212 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1213 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1214 return CP_ACCESS_TRAP_EL2
;
1216 return CP_ACCESS_OK
;
1219 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
)
1221 unsigned int cur_el
= arm_current_el(env
);
1222 bool secure
= arm_is_secure(env
);
1224 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1225 * EL0[PV]TEN is zero.
1228 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1229 return CP_ACCESS_TRAP
;
1232 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1233 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1234 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1235 return CP_ACCESS_TRAP_EL2
;
1237 return CP_ACCESS_OK
;
1240 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1241 const ARMCPRegInfo
*ri
)
1243 return gt_counter_access(env
, GTIMER_PHYS
);
1246 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1247 const ARMCPRegInfo
*ri
)
1249 return gt_counter_access(env
, GTIMER_VIRT
);
1252 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1254 return gt_timer_access(env
, GTIMER_PHYS
);
1257 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1259 return gt_timer_access(env
, GTIMER_VIRT
);
1262 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1263 const ARMCPRegInfo
*ri
)
1265 /* The AArch64 register view of the secure physical timer is
1266 * always accessible from EL3, and configurably accessible from
1269 switch (arm_current_el(env
)) {
1271 if (!arm_is_secure(env
)) {
1272 return CP_ACCESS_TRAP
;
1274 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1275 return CP_ACCESS_TRAP_EL3
;
1277 return CP_ACCESS_OK
;
1280 return CP_ACCESS_TRAP
;
1282 return CP_ACCESS_OK
;
1284 g_assert_not_reached();
1288 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1290 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1293 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1295 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1298 /* Timer enabled: calculate and set current ISTATUS, irq, and
1299 * reset timer to when ISTATUS next has to change
1301 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1302 cpu
->env
.cp15
.cntvoff_el2
: 0;
1303 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1304 /* Note that this must be unsigned 64 bit arithmetic: */
1305 int istatus
= count
- offset
>= gt
->cval
;
1308 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1309 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1310 (istatus
&& !(gt
->ctl
& 2)));
1312 /* Next transition is when count rolls back over to zero */
1313 nexttick
= UINT64_MAX
;
1315 /* Next transition is when we hit cval */
1316 nexttick
= gt
->cval
+ offset
;
1318 /* Note that the desired next expiry time might be beyond the
1319 * signed-64-bit range of a QEMUTimer -- in this case we just
1320 * set the timer for as far in the future as possible. When the
1321 * timer expires we will reset the timer for any remaining period.
1323 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1324 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1326 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1328 /* Timer disabled: ISTATUS and timer output always clear */
1330 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1331 timer_del(cpu
->gt_timer
[timeridx
]);
1335 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1338 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1340 timer_del(cpu
->gt_timer
[timeridx
]);
1343 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1345 return gt_get_countervalue(env
);
1348 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1350 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1353 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1357 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1358 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1361 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1364 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1366 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1367 (gt_get_countervalue(env
) - offset
));
1370 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1374 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1376 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1377 sextract64(value
, 0, 32);
1378 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1381 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1385 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1386 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1388 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1389 if ((oldval
^ value
) & 1) {
1390 /* Enable toggled */
1391 gt_recalc_timer(cpu
, timeridx
);
1392 } else if ((oldval
^ value
) & 2) {
1393 /* IMASK toggled: don't need to recalculate,
1394 * just set the interrupt line based on ISTATUS
1396 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
1397 (oldval
& 4) && !(value
& 2));
1401 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1403 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1406 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1409 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1412 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1414 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1417 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1420 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1423 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1426 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1429 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1431 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1434 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1437 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1440 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1442 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1445 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1448 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1451 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1454 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1457 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1460 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1462 raw_write(env
, ri
, value
);
1463 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1466 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1468 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1471 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1474 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1477 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1479 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1482 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1485 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1488 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1491 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1494 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1496 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1499 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1502 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
1505 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1507 return gt_tval_read(env
, ri
, GTIMER_SEC
);
1510 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1513 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
1516 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1519 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
1522 void arm_gt_ptimer_cb(void *opaque
)
1524 ARMCPU
*cpu
= opaque
;
1526 gt_recalc_timer(cpu
, GTIMER_PHYS
);
1529 void arm_gt_vtimer_cb(void *opaque
)
1531 ARMCPU
*cpu
= opaque
;
1533 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1536 void arm_gt_htimer_cb(void *opaque
)
1538 ARMCPU
*cpu
= opaque
;
1540 gt_recalc_timer(cpu
, GTIMER_HYP
);
1543 void arm_gt_stimer_cb(void *opaque
)
1545 ARMCPU
*cpu
= opaque
;
1547 gt_recalc_timer(cpu
, GTIMER_SEC
);
1550 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1551 /* Note that CNTFRQ is purely reads-as-written for the benefit
1552 * of software; writing it doesn't actually change the timer frequency.
1553 * Our reset value matches the fixed frequency we implement the timer at.
1555 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
1556 .type
= ARM_CP_ALIAS
,
1557 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1558 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
1560 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
1561 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
1562 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
1563 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
1564 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
1566 /* overall control: mostly access permissions */
1567 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
1568 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
1570 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
1573 /* per-timer control */
1574 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1575 .secure
= ARM_CP_SECSTATE_NS
,
1576 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1577 .accessfn
= gt_ptimer_access
,
1578 .fieldoffset
= offsetoflow32(CPUARMState
,
1579 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1580 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1582 { .name
= "CNTP_CTL(S)",
1583 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
1584 .secure
= ARM_CP_SECSTATE_S
,
1585 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1586 .accessfn
= gt_ptimer_access
,
1587 .fieldoffset
= offsetoflow32(CPUARMState
,
1588 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1589 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1591 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1592 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
1593 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1594 .accessfn
= gt_ptimer_access
,
1595 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
1597 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
1599 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
1600 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
1601 .accessfn
= gt_vtimer_access
,
1602 .fieldoffset
= offsetoflow32(CPUARMState
,
1603 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1604 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1606 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
1607 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
1608 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1609 .accessfn
= gt_vtimer_access
,
1610 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
1612 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
1614 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1615 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1616 .secure
= ARM_CP_SECSTATE_NS
,
1617 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1618 .accessfn
= gt_ptimer_access
,
1619 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1621 { .name
= "CNTP_TVAL(S)",
1622 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
1623 .secure
= ARM_CP_SECSTATE_S
,
1624 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1625 .accessfn
= gt_ptimer_access
,
1626 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
1628 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1629 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
1630 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1631 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
1632 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
1634 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
1635 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1636 .accessfn
= gt_vtimer_access
,
1637 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1639 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1640 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
1641 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
1642 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
1643 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
1645 /* The counter itself */
1646 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
1647 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1648 .accessfn
= gt_pct_access
,
1649 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1651 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
1652 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
1653 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1654 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
1656 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
1657 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
1658 .accessfn
= gt_vct_access
,
1659 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
1661 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
1662 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
1663 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1664 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
1666 /* Comparison value, indicating when the timer goes off */
1667 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
1668 .secure
= ARM_CP_SECSTATE_NS
,
1669 .access
= PL1_RW
| PL0_R
,
1670 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1671 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1672 .accessfn
= gt_ptimer_access
,
1673 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1675 { .name
= "CNTP_CVAL(S)", .cp
= 15, .crm
= 14, .opc1
= 2,
1676 .secure
= ARM_CP_SECSTATE_S
,
1677 .access
= PL1_RW
| PL0_R
,
1678 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1679 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1680 .accessfn
= gt_ptimer_access
,
1681 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1683 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1684 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
1685 .access
= PL1_RW
| PL0_R
,
1687 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
1688 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
1689 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
1691 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1692 .access
= PL1_RW
| PL0_R
,
1693 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
1694 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1695 .accessfn
= gt_vtimer_access
,
1696 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1698 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
1699 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
1700 .access
= PL1_RW
| PL0_R
,
1702 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1703 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
1704 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
1706 /* Secure timer -- this is actually restricted to only EL3
1707 * and configurably Secure-EL1 via the accessfn.
1709 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1710 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
1711 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
1712 .accessfn
= gt_stimer_access
,
1713 .readfn
= gt_sec_tval_read
,
1714 .writefn
= gt_sec_tval_write
,
1715 .resetfn
= gt_sec_timer_reset
,
1717 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
1718 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
1719 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1720 .accessfn
= gt_stimer_access
,
1721 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
1723 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
1725 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
1726 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
1727 .type
= ARM_CP_IO
, .access
= PL1_RW
,
1728 .accessfn
= gt_stimer_access
,
1729 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
1730 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
1736 /* In user-mode none of the generic timer registers are accessible,
1737 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1738 * so instead just don't register any of them.
1740 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1746 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1748 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1749 raw_write(env
, ri
, value
);
1750 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1751 raw_write(env
, ri
, value
& 0xfffff6ff);
1753 raw_write(env
, ri
, value
& 0xfffff1ff);
1757 #ifndef CONFIG_USER_ONLY
1758 /* get_phys_addr() isn't present for user-mode-only targets */
1760 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1763 /* The ATS12NSO* operations must trap to EL3 if executed in
1764 * Secure EL1 (which can only happen if EL3 is AArch64).
1765 * They are simply UNDEF if executed from NS EL1.
1766 * They function normally from EL2 or EL3.
1768 if (arm_current_el(env
) == 1) {
1769 if (arm_is_secure_below_el3(env
)) {
1770 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
1772 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1775 return CP_ACCESS_OK
;
1778 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
1779 int access_type
, ARMMMUIdx mmu_idx
)
1782 target_ulong page_size
;
1787 MemTxAttrs attrs
= {};
1788 ARMMMUFaultInfo fi
= {};
1790 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
,
1791 &phys_addr
, &attrs
, &prot
, &page_size
, &fsr
, &fi
);
1792 if (extended_addresses_enabled(env
)) {
1793 /* fsr is a DFSR/IFSR value for the long descriptor
1794 * translation table format, but with WnR always clear.
1795 * Convert it to a 64-bit PAR.
1797 par64
= (1 << 11); /* LPAE bit always set */
1799 par64
|= phys_addr
& ~0xfffULL
;
1800 if (!attrs
.secure
) {
1801 par64
|= (1 << 9); /* NS */
1803 /* We don't set the ATTR or SH fields in the PAR. */
1806 par64
|= (fsr
& 0x3f) << 1; /* FS */
1807 /* Note that S2WLK and FSTAGE are always zero, because we don't
1808 * implement virtualization and therefore there can't be a stage 2
1813 /* fsr is a DFSR/IFSR value for the short descriptor
1814 * translation table format (with WnR always clear).
1815 * Convert it to a 32-bit PAR.
1818 /* We do not set any attribute bits in the PAR */
1819 if (page_size
== (1 << 24)
1820 && arm_feature(env
, ARM_FEATURE_V7
)) {
1821 par64
= (phys_addr
& 0xff000000) | (1 << 1);
1823 par64
= phys_addr
& 0xfffff000;
1825 if (!attrs
.secure
) {
1826 par64
|= (1 << 9); /* NS */
1829 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
1830 ((fsr
& 0xf) << 1) | 1;
1836 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1838 int access_type
= ri
->opc2
& 1;
1841 int el
= arm_current_el(env
);
1842 bool secure
= arm_is_secure_below_el3(env
);
1844 switch (ri
->opc2
& 6) {
1846 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1849 mmu_idx
= ARMMMUIdx_S1E3
;
1852 mmu_idx
= ARMMMUIdx_S1NSE1
;
1855 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1858 g_assert_not_reached();
1862 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1865 mmu_idx
= ARMMMUIdx_S1SE0
;
1868 mmu_idx
= ARMMMUIdx_S1NSE0
;
1871 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1874 g_assert_not_reached();
1878 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1879 mmu_idx
= ARMMMUIdx_S12NSE1
;
1882 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1883 mmu_idx
= ARMMMUIdx_S12NSE0
;
1886 g_assert_not_reached();
1889 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
1891 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1894 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1897 int access_type
= ri
->opc2
& 1;
1900 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S2NS
);
1902 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
1905 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1907 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
1908 return CP_ACCESS_TRAP
;
1910 return CP_ACCESS_OK
;
1913 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1916 int access_type
= ri
->opc2
& 1;
1918 int secure
= arm_is_secure_below_el3(env
);
1920 switch (ri
->opc2
& 6) {
1923 case 0: /* AT S1E1R, AT S1E1W */
1924 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
1926 case 4: /* AT S1E2R, AT S1E2W */
1927 mmu_idx
= ARMMMUIdx_S1E2
;
1929 case 6: /* AT S1E3R, AT S1E3W */
1930 mmu_idx
= ARMMMUIdx_S1E3
;
1933 g_assert_not_reached();
1936 case 2: /* AT S1E0R, AT S1E0W */
1937 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
1939 case 4: /* AT S12E1R, AT S12E1W */
1940 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
1942 case 6: /* AT S12E0R, AT S12E0W */
1943 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
1946 g_assert_not_reached();
1949 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
1953 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1954 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1955 .access
= PL1_RW
, .resetvalue
= 0,
1956 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
1957 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
1958 .writefn
= par_write
},
1959 #ifndef CONFIG_USER_ONLY
1960 /* This underdecoding is safe because the reginfo is NO_RAW. */
1961 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1962 .access
= PL1_W
, .accessfn
= ats_access
,
1963 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
1968 /* Return basic MPU access permission bits. */
1969 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1976 for (i
= 0; i
< 16; i
+= 2) {
1977 ret
|= (val
>> i
) & mask
;
1983 /* Pad basic MPU access permission bits to extended format. */
1984 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1991 for (i
= 0; i
< 16; i
+= 2) {
1992 ret
|= (val
& mask
) << i
;
1998 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2001 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2004 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2006 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2009 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2012 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2015 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2017 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2020 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2022 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2028 u32p
+= env
->cp15
.c6_rgnr
;
2032 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2035 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2036 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2042 u32p
+= env
->cp15
.c6_rgnr
;
2043 tlb_flush(CPU(cpu
), 1); /* Mappings may have changed - purge! */
2047 static void pmsav7_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2049 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2050 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2056 memset(u32p
, 0, sizeof(*u32p
) * cpu
->pmsav7_dregion
);
2059 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2062 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2063 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2065 if (value
>= nrgs
) {
2066 qemu_log_mask(LOG_GUEST_ERROR
,
2067 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2068 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2072 raw_write(env
, ri
, value
);
2075 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2076 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2077 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2078 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2079 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2080 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2081 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2082 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2083 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2084 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2085 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2086 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2087 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
, .resetfn
= pmsav7_reset
},
2088 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2090 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_rgnr
),
2091 .writefn
= pmsav7_rgnr_write
},
2095 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2096 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2097 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2098 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2099 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2100 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2101 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2102 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2103 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2104 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2106 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2108 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2110 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2112 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2114 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2115 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2117 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2118 /* Protection region base and size registers */
2119 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2120 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2121 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2122 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2123 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2124 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2125 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2126 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2127 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2128 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2129 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2130 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2131 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2132 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2133 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2134 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2135 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2136 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2137 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2138 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2139 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2140 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2141 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2142 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2146 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2149 TCR
*tcr
= raw_ptr(env
, ri
);
2150 int maskshift
= extract32(value
, 0, 3);
2152 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2153 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2154 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2155 * using Long-desciptor translation table format */
2156 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2157 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2158 /* In an implementation that includes the Security Extensions
2159 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2160 * Short-descriptor translation table format.
2162 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2168 /* Update the masks corresponding to the TCR bank being written
2169 * Note that we always calculate mask and base_mask, but
2170 * they are only used for short-descriptor tables (ie if EAE is 0);
2171 * for long-descriptor tables the TCR fields are used differently
2172 * and the mask and base_mask values are meaningless.
2174 tcr
->raw_tcr
= value
;
2175 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2176 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2179 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2182 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2184 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2185 /* With LPAE the TTBCR could result in a change of ASID
2186 * via the TTBCR.A1 bit, so do a TLB flush.
2188 tlb_flush(CPU(cpu
), 1);
2190 vmsa_ttbcr_raw_write(env
, ri
, value
);
2193 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2195 TCR
*tcr
= raw_ptr(env
, ri
);
2197 /* Reset both the TCR as well as the masks corresponding to the bank of
2198 * the TCR being reset.
2202 tcr
->base_mask
= 0xffffc000u
;
2205 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2208 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2209 TCR
*tcr
= raw_ptr(env
, ri
);
2211 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2212 tlb_flush(CPU(cpu
), 1);
2213 tcr
->raw_tcr
= value
;
2216 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2219 /* 64 bit accesses to the TTBRs can change the ASID and so we
2220 * must flush the TLB.
2222 if (cpreg_field_is_64bit(ri
)) {
2223 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2225 tlb_flush(CPU(cpu
), 1);
2227 raw_write(env
, ri
, value
);
2230 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2233 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2234 CPUState
*cs
= CPU(cpu
);
2236 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2237 if (raw_read(env
, ri
) != value
) {
2238 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2239 ARMMMUIdx_S2NS
, -1);
2240 raw_write(env
, ri
, value
);
2244 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2245 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2246 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2247 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2248 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2249 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2250 .access
= PL1_RW
, .resetvalue
= 0,
2251 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2252 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2253 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2254 .access
= PL1_RW
, .resetvalue
= 0,
2255 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2256 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2257 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2258 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2259 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2264 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2265 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2266 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2268 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2269 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2270 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2271 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2272 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2273 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2274 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2275 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2276 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2277 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2278 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2279 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2280 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2281 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2282 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2283 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2284 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2285 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2286 .raw_writefn
= vmsa_ttbcr_raw_write
,
2287 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2288 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2292 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2295 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2296 /* The OS_TYPE bit in this register changes the reported CPUID! */
2297 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2298 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2301 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2304 env
->cp15
.c15_threadid
= value
& 0xffff;
2307 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2310 /* Wait-for-interrupt (deprecated) */
2311 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2314 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2317 /* On OMAP there are registers indicating the max/min index of dcache lines
2318 * containing a dirty line; cache flush operations have to reset these.
2320 env
->cp15
.c15_i_max
= 0x000;
2321 env
->cp15
.c15_i_min
= 0xff0;
2324 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2325 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2326 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2327 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2329 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2330 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2331 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2333 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2334 .writefn
= omap_ticonfig_write
},
2335 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2337 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2338 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2339 .access
= PL1_RW
, .resetvalue
= 0xff0,
2340 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2341 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2343 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2344 .writefn
= omap_threadid_write
},
2345 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2346 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2347 .type
= ARM_CP_NO_RAW
,
2348 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2349 /* TODO: Peripheral port remap register:
2350 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2351 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2354 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2355 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2356 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2357 .writefn
= omap_cachemaint_write
},
2358 { .name
= "C9", .cp
= 15, .crn
= 9,
2359 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2360 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2364 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2367 env
->cp15
.c15_cpar
= value
& 0x3fff;
2370 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2371 { .name
= "XSCALE_CPAR",
2372 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2373 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2374 .writefn
= xscale_cpar_write
, },
2375 { .name
= "XSCALE_AUXCR",
2376 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2377 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2379 /* XScale specific cache-lockdown: since we have no cache we NOP these
2380 * and hope the guest does not really rely on cache behaviour.
2382 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2383 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2384 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2385 { .name
= "XSCALE_UNLOCK_ICACHE",
2386 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2387 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2388 { .name
= "XSCALE_DCACHE_LOCK",
2389 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2390 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2391 { .name
= "XSCALE_UNLOCK_DCACHE",
2392 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2393 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2397 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2398 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2399 * implementation of this implementation-defined space.
2400 * Ideally this should eventually disappear in favour of actually
2401 * implementing the correct behaviour for all cores.
2403 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2404 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2406 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2411 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2412 /* Cache status: RAZ because we have no cache so it's always clean */
2413 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2414 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2419 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2420 /* We never have a a block transfer operation in progress */
2421 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2422 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2424 /* The cache ops themselves: these all NOP for QEMU */
2425 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2426 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2427 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2428 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2429 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2430 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2431 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2432 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2433 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
2434 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2435 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
2436 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2440 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
2441 /* The cache test-and-clean instructions always return (1 << 30)
2442 * to indicate that there are no dirty cache lines.
2444 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
2445 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2446 .resetvalue
= (1 << 30) },
2447 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
2448 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2449 .resetvalue
= (1 << 30) },
2453 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
2454 /* Ignore ReadBuffer accesses */
2455 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
2456 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2457 .access
= PL1_RW
, .resetvalue
= 0,
2458 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
2462 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2464 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2465 unsigned int cur_el
= arm_current_el(env
);
2466 bool secure
= arm_is_secure(env
);
2468 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2469 return env
->cp15
.vpidr_el2
;
2471 return raw_read(env
, ri
);
2474 static uint64_t mpidr_read_val(CPUARMState
*env
)
2476 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
2477 uint64_t mpidr
= cpu
->mp_affinity
;
2479 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
2480 mpidr
|= (1U << 31);
2481 /* Cores which are uniprocessor (non-coherent)
2482 * but still implement the MP extensions set
2483 * bit 30. (For instance, Cortex-R5).
2485 if (cpu
->mp_is_up
) {
2486 mpidr
|= (1u << 30);
2492 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2494 unsigned int cur_el
= arm_current_el(env
);
2495 bool secure
= arm_is_secure(env
);
2497 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
2498 return env
->cp15
.vmpidr_el2
;
2500 return mpidr_read_val(env
);
2503 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
2504 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
2505 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
2506 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
2510 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
2512 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
2513 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
2514 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2516 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2517 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
2518 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
2520 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
2521 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
2522 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
2523 offsetof(CPUARMState
, cp15
.par_ns
)} },
2524 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
2525 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2526 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2527 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
2528 .writefn
= vmsa_ttbr_write
, },
2529 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
2530 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
2531 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2532 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
2533 .writefn
= vmsa_ttbr_write
, },
2537 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2539 return vfp_get_fpcr(env
);
2542 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2545 vfp_set_fpcr(env
, value
);
2548 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2550 return vfp_get_fpsr(env
);
2553 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2556 vfp_set_fpsr(env
, value
);
2559 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2561 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
2562 return CP_ACCESS_TRAP
;
2564 return CP_ACCESS_OK
;
2567 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2570 env
->daif
= value
& PSTATE_DAIF
;
2573 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
2574 const ARMCPRegInfo
*ri
)
2576 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2577 * SCTLR_EL1.UCI is set.
2579 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
2580 return CP_ACCESS_TRAP
;
2582 return CP_ACCESS_OK
;
2585 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2586 * Page D4-1736 (DDI0487A.b)
2589 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2592 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2593 CPUState
*cs
= CPU(cpu
);
2595 if (arm_is_secure_below_el3(env
)) {
2596 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2598 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2602 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2605 bool sec
= arm_is_secure_below_el3(env
);
2608 CPU_FOREACH(other_cs
) {
2610 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2612 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2613 ARMMMUIdx_S12NSE0
, -1);
2618 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2621 /* Note that the 'ALL' scope must invalidate both stage 1 and
2622 * stage 2 translations, whereas most other scopes only invalidate
2623 * stage 1 translations.
2625 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2626 CPUState
*cs
= CPU(cpu
);
2628 if (arm_is_secure_below_el3(env
)) {
2629 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2631 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2632 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
,
2633 ARMMMUIdx_S2NS
, -1);
2635 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S12NSE1
, ARMMMUIdx_S12NSE0
, -1);
2640 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2643 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2644 CPUState
*cs
= CPU(cpu
);
2646 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E2
, -1);
2649 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2652 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2653 CPUState
*cs
= CPU(cpu
);
2655 tlb_flush_by_mmuidx(cs
, ARMMMUIdx_S1E3
, -1);
2658 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2661 /* Note that the 'ALL' scope must invalidate both stage 1 and
2662 * stage 2 translations, whereas most other scopes only invalidate
2663 * stage 1 translations.
2665 bool sec
= arm_is_secure_below_el3(env
);
2666 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
2669 CPU_FOREACH(other_cs
) {
2671 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1SE1
, ARMMMUIdx_S1SE0
, -1);
2672 } else if (has_el2
) {
2673 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2674 ARMMMUIdx_S12NSE0
, ARMMMUIdx_S2NS
, -1);
2676 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S12NSE1
,
2677 ARMMMUIdx_S12NSE0
, -1);
2682 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2687 CPU_FOREACH(other_cs
) {
2688 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E2
, -1);
2692 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2697 CPU_FOREACH(other_cs
) {
2698 tlb_flush_by_mmuidx(other_cs
, ARMMMUIdx_S1E3
, -1);
2702 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2705 /* Invalidate by VA, EL1&0 (AArch64 version).
2706 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2707 * since we don't support flush-for-specific-ASID-only or
2708 * flush-last-level-only.
2710 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2711 CPUState
*cs
= CPU(cpu
);
2712 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2714 if (arm_is_secure_below_el3(env
)) {
2715 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2716 ARMMMUIdx_S1SE0
, -1);
2718 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2719 ARMMMUIdx_S12NSE0
, -1);
2723 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2726 /* Invalidate by VA, EL2
2727 * Currently handles both VAE2 and VALE2, since we don't support
2728 * flush-last-level-only.
2730 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2731 CPUState
*cs
= CPU(cpu
);
2732 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2734 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2737 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2740 /* Invalidate by VA, EL3
2741 * Currently handles both VAE3 and VALE3, since we don't support
2742 * flush-last-level-only.
2744 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2745 CPUState
*cs
= CPU(cpu
);
2746 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2748 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2751 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2754 bool sec
= arm_is_secure_below_el3(env
);
2756 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2758 CPU_FOREACH(other_cs
) {
2760 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1SE1
,
2761 ARMMMUIdx_S1SE0
, -1);
2763 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S12NSE1
,
2764 ARMMMUIdx_S12NSE0
, -1);
2769 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2773 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2775 CPU_FOREACH(other_cs
) {
2776 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E2
, -1);
2780 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2784 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
2786 CPU_FOREACH(other_cs
) {
2787 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S1E3
, -1);
2791 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2794 /* Invalidate by IPA. This has to invalidate any structures that
2795 * contain only stage 2 translation information, but does not need
2796 * to apply to structures that contain combined stage 1 and stage 2
2797 * translation information.
2798 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
2800 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2801 CPUState
*cs
= CPU(cpu
);
2804 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2808 pageaddr
= sextract64(value
<< 12, 0, 48);
2810 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2813 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2819 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
2823 pageaddr
= sextract64(value
<< 12, 0, 48);
2825 CPU_FOREACH(other_cs
) {
2826 tlb_flush_page_by_mmuidx(other_cs
, pageaddr
, ARMMMUIdx_S2NS
, -1);
2830 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2832 /* We don't implement EL2, so the only control on DC ZVA is the
2833 * bit in the SCTLR which can prohibit access for EL0.
2835 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
2836 return CP_ACCESS_TRAP
;
2838 return CP_ACCESS_OK
;
2841 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2843 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2844 int dzp_bit
= 1 << 4;
2846 /* DZP indicates whether DC ZVA access is allowed */
2847 if (aa64_zva_access(env
, NULL
) == CP_ACCESS_OK
) {
2850 return cpu
->dcz_blocksize
| dzp_bit
;
2853 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2855 if (!(env
->pstate
& PSTATE_SP
)) {
2856 /* Access to SP_EL0 is undefined if it's being used as
2857 * the stack pointer.
2859 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2861 return CP_ACCESS_OK
;
2864 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2866 return env
->pstate
& PSTATE_SP
;
2869 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
2871 update_spsel(env
, val
);
2874 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2877 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2879 if (raw_read(env
, ri
) == value
) {
2880 /* Skip the TLB flush if nothing actually changed; Linux likes
2881 * to do a lot of pointless SCTLR writes.
2886 raw_write(env
, ri
, value
);
2887 /* ??? Lots of these bits are not implemented. */
2888 /* This may enable/disable the MMU, so do a TLB flush. */
2889 tlb_flush(CPU(cpu
), 1);
2892 static const ARMCPRegInfo v8_cp_reginfo
[] = {
2893 /* Minimal set of EL0-visible registers. This will need to be expanded
2894 * significantly for system emulation of AArch64 CPUs.
2896 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
2897 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
2898 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
2899 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
2900 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
2901 .type
= ARM_CP_NO_RAW
,
2902 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
2903 .fieldoffset
= offsetof(CPUARMState
, daif
),
2904 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
2905 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
2906 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
2907 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
2908 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
2909 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
2910 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
2911 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
2912 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
2913 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
2914 .readfn
= aa64_dczid_read
},
2915 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
2916 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
2917 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
2918 #ifndef CONFIG_USER_ONLY
2919 /* Avoid overhead of an access check that always passes in user-mode */
2920 .accessfn
= aa64_zva_access
,
2923 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
2924 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
2925 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
2926 /* Cache ops: all NOPs since we don't emulate caches */
2927 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
2928 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
2929 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2930 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
2931 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
2932 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2933 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
2934 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
2935 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2936 .accessfn
= aa64_cacheop_access
},
2937 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
2938 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
2939 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2940 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
2941 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
2942 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2943 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
2944 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
2945 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2946 .accessfn
= aa64_cacheop_access
},
2947 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
2948 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
2949 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2950 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
2951 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
2952 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2953 .accessfn
= aa64_cacheop_access
},
2954 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
2955 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
2956 .access
= PL0_W
, .type
= ARM_CP_NOP
,
2957 .accessfn
= aa64_cacheop_access
},
2958 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
2959 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
2960 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2961 /* TLBI operations */
2962 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
2963 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2964 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2965 .writefn
= tlbi_aa64_vmalle1is_write
},
2966 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
2967 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2968 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2969 .writefn
= tlbi_aa64_vae1is_write
},
2970 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
2971 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2972 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2973 .writefn
= tlbi_aa64_vmalle1is_write
},
2974 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
2975 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2976 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2977 .writefn
= tlbi_aa64_vae1is_write
},
2978 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
2979 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
2980 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2981 .writefn
= tlbi_aa64_vae1is_write
},
2982 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
2983 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
2984 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2985 .writefn
= tlbi_aa64_vae1is_write
},
2986 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
2987 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2988 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2989 .writefn
= tlbi_aa64_vmalle1_write
},
2990 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
2991 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2992 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2993 .writefn
= tlbi_aa64_vae1_write
},
2994 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
2995 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2996 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
2997 .writefn
= tlbi_aa64_vmalle1_write
},
2998 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
2999 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3000 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3001 .writefn
= tlbi_aa64_vae1_write
},
3002 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3003 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3004 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3005 .writefn
= tlbi_aa64_vae1_write
},
3006 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3007 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3008 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3009 .writefn
= tlbi_aa64_vae1_write
},
3010 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3011 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3012 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3013 .writefn
= tlbi_aa64_ipas2e1is_write
},
3014 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3015 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3016 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3017 .writefn
= tlbi_aa64_ipas2e1is_write
},
3018 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3019 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3020 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3021 .writefn
= tlbi_aa64_alle1is_write
},
3022 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3023 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3024 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3025 .writefn
= tlbi_aa64_alle1is_write
},
3026 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3027 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3028 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3029 .writefn
= tlbi_aa64_ipas2e1_write
},
3030 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3031 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3032 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3033 .writefn
= tlbi_aa64_ipas2e1_write
},
3034 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3035 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3036 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3037 .writefn
= tlbi_aa64_alle1_write
},
3038 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3039 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3040 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3041 .writefn
= tlbi_aa64_alle1is_write
},
3042 #ifndef CONFIG_USER_ONLY
3043 /* 64 bit address translation operations */
3044 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3045 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3046 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3047 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3048 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3049 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3050 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3051 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3052 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3053 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3054 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3055 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3056 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3057 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3058 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3059 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3060 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3061 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3062 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3063 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3064 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3065 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3066 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3067 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3068 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3069 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3070 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3071 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3072 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3073 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3074 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3075 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3076 .type
= ARM_CP_ALIAS
,
3077 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3078 .access
= PL1_RW
, .resetvalue
= 0,
3079 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3080 .writefn
= par_write
},
3082 /* TLB invalidate last level of translation table walk */
3083 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3084 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3085 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3086 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3087 .writefn
= tlbimvaa_is_write
},
3088 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3089 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3090 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3091 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3092 /* 32 bit cache operations */
3093 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3094 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3095 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3096 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3097 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3098 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3099 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3100 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3101 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3102 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3103 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3104 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3105 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3106 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3107 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3108 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3109 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3110 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3111 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3112 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3113 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3114 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3115 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3116 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3117 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3118 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3119 /* MMU Domain access control / MPU write buffer control */
3120 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3121 .access
= PL1_RW
, .resetvalue
= 0,
3122 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3123 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3124 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3125 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3126 .type
= ARM_CP_ALIAS
,
3127 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3129 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3130 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3131 .type
= ARM_CP_ALIAS
,
3132 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3133 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[1]) },
3134 /* We rely on the access checks not allowing the guest to write to the
3135 * state field when SPSel indicates that it's being used as the stack
3138 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3139 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3140 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3141 .type
= ARM_CP_ALIAS
,
3142 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3143 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3144 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3145 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3146 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3147 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3148 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3149 .type
= ARM_CP_NO_RAW
,
3150 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3154 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3155 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3156 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3157 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3159 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3160 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3161 .type
= ARM_CP_NO_RAW
,
3162 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3164 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3165 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3166 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3167 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3168 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3169 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3170 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3172 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3173 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3174 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3175 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3176 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3177 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3179 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3180 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3181 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3183 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3184 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3185 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3187 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3188 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3189 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3191 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3192 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3193 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3194 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3195 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3196 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3197 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3198 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3199 .cp
= 15, .opc1
= 6, .crm
= 2,
3200 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3201 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3202 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3203 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3204 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3205 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3206 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3207 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3208 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3209 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3210 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3211 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3212 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3213 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3214 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3215 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3217 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3218 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3219 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3220 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3221 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3222 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3223 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3224 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3226 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3227 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3228 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3229 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3230 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3232 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3233 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3234 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3235 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3236 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3237 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3238 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3239 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3240 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3241 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3242 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3243 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3244 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3248 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3250 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3251 uint64_t valid_mask
= HCR_MASK
;
3253 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3254 valid_mask
&= ~HCR_HCD
;
3256 valid_mask
&= ~HCR_TSC
;
3259 /* Clear RES0 bits. */
3260 value
&= valid_mask
;
3262 /* These bits change the MMU setup:
3263 * HCR_VM enables stage 2 translation
3264 * HCR_PTW forbids certain page-table setups
3265 * HCR_DC Disables stage1 and enables stage2 translation
3267 if ((raw_read(env
, ri
) ^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3268 tlb_flush(CPU(cpu
), 1);
3270 raw_write(env
, ri
, value
);
3273 static const ARMCPRegInfo el2_cp_reginfo
[] = {
3274 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
3275 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3276 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
3277 .writefn
= hcr_write
},
3278 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3279 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3280 .access
= PL2_RW
, .resetvalue
= 0,
3281 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3282 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3283 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
3284 .type
= ARM_CP_ALIAS
,
3285 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
3287 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
3288 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_AA64
,
3289 .type
= ARM_CP_ALIAS
,
3290 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3291 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
3292 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3293 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3294 .access
= PL2_RW
, .resetvalue
= 0,
3295 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3296 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_AA64
,
3297 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3298 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
3299 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
3300 .type
= ARM_CP_ALIAS
,
3301 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
3302 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[6]) },
3303 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3304 .type
= ARM_CP_ALIAS
,
3305 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3306 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[4]) },
3307 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3308 .type
= ARM_CP_ALIAS
,
3309 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3310 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[2]) },
3311 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3312 .type
= ARM_CP_ALIAS
,
3313 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3314 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[3]) },
3315 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3316 .type
= ARM_CP_ALIAS
,
3317 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3318 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[5]) },
3319 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_AA64
,
3320 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3321 .access
= PL2_RW
, .writefn
= vbar_write
,
3322 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
3324 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
3325 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
3326 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
3327 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
3328 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3329 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3330 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3331 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
3332 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3333 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3334 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
3336 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3337 .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3338 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3339 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
3340 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3341 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3342 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3344 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3345 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3346 .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3347 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3349 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3350 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3351 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3353 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3354 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3355 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3357 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3358 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3359 .access
= PL2_RW
, .writefn
= vmsa_tcr_el1_write
,
3360 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3361 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
3362 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
3363 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3364 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3365 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3366 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
3367 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3368 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3369 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
3370 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3371 .cp
= 15, .opc1
= 6, .crm
= 2,
3372 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3373 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3374 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
3375 .writefn
= vttbr_write
},
3376 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3377 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3378 .access
= PL2_RW
, .writefn
= vttbr_write
,
3379 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
3380 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3381 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3382 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3383 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
3384 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3385 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3386 .access
= PL2_RW
, .resetvalue
= 0,
3387 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
3388 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3389 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3390 .access
= PL2_RW
, .resetvalue
= 0,
3391 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3392 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3393 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3394 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
3395 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
3396 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
3397 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3398 .writefn
= tlbi_aa64_alle2_write
},
3399 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
3400 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
3401 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3402 .writefn
= tlbi_aa64_vae2_write
},
3403 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
3404 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3405 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3406 .writefn
= tlbi_aa64_vae2_write
},
3407 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
3408 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
3409 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3410 .writefn
= tlbi_aa64_alle2is_write
},
3411 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
3412 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
3413 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3414 .writefn
= tlbi_aa64_vae2is_write
},
3415 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
3416 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3417 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3418 .writefn
= tlbi_aa64_vae2is_write
},
3419 #ifndef CONFIG_USER_ONLY
3420 /* Unlike the other EL2-related AT operations, these must
3421 * UNDEF from EL3 if EL2 is not implemented, which is why we
3422 * define them here rather than with the rest of the AT ops.
3424 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
3425 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3426 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3427 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3428 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
3429 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3430 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
3431 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3432 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3433 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3434 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3435 * to behave as if SCR.NS was 1.
3437 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
3439 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3440 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
3442 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
3443 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3444 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3445 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3446 * reset values as IMPDEF. We choose to reset to 3 to comply with
3447 * both ARMv7 and ARMv8.
3449 .access
= PL2_RW
, .resetvalue
= 3,
3450 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
3451 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3452 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3453 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
3454 .writefn
= gt_cntvoff_write
,
3455 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3456 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3457 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
3458 .writefn
= gt_cntvoff_write
,
3459 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
3460 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3461 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3462 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3463 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3464 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3465 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3466 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
3467 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
3468 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
3469 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3470 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3471 .type
= ARM_CP_IO
, .access
= PL2_RW
,
3472 .resetfn
= gt_hyp_timer_reset
,
3473 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
3474 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3476 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3478 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
3480 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
3482 /* The only field of MDCR_EL2 that has a defined architectural reset value
3483 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3484 * don't impelment any PMU event counters, so using zero as a reset
3485 * value for MDCR_EL2 is okay
3487 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3488 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3489 .access
= PL2_RW
, .resetvalue
= 0,
3490 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
3491 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
3492 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3493 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3494 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3495 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
3496 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3498 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
3502 static const ARMCPRegInfo el3_cp_reginfo
[] = {
3503 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
3504 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
3505 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
3506 .resetvalue
= 0, .writefn
= scr_write
},
3507 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
3508 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
3509 .access
= PL3_RW
, .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
3510 .writefn
= scr_write
},
3511 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
3512 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
3513 .access
= PL3_RW
, .resetvalue
= 0,
3514 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
3516 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
3517 .access
= PL3_RW
, .resetvalue
= 0,
3518 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
3519 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3520 { .name
= "NSACR", .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
3521 .access
= PL3_W
| PL1_R
, .resetvalue
= 0,
3522 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
) },
3523 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
3524 .access
= PL3_RW
, .writefn
= vbar_write
, .resetvalue
= 0,
3525 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
3526 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
3527 .type
= ARM_CP_ALIAS
, /* reset handled by AArch32 view */
3528 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
3529 .access
= PL3_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
3530 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]) },
3531 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
3532 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
3533 .access
= PL3_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3534 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
3535 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
3536 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
3537 .access
= PL3_RW
, .writefn
= vmsa_tcr_el1_write
,
3538 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3539 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
3540 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
3541 .type
= ARM_CP_ALIAS
,
3542 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
3544 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
3545 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
3546 .type
= ARM_CP_ALIAS
,
3547 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
3548 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
3549 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
3550 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
3551 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
3552 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
3553 .type
= ARM_CP_ALIAS
,
3554 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
3555 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[7]) },
3556 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
3557 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
3558 .access
= PL3_RW
, .writefn
= vbar_write
,
3559 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
3561 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
3562 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
3563 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
3564 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
3565 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
3566 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
3567 .access
= PL3_RW
, .resetvalue
= 0,
3568 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
3569 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
3570 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
3571 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3573 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
3574 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
3575 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3577 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
3578 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
3579 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
3581 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
3582 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
3583 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3584 .writefn
= tlbi_aa64_alle3is_write
},
3585 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
3586 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
3587 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3588 .writefn
= tlbi_aa64_vae3is_write
},
3589 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
3590 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
3591 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3592 .writefn
= tlbi_aa64_vae3is_write
},
3593 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
3594 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
3595 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3596 .writefn
= tlbi_aa64_alle3_write
},
3597 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
3598 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
3599 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3600 .writefn
= tlbi_aa64_vae3_write
},
3601 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
3602 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
3603 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
3604 .writefn
= tlbi_aa64_vae3_write
},
3608 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3610 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3611 * but the AArch32 CTR has its own reginfo struct)
3613 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
3614 return CP_ACCESS_TRAP
;
3616 return CP_ACCESS_OK
;
3619 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3622 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3623 * read via a bit in OSLSR_EL1.
3627 if (ri
->state
== ARM_CP_STATE_AA32
) {
3628 oslock
= (value
== 0xC5ACCE55);
3633 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
3636 static const ARMCPRegInfo debug_cp_reginfo
[] = {
3637 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3638 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3639 * unlike DBGDRAR it is never accessible from EL0.
3640 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3643 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
3644 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3645 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
3646 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
3647 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3648 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3649 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3650 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3651 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
3652 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
3654 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
3656 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3657 * We don't implement the configurable EL0 access.
3659 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
3660 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
3661 .type
= ARM_CP_ALIAS
,
3663 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
3664 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
3665 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
3666 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3667 .writefn
= oslar_write
},
3668 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
3669 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
3670 .access
= PL1_R
, .resetvalue
= 10,
3671 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
3672 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3673 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
3674 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
3675 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3676 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3677 * implement vector catch debug events yet.
3680 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
3681 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3685 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
3686 /* 64 bit access versions of the (dummy) debug registers */
3687 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
3688 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3689 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
3690 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
3694 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
3696 CPUARMState
*env
= &cpu
->env
;
3698 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
3699 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
3701 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
3703 if (env
->cpu_watchpoint
[n
]) {
3704 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
3705 env
->cpu_watchpoint
[n
] = NULL
;
3708 if (!extract64(wcr
, 0, 1)) {
3709 /* E bit clear : watchpoint disabled */
3713 switch (extract64(wcr
, 3, 2)) {
3715 /* LSC 00 is reserved and must behave as if the wp is disabled */
3718 flags
|= BP_MEM_READ
;
3721 flags
|= BP_MEM_WRITE
;
3724 flags
|= BP_MEM_ACCESS
;
3728 /* Attempts to use both MASK and BAS fields simultaneously are
3729 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3730 * thus generating a watchpoint for every byte in the masked region.
3732 mask
= extract64(wcr
, 24, 4);
3733 if (mask
== 1 || mask
== 2) {
3734 /* Reserved values of MASK; we must act as if the mask value was
3735 * some non-reserved value, or as if the watchpoint were disabled.
3736 * We choose the latter.
3740 /* Watchpoint covers an aligned area up to 2GB in size */
3742 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3743 * whether the watchpoint fires when the unmasked bits match; we opt
3744 * to generate the exceptions.
3748 /* Watchpoint covers bytes defined by the byte address select bits */
3749 int bas
= extract64(wcr
, 5, 8);
3753 /* This must act as if the watchpoint is disabled */
3757 if (extract64(wvr
, 2, 1)) {
3758 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3759 * ignored, and BAS[3:0] define which bytes to watch.
3763 /* The BAS bits are supposed to be programmed to indicate a contiguous
3764 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3765 * we fire for each byte in the word/doubleword addressed by the WVR.
3766 * We choose to ignore any non-zero bits after the first range of 1s.
3768 basstart
= ctz32(bas
);
3769 len
= cto32(bas
>> basstart
);
3773 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
3774 &env
->cpu_watchpoint
[n
]);
3777 void hw_watchpoint_update_all(ARMCPU
*cpu
)
3780 CPUARMState
*env
= &cpu
->env
;
3782 /* Completely clear out existing QEMU watchpoints and our array, to
3783 * avoid possible stale entries following migration load.
3785 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
3786 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
3788 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
3789 hw_watchpoint_update(cpu
, i
);
3793 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3796 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3799 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3800 * register reads and behaves as if values written are sign extended.
3801 * Bits [1:0] are RES0.
3803 value
= sextract64(value
, 0, 49) & ~3ULL;
3805 raw_write(env
, ri
, value
);
3806 hw_watchpoint_update(cpu
, i
);
3809 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3812 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3815 raw_write(env
, ri
, value
);
3816 hw_watchpoint_update(cpu
, i
);
3819 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
3821 CPUARMState
*env
= &cpu
->env
;
3822 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
3823 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
3828 if (env
->cpu_breakpoint
[n
]) {
3829 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
3830 env
->cpu_breakpoint
[n
] = NULL
;
3833 if (!extract64(bcr
, 0, 1)) {
3834 /* E bit clear : watchpoint disabled */
3838 bt
= extract64(bcr
, 20, 4);
3841 case 4: /* unlinked address mismatch (reserved if AArch64) */
3842 case 5: /* linked address mismatch (reserved if AArch64) */
3843 qemu_log_mask(LOG_UNIMP
,
3844 "arm: address mismatch breakpoint types not implemented");
3846 case 0: /* unlinked address match */
3847 case 1: /* linked address match */
3849 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3850 * we behave as if the register was sign extended. Bits [1:0] are
3851 * RES0. The BAS field is used to allow setting breakpoints on 16
3852 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3853 * a bp will fire if the addresses covered by the bp and the addresses
3854 * covered by the insn overlap but the insn doesn't start at the
3855 * start of the bp address range. We choose to require the insn and
3856 * the bp to have the same address. The constraints on writing to
3857 * BAS enforced in dbgbcr_write mean we have only four cases:
3858 * 0b0000 => no breakpoint
3859 * 0b0011 => breakpoint on addr
3860 * 0b1100 => breakpoint on addr + 2
3861 * 0b1111 => breakpoint on addr
3862 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3864 int bas
= extract64(bcr
, 5, 4);
3865 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
3874 case 2: /* unlinked context ID match */
3875 case 8: /* unlinked VMID match (reserved if no EL2) */
3876 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3877 qemu_log_mask(LOG_UNIMP
,
3878 "arm: unlinked context breakpoint types not implemented");
3880 case 9: /* linked VMID match (reserved if no EL2) */
3881 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3882 case 3: /* linked context ID match */
3884 /* We must generate no events for Linked context matches (unless
3885 * they are linked to by some other bp/wp, which is handled in
3886 * updates for the linking bp/wp). We choose to also generate no events
3887 * for reserved values.
3892 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
3895 void hw_breakpoint_update_all(ARMCPU
*cpu
)
3898 CPUARMState
*env
= &cpu
->env
;
3900 /* Completely clear out existing QEMU breakpoints and our array, to
3901 * avoid possible stale entries following migration load.
3903 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
3904 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
3906 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
3907 hw_breakpoint_update(cpu
, i
);
3911 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3914 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3917 raw_write(env
, ri
, value
);
3918 hw_breakpoint_update(cpu
, i
);
3921 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3924 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3927 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3930 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
3931 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
3933 raw_write(env
, ri
, value
);
3934 hw_breakpoint_update(cpu
, i
);
3937 static void define_debug_regs(ARMCPU
*cpu
)
3939 /* Define v7 and v8 architectural debug registers.
3940 * These are just dummy implementations for now.
3943 int wrps
, brps
, ctx_cmps
;
3944 ARMCPRegInfo dbgdidr
= {
3945 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
3946 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
3949 /* Note that all these register fields hold "number of Xs minus 1". */
3950 brps
= extract32(cpu
->dbgdidr
, 24, 4);
3951 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
3952 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
3954 assert(ctx_cmps
<= brps
);
3956 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3957 * of the debug registers such as number of breakpoints;
3958 * check that if they both exist then they agree.
3960 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
3961 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
3962 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
3963 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
3966 define_one_arm_cp_reg(cpu
, &dbgdidr
);
3967 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
3969 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
3970 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
3973 for (i
= 0; i
< brps
+ 1; i
++) {
3974 ARMCPRegInfo dbgregs
[] = {
3975 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
3976 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
3978 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
3979 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
3981 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
3982 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
3984 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
3985 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
3989 define_arm_cp_regs(cpu
, dbgregs
);
3992 for (i
= 0; i
< wrps
+ 1; i
++) {
3993 ARMCPRegInfo dbgregs
[] = {
3994 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
3995 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
3997 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
3998 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4000 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4001 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4003 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4004 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4008 define_arm_cp_regs(cpu
, dbgregs
);
4012 void register_cp_regs_for_features(ARMCPU
*cpu
)
4014 /* Register all the coprocessor registers based on feature bits */
4015 CPUARMState
*env
= &cpu
->env
;
4016 if (arm_feature(env
, ARM_FEATURE_M
)) {
4017 /* M profile has no coprocessor registers */
4021 define_arm_cp_regs(cpu
, cp_reginfo
);
4022 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
4023 /* Must go early as it is full of wildcards that may be
4024 * overridden by later definitions.
4026 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
4029 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4030 /* The ID registers all have impdef reset values */
4031 ARMCPRegInfo v6_idregs
[] = {
4032 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
4033 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4034 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4035 .resetvalue
= cpu
->id_pfr0
},
4036 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
4037 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
4038 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4039 .resetvalue
= cpu
->id_pfr1
},
4040 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
4041 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
4042 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4043 .resetvalue
= cpu
->id_dfr0
},
4044 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
4045 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
4046 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4047 .resetvalue
= cpu
->id_afr0
},
4048 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
4049 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
4050 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4051 .resetvalue
= cpu
->id_mmfr0
},
4052 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
4053 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
4054 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4055 .resetvalue
= cpu
->id_mmfr1
},
4056 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
4057 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
4058 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4059 .resetvalue
= cpu
->id_mmfr2
},
4060 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
4061 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
4062 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4063 .resetvalue
= cpu
->id_mmfr3
},
4064 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
4065 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4066 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4067 .resetvalue
= cpu
->id_isar0
},
4068 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
4069 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
4070 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4071 .resetvalue
= cpu
->id_isar1
},
4072 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
4073 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4074 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4075 .resetvalue
= cpu
->id_isar2
},
4076 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
4077 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
4078 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4079 .resetvalue
= cpu
->id_isar3
},
4080 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
4081 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
4082 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4083 .resetvalue
= cpu
->id_isar4
},
4084 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
4085 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
4086 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4087 .resetvalue
= cpu
->id_isar5
},
4088 /* 6..7 are as yet unallocated and must RAZ */
4089 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
4090 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4092 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
4093 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
4097 define_arm_cp_regs(cpu
, v6_idregs
);
4098 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
4100 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
4102 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
4103 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
4105 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
4106 !arm_feature(env
, ARM_FEATURE_MPU
)) {
4107 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
4109 if (arm_feature(env
, ARM_FEATURE_V7
)) {
4110 /* v7 performance monitor control register: same implementor
4111 * field as main ID register, and we implement only the cycle
4114 #ifndef CONFIG_USER_ONLY
4115 ARMCPRegInfo pmcr
= {
4116 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
4118 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
4119 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
4120 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
4121 .raw_writefn
= raw_write
,
4123 ARMCPRegInfo pmcr64
= {
4124 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
4125 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
4126 .access
= PL0_RW
, .accessfn
= pmreg_access
,
4128 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
4129 .resetvalue
= cpu
->midr
& 0xff000000,
4130 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
4132 define_one_arm_cp_reg(cpu
, &pmcr
);
4133 define_one_arm_cp_reg(cpu
, &pmcr64
);
4135 ARMCPRegInfo clidr
= {
4136 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
4137 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
4138 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
4140 define_one_arm_cp_reg(cpu
, &clidr
);
4141 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
4142 define_debug_regs(cpu
);
4144 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
4146 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4147 /* AArch64 ID registers, which all have impdef reset values */
4148 ARMCPRegInfo v8_idregs
[] = {
4149 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4150 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
4151 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4152 .resetvalue
= cpu
->id_aa64pfr0
},
4153 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4154 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
4155 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4156 .resetvalue
= cpu
->id_aa64pfr1
},
4157 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4158 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
4159 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4160 /* We mask out the PMUVer field, because we don't currently
4161 * implement the PMU. Not advertising it prevents the guest
4162 * from trying to use it and getting UNDEFs on registers we
4165 .resetvalue
= cpu
->id_aa64dfr0
& ~0xf00 },
4166 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4167 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
4168 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4169 .resetvalue
= cpu
->id_aa64dfr1
},
4170 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4171 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
4172 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4173 .resetvalue
= cpu
->id_aa64afr0
},
4174 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4175 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
4176 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4177 .resetvalue
= cpu
->id_aa64afr1
},
4178 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
4179 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
4180 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4181 .resetvalue
= cpu
->id_aa64isar0
},
4182 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
4183 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
4184 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4185 .resetvalue
= cpu
->id_aa64isar1
},
4186 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4187 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4188 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4189 .resetvalue
= cpu
->id_aa64mmfr0
},
4190 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4191 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
4192 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4193 .resetvalue
= cpu
->id_aa64mmfr1
},
4194 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
4195 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
4196 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4197 .resetvalue
= cpu
->mvfr0
},
4198 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
4199 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
4200 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4201 .resetvalue
= cpu
->mvfr1
},
4202 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
4203 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
4204 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4205 .resetvalue
= cpu
->mvfr2
},
4208 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4209 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
4210 !arm_feature(env
, ARM_FEATURE_EL2
)) {
4211 ARMCPRegInfo rvbar
= {
4212 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4213 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4214 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
4216 define_one_arm_cp_reg(cpu
, &rvbar
);
4218 define_arm_cp_regs(cpu
, v8_idregs
);
4219 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
4221 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
4222 uint64_t vmpidr_def
= mpidr_read_val(env
);
4223 ARMCPRegInfo vpidr_regs
[] = {
4224 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
4225 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4226 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4227 .resetvalue
= cpu
->midr
,
4228 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4229 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4230 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4231 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
4232 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4233 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
4234 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4235 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4236 .resetvalue
= vmpidr_def
,
4237 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4238 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
4239 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4241 .resetvalue
= vmpidr_def
,
4242 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
4245 define_arm_cp_regs(cpu
, vpidr_regs
);
4246 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
4247 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4248 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
4249 ARMCPRegInfo rvbar
= {
4250 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
4251 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
4252 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
4254 define_one_arm_cp_reg(cpu
, &rvbar
);
4257 /* If EL2 is missing but higher ELs are enabled, we need to
4258 * register the no_el2 reginfos.
4260 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4261 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4262 * of MIDR_EL1 and MPIDR_EL1.
4264 ARMCPRegInfo vpidr_regs
[] = {
4265 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4266 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
4267 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4268 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
4269 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
4270 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4271 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
4272 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4273 .type
= ARM_CP_NO_RAW
,
4274 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
4277 define_arm_cp_regs(cpu
, vpidr_regs
);
4278 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
4281 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4282 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
4283 ARMCPRegInfo rvbar
= {
4284 .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4285 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
4286 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
4288 define_one_arm_cp_reg(cpu
, &rvbar
);
4290 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
4291 if (arm_feature(env
, ARM_FEATURE_V6
)) {
4292 /* PMSAv6 not implemented */
4293 assert(arm_feature(env
, ARM_FEATURE_V7
));
4294 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4295 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
4297 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
4300 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
4301 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
4303 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
4304 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
4306 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
4307 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
4309 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
4310 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
4312 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
4313 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
4315 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
4316 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
4318 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
4319 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
4321 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
4322 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
4324 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4325 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
4327 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4328 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
4330 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
4331 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
4333 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
4334 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
4336 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4337 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4338 * be read-only (ie write causes UNDEF exception).
4341 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
4342 /* Pre-v8 MIDR space.
4343 * Note that the MIDR isn't a simple constant register because
4344 * of the TI925 behaviour where writes to another register can
4345 * cause the MIDR value to change.
4347 * Unimplemented registers in the c15 0 0 0 space default to
4348 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4349 * and friends override accordingly.
4352 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
4353 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
4354 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
4355 .readfn
= midr_read
,
4356 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4357 .type
= ARM_CP_OVERRIDE
},
4358 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4360 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
4361 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4363 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
4364 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4366 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
4367 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4369 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
4370 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4372 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
4373 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4376 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
4377 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4378 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
4379 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
4380 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
4381 .readfn
= midr_read
},
4382 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4383 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4384 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4385 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4386 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
4387 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
4388 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
4389 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
4390 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
4391 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
4394 ARMCPRegInfo id_cp_reginfo
[] = {
4395 /* These are common to v8 and pre-v8 */
4397 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
4398 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4399 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
4400 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
4401 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
4402 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
4403 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4405 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
4406 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4409 /* TLBTR is specific to VMSA */
4410 ARMCPRegInfo id_tlbtr_reginfo
= {
4412 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
4413 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
4415 /* MPUIR is specific to PMSA V6+ */
4416 ARMCPRegInfo id_mpuir_reginfo
= {
4418 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
4419 .access
= PL1_R
, .type
= ARM_CP_CONST
,
4420 .resetvalue
= cpu
->pmsav7_dregion
<< 8
4422 ARMCPRegInfo crn0_wi_reginfo
= {
4423 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
4424 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
4425 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
4427 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
4428 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
4430 /* Register the blanket "writes ignored" value first to cover the
4431 * whole space. Then update the specific ID registers to allow write
4432 * access, so that they ignore writes rather than causing them to
4435 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
4436 for (r
= id_pre_v8_midr_cp_reginfo
;
4437 r
->type
!= ARM_CP_SENTINEL
; r
++) {
4440 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4443 id_tlbtr_reginfo
.access
= PL1_RW
;
4444 id_tlbtr_reginfo
.access
= PL1_RW
;
4446 if (arm_feature(env
, ARM_FEATURE_V8
)) {
4447 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
4449 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
4451 define_arm_cp_regs(cpu
, id_cp_reginfo
);
4452 if (!arm_feature(env
, ARM_FEATURE_MPU
)) {
4453 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
4454 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
4455 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
4459 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
4460 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
4463 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
4464 ARMCPRegInfo auxcr_reginfo
[] = {
4465 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4466 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
4467 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
4468 .resetvalue
= cpu
->reset_auxcr
},
4469 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4470 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
4471 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4473 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
4474 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
4475 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4479 define_arm_cp_regs(cpu
, auxcr_reginfo
);
4482 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
4483 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4484 /* 32 bit view is [31:18] 0...0 [43:32]. */
4485 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
4486 | extract64(cpu
->reset_cbar
, 32, 12);
4487 ARMCPRegInfo cbar_reginfo
[] = {
4489 .type
= ARM_CP_CONST
,
4490 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4491 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
4492 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
4493 .type
= ARM_CP_CONST
,
4494 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
4495 .access
= PL1_R
, .resetvalue
= cbar32
},
4498 /* We don't implement a r/w 64 bit CBAR currently */
4499 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
4500 define_arm_cp_regs(cpu
, cbar_reginfo
);
4502 ARMCPRegInfo cbar
= {
4504 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
4505 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
4506 .fieldoffset
= offsetof(CPUARMState
,
4507 cp15
.c15_config_base_address
)
4509 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
4510 cbar
.access
= PL1_R
;
4511 cbar
.fieldoffset
= 0;
4512 cbar
.type
= ARM_CP_CONST
;
4514 define_one_arm_cp_reg(cpu
, &cbar
);
4518 /* Generic registers whose values depend on the implementation */
4520 ARMCPRegInfo sctlr
= {
4521 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
4522 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4524 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
4525 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
4526 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
4527 .raw_writefn
= raw_write
,
4529 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
4530 /* Normally we would always end the TB on an SCTLR write, but Linux
4531 * arch/arm/mach-pxa/sleep.S expects two instructions following
4532 * an MMU enable to execute from cache. Imitate this behaviour.
4534 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
4536 define_one_arm_cp_reg(cpu
, &sctlr
);
4540 ARMCPU
*cpu_arm_init(const char *cpu_model
)
4542 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU
, cpu_model
));
4545 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
4547 CPUState
*cs
= CPU(cpu
);
4548 CPUARMState
*env
= &cpu
->env
;
4550 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
4551 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
4552 aarch64_fpu_gdb_set_reg
,
4553 34, "aarch64-fpu.xml", 0);
4554 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
4555 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4556 51, "arm-neon.xml", 0);
4557 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
4558 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4559 35, "arm-vfp3.xml", 0);
4560 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
4561 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
4562 19, "arm-vfp.xml", 0);
4566 /* Sort alphabetically by type name, except for "any". */
4567 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
4569 ObjectClass
*class_a
= (ObjectClass
*)a
;
4570 ObjectClass
*class_b
= (ObjectClass
*)b
;
4571 const char *name_a
, *name_b
;
4573 name_a
= object_class_get_name(class_a
);
4574 name_b
= object_class_get_name(class_b
);
4575 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
4577 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
4580 return strcmp(name_a
, name_b
);
4584 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
4586 ObjectClass
*oc
= data
;
4587 CPUListState
*s
= user_data
;
4588 const char *typename
;
4591 typename
= object_class_get_name(oc
);
4592 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4593 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
4598 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
4602 .cpu_fprintf
= cpu_fprintf
,
4606 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4607 list
= g_slist_sort(list
, arm_cpu_list_compare
);
4608 (*cpu_fprintf
)(f
, "Available CPUs:\n");
4609 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
4612 /* The 'host' CPU type is dynamically registered only if KVM is
4613 * enabled, so we have to special-case it here:
4615 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
4619 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
4621 ObjectClass
*oc
= data
;
4622 CpuDefinitionInfoList
**cpu_list
= user_data
;
4623 CpuDefinitionInfoList
*entry
;
4624 CpuDefinitionInfo
*info
;
4625 const char *typename
;
4627 typename
= object_class_get_name(oc
);
4628 info
= g_malloc0(sizeof(*info
));
4629 info
->name
= g_strndup(typename
,
4630 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
4632 entry
= g_malloc0(sizeof(*entry
));
4633 entry
->value
= info
;
4634 entry
->next
= *cpu_list
;
4638 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
4640 CpuDefinitionInfoList
*cpu_list
= NULL
;
4643 list
= object_class_get_list(TYPE_ARM_CPU
, false);
4644 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
4650 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
4651 void *opaque
, int state
, int secstate
,
4652 int crm
, int opc1
, int opc2
)
4654 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4655 * add a single reginfo struct to the hash table.
4657 uint32_t *key
= g_new(uint32_t, 1);
4658 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
4659 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
4660 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
4662 /* Reset the secure state to the specific incoming state. This is
4663 * necessary as the register may have been defined with both states.
4665 r2
->secure
= secstate
;
4667 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4668 /* Register is banked (using both entries in array).
4669 * Overwriting fieldoffset as the array is only used to define
4670 * banked registers but later only fieldoffset is used.
4672 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
4675 if (state
== ARM_CP_STATE_AA32
) {
4676 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
4677 /* If the register is banked then we don't need to migrate or
4678 * reset the 32-bit instance in certain cases:
4680 * 1) If the register has both 32-bit and 64-bit instances then we
4681 * can count on the 64-bit instance taking care of the
4683 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4684 * taking care of the secure bank. This requires that separate
4685 * 32 and 64-bit definitions are provided.
4687 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
4688 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
4689 r2
->type
|= ARM_CP_ALIAS
;
4691 } else if ((secstate
!= r
->secure
) && !ns
) {
4692 /* The register is not banked so we only want to allow migration of
4693 * the non-secure instance.
4695 r2
->type
|= ARM_CP_ALIAS
;
4698 if (r
->state
== ARM_CP_STATE_BOTH
) {
4699 /* We assume it is a cp15 register if the .cp field is left unset.
4705 #ifdef HOST_WORDS_BIGENDIAN
4706 if (r2
->fieldoffset
) {
4707 r2
->fieldoffset
+= sizeof(uint32_t);
4712 if (state
== ARM_CP_STATE_AA64
) {
4713 /* To allow abbreviation of ARMCPRegInfo
4714 * definitions, we treat cp == 0 as equivalent to
4715 * the value for "standard guest-visible sysreg".
4716 * STATE_BOTH definitions are also always "standard
4717 * sysreg" in their AArch64 view (the .cp value may
4718 * be non-zero for the benefit of the AArch32 view).
4720 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
4721 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
4723 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
4724 r2
->opc0
, opc1
, opc2
);
4726 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
4729 r2
->opaque
= opaque
;
4731 /* reginfo passed to helpers is correct for the actual access,
4732 * and is never ARM_CP_STATE_BOTH:
4735 /* Make sure reginfo passed to helpers for wildcarded regs
4736 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4741 /* By convention, for wildcarded registers only the first
4742 * entry is used for migration; the others are marked as
4743 * ALIAS so we don't try to transfer the register
4744 * multiple times. Special registers (ie NOP/WFI) are
4745 * never migratable and not even raw-accessible.
4747 if ((r
->type
& ARM_CP_SPECIAL
)) {
4748 r2
->type
|= ARM_CP_NO_RAW
;
4750 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
4751 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
4752 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
4753 r2
->type
|= ARM_CP_ALIAS
;
4756 /* Check that raw accesses are either forbidden or handled. Note that
4757 * we can't assert this earlier because the setup of fieldoffset for
4758 * banked registers has to be done first.
4760 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
4761 assert(!raw_accessors_invalid(r2
));
4764 /* Overriding of an existing definition must be explicitly
4767 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
4768 ARMCPRegInfo
*oldreg
;
4769 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
4770 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
4771 fprintf(stderr
, "Register redefined: cp=%d %d bit "
4772 "crn=%d crm=%d opc1=%d opc2=%d, "
4773 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
4774 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
4775 oldreg
->name
, r2
->name
);
4776 g_assert_not_reached();
4779 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
4783 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
4784 const ARMCPRegInfo
*r
, void *opaque
)
4786 /* Define implementations of coprocessor registers.
4787 * We store these in a hashtable because typically
4788 * there are less than 150 registers in a space which
4789 * is 16*16*16*8*8 = 262144 in size.
4790 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4791 * If a register is defined twice then the second definition is
4792 * used, so this can be used to define some generic registers and
4793 * then override them with implementation specific variations.
4794 * At least one of the original and the second definition should
4795 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4796 * against accidental use.
4798 * The state field defines whether the register is to be
4799 * visible in the AArch32 or AArch64 execution state. If the
4800 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4801 * reginfo structure for the AArch32 view, which sees the lower
4802 * 32 bits of the 64 bit register.
4804 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4805 * be wildcarded. AArch64 registers are always considered to be 64
4806 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4807 * the register, if any.
4809 int crm
, opc1
, opc2
, state
;
4810 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
4811 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
4812 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
4813 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
4814 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
4815 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
4816 /* 64 bit registers have only CRm and Opc1 fields */
4817 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
4818 /* op0 only exists in the AArch64 encodings */
4819 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
4820 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4821 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
4822 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4823 * encodes a minimum access level for the register. We roll this
4824 * runtime check into our general permission check code, so check
4825 * here that the reginfo's specified permissions are strict enough
4826 * to encompass the generic architectural permission check.
4828 if (r
->state
!= ARM_CP_STATE_AA32
) {
4831 case 0: case 1: case 2:
4844 /* unallocated encoding, so not possible */
4852 /* min_EL EL1, secure mode only (we don't check the latter) */
4856 /* broken reginfo with out-of-range opc1 */
4860 /* assert our permissions are not too lax (stricter is fine) */
4861 assert((r
->access
& ~mask
) == 0);
4864 /* Check that the register definition has enough info to handle
4865 * reads and writes if they are permitted.
4867 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
4868 if (r
->access
& PL3_R
) {
4869 assert((r
->fieldoffset
||
4870 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4873 if (r
->access
& PL3_W
) {
4874 assert((r
->fieldoffset
||
4875 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
4879 /* Bad type field probably means missing sentinel at end of reg list */
4880 assert(cptype_valid(r
->type
));
4881 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
4882 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
4883 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
4884 for (state
= ARM_CP_STATE_AA32
;
4885 state
<= ARM_CP_STATE_AA64
; state
++) {
4886 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
4889 if (state
== ARM_CP_STATE_AA32
) {
4890 /* Under AArch32 CP registers can be common
4891 * (same for secure and non-secure world) or banked.
4893 switch (r
->secure
) {
4894 case ARM_CP_SECSTATE_S
:
4895 case ARM_CP_SECSTATE_NS
:
4896 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4897 r
->secure
, crm
, opc1
, opc2
);
4900 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4903 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4909 /* AArch64 registers get mapped to non-secure instance
4911 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
4921 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
4922 const ARMCPRegInfo
*regs
, void *opaque
)
4924 /* Define a whole list of registers */
4925 const ARMCPRegInfo
*r
;
4926 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
4927 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
4931 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
4933 return g_hash_table_lookup(cpregs
, &encoded_cp
);
4936 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4939 /* Helper coprocessor write function for write-ignore registers */
4942 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4944 /* Helper coprocessor write function for read-as-zero registers */
4948 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
4950 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4953 static int bad_mode_switch(CPUARMState
*env
, int mode
)
4955 /* Return true if it is not valid for us to switch to
4956 * this CPU mode (ie all the UNPREDICTABLE cases in
4957 * the ARM ARM CPSRWriteByInstr pseudocode).
4960 case ARM_CPU_MODE_USR
:
4961 case ARM_CPU_MODE_SYS
:
4962 case ARM_CPU_MODE_SVC
:
4963 case ARM_CPU_MODE_ABT
:
4964 case ARM_CPU_MODE_UND
:
4965 case ARM_CPU_MODE_IRQ
:
4966 case ARM_CPU_MODE_FIQ
:
4968 case ARM_CPU_MODE_MON
:
4969 return !arm_is_secure(env
);
4975 uint32_t cpsr_read(CPUARMState
*env
)
4978 ZF
= (env
->ZF
== 0);
4979 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
4980 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
4981 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
4982 | ((env
->condexec_bits
& 0xfc) << 8)
4983 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
4986 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
4988 uint32_t changed_daif
;
4990 if (mask
& CPSR_NZCV
) {
4991 env
->ZF
= (~val
) & CPSR_Z
;
4993 env
->CF
= (val
>> 29) & 1;
4994 env
->VF
= (val
<< 3) & 0x80000000;
4997 env
->QF
= ((val
& CPSR_Q
) != 0);
4999 env
->thumb
= ((val
& CPSR_T
) != 0);
5000 if (mask
& CPSR_IT_0_1
) {
5001 env
->condexec_bits
&= ~3;
5002 env
->condexec_bits
|= (val
>> 25) & 3;
5004 if (mask
& CPSR_IT_2_7
) {
5005 env
->condexec_bits
&= 3;
5006 env
->condexec_bits
|= (val
>> 8) & 0xfc;
5008 if (mask
& CPSR_GE
) {
5009 env
->GE
= (val
>> 16) & 0xf;
5012 /* In a V7 implementation that includes the security extensions but does
5013 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5014 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5015 * bits respectively.
5017 * In a V8 implementation, it is permitted for privileged software to
5018 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5020 if (!arm_feature(env
, ARM_FEATURE_V8
) &&
5021 arm_feature(env
, ARM_FEATURE_EL3
) &&
5022 !arm_feature(env
, ARM_FEATURE_EL2
) &&
5023 !arm_is_secure(env
)) {
5025 changed_daif
= (env
->daif
^ val
) & mask
;
5027 if (changed_daif
& CPSR_A
) {
5028 /* Check to see if we are allowed to change the masking of async
5029 * abort exceptions from a non-secure state.
5031 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
5032 qemu_log_mask(LOG_GUEST_ERROR
,
5033 "Ignoring attempt to switch CPSR_A flag from "
5034 "non-secure world with SCR.AW bit clear\n");
5039 if (changed_daif
& CPSR_F
) {
5040 /* Check to see if we are allowed to change the masking of FIQ
5041 * exceptions from a non-secure state.
5043 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
5044 qemu_log_mask(LOG_GUEST_ERROR
,
5045 "Ignoring attempt to switch CPSR_F flag from "
5046 "non-secure world with SCR.FW bit clear\n");
5050 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5051 * If this bit is set software is not allowed to mask
5052 * FIQs, but is allowed to set CPSR_F to 0.
5054 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
5056 qemu_log_mask(LOG_GUEST_ERROR
,
5057 "Ignoring attempt to enable CPSR_F flag "
5058 "(non-maskable FIQ [NMFI] support enabled)\n");
5064 env
->daif
&= ~(CPSR_AIF
& mask
);
5065 env
->daif
|= val
& CPSR_AIF
& mask
;
5067 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
5068 if (bad_mode_switch(env
, val
& CPSR_M
)) {
5069 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
5070 * We choose to ignore the attempt and leave the CPSR M field
5075 switch_mode(env
, val
& CPSR_M
);
5078 mask
&= ~CACHED_CPSR_BITS
;
5079 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
5082 /* Sign/zero extend */
5083 uint32_t HELPER(sxtb16
)(uint32_t x
)
5086 res
= (uint16_t)(int8_t)x
;
5087 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
5091 uint32_t HELPER(uxtb16
)(uint32_t x
)
5094 res
= (uint16_t)(uint8_t)x
;
5095 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
5099 uint32_t HELPER(clz
)(uint32_t x
)
5104 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
5108 if (num
== INT_MIN
&& den
== -1)
5113 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
5120 uint32_t HELPER(rbit
)(uint32_t x
)
5125 #if defined(CONFIG_USER_ONLY)
5127 /* These should probably raise undefined insn exceptions. */
5128 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
5130 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5132 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
5135 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
5137 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5139 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
5143 void switch_mode(CPUARMState
*env
, int mode
)
5145 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5147 if (mode
!= ARM_CPU_MODE_USR
) {
5148 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
5152 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
5154 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5156 cpu_abort(CPU(cpu
), "banked r13 write\n");
5159 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
5161 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5163 cpu_abort(CPU(cpu
), "banked r13 read\n");
5167 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5168 uint32_t cur_el
, bool secure
)
5173 void aarch64_sync_64_to_32(CPUARMState
*env
)
5175 g_assert_not_reached();
5180 /* Map CPU modes onto saved register banks. */
5181 int bank_number(int mode
)
5184 case ARM_CPU_MODE_USR
:
5185 case ARM_CPU_MODE_SYS
:
5187 case ARM_CPU_MODE_SVC
:
5189 case ARM_CPU_MODE_ABT
:
5191 case ARM_CPU_MODE_UND
:
5193 case ARM_CPU_MODE_IRQ
:
5195 case ARM_CPU_MODE_FIQ
:
5197 case ARM_CPU_MODE_HYP
:
5199 case ARM_CPU_MODE_MON
:
5202 g_assert_not_reached();
5205 void switch_mode(CPUARMState
*env
, int mode
)
5210 old_mode
= env
->uncached_cpsr
& CPSR_M
;
5211 if (mode
== old_mode
)
5214 if (old_mode
== ARM_CPU_MODE_FIQ
) {
5215 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5216 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
5217 } else if (mode
== ARM_CPU_MODE_FIQ
) {
5218 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
5219 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
5222 i
= bank_number(old_mode
);
5223 env
->banked_r13
[i
] = env
->regs
[13];
5224 env
->banked_r14
[i
] = env
->regs
[14];
5225 env
->banked_spsr
[i
] = env
->spsr
;
5227 i
= bank_number(mode
);
5228 env
->regs
[13] = env
->banked_r13
[i
];
5229 env
->regs
[14] = env
->banked_r14
[i
];
5230 env
->spsr
= env
->banked_spsr
[i
];
5233 /* Physical Interrupt Target EL Lookup Table
5235 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5237 * The below multi-dimensional table is used for looking up the target
5238 * exception level given numerous condition criteria. Specifically, the
5239 * target EL is based on SCR and HCR routing controls as well as the
5240 * currently executing EL and secure state.
5243 * target_el_table[2][2][2][2][2][4]
5244 * | | | | | +--- Current EL
5245 * | | | | +------ Non-secure(0)/Secure(1)
5246 * | | | +--------- HCR mask override
5247 * | | +------------ SCR exec state control
5248 * | +--------------- SCR mask override
5249 * +------------------ 32-bit(0)/64-bit(1) EL3
5251 * The table values are as such:
5255 * The ARM ARM target EL table includes entries indicating that an "exception
5256 * is not taken". The two cases where this is applicable are:
5257 * 1) An exception is taken from EL3 but the SCR does not have the exception
5259 * 2) An exception is taken from EL2 but the HCR does not have the exception
5261 * In these two cases, the below table contain a target of EL1. This value is
5262 * returned as it is expected that the consumer of the table data will check
5263 * for "target EL >= current EL" to ensure the exception is not taken.
5267 * BIT IRQ IMO Non-secure Secure
5268 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5270 static const int8_t target_el_table
[2][2][2][2][2][4] = {
5271 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5272 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5273 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5274 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5275 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5276 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5277 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5278 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5279 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5280 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5281 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5282 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5283 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5284 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5285 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5286 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5290 * Determine the target EL for physical exceptions
5292 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
5293 uint32_t cur_el
, bool secure
)
5295 CPUARMState
*env
= cs
->env_ptr
;
5300 /* Is the highest EL AArch64? */
5301 int is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
5303 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5304 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
5306 /* Either EL2 is the highest EL (and so the EL2 register width
5307 * is given by is64); or there is no EL2 or EL3, in which case
5308 * the value of 'rw' does not affect the table lookup anyway.
5315 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
5316 hcr
= ((env
->cp15
.hcr_el2
& HCR_IMO
) == HCR_IMO
);
5319 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
5320 hcr
= ((env
->cp15
.hcr_el2
& HCR_FMO
) == HCR_FMO
);
5323 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
5324 hcr
= ((env
->cp15
.hcr_el2
& HCR_AMO
) == HCR_AMO
);
5328 /* If HCR.TGE is set then HCR is treated as being 1 */
5329 hcr
|= ((env
->cp15
.hcr_el2
& HCR_TGE
) == HCR_TGE
);
5331 /* Perform a table-lookup for the target EL given the current state */
5332 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
5334 assert(target_el
> 0);
5339 static void v7m_push(CPUARMState
*env
, uint32_t val
)
5341 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5344 stl_phys(cs
->as
, env
->regs
[13], val
);
5347 static uint32_t v7m_pop(CPUARMState
*env
)
5349 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
5352 val
= ldl_phys(cs
->as
, env
->regs
[13]);
5357 /* Switch to V7M main or process stack pointer. */
5358 static void switch_v7m_sp(CPUARMState
*env
, int process
)
5361 if (env
->v7m
.current_sp
!= process
) {
5362 tmp
= env
->v7m
.other_sp
;
5363 env
->v7m
.other_sp
= env
->regs
[13];
5364 env
->regs
[13] = tmp
;
5365 env
->v7m
.current_sp
= process
;
5369 static void do_v7m_exception_exit(CPUARMState
*env
)
5374 type
= env
->regs
[15];
5375 if (env
->v7m
.exception
!= 0)
5376 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
5378 /* Switch to the target stack. */
5379 switch_v7m_sp(env
, (type
& 4) != 0);
5380 /* Pop registers. */
5381 env
->regs
[0] = v7m_pop(env
);
5382 env
->regs
[1] = v7m_pop(env
);
5383 env
->regs
[2] = v7m_pop(env
);
5384 env
->regs
[3] = v7m_pop(env
);
5385 env
->regs
[12] = v7m_pop(env
);
5386 env
->regs
[14] = v7m_pop(env
);
5387 env
->regs
[15] = v7m_pop(env
);
5388 if (env
->regs
[15] & 1) {
5389 qemu_log_mask(LOG_GUEST_ERROR
,
5390 "M profile return from interrupt with misaligned "
5391 "PC is UNPREDICTABLE\n");
5392 /* Actual hardware seems to ignore the lsbit, and there are several
5393 * RTOSes out there which incorrectly assume the r15 in the stack
5394 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5396 env
->regs
[15] &= ~1U;
5398 xpsr
= v7m_pop(env
);
5399 xpsr_write(env
, xpsr
, 0xfffffdff);
5400 /* Undo stack alignment. */
5403 /* ??? The exception return type specifies Thread/Handler mode. However
5404 this is also implied by the xPSR value. Not sure what to do
5405 if there is a mismatch. */
5406 /* ??? Likewise for mismatches between the CONTROL register and the stack
5410 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
5412 ARMCPU
*cpu
= ARM_CPU(cs
);
5413 CPUARMState
*env
= &cpu
->env
;
5414 uint32_t xpsr
= xpsr_read(env
);
5418 arm_log_exception(cs
->exception_index
);
5421 if (env
->v7m
.current_sp
)
5423 if (env
->v7m
.exception
== 0)
5426 /* For exceptions we just mark as pending on the NVIC, and let that
5428 /* TODO: Need to escalate if the current priority is higher than the
5429 one we're raising. */
5430 switch (cs
->exception_index
) {
5432 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
5435 /* The PC already points to the next instruction. */
5436 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
5438 case EXCP_PREFETCH_ABORT
:
5439 case EXCP_DATA_ABORT
:
5440 /* TODO: if we implemented the MPU registers, this is where we
5441 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5443 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
5446 if (semihosting_enabled()) {
5448 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5451 qemu_log_mask(CPU_LOG_INT
,
5452 "...handling as semihosting call 0x%x\n",
5454 env
->regs
[0] = do_arm_semihosting(env
);
5458 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
5461 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
5463 case EXCP_EXCEPTION_EXIT
:
5464 do_v7m_exception_exit(env
);
5467 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5468 return; /* Never happens. Keep compiler happy. */
5471 /* Align stack pointer. */
5472 /* ??? Should only do this if Configuration Control Register
5473 STACKALIGN bit is set. */
5474 if (env
->regs
[13] & 4) {
5478 /* Switch to the handler mode. */
5479 v7m_push(env
, xpsr
);
5480 v7m_push(env
, env
->regs
[15]);
5481 v7m_push(env
, env
->regs
[14]);
5482 v7m_push(env
, env
->regs
[12]);
5483 v7m_push(env
, env
->regs
[3]);
5484 v7m_push(env
, env
->regs
[2]);
5485 v7m_push(env
, env
->regs
[1]);
5486 v7m_push(env
, env
->regs
[0]);
5487 switch_v7m_sp(env
, 0);
5489 env
->condexec_bits
= 0;
5491 addr
= ldl_phys(cs
->as
, env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
5492 env
->regs
[15] = addr
& 0xfffffffe;
5493 env
->thumb
= addr
& 1;
5496 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5497 * register set. This is necessary when switching between AArch32 and AArch64
5500 void aarch64_sync_32_to_64(CPUARMState
*env
)
5503 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5505 /* We can blanket copy R[0:7] to X[0:7] */
5506 for (i
= 0; i
< 8; i
++) {
5507 env
->xregs
[i
] = env
->regs
[i
];
5510 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5511 * Otherwise, they come from the banked user regs.
5513 if (mode
== ARM_CPU_MODE_FIQ
) {
5514 for (i
= 8; i
< 13; i
++) {
5515 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
5518 for (i
= 8; i
< 13; i
++) {
5519 env
->xregs
[i
] = env
->regs
[i
];
5523 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5524 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5525 * from the mode banked register.
5527 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5528 env
->xregs
[13] = env
->regs
[13];
5529 env
->xregs
[14] = env
->regs
[14];
5531 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
5532 /* HYP is an exception in that it is copied from r14 */
5533 if (mode
== ARM_CPU_MODE_HYP
) {
5534 env
->xregs
[14] = env
->regs
[14];
5536 env
->xregs
[14] = env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)];
5540 if (mode
== ARM_CPU_MODE_HYP
) {
5541 env
->xregs
[15] = env
->regs
[13];
5543 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
5546 if (mode
== ARM_CPU_MODE_IRQ
) {
5547 env
->xregs
[16] = env
->regs
[14];
5548 env
->xregs
[17] = env
->regs
[13];
5550 env
->xregs
[16] = env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)];
5551 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
5554 if (mode
== ARM_CPU_MODE_SVC
) {
5555 env
->xregs
[18] = env
->regs
[14];
5556 env
->xregs
[19] = env
->regs
[13];
5558 env
->xregs
[18] = env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)];
5559 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
5562 if (mode
== ARM_CPU_MODE_ABT
) {
5563 env
->xregs
[20] = env
->regs
[14];
5564 env
->xregs
[21] = env
->regs
[13];
5566 env
->xregs
[20] = env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)];
5567 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
5570 if (mode
== ARM_CPU_MODE_UND
) {
5571 env
->xregs
[22] = env
->regs
[14];
5572 env
->xregs
[23] = env
->regs
[13];
5574 env
->xregs
[22] = env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)];
5575 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
5578 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5579 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5580 * FIQ bank for r8-r14.
5582 if (mode
== ARM_CPU_MODE_FIQ
) {
5583 for (i
= 24; i
< 31; i
++) {
5584 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
5587 for (i
= 24; i
< 29; i
++) {
5588 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
5590 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
5591 env
->xregs
[30] = env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)];
5594 env
->pc
= env
->regs
[15];
5597 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5598 * register set. This is necessary when switching between AArch32 and AArch64
5601 void aarch64_sync_64_to_32(CPUARMState
*env
)
5604 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
5606 /* We can blanket copy X[0:7] to R[0:7] */
5607 for (i
= 0; i
< 8; i
++) {
5608 env
->regs
[i
] = env
->xregs
[i
];
5611 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5612 * Otherwise, we copy x8-x12 into the banked user regs.
5614 if (mode
== ARM_CPU_MODE_FIQ
) {
5615 for (i
= 8; i
< 13; i
++) {
5616 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
5619 for (i
= 8; i
< 13; i
++) {
5620 env
->regs
[i
] = env
->xregs
[i
];
5624 /* Registers r13 & r14 depend on the current mode.
5625 * If we are in a given mode, we copy the corresponding x registers to r13
5626 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5629 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
5630 env
->regs
[13] = env
->xregs
[13];
5631 env
->regs
[14] = env
->xregs
[14];
5633 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
5635 /* HYP is an exception in that it does not have its own banked r14 but
5636 * shares the USR r14
5638 if (mode
== ARM_CPU_MODE_HYP
) {
5639 env
->regs
[14] = env
->xregs
[14];
5641 env
->banked_r14
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
5645 if (mode
== ARM_CPU_MODE_HYP
) {
5646 env
->regs
[13] = env
->xregs
[15];
5648 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
5651 if (mode
== ARM_CPU_MODE_IRQ
) {
5652 env
->regs
[14] = env
->xregs
[16];
5653 env
->regs
[13] = env
->xregs
[17];
5655 env
->banked_r14
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
5656 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
5659 if (mode
== ARM_CPU_MODE_SVC
) {
5660 env
->regs
[14] = env
->xregs
[18];
5661 env
->regs
[13] = env
->xregs
[19];
5663 env
->banked_r14
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
5664 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
5667 if (mode
== ARM_CPU_MODE_ABT
) {
5668 env
->regs
[14] = env
->xregs
[20];
5669 env
->regs
[13] = env
->xregs
[21];
5671 env
->banked_r14
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
5672 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
5675 if (mode
== ARM_CPU_MODE_UND
) {
5676 env
->regs
[14] = env
->xregs
[22];
5677 env
->regs
[13] = env
->xregs
[23];
5679 env
->banked_r14
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
5680 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
5683 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5684 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5685 * FIQ bank for r8-r14.
5687 if (mode
== ARM_CPU_MODE_FIQ
) {
5688 for (i
= 24; i
< 31; i
++) {
5689 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
5692 for (i
= 24; i
< 29; i
++) {
5693 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
5695 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
5696 env
->banked_r14
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
5699 env
->regs
[15] = env
->pc
;
5702 /* Handle a CPU exception. */
5703 void arm_cpu_do_interrupt(CPUState
*cs
)
5705 ARMCPU
*cpu
= ARM_CPU(cs
);
5706 CPUARMState
*env
= &cpu
->env
;
5715 arm_log_exception(cs
->exception_index
);
5717 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
5718 arm_handle_psci_call(cpu
);
5719 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
5723 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5724 switch (env
->exception
.syndrome
>> ARM_EL_EC_SHIFT
) {
5726 case EC_BREAKPOINT_SAME_EL
:
5730 case EC_WATCHPOINT_SAME_EL
:
5736 case EC_VECTORCATCH
:
5745 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
5748 /* TODO: Vectored interrupt controller. */
5749 switch (cs
->exception_index
) {
5751 new_mode
= ARM_CPU_MODE_UND
;
5760 if (semihosting_enabled()) {
5761 /* Check for semihosting interrupt. */
5763 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
5766 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
5769 /* Only intercept calls from privileged modes, to provide some
5770 semblance of security. */
5771 if (((mask
== 0x123456 && !env
->thumb
)
5772 || (mask
== 0xab && env
->thumb
))
5773 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5774 qemu_log_mask(CPU_LOG_INT
,
5775 "...handling as semihosting call 0x%x\n",
5777 env
->regs
[0] = do_arm_semihosting(env
);
5781 new_mode
= ARM_CPU_MODE_SVC
;
5784 /* The PC already points to the next instruction. */
5788 /* See if this is a semihosting syscall. */
5789 if (env
->thumb
&& semihosting_enabled()) {
5790 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
5792 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
5794 qemu_log_mask(CPU_LOG_INT
,
5795 "...handling as semihosting call 0x%x\n",
5797 env
->regs
[0] = do_arm_semihosting(env
);
5801 env
->exception
.fsr
= 2;
5802 /* Fall through to prefetch abort. */
5803 case EXCP_PREFETCH_ABORT
:
5804 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
5805 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
5806 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
5807 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
5808 new_mode
= ARM_CPU_MODE_ABT
;
5810 mask
= CPSR_A
| CPSR_I
;
5813 case EXCP_DATA_ABORT
:
5814 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
5815 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
5816 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
5818 (uint32_t)env
->exception
.vaddress
);
5819 new_mode
= ARM_CPU_MODE_ABT
;
5821 mask
= CPSR_A
| CPSR_I
;
5825 new_mode
= ARM_CPU_MODE_IRQ
;
5827 /* Disable IRQ and imprecise data aborts. */
5828 mask
= CPSR_A
| CPSR_I
;
5830 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
5831 /* IRQ routed to monitor mode */
5832 new_mode
= ARM_CPU_MODE_MON
;
5837 new_mode
= ARM_CPU_MODE_FIQ
;
5839 /* Disable FIQ, IRQ and imprecise data aborts. */
5840 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5841 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
5842 /* FIQ routed to monitor mode */
5843 new_mode
= ARM_CPU_MODE_MON
;
5848 new_mode
= ARM_CPU_MODE_MON
;
5850 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
5854 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
5855 return; /* Never happens. Keep compiler happy. */
5858 if (new_mode
== ARM_CPU_MODE_MON
) {
5859 addr
+= env
->cp15
.mvbar
;
5860 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
5861 /* High vectors. When enabled, base address cannot be remapped. */
5864 /* ARM v7 architectures provide a vector base address register to remap
5865 * the interrupt vector table.
5866 * This register is only followed in non-monitor mode, and is banked.
5867 * Note: only bits 31:5 are valid.
5869 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
5872 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
5873 env
->cp15
.scr_el3
&= ~SCR_NS
;
5876 switch_mode (env
, new_mode
);
5877 /* For exceptions taken to AArch32 we must clear the SS bit in both
5878 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5880 env
->uncached_cpsr
&= ~PSTATE_SS
;
5881 env
->spsr
= cpsr_read(env
);
5882 /* Clear IT bits. */
5883 env
->condexec_bits
= 0;
5884 /* Switch to the new mode, and to the correct instruction set. */
5885 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
5887 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5888 * and we should just guard the thumb mode on V4 */
5889 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
5890 env
->thumb
= (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
5892 env
->regs
[14] = env
->regs
[15] + offset
;
5893 env
->regs
[15] = addr
;
5894 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
5898 /* Return the exception level which controls this address translation regime */
5899 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5902 case ARMMMUIdx_S2NS
:
5903 case ARMMMUIdx_S1E2
:
5905 case ARMMMUIdx_S1E3
:
5907 case ARMMMUIdx_S1SE0
:
5908 return arm_el_is_aa64(env
, 3) ? 1 : 3;
5909 case ARMMMUIdx_S1SE1
:
5910 case ARMMMUIdx_S1NSE0
:
5911 case ARMMMUIdx_S1NSE1
:
5914 g_assert_not_reached();
5918 /* Return true if this address translation regime is secure */
5919 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5922 case ARMMMUIdx_S12NSE0
:
5923 case ARMMMUIdx_S12NSE1
:
5924 case ARMMMUIdx_S1NSE0
:
5925 case ARMMMUIdx_S1NSE1
:
5926 case ARMMMUIdx_S1E2
:
5927 case ARMMMUIdx_S2NS
:
5929 case ARMMMUIdx_S1E3
:
5930 case ARMMMUIdx_S1SE0
:
5931 case ARMMMUIdx_S1SE1
:
5934 g_assert_not_reached();
5938 /* Return the SCTLR value which controls this address translation regime */
5939 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5941 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
5944 /* Return true if the specified stage of address translation is disabled */
5945 static inline bool regime_translation_disabled(CPUARMState
*env
,
5948 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5949 return (env
->cp15
.hcr_el2
& HCR_VM
) == 0;
5951 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
5954 /* Return the TCR controlling this translation regime */
5955 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5957 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5958 return &env
->cp15
.vtcr_el2
;
5960 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
5963 /* Return the TTBR associated with this translation regime */
5964 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
5967 if (mmu_idx
== ARMMMUIdx_S2NS
) {
5968 return env
->cp15
.vttbr_el2
;
5971 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
5973 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
5977 /* Return true if the translation regime is using LPAE format page tables */
5978 static inline bool regime_using_lpae_format(CPUARMState
*env
,
5981 int el
= regime_el(env
, mmu_idx
);
5982 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
5985 if (arm_feature(env
, ARM_FEATURE_LPAE
)
5986 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
5992 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
5995 case ARMMMUIdx_S1SE0
:
5996 case ARMMMUIdx_S1NSE0
:
6000 case ARMMMUIdx_S12NSE0
:
6001 case ARMMMUIdx_S12NSE1
:
6002 g_assert_not_reached();
6006 /* Translate section/page access permissions to page
6007 * R/W protection flags
6010 * @mmu_idx: MMU index indicating required translation regime
6011 * @ap: The 3-bit access permissions (AP[2:0])
6012 * @domain_prot: The 2-bit domain access permissions
6014 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6015 int ap
, int domain_prot
)
6017 bool is_user
= regime_is_user(env
, mmu_idx
);
6019 if (domain_prot
== 3) {
6020 return PAGE_READ
| PAGE_WRITE
;
6025 if (arm_feature(env
, ARM_FEATURE_V7
)) {
6028 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
6030 return is_user
? 0 : PAGE_READ
;
6037 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6042 return PAGE_READ
| PAGE_WRITE
;
6045 return PAGE_READ
| PAGE_WRITE
;
6046 case 4: /* Reserved. */
6049 return is_user
? 0 : PAGE_READ
;
6053 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
6058 g_assert_not_reached();
6062 /* Translate section/page access permissions to page
6063 * R/W protection flags.
6065 * @ap: The 2-bit simple AP (AP[2:1])
6066 * @is_user: TRUE if accessing from PL0
6068 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
6072 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
6074 return PAGE_READ
| PAGE_WRITE
;
6076 return is_user
? 0 : PAGE_READ
;
6080 g_assert_not_reached();
6085 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
6087 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
6090 /* Translate S2 section/page access permissions to protection flags
6093 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6094 * @xn: XN (execute-never) bit
6096 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
6112 /* Translate section/page access permissions to protection flags
6115 * @mmu_idx: MMU index indicating required translation regime
6116 * @is_aa64: TRUE if AArch64
6117 * @ap: The 2-bit simple AP (AP[2:1])
6118 * @ns: NS (non-secure) bit
6119 * @xn: XN (execute-never) bit
6120 * @pxn: PXN (privileged execute-never) bit
6122 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
6123 int ap
, int ns
, int xn
, int pxn
)
6125 bool is_user
= regime_is_user(env
, mmu_idx
);
6126 int prot_rw
, user_rw
;
6130 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
6132 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
6136 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
6139 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
6143 /* TODO have_wxn should be replaced with
6144 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6145 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6146 * compatible processors have EL2, which is required for [U]WXN.
6148 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
6151 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
6155 switch (regime_el(env
, mmu_idx
)) {
6158 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
6165 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6166 switch (regime_el(env
, mmu_idx
)) {
6170 xn
= xn
|| !(user_rw
& PAGE_READ
);
6174 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
6176 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
6177 (uwxn
&& (user_rw
& PAGE_WRITE
));
6187 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
6190 return prot_rw
| PAGE_EXEC
;
6193 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6194 uint32_t *table
, uint32_t address
)
6196 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6197 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6199 if (address
& tcr
->mask
) {
6200 if (tcr
->raw_tcr
& TTBCR_PD1
) {
6201 /* Translation table walk disabled for TTBR1 */
6204 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
6206 if (tcr
->raw_tcr
& TTBCR_PD0
) {
6207 /* Translation table walk disabled for TTBR0 */
6210 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
6212 *table
|= (address
>> 18) & 0x3ffc;
6216 /* Translate a S1 pagetable walk through S2 if needed. */
6217 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
6218 hwaddr addr
, MemTxAttrs txattrs
,
6220 ARMMMUFaultInfo
*fi
)
6222 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
6223 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
6224 target_ulong s2size
;
6229 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
6230 &txattrs
, &s2prot
, &s2size
, fsr
, fi
);
6242 /* All loads done in the course of a page table walk go through here.
6243 * TODO: rather than ignoring errors from physical memory reads (which
6244 * are external aborts in ARM terminology) we should propagate this
6245 * error out so that we can turn it into a Data Abort if this walk
6246 * was being done for a CPU load/store or an address translation instruction
6247 * (but not if it was for a debug access).
6249 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6250 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6251 ARMMMUFaultInfo
*fi
)
6253 ARMCPU
*cpu
= ARM_CPU(cs
);
6254 CPUARMState
*env
= &cpu
->env
;
6255 MemTxAttrs attrs
= {};
6257 attrs
.secure
= is_secure
;
6258 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6262 return address_space_ldl(cs
->as
, addr
, attrs
, NULL
);
6265 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
6266 ARMMMUIdx mmu_idx
, uint32_t *fsr
,
6267 ARMMMUFaultInfo
*fi
)
6269 ARMCPU
*cpu
= ARM_CPU(cs
);
6270 CPUARMState
*env
= &cpu
->env
;
6271 MemTxAttrs attrs
= {};
6273 attrs
.secure
= is_secure
;
6274 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fsr
, fi
);
6278 return address_space_ldq(cs
->as
, addr
, attrs
, NULL
);
6281 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
6282 int access_type
, ARMMMUIdx mmu_idx
,
6283 hwaddr
*phys_ptr
, int *prot
,
6284 target_ulong
*page_size
, uint32_t *fsr
,
6285 ARMMMUFaultInfo
*fi
)
6287 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6298 /* Pagetable walk. */
6299 /* Lookup l1 descriptor. */
6300 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6301 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6305 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6308 domain
= (desc
>> 5) & 0x0f;
6309 if (regime_el(env
, mmu_idx
) == 1) {
6310 dacr
= env
->cp15
.dacr_ns
;
6312 dacr
= env
->cp15
.dacr_s
;
6314 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6316 /* Section translation fault. */
6320 if (domain_prot
== 0 || domain_prot
== 2) {
6322 code
= 9; /* Section domain fault. */
6324 code
= 11; /* Page domain fault. */
6329 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6330 ap
= (desc
>> 10) & 3;
6332 *page_size
= 1024 * 1024;
6334 /* Lookup l2 entry. */
6336 /* Coarse pagetable. */
6337 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6339 /* Fine pagetable. */
6340 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
6342 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6345 case 0: /* Page translation fault. */
6348 case 1: /* 64k page. */
6349 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6350 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
6351 *page_size
= 0x10000;
6353 case 2: /* 4k page. */
6354 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6355 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
6356 *page_size
= 0x1000;
6358 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
6360 /* ARMv6/XScale extended small page format */
6361 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
6362 || arm_feature(env
, ARM_FEATURE_V6
)) {
6363 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6364 *page_size
= 0x1000;
6366 /* UNPREDICTABLE in ARMv5; we choose to take a
6367 * page translation fault.
6373 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
6376 ap
= (desc
>> 4) & 3;
6379 /* Never happens, but compiler isn't smart enough to tell. */
6384 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6385 *prot
|= *prot
? PAGE_EXEC
: 0;
6386 if (!(*prot
& (1 << access_type
))) {
6387 /* Access permission fault. */
6390 *phys_ptr
= phys_addr
;
6393 *fsr
= code
| (domain
<< 4);
6397 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
6398 int access_type
, ARMMMUIdx mmu_idx
,
6399 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
6400 target_ulong
*page_size
, uint32_t *fsr
,
6401 ARMMMUFaultInfo
*fi
)
6403 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
6417 /* Pagetable walk. */
6418 /* Lookup l1 descriptor. */
6419 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
6420 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6424 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6427 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
6428 /* Section translation fault, or attempt to use the encoding
6429 * which is Reserved on implementations without PXN.
6434 if ((type
== 1) || !(desc
& (1 << 18))) {
6435 /* Page or Section. */
6436 domain
= (desc
>> 5) & 0x0f;
6438 if (regime_el(env
, mmu_idx
) == 1) {
6439 dacr
= env
->cp15
.dacr_ns
;
6441 dacr
= env
->cp15
.dacr_s
;
6443 domain_prot
= (dacr
>> (domain
* 2)) & 3;
6444 if (domain_prot
== 0 || domain_prot
== 2) {
6446 code
= 9; /* Section domain fault. */
6448 code
= 11; /* Page domain fault. */
6453 if (desc
& (1 << 18)) {
6455 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
6456 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
6457 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
6458 *page_size
= 0x1000000;
6461 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
6462 *page_size
= 0x100000;
6464 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
6465 xn
= desc
& (1 << 4);
6468 ns
= extract32(desc
, 19, 1);
6470 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
6471 pxn
= (desc
>> 2) & 1;
6473 ns
= extract32(desc
, 3, 1);
6474 /* Lookup l2 entry. */
6475 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
6476 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
6478 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
6480 case 0: /* Page translation fault. */
6483 case 1: /* 64k page. */
6484 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
6485 xn
= desc
& (1 << 15);
6486 *page_size
= 0x10000;
6488 case 2: case 3: /* 4k page. */
6489 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
6491 *page_size
= 0x1000;
6494 /* Never happens, but compiler isn't smart enough to tell. */
6499 if (domain_prot
== 3) {
6500 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
6502 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
6505 if (xn
&& access_type
== 2)
6508 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
6509 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
6510 /* The simplified model uses AP[0] as an access control bit. */
6511 if ((ap
& 1) == 0) {
6512 /* Access flag fault. */
6513 code
= (code
== 15) ? 6 : 3;
6516 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
6518 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
6523 if (!(*prot
& (1 << access_type
))) {
6524 /* Access permission fault. */
6529 /* The NS bit will (as required by the architecture) have no effect if
6530 * the CPU doesn't support TZ or this is a non-secure translation
6531 * regime, because the attribute will already be non-secure.
6533 attrs
->secure
= false;
6535 *phys_ptr
= phys_addr
;
6538 *fsr
= code
| (domain
<< 4);
6542 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6543 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6546 translation_fault
= 1,
6548 permission_fault
= 3,
6552 * check_s2_startlevel
6554 * @is_aa64: True if the translation regime is in AArch64 state
6555 * @startlevel: Suggested starting level
6556 * @inputsize: Bitsize of IPAs
6557 * @stride: Page-table stride (See the ARM ARM)
6559 * Returns true if the suggested starting level is OK and false otherwise.
6561 static bool check_s2_startlevel(ARMCPU
*cpu
, bool is_aa64
, int level
,
6562 int inputsize
, int stride
)
6564 /* Negative levels are never allowed. */
6570 unsigned int pamax
= arm_pamax(cpu
);
6573 case 13: /* 64KB Pages. */
6574 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
6578 case 11: /* 16KB Pages. */
6579 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
6583 case 9: /* 4KB Pages. */
6584 if (level
== 0 && pamax
<= 42) {
6589 g_assert_not_reached();
6592 const int grainsize
= stride
+ 3;
6595 /* AArch32 only supports 4KB pages. Assert on that. */
6596 assert(stride
== 9);
6602 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
6603 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
6610 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
6611 int access_type
, ARMMMUIdx mmu_idx
,
6612 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
6613 target_ulong
*page_size_ptr
, uint32_t *fsr
,
6614 ARMMMUFaultInfo
*fi
)
6616 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6617 CPUState
*cs
= CPU(cpu
);
6618 /* Read an LPAE long-descriptor translation table. */
6619 MMUFaultType fault_type
= translation_fault
;
6626 hwaddr descaddr
, descmask
;
6627 uint32_t tableattrs
;
6628 target_ulong page_size
;
6631 int32_t va_size
= 32;
6634 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
6635 int ap
, ns
, xn
, pxn
;
6636 uint32_t el
= regime_el(env
, mmu_idx
);
6637 bool ttbr1_valid
= true;
6640 * This code does not handle the different format TCR for VTCR_EL2.
6641 * This code also does not support shareability levels.
6642 * Attribute and permission bit handling should also be checked when adding
6643 * support for those page table walks.
6645 if (arm_el_is_aa64(env
, el
)) {
6648 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6649 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
6652 if (extract64(address
, 55, 1)) {
6653 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
6655 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
6660 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6664 ttbr1_valid
= false;
6667 /* There is no TTBR1 for EL2 */
6669 ttbr1_valid
= false;
6673 /* Determine whether this address is in the region controlled by
6674 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6675 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6676 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6678 if (va_size
== 64) {
6679 /* AArch64 translation. */
6680 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
6681 t0sz
= MIN(t0sz
, 39);
6682 t0sz
= MAX(t0sz
, 16);
6683 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6684 /* AArch32 stage 1 translation. */
6685 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
6687 /* AArch32 stage 2 translation. */
6688 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
6689 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
6690 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4);
6692 /* If the sign-extend bit is not the same as t0sz[3], the result
6693 * is unpredictable. Flag this as a guest error. */
6695 qemu_log_mask(LOG_GUEST_ERROR
,
6696 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
6699 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
6700 if (va_size
== 64) {
6701 t1sz
= MIN(t1sz
, 39);
6702 t1sz
= MAX(t1sz
, 16);
6704 if (t0sz
&& !extract64(address
, va_size
- t0sz
, t0sz
- tbi
)) {
6705 /* there is a ttbr0 region and we are in it (high bits all zero) */
6707 } else if (ttbr1_valid
&& t1sz
&&
6708 !extract64(~address
, va_size
- t1sz
, t1sz
- tbi
)) {
6709 /* there is a ttbr1 region and we are in it (high bits all one) */
6712 /* ttbr0 region is "everything not in the ttbr1 region" */
6714 } else if (!t1sz
&& ttbr1_valid
) {
6715 /* ttbr1 region is "everything not in the ttbr0 region" */
6718 /* in the gap between the two regions, this is a Translation fault */
6719 fault_type
= translation_fault
;
6723 /* Note that QEMU ignores shareability and cacheability attributes,
6724 * so we don't need to do anything with the SH, ORGN, IRGN fields
6725 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6726 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6727 * implement any ASID-like capability so we can ignore it (instead
6728 * we will always flush the TLB any time the ASID is changed).
6730 if (ttbr_select
== 0) {
6731 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
6733 epd
= extract32(tcr
->raw_tcr
, 7, 1);
6735 inputsize
= va_size
- t0sz
;
6737 tg
= extract32(tcr
->raw_tcr
, 14, 2);
6738 if (tg
== 1) { /* 64KB pages */
6741 if (tg
== 2) { /* 16KB pages */
6745 /* We should only be here if TTBR1 is valid */
6746 assert(ttbr1_valid
);
6748 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
6749 epd
= extract32(tcr
->raw_tcr
, 23, 1);
6750 inputsize
= va_size
- t1sz
;
6752 tg
= extract32(tcr
->raw_tcr
, 30, 2);
6753 if (tg
== 3) { /* 64KB pages */
6756 if (tg
== 1) { /* 16KB pages */
6761 /* Here we should have set up all the parameters for the translation:
6762 * va_size, inputsize, ttbr, epd, stride, tbi
6766 /* Translation table walk disabled => Translation fault on TLB miss
6767 * Note: This is always 0 on 64-bit EL2 and EL3.
6772 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
6773 /* The starting level depends on the virtual address size (which can
6774 * be up to 48 bits) and the translation granule size. It indicates
6775 * the number of strides (stride bits at a time) needed to
6776 * consume the bits of the input address. In the pseudocode this is:
6777 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6778 * where their 'inputsize' is our 'inputsize', 'grainsize' is
6779 * our 'stride + 3' and 'stride' is our 'stride'.
6780 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6781 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
6782 * = 4 - (inputsize - 4) / stride;
6784 level
= 4 - (inputsize
- 4) / stride
;
6786 /* For stage 2 translations the starting level is specified by the
6787 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
6789 int startlevel
= extract32(tcr
->raw_tcr
, 6, 2);
6792 if (va_size
== 32 || stride
== 9) {
6793 /* AArch32 or 4KB pages */
6794 level
= 2 - startlevel
;
6796 /* 16KB or 64KB pages */
6797 level
= 3 - startlevel
;
6800 /* Check that the starting level is valid. */
6801 ok
= check_s2_startlevel(cpu
, va_size
== 64, level
,
6804 /* AArch64 reports these as level 0 faults.
6805 * AArch32 reports these as level 1 faults.
6807 level
= va_size
== 64 ? 0 : 1;
6808 fault_type
= translation_fault
;
6813 /* Clear the vaddr bits which aren't part of the within-region address,
6814 * so that we don't have to special case things when calculating the
6815 * first descriptor address.
6817 if (va_size
!= inputsize
) {
6818 address
&= (1ULL << inputsize
) - 1;
6821 descmask
= (1ULL << (stride
+ 3)) - 1;
6823 /* Now we can extract the actual base address from the TTBR */
6824 descaddr
= extract64(ttbr
, 0, 48);
6825 descaddr
&= ~((1ULL << (inputsize
- (stride
* (4 - level
)))) - 1);
6827 /* Secure accesses start with the page table in secure memory and
6828 * can be downgraded to non-secure at any step. Non-secure accesses
6829 * remain non-secure. We implement this by just ORing in the NSTable/NS
6830 * bits at each step.
6832 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
6834 uint64_t descriptor
;
6837 descaddr
|= (address
>> (stride
* (4 - level
))) & descmask
;
6839 nstable
= extract32(tableattrs
, 4, 1);
6840 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fsr
, fi
);
6845 if (!(descriptor
& 1) ||
6846 (!(descriptor
& 2) && (level
== 3))) {
6847 /* Invalid, or the Reserved level 3 encoding */
6850 descaddr
= descriptor
& 0xfffffff000ULL
;
6852 if ((descriptor
& 2) && (level
< 3)) {
6853 /* Table entry. The top five bits are attributes which may
6854 * propagate down through lower levels of the table (and
6855 * which are all arranged so that 0 means "no effect", so
6856 * we can gather them up by ORing in the bits at each level).
6858 tableattrs
|= extract64(descriptor
, 59, 5);
6862 /* Block entry at level 1 or 2, or page entry at level 3.
6863 * These are basically the same thing, although the number
6864 * of bits we pull in from the vaddr varies.
6866 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
6867 descaddr
|= (address
& (page_size
- 1));
6868 /* Extract attributes from the descriptor */
6869 attrs
= extract64(descriptor
, 2, 10)
6870 | (extract64(descriptor
, 52, 12) << 10);
6872 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6873 /* Stage 2 table descriptors do not include any attribute fields */
6876 /* Merge in attributes from table descriptors */
6877 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
6878 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
6879 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6880 * means "force PL1 access only", which means forcing AP[1] to 0.
6882 if (extract32(tableattrs
, 2, 1)) {
6885 attrs
|= nstable
<< 3; /* NS */
6888 /* Here descaddr is the final physical address, and attributes
6891 fault_type
= access_fault
;
6892 if ((attrs
& (1 << 8)) == 0) {
6897 ap
= extract32(attrs
, 4, 2);
6898 xn
= extract32(attrs
, 12, 1);
6900 if (mmu_idx
== ARMMMUIdx_S2NS
) {
6902 *prot
= get_S2prot(env
, ap
, xn
);
6904 ns
= extract32(attrs
, 3, 1);
6905 pxn
= extract32(attrs
, 11, 1);
6906 *prot
= get_S1prot(env
, mmu_idx
, va_size
== 64, ap
, ns
, xn
, pxn
);
6909 fault_type
= permission_fault
;
6910 if (!(*prot
& (1 << access_type
))) {
6915 /* The NS bit will (as required by the architecture) have no effect if
6916 * the CPU doesn't support TZ or this is a non-secure translation
6917 * regime, because the attribute will already be non-secure.
6919 txattrs
->secure
= false;
6921 *phys_ptr
= descaddr
;
6922 *page_size_ptr
= page_size
;
6926 /* Long-descriptor format IFSR/DFSR value */
6927 *fsr
= (1 << 9) | (fault_type
<< 2) | level
;
6928 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
6929 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
6933 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
6935 int32_t address
, int *prot
)
6937 *prot
= PAGE_READ
| PAGE_WRITE
;
6939 case 0xF0000000 ... 0xFFFFFFFF:
6940 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) { /* hivecs execing is ok */
6944 case 0x00000000 ... 0x7FFFFFFF:
6951 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
6952 int access_type
, ARMMMUIdx mmu_idx
,
6953 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
6955 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6957 bool is_user
= regime_is_user(env
, mmu_idx
);
6959 *phys_ptr
= address
;
6962 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
6963 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
6964 } else { /* MPU enabled */
6965 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
6967 uint32_t base
= env
->pmsav7
.drbar
[n
];
6968 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
6972 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
6977 qemu_log_mask(LOG_GUEST_ERROR
, "DRSR.Rsize field can not be 0");
6981 rmask
= (1ull << rsize
) - 1;
6984 qemu_log_mask(LOG_GUEST_ERROR
, "DRBAR %" PRIx32
" misaligned "
6985 "to DRSR region size, mask = %" PRIx32
,
6990 if (address
< base
|| address
> base
+ rmask
) {
6994 /* Region matched */
6996 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
6998 uint32_t srdis_mask
;
7000 rsize
-= 3; /* sub region size (power of 2) */
7001 snd
= ((address
- base
) >> rsize
) & 0x7;
7002 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
7004 srdis_mask
= srdis
? 0x3 : 0x0;
7005 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
7006 /* This will check in groups of 2, 4 and then 8, whether
7007 * the subregion bits are consistent. rsize is incremented
7008 * back up to give the region size, considering consistent
7009 * adjacent subregions as one region. Stop testing if rsize
7010 * is already big enough for an entire QEMU page.
7012 int snd_rounded
= snd
& ~(i
- 1);
7013 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
7014 snd_rounded
+ 8, i
);
7015 if (srdis_mask
^ srdis_multi
) {
7018 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
7022 if (rsize
< TARGET_PAGE_BITS
) {
7023 qemu_log_mask(LOG_UNIMP
, "No support for MPU (sub)region"
7024 "alignment of %" PRIu32
" bits. Minimum is %d\n",
7025 rsize
, TARGET_PAGE_BITS
);
7034 if (n
== -1) { /* no hits */
7035 if (cpu
->pmsav7_dregion
&&
7036 (is_user
|| !(regime_sctlr(env
, mmu_idx
) & SCTLR_BR
))) {
7037 /* background fault */
7041 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
7042 } else { /* a MPU hit! */
7043 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
7045 if (is_user
) { /* User mode AP bit decoding */
7050 break; /* no access */
7052 *prot
|= PAGE_WRITE
;
7056 *prot
|= PAGE_READ
| PAGE_EXEC
;
7059 qemu_log_mask(LOG_GUEST_ERROR
,
7060 "Bad value for AP bits in DRACR %"
7063 } else { /* Priv. mode AP bits decoding */
7066 break; /* no access */
7070 *prot
|= PAGE_WRITE
;
7074 *prot
|= PAGE_READ
| PAGE_EXEC
;
7077 qemu_log_mask(LOG_GUEST_ERROR
,
7078 "Bad value for AP bits in DRACR %"
7084 if (env
->pmsav7
.dracr
[n
] & (1 << 12)) {
7085 *prot
&= ~PAGE_EXEC
;
7090 *fsr
= 0x00d; /* Permission fault */
7091 return !(*prot
& (1 << access_type
));
7094 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
7095 int access_type
, ARMMMUIdx mmu_idx
,
7096 hwaddr
*phys_ptr
, int *prot
, uint32_t *fsr
)
7101 bool is_user
= regime_is_user(env
, mmu_idx
);
7103 *phys_ptr
= address
;
7104 for (n
= 7; n
>= 0; n
--) {
7105 base
= env
->cp15
.c6_region
[n
];
7106 if ((base
& 1) == 0) {
7109 mask
= 1 << ((base
>> 1) & 0x1f);
7110 /* Keep this shift separate from the above to avoid an
7111 (undefined) << 32. */
7112 mask
= (mask
<< 1) - 1;
7113 if (((base
^ address
) & ~mask
) == 0) {
7122 if (access_type
== 2) {
7123 mask
= env
->cp15
.pmsav5_insn_ap
;
7125 mask
= env
->cp15
.pmsav5_data_ap
;
7127 mask
= (mask
>> (n
* 4)) & 0xf;
7137 *prot
= PAGE_READ
| PAGE_WRITE
;
7142 *prot
|= PAGE_WRITE
;
7146 *prot
= PAGE_READ
| PAGE_WRITE
;
7159 /* Bad permission. */
7167 /* get_phys_addr - get the physical address for this virtual address
7169 * Find the physical address corresponding to the given virtual address,
7170 * by doing a translation table walk on MMU based systems or using the
7171 * MPU state on MPU based systems.
7173 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7174 * prot and page_size may not be filled in, and the populated fsr value provides
7175 * information on why the translation aborted, in the format of a
7176 * DFSR/IFSR fault register, with the following caveats:
7177 * * we honour the short vs long DFSR format differences.
7178 * * the WnR bit is never set (the caller must do this).
7179 * * for PSMAv5 based systems we don't bother to return a full FSR format
7183 * @address: virtual address to get physical address for
7184 * @access_type: 0 for read, 1 for write, 2 for execute
7185 * @mmu_idx: MMU index indicating required translation regime
7186 * @phys_ptr: set to the physical address corresponding to the virtual address
7187 * @attrs: set to the memory transaction attributes to use
7188 * @prot: set to the permissions for the page containing phys_ptr
7189 * @page_size: set to the size of the page containing phys_ptr
7190 * @fsr: set to the DFSR/IFSR value on failure
7192 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
7193 int access_type
, ARMMMUIdx mmu_idx
,
7194 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
7195 target_ulong
*page_size
, uint32_t *fsr
,
7196 ARMMMUFaultInfo
*fi
)
7198 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
7199 /* Call ourselves recursively to do the stage 1 and then stage 2
7202 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
7207 ret
= get_phys_addr(env
, address
, access_type
,
7208 mmu_idx
+ ARMMMUIdx_S1NSE0
, &ipa
, attrs
,
7209 prot
, page_size
, fsr
, fi
);
7211 /* If S1 fails or S2 is disabled, return early. */
7212 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
7217 /* S1 is done. Now do S2 translation. */
7218 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
7219 phys_ptr
, attrs
, &s2_prot
,
7220 page_size
, fsr
, fi
);
7222 /* Combine the S1 and S2 perms. */
7227 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
7229 mmu_idx
+= ARMMMUIdx_S1NSE0
;
7233 /* The page table entries may downgrade secure to non-secure, but
7234 * cannot upgrade an non-secure translation regime's attributes
7237 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
7238 attrs
->user
= regime_is_user(env
, mmu_idx
);
7240 /* Fast Context Switch Extension. This doesn't exist at all in v8.
7241 * In v7 and earlier it affects all stage 1 translations.
7243 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
7244 && !arm_feature(env
, ARM_FEATURE_V8
)) {
7245 if (regime_el(env
, mmu_idx
) == 3) {
7246 address
+= env
->cp15
.fcseidr_s
;
7248 address
+= env
->cp15
.fcseidr_ns
;
7252 /* pmsav7 has special handling for when MPU is disabled so call it before
7253 * the common MMU/MPU disabled check below.
7255 if (arm_feature(env
, ARM_FEATURE_MPU
) &&
7256 arm_feature(env
, ARM_FEATURE_V7
)) {
7257 *page_size
= TARGET_PAGE_SIZE
;
7258 return get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
7259 phys_ptr
, prot
, fsr
);
7262 if (regime_translation_disabled(env
, mmu_idx
)) {
7263 /* MMU/MPU disabled. */
7264 *phys_ptr
= address
;
7265 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
7266 *page_size
= TARGET_PAGE_SIZE
;
7270 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
7272 *page_size
= TARGET_PAGE_SIZE
;
7273 return get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
7274 phys_ptr
, prot
, fsr
);
7277 if (regime_using_lpae_format(env
, mmu_idx
)) {
7278 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7279 attrs
, prot
, page_size
, fsr
, fi
);
7280 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
7281 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7282 attrs
, prot
, page_size
, fsr
, fi
);
7284 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
, phys_ptr
,
7285 prot
, page_size
, fsr
, fi
);
7289 /* Walk the page table and (if the mapping exists) add the page
7290 * to the TLB. Return false on success, or true on failure. Populate
7291 * fsr with ARM DFSR/IFSR fault register format value on failure.
7293 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
7294 int access_type
, int mmu_idx
, uint32_t *fsr
,
7295 ARMMMUFaultInfo
*fi
)
7297 ARMCPU
*cpu
= ARM_CPU(cs
);
7298 CPUARMState
*env
= &cpu
->env
;
7300 target_ulong page_size
;
7303 MemTxAttrs attrs
= {};
7305 ret
= get_phys_addr(env
, address
, access_type
, mmu_idx
, &phys_addr
,
7306 &attrs
, &prot
, &page_size
, fsr
, fi
);
7308 /* Map a single [sub]page. */
7309 phys_addr
&= TARGET_PAGE_MASK
;
7310 address
&= TARGET_PAGE_MASK
;
7311 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
7312 prot
, mmu_idx
, page_size
);
7319 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
7321 ARMCPU
*cpu
= ARM_CPU(cs
);
7322 CPUARMState
*env
= &cpu
->env
;
7324 target_ulong page_size
;
7328 MemTxAttrs attrs
= {};
7329 ARMMMUFaultInfo fi
= {};
7331 ret
= get_phys_addr(env
, addr
, 0, cpu_mmu_index(env
, false), &phys_addr
,
7332 &attrs
, &prot
, &page_size
, &fsr
, &fi
);
7341 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
7343 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7344 env
->regs
[13] = val
;
7346 env
->banked_r13
[bank_number(mode
)] = val
;
7350 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
7352 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
7353 return env
->regs
[13];
7355 return env
->banked_r13
[bank_number(mode
)];
7359 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7361 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7365 return xpsr_read(env
) & 0xf8000000;
7367 return xpsr_read(env
) & 0xf80001ff;
7369 return xpsr_read(env
) & 0xff00fc00;
7371 return xpsr_read(env
) & 0xff00fdff;
7373 return xpsr_read(env
) & 0x000001ff;
7375 return xpsr_read(env
) & 0x0700fc00;
7377 return xpsr_read(env
) & 0x0700edff;
7379 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
7381 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
7382 case 16: /* PRIMASK */
7383 return (env
->daif
& PSTATE_I
) != 0;
7384 case 17: /* BASEPRI */
7385 case 18: /* BASEPRI_MAX */
7386 return env
->v7m
.basepri
;
7387 case 19: /* FAULTMASK */
7388 return (env
->daif
& PSTATE_F
) != 0;
7389 case 20: /* CONTROL */
7390 return env
->v7m
.control
;
7392 /* ??? For debugging only. */
7393 cpu_abort(CPU(cpu
), "Unimplemented system register read (%d)\n", reg
);
7398 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7400 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7404 xpsr_write(env
, val
, 0xf8000000);
7407 xpsr_write(env
, val
, 0xf8000000);
7410 xpsr_write(env
, val
, 0xfe00fc00);
7413 xpsr_write(env
, val
, 0xfe00fc00);
7416 /* IPSR bits are readonly. */
7419 xpsr_write(env
, val
, 0x0600fc00);
7422 xpsr_write(env
, val
, 0x0600fc00);
7425 if (env
->v7m
.current_sp
)
7426 env
->v7m
.other_sp
= val
;
7428 env
->regs
[13] = val
;
7431 if (env
->v7m
.current_sp
)
7432 env
->regs
[13] = val
;
7434 env
->v7m
.other_sp
= val
;
7436 case 16: /* PRIMASK */
7438 env
->daif
|= PSTATE_I
;
7440 env
->daif
&= ~PSTATE_I
;
7443 case 17: /* BASEPRI */
7444 env
->v7m
.basepri
= val
& 0xff;
7446 case 18: /* BASEPRI_MAX */
7448 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
7449 env
->v7m
.basepri
= val
;
7451 case 19: /* FAULTMASK */
7453 env
->daif
|= PSTATE_F
;
7455 env
->daif
&= ~PSTATE_F
;
7458 case 20: /* CONTROL */
7459 env
->v7m
.control
= val
& 3;
7460 switch_v7m_sp(env
, (val
& 2) != 0);
7463 /* ??? For debugging only. */
7464 cpu_abort(CPU(cpu
), "Unimplemented system register write (%d)\n", reg
);
7471 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
7473 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
7474 * Note that we do not implement the (architecturally mandated)
7475 * alignment fault for attempts to use this on Device memory
7476 * (which matches the usual QEMU behaviour of not implementing either
7477 * alignment faults or any memory attribute handling).
7480 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7481 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
7482 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
7484 #ifndef CONFIG_USER_ONLY
7486 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
7487 * the block size so we might have to do more than one TLB lookup.
7488 * We know that in fact for any v8 CPU the page size is at least 4K
7489 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
7490 * 1K as an artefact of legacy v5 subpage support being present in the
7491 * same QEMU executable.
7493 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
7494 void *hostaddr
[maxidx
];
7496 unsigned mmu_idx
= cpu_mmu_index(env
, false);
7497 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
7499 for (try = 0; try < 2; try++) {
7501 for (i
= 0; i
< maxidx
; i
++) {
7502 hostaddr
[i
] = tlb_vaddr_to_host(env
,
7503 vaddr
+ TARGET_PAGE_SIZE
* i
,
7510 /* If it's all in the TLB it's fair game for just writing to;
7511 * we know we don't need to update dirty status, etc.
7513 for (i
= 0; i
< maxidx
- 1; i
++) {
7514 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
7516 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
7519 /* OK, try a store and see if we can populate the tlb. This
7520 * might cause an exception if the memory isn't writable,
7521 * in which case we will longjmp out of here. We must for
7522 * this purpose use the actual register value passed to us
7523 * so that we get the fault address right.
7525 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETRA());
7526 /* Now we can populate the other TLB entries, if any */
7527 for (i
= 0; i
< maxidx
; i
++) {
7528 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
7529 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
7530 helper_ret_stb_mmu(env
, va
, 0, oi
, GETRA());
7535 /* Slow path (probably attempt to do this to an I/O device or
7536 * similar, or clearing of a block of code we have translations
7537 * cached for). Just do a series of byte writes as the architecture
7538 * demands. It's not worth trying to use a cpu_physical_memory_map(),
7539 * memset(), unmap() sequence here because:
7540 * + we'd need to account for the blocksize being larger than a page
7541 * + the direct-RAM access case is almost always going to be dealt
7542 * with in the fastpath code above, so there's no speed benefit
7543 * + we would have to deal with the map returning NULL because the
7544 * bounce buffer was in use
7546 for (i
= 0; i
< blocklen
; i
++) {
7547 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETRA());
7551 memset(g2h(vaddr
), 0, blocklen
);
7555 /* Note that signed overflow is undefined in C. The following routines are
7556 careful to use unsigned types where modulo arithmetic is required.
7557 Failure to do so _will_ break on newer gcc. */
7559 /* Signed saturating arithmetic. */
7561 /* Perform 16-bit signed saturating addition. */
7562 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
7567 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
7576 /* Perform 8-bit signed saturating addition. */
7577 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
7582 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
7591 /* Perform 16-bit signed saturating subtraction. */
7592 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
7597 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
7606 /* Perform 8-bit signed saturating subtraction. */
7607 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
7612 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
7621 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7622 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7623 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7624 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7627 #include "op_addsub.h"
7629 /* Unsigned saturating arithmetic. */
7630 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
7639 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
7647 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
7656 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
7664 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7665 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7666 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7667 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7670 #include "op_addsub.h"
7672 /* Signed modulo arithmetic. */
7673 #define SARITH16(a, b, n, op) do { \
7675 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7676 RESULT(sum, n, 16); \
7678 ge |= 3 << (n * 2); \
7681 #define SARITH8(a, b, n, op) do { \
7683 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7684 RESULT(sum, n, 8); \
7690 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7691 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7692 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7693 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7697 #include "op_addsub.h"
7699 /* Unsigned modulo arithmetic. */
7700 #define ADD16(a, b, n) do { \
7702 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7703 RESULT(sum, n, 16); \
7704 if ((sum >> 16) == 1) \
7705 ge |= 3 << (n * 2); \
7708 #define ADD8(a, b, n) do { \
7710 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7711 RESULT(sum, n, 8); \
7712 if ((sum >> 8) == 1) \
7716 #define SUB16(a, b, n) do { \
7718 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7719 RESULT(sum, n, 16); \
7720 if ((sum >> 16) == 0) \
7721 ge |= 3 << (n * 2); \
7724 #define SUB8(a, b, n) do { \
7726 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7727 RESULT(sum, n, 8); \
7728 if ((sum >> 8) == 0) \
7735 #include "op_addsub.h"
7737 /* Halved signed arithmetic. */
7738 #define ADD16(a, b, n) \
7739 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7740 #define SUB16(a, b, n) \
7741 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7742 #define ADD8(a, b, n) \
7743 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7744 #define SUB8(a, b, n) \
7745 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7748 #include "op_addsub.h"
7750 /* Halved unsigned arithmetic. */
7751 #define ADD16(a, b, n) \
7752 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7753 #define SUB16(a, b, n) \
7754 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7755 #define ADD8(a, b, n) \
7756 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7757 #define SUB8(a, b, n) \
7758 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7761 #include "op_addsub.h"
7763 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
7771 /* Unsigned sum of absolute byte differences. */
7772 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
7775 sum
= do_usad(a
, b
);
7776 sum
+= do_usad(a
>> 8, b
>> 8);
7777 sum
+= do_usad(a
>> 16, b
>>16);
7778 sum
+= do_usad(a
>> 24, b
>> 24);
7782 /* For ARMv6 SEL instruction. */
7783 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
7796 return (a
& mask
) | (b
& ~mask
);
7799 /* VFP support. We follow the convention used for VFP instructions:
7800 Single precision routines have a "s" suffix, double precision a
7803 /* Convert host exception flags to vfp form. */
7804 static inline int vfp_exceptbits_from_host(int host_bits
)
7806 int target_bits
= 0;
7808 if (host_bits
& float_flag_invalid
)
7810 if (host_bits
& float_flag_divbyzero
)
7812 if (host_bits
& float_flag_overflow
)
7814 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
7816 if (host_bits
& float_flag_inexact
)
7817 target_bits
|= 0x10;
7818 if (host_bits
& float_flag_input_denormal
)
7819 target_bits
|= 0x80;
7823 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
7828 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
7829 | (env
->vfp
.vec_len
<< 16)
7830 | (env
->vfp
.vec_stride
<< 20);
7831 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
7832 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
7833 fpscr
|= vfp_exceptbits_from_host(i
);
7837 uint32_t vfp_get_fpscr(CPUARMState
*env
)
7839 return HELPER(vfp_get_fpscr
)(env
);
7842 /* Convert vfp exception flags to target form. */
7843 static inline int vfp_exceptbits_to_host(int target_bits
)
7847 if (target_bits
& 1)
7848 host_bits
|= float_flag_invalid
;
7849 if (target_bits
& 2)
7850 host_bits
|= float_flag_divbyzero
;
7851 if (target_bits
& 4)
7852 host_bits
|= float_flag_overflow
;
7853 if (target_bits
& 8)
7854 host_bits
|= float_flag_underflow
;
7855 if (target_bits
& 0x10)
7856 host_bits
|= float_flag_inexact
;
7857 if (target_bits
& 0x80)
7858 host_bits
|= float_flag_input_denormal
;
7862 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
7867 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
7868 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
7869 env
->vfp
.vec_len
= (val
>> 16) & 7;
7870 env
->vfp
.vec_stride
= (val
>> 20) & 3;
7873 if (changed
& (3 << 22)) {
7874 i
= (val
>> 22) & 3;
7876 case FPROUNDING_TIEEVEN
:
7877 i
= float_round_nearest_even
;
7879 case FPROUNDING_POSINF
:
7882 case FPROUNDING_NEGINF
:
7883 i
= float_round_down
;
7885 case FPROUNDING_ZERO
:
7886 i
= float_round_to_zero
;
7889 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
7891 if (changed
& (1 << 24)) {
7892 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7893 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
7895 if (changed
& (1 << 25))
7896 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
7898 i
= vfp_exceptbits_to_host(val
);
7899 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
7900 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
7903 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
7905 HELPER(vfp_set_fpscr
)(env
, val
);
7908 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7910 #define VFP_BINOP(name) \
7911 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7913 float_status *fpst = fpstp; \
7914 return float32_ ## name(a, b, fpst); \
7916 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7918 float_status *fpst = fpstp; \
7919 return float64_ ## name(a, b, fpst); \
7931 float32
VFP_HELPER(neg
, s
)(float32 a
)
7933 return float32_chs(a
);
7936 float64
VFP_HELPER(neg
, d
)(float64 a
)
7938 return float64_chs(a
);
7941 float32
VFP_HELPER(abs
, s
)(float32 a
)
7943 return float32_abs(a
);
7946 float64
VFP_HELPER(abs
, d
)(float64 a
)
7948 return float64_abs(a
);
7951 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
7953 return float32_sqrt(a
, &env
->vfp
.fp_status
);
7956 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
7958 return float64_sqrt(a
, &env
->vfp
.fp_status
);
7961 /* XXX: check quiet/signaling case */
7962 #define DO_VFP_cmp(p, type) \
7963 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7966 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7967 case 0: flags = 0x6; break; \
7968 case -1: flags = 0x8; break; \
7969 case 1: flags = 0x2; break; \
7970 default: case 2: flags = 0x3; break; \
7972 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7973 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7975 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7978 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7979 case 0: flags = 0x6; break; \
7980 case -1: flags = 0x8; break; \
7981 case 1: flags = 0x2; break; \
7982 default: case 2: flags = 0x3; break; \
7984 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7985 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7987 DO_VFP_cmp(s
, float32
)
7988 DO_VFP_cmp(d
, float64
)
7991 /* Integer to float and float to integer conversions */
7993 #define CONV_ITOF(name, fsz, sign) \
7994 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7996 float_status *fpst = fpstp; \
7997 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8000 #define CONV_FTOI(name, fsz, sign, round) \
8001 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8003 float_status *fpst = fpstp; \
8004 if (float##fsz##_is_any_nan(x)) { \
8005 float_raise(float_flag_invalid, fpst); \
8008 return float##fsz##_to_##sign##int32##round(x, fpst); \
8011 #define FLOAT_CONVS(name, p, fsz, sign) \
8012 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8013 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8014 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8016 FLOAT_CONVS(si
, s
, 32, )
8017 FLOAT_CONVS(si
, d
, 64, )
8018 FLOAT_CONVS(ui
, s
, 32, u
)
8019 FLOAT_CONVS(ui
, d
, 64, u
)
8025 /* floating point conversion */
8026 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
8028 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
8029 /* ARM requires that S<->D conversion of any kind of NaN generates
8030 * a quiet NaN by forcing the most significant frac bit to 1.
8032 return float64_maybe_silence_nan(r
);
8035 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
8037 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
8038 /* ARM requires that S<->D conversion of any kind of NaN generates
8039 * a quiet NaN by forcing the most significant frac bit to 1.
8041 return float32_maybe_silence_nan(r
);
8044 /* VFP3 fixed point conversion. */
8045 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8046 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8049 float_status *fpst = fpstp; \
8051 tmp = itype##_to_##float##fsz(x, fpst); \
8052 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8055 /* Notice that we want only input-denormal exception flags from the
8056 * scalbn operation: the other possible flags (overflow+inexact if
8057 * we overflow to infinity, output-denormal) aren't correct for the
8058 * complete scale-and-convert operation.
8060 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8061 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8065 float_status *fpst = fpstp; \
8066 int old_exc_flags = get_float_exception_flags(fpst); \
8068 if (float##fsz##_is_any_nan(x)) { \
8069 float_raise(float_flag_invalid, fpst); \
8072 tmp = float##fsz##_scalbn(x, shift, fpst); \
8073 old_exc_flags |= get_float_exception_flags(fpst) \
8074 & float_flag_input_denormal; \
8075 set_float_exception_flags(old_exc_flags, fpst); \
8076 return float##fsz##_to_##itype##round(tmp, fpst); \
8079 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8080 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8081 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8082 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8084 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8085 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8086 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8088 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
8089 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
8090 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
8091 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
8092 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
8093 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
8094 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
8095 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
8096 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
8097 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
8098 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
8099 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
8101 #undef VFP_CONV_FIX_FLOAT
8102 #undef VFP_CONV_FLOAT_FIX_ROUND
8104 /* Set the current fp rounding mode and return the old one.
8105 * The argument is a softfloat float_round_ value.
8107 uint32_t HELPER(set_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8109 float_status
*fp_status
= &env
->vfp
.fp_status
;
8111 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8112 set_float_rounding_mode(rmode
, fp_status
);
8117 /* Set the current fp rounding mode in the standard fp status and return
8118 * the old one. This is for NEON instructions that need to change the
8119 * rounding mode but wish to use the standard FPSCR values for everything
8120 * else. Always set the rounding mode back to the correct value after
8122 * The argument is a softfloat float_round_ value.
8124 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
8126 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
8128 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
8129 set_float_rounding_mode(rmode
, fp_status
);
8134 /* Half precision conversions. */
8135 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
8137 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8138 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
8140 return float32_maybe_silence_nan(r
);
8145 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
8147 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8148 float16 r
= float32_to_float16(a
, ieee
, s
);
8150 r
= float16_maybe_silence_nan(r
);
8152 return float16_val(r
);
8155 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8157 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
8160 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8162 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
8165 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
8167 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
8170 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
8172 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
8175 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, CPUARMState
*env
)
8177 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8178 float64 r
= float16_to_float64(make_float16(a
), ieee
, &env
->vfp
.fp_status
);
8180 return float64_maybe_silence_nan(r
);
8185 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, CPUARMState
*env
)
8187 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
8188 float16 r
= float64_to_float16(a
, ieee
, &env
->vfp
.fp_status
);
8190 r
= float16_maybe_silence_nan(r
);
8192 return float16_val(r
);
8195 #define float32_two make_float32(0x40000000)
8196 #define float32_three make_float32(0x40400000)
8197 #define float32_one_point_five make_float32(0x3fc00000)
8199 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8201 float_status
*s
= &env
->vfp
.standard_fp_status
;
8202 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8203 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8204 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8205 float_raise(float_flag_input_denormal
, s
);
8209 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
8212 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
8214 float_status
*s
= &env
->vfp
.standard_fp_status
;
8216 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
8217 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
8218 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
8219 float_raise(float_flag_input_denormal
, s
);
8221 return float32_one_point_five
;
8223 product
= float32_mul(a
, b
, s
);
8224 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
8229 /* Constants 256 and 512 are used in some helpers; we avoid relying on
8230 * int->float conversions at run-time. */
8231 #define float64_256 make_float64(0x4070000000000000LL)
8232 #define float64_512 make_float64(0x4080000000000000LL)
8233 #define float32_maxnorm make_float32(0x7f7fffff)
8234 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
8236 /* Reciprocal functions
8238 * The algorithm that must be used to calculate the estimate
8239 * is specified by the ARM ARM, see FPRecipEstimate()
8242 static float64
recip_estimate(float64 a
, float_status
*real_fp_status
)
8244 /* These calculations mustn't set any fp exception flags,
8245 * so we use a local copy of the fp_status.
8247 float_status dummy_status
= *real_fp_status
;
8248 float_status
*s
= &dummy_status
;
8249 /* q = (int)(a * 512.0) */
8250 float64 q
= float64_mul(float64_512
, a
, s
);
8251 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8253 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
8254 q
= int64_to_float64(q_int
, s
);
8255 q
= float64_add(q
, float64_half
, s
);
8256 q
= float64_div(q
, float64_512
, s
);
8257 q
= float64_div(float64_one
, q
, s
);
8259 /* s = (int)(256.0 * r + 0.5) */
8260 q
= float64_mul(q
, float64_256
, s
);
8261 q
= float64_add(q
, float64_half
, s
);
8262 q_int
= float64_to_int64_round_to_zero(q
, s
);
8264 /* return (double)s / 256.0 */
8265 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8268 /* Common wrapper to call recip_estimate */
8269 static float64
call_recip_estimate(float64 num
, int off
, float_status
*fpst
)
8271 uint64_t val64
= float64_val(num
);
8272 uint64_t frac
= extract64(val64
, 0, 52);
8273 int64_t exp
= extract64(val64
, 52, 11);
8275 float64 scaled
, estimate
;
8277 /* Generate the scaled number for the estimate function */
8279 if (extract64(frac
, 51, 1) == 0) {
8281 frac
= extract64(frac
, 0, 50) << 2;
8283 frac
= extract64(frac
, 0, 51) << 1;
8287 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
8288 scaled
= make_float64((0x3feULL
<< 52)
8289 | extract64(frac
, 44, 8) << 44);
8291 estimate
= recip_estimate(scaled
, fpst
);
8293 /* Build new result */
8294 val64
= float64_val(estimate
);
8295 sbit
= 0x8000000000000000ULL
& val64
;
8297 frac
= extract64(val64
, 0, 52);
8300 frac
= 1ULL << 51 | extract64(frac
, 1, 51);
8301 } else if (exp
== -1) {
8302 frac
= 1ULL << 50 | extract64(frac
, 2, 50);
8306 return make_float64(sbit
| (exp
<< 52) | frac
);
8309 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
8311 switch (fpst
->float_rounding_mode
) {
8312 case float_round_nearest_even
: /* Round to Nearest */
8314 case float_round_up
: /* Round to +Inf */
8316 case float_round_down
: /* Round to -Inf */
8318 case float_round_to_zero
: /* Round to Zero */
8322 g_assert_not_reached();
8325 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
8327 float_status
*fpst
= fpstp
;
8328 float32 f32
= float32_squash_input_denormal(input
, fpst
);
8329 uint32_t f32_val
= float32_val(f32
);
8330 uint32_t f32_sbit
= 0x80000000ULL
& f32_val
;
8331 int32_t f32_exp
= extract32(f32_val
, 23, 8);
8332 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
8338 if (float32_is_any_nan(f32
)) {
8340 if (float32_is_signaling_nan(f32
)) {
8341 float_raise(float_flag_invalid
, fpst
);
8342 nan
= float32_maybe_silence_nan(f32
);
8344 if (fpst
->default_nan_mode
) {
8345 nan
= float32_default_nan
;
8348 } else if (float32_is_infinity(f32
)) {
8349 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8350 } else if (float32_is_zero(f32
)) {
8351 float_raise(float_flag_divbyzero
, fpst
);
8352 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8353 } else if ((f32_val
& ~(1ULL << 31)) < (1ULL << 21)) {
8354 /* Abs(value) < 2.0^-128 */
8355 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8356 if (round_to_inf(fpst
, f32_sbit
)) {
8357 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8359 return float32_set_sign(float32_maxnorm
, float32_is_neg(f32
));
8361 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
8362 float_raise(float_flag_underflow
, fpst
);
8363 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
8367 f64
= make_float64(((int64_t)(f32_exp
) << 52) | (int64_t)(f32_frac
) << 29);
8368 r64
= call_recip_estimate(f64
, 253, fpst
);
8369 r64_val
= float64_val(r64
);
8370 r64_exp
= extract64(r64_val
, 52, 11);
8371 r64_frac
= extract64(r64_val
, 0, 52);
8373 /* result = sign : result_exp<7:0> : fraction<51:29>; */
8374 return make_float32(f32_sbit
|
8375 (r64_exp
& 0xff) << 23 |
8376 extract64(r64_frac
, 29, 24));
8379 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
8381 float_status
*fpst
= fpstp
;
8382 float64 f64
= float64_squash_input_denormal(input
, fpst
);
8383 uint64_t f64_val
= float64_val(f64
);
8384 uint64_t f64_sbit
= 0x8000000000000000ULL
& f64_val
;
8385 int64_t f64_exp
= extract64(f64_val
, 52, 11);
8391 /* Deal with any special cases */
8392 if (float64_is_any_nan(f64
)) {
8394 if (float64_is_signaling_nan(f64
)) {
8395 float_raise(float_flag_invalid
, fpst
);
8396 nan
= float64_maybe_silence_nan(f64
);
8398 if (fpst
->default_nan_mode
) {
8399 nan
= float64_default_nan
;
8402 } else if (float64_is_infinity(f64
)) {
8403 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8404 } else if (float64_is_zero(f64
)) {
8405 float_raise(float_flag_divbyzero
, fpst
);
8406 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8407 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
8408 /* Abs(value) < 2.0^-1024 */
8409 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
8410 if (round_to_inf(fpst
, f64_sbit
)) {
8411 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8413 return float64_set_sign(float64_maxnorm
, float64_is_neg(f64
));
8415 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
8416 float_raise(float_flag_underflow
, fpst
);
8417 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
8420 r64
= call_recip_estimate(f64
, 2045, fpst
);
8421 r64_val
= float64_val(r64
);
8422 r64_exp
= extract64(r64_val
, 52, 11);
8423 r64_frac
= extract64(r64_val
, 0, 52);
8425 /* result = sign : result_exp<10:0> : fraction<51:0> */
8426 return make_float64(f64_sbit
|
8427 ((r64_exp
& 0x7ff) << 52) |
8431 /* The algorithm that must be used to calculate the estimate
8432 * is specified by the ARM ARM.
8434 static float64
recip_sqrt_estimate(float64 a
, float_status
*real_fp_status
)
8436 /* These calculations mustn't set any fp exception flags,
8437 * so we use a local copy of the fp_status.
8439 float_status dummy_status
= *real_fp_status
;
8440 float_status
*s
= &dummy_status
;
8444 if (float64_lt(a
, float64_half
, s
)) {
8445 /* range 0.25 <= a < 0.5 */
8447 /* a in units of 1/512 rounded down */
8448 /* q0 = (int)(a * 512.0); */
8449 q
= float64_mul(float64_512
, a
, s
);
8450 q_int
= float64_to_int64_round_to_zero(q
, s
);
8452 /* reciprocal root r */
8453 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
8454 q
= int64_to_float64(q_int
, s
);
8455 q
= float64_add(q
, float64_half
, s
);
8456 q
= float64_div(q
, float64_512
, s
);
8457 q
= float64_sqrt(q
, s
);
8458 q
= float64_div(float64_one
, q
, s
);
8460 /* range 0.5 <= a < 1.0 */
8462 /* a in units of 1/256 rounded down */
8463 /* q1 = (int)(a * 256.0); */
8464 q
= float64_mul(float64_256
, a
, s
);
8465 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
8467 /* reciprocal root r */
8468 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
8469 q
= int64_to_float64(q_int
, s
);
8470 q
= float64_add(q
, float64_half
, s
);
8471 q
= float64_div(q
, float64_256
, s
);
8472 q
= float64_sqrt(q
, s
);
8473 q
= float64_div(float64_one
, q
, s
);
8475 /* r in units of 1/256 rounded to nearest */
8476 /* s = (int)(256.0 * r + 0.5); */
8478 q
= float64_mul(q
, float64_256
,s
);
8479 q
= float64_add(q
, float64_half
, s
);
8480 q_int
= float64_to_int64_round_to_zero(q
, s
);
8482 /* return (double)s / 256.0;*/
8483 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
8486 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
8488 float_status
*s
= fpstp
;
8489 float32 f32
= float32_squash_input_denormal(input
, s
);
8490 uint32_t val
= float32_val(f32
);
8491 uint32_t f32_sbit
= 0x80000000 & val
;
8492 int32_t f32_exp
= extract32(val
, 23, 8);
8493 uint32_t f32_frac
= extract32(val
, 0, 23);
8499 if (float32_is_any_nan(f32
)) {
8501 if (float32_is_signaling_nan(f32
)) {
8502 float_raise(float_flag_invalid
, s
);
8503 nan
= float32_maybe_silence_nan(f32
);
8505 if (s
->default_nan_mode
) {
8506 nan
= float32_default_nan
;
8509 } else if (float32_is_zero(f32
)) {
8510 float_raise(float_flag_divbyzero
, s
);
8511 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
8512 } else if (float32_is_neg(f32
)) {
8513 float_raise(float_flag_invalid
, s
);
8514 return float32_default_nan
;
8515 } else if (float32_is_infinity(f32
)) {
8516 return float32_zero
;
8519 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8520 * preserving the parity of the exponent. */
8522 f64_frac
= ((uint64_t) f32_frac
) << 29;
8524 while (extract64(f64_frac
, 51, 1) == 0) {
8525 f64_frac
= f64_frac
<< 1;
8526 f32_exp
= f32_exp
-1;
8528 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8531 if (extract64(f32_exp
, 0, 1) == 0) {
8532 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8536 f64
= make_float64(((uint64_t) f32_sbit
) << 32
8541 result_exp
= (380 - f32_exp
) / 2;
8543 f64
= recip_sqrt_estimate(f64
, s
);
8545 val64
= float64_val(f64
);
8547 val
= ((result_exp
& 0xff) << 23)
8548 | ((val64
>> 29) & 0x7fffff);
8549 return make_float32(val
);
8552 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
8554 float_status
*s
= fpstp
;
8555 float64 f64
= float64_squash_input_denormal(input
, s
);
8556 uint64_t val
= float64_val(f64
);
8557 uint64_t f64_sbit
= 0x8000000000000000ULL
& val
;
8558 int64_t f64_exp
= extract64(val
, 52, 11);
8559 uint64_t f64_frac
= extract64(val
, 0, 52);
8561 uint64_t result_frac
;
8563 if (float64_is_any_nan(f64
)) {
8565 if (float64_is_signaling_nan(f64
)) {
8566 float_raise(float_flag_invalid
, s
);
8567 nan
= float64_maybe_silence_nan(f64
);
8569 if (s
->default_nan_mode
) {
8570 nan
= float64_default_nan
;
8573 } else if (float64_is_zero(f64
)) {
8574 float_raise(float_flag_divbyzero
, s
);
8575 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
8576 } else if (float64_is_neg(f64
)) {
8577 float_raise(float_flag_invalid
, s
);
8578 return float64_default_nan
;
8579 } else if (float64_is_infinity(f64
)) {
8580 return float64_zero
;
8583 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8584 * preserving the parity of the exponent. */
8587 while (extract64(f64_frac
, 51, 1) == 0) {
8588 f64_frac
= f64_frac
<< 1;
8589 f64_exp
= f64_exp
- 1;
8591 f64_frac
= extract64(f64_frac
, 0, 51) << 1;
8594 if (extract64(f64_exp
, 0, 1) == 0) {
8595 f64
= make_float64(f64_sbit
8599 f64
= make_float64(f64_sbit
8604 result_exp
= (3068 - f64_exp
) / 2;
8606 f64
= recip_sqrt_estimate(f64
, s
);
8608 result_frac
= extract64(float64_val(f64
), 0, 52);
8610 return make_float64(f64_sbit
|
8611 ((result_exp
& 0x7ff) << 52) |
8615 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
8617 float_status
*s
= fpstp
;
8620 if ((a
& 0x80000000) == 0) {
8624 f64
= make_float64((0x3feULL
<< 52)
8625 | ((int64_t)(a
& 0x7fffffff) << 21));
8627 f64
= recip_estimate(f64
, s
);
8629 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8632 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
8634 float_status
*fpst
= fpstp
;
8637 if ((a
& 0xc0000000) == 0) {
8641 if (a
& 0x80000000) {
8642 f64
= make_float64((0x3feULL
<< 52)
8643 | ((uint64_t)(a
& 0x7fffffff) << 21));
8644 } else { /* bits 31-30 == '01' */
8645 f64
= make_float64((0x3fdULL
<< 52)
8646 | ((uint64_t)(a
& 0x3fffffff) << 22));
8649 f64
= recip_sqrt_estimate(f64
, fpst
);
8651 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
8654 /* VFPv4 fused multiply-accumulate */
8655 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
8657 float_status
*fpst
= fpstp
;
8658 return float32_muladd(a
, b
, c
, 0, fpst
);
8661 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
8663 float_status
*fpst
= fpstp
;
8664 return float64_muladd(a
, b
, c
, 0, fpst
);
8667 /* ARMv8 round to integral */
8668 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
8670 return float32_round_to_int(x
, fp_status
);
8673 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
8675 return float64_round_to_int(x
, fp_status
);
8678 float32
HELPER(rints
)(float32 x
, void *fp_status
)
8680 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8683 ret
= float32_round_to_int(x
, fp_status
);
8685 /* Suppress any inexact exceptions the conversion produced */
8686 if (!(old_flags
& float_flag_inexact
)) {
8687 new_flags
= get_float_exception_flags(fp_status
);
8688 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8694 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
8696 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
8699 ret
= float64_round_to_int(x
, fp_status
);
8701 new_flags
= get_float_exception_flags(fp_status
);
8703 /* Suppress any inexact exceptions the conversion produced */
8704 if (!(old_flags
& float_flag_inexact
)) {
8705 new_flags
= get_float_exception_flags(fp_status
);
8706 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
8712 /* Convert ARM rounding mode to softfloat */
8713 int arm_rmode_to_sf(int rmode
)
8716 case FPROUNDING_TIEAWAY
:
8717 rmode
= float_round_ties_away
;
8719 case FPROUNDING_ODD
:
8720 /* FIXME: add support for TIEAWAY and ODD */
8721 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
8723 case FPROUNDING_TIEEVEN
:
8725 rmode
= float_round_nearest_even
;
8727 case FPROUNDING_POSINF
:
8728 rmode
= float_round_up
;
8730 case FPROUNDING_NEGINF
:
8731 rmode
= float_round_down
;
8733 case FPROUNDING_ZERO
:
8734 rmode
= float_round_to_zero
;
8741 * The upper bytes of val (above the number specified by 'bytes') must have
8742 * been zeroed out by the caller.
8744 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8750 /* zlib crc32 converts the accumulator and output to one's complement. */
8751 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
8754 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
8760 /* Linux crc32c converts the output to one's complement. */
8761 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;