2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_new_ptr();
121 a1
= tcg_temp_new_ptr();
123 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
135 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
136 gen_helper_gvec_2i
*fn
)
139 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
141 a0
= tcg_temp_new_ptr();
142 a1
= tcg_temp_new_ptr();
144 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
145 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
149 tcg_temp_free_ptr(a0
);
150 tcg_temp_free_ptr(a1
);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
155 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
156 gen_helper_gvec_3
*fn
)
159 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
161 a0
= tcg_temp_new_ptr();
162 a1
= tcg_temp_new_ptr();
163 a2
= tcg_temp_new_ptr();
165 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
166 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
167 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
169 fn(a0
, a1
, a2
, desc
);
171 tcg_temp_free_ptr(a0
);
172 tcg_temp_free_ptr(a1
);
173 tcg_temp_free_ptr(a2
);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
178 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
179 int32_t data
, gen_helper_gvec_4
*fn
)
181 TCGv_ptr a0
, a1
, a2
, a3
;
182 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
184 a0
= tcg_temp_new_ptr();
185 a1
= tcg_temp_new_ptr();
186 a2
= tcg_temp_new_ptr();
187 a3
= tcg_temp_new_ptr();
189 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
190 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
191 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
192 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
194 fn(a0
, a1
, a2
, a3
, desc
);
196 tcg_temp_free_ptr(a0
);
197 tcg_temp_free_ptr(a1
);
198 tcg_temp_free_ptr(a2
);
199 tcg_temp_free_ptr(a3
);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
204 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
205 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
207 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
208 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
210 a0
= tcg_temp_new_ptr();
211 a1
= tcg_temp_new_ptr();
212 a2
= tcg_temp_new_ptr();
213 a3
= tcg_temp_new_ptr();
214 a4
= tcg_temp_new_ptr();
216 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
217 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
218 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
219 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
220 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
222 fn(a0
, a1
, a2
, a3
, a4
, desc
);
224 tcg_temp_free_ptr(a0
);
225 tcg_temp_free_ptr(a1
);
226 tcg_temp_free_ptr(a2
);
227 tcg_temp_free_ptr(a3
);
228 tcg_temp_free_ptr(a4
);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
234 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
235 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
238 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
240 a0
= tcg_temp_new_ptr();
241 a1
= tcg_temp_new_ptr();
243 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
244 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
246 fn(a0
, a1
, ptr
, desc
);
248 tcg_temp_free_ptr(a0
);
249 tcg_temp_free_ptr(a1
);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
255 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
256 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
259 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
261 a0
= tcg_temp_new_ptr();
262 a1
= tcg_temp_new_ptr();
263 a2
= tcg_temp_new_ptr();
265 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
266 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
267 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
269 fn(a0
, a1
, a2
, ptr
, desc
);
271 tcg_temp_free_ptr(a0
);
272 tcg_temp_free_ptr(a1
);
273 tcg_temp_free_ptr(a2
);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
279 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
280 uint32_t maxsz
, int32_t data
,
281 gen_helper_gvec_4_ptr
*fn
)
283 TCGv_ptr a0
, a1
, a2
, a3
;
284 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
286 a0
= tcg_temp_new_ptr();
287 a1
= tcg_temp_new_ptr();
288 a2
= tcg_temp_new_ptr();
289 a3
= tcg_temp_new_ptr();
291 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
292 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
293 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
294 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
296 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
298 tcg_temp_free_ptr(a0
);
299 tcg_temp_free_ptr(a1
);
300 tcg_temp_free_ptr(a2
);
301 tcg_temp_free_ptr(a3
);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
307 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
308 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
309 gen_helper_gvec_5_ptr
*fn
)
311 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
312 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
314 a0
= tcg_temp_new_ptr();
315 a1
= tcg_temp_new_ptr();
316 a2
= tcg_temp_new_ptr();
317 a3
= tcg_temp_new_ptr();
318 a4
= tcg_temp_new_ptr();
320 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
321 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
322 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
323 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
324 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
326 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
328 tcg_temp_free_ptr(a0
);
329 tcg_temp_free_ptr(a1
);
330 tcg_temp_free_ptr(a2
);
331 tcg_temp_free_ptr(a3
);
332 tcg_temp_free_ptr(a4
);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
347 tcg_debug_assert((r
& 7) == 0);
350 /* For sizes below 16, accept no remainder. */
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
366 return q
<= MAX_UNROLL
;
369 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
376 return 0x0101010101010101ull
* (uint8_t)c
;
378 return 0x0001000100010001ull
* (uint16_t)c
;
380 return 0x0000000100000001ull
* (uint32_t)c
;
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 static void gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
393 tcg_gen_ext8u_i32(out
, in
);
394 tcg_gen_muli_i32(out
, out
, 0x01010101);
397 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
400 tcg_gen_mov_i32(out
, in
);
403 g_assert_not_reached();
407 static void gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
411 tcg_gen_ext8u_i64(out
, in
);
412 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
415 tcg_gen_ext16u_i64(out
, in
);
416 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
419 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
422 tcg_gen_mov_i64(out
, in
);
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
436 uint32_t size
, bool prefer_i64
)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256
&&
447 check_size_impl(size
, 32) &&
448 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
450 (TCG_TARGET_HAS_v128
&&
451 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
453 (TCG_TARGET_HAS_v64
&&
454 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
455 return TCG_TYPE_V256
;
457 if (TCG_TARGET_HAS_v128
&&
458 check_size_impl(size
, 16) &&
459 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
461 (TCG_TARGET_HAS_v64
&&
462 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
463 return TCG_TYPE_V128
;
465 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
466 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
472 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
473 uint32_t maxsz
, TCGv_vec t_vec
)
477 tcg_debug_assert(oprsz
>= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
485 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i
+ 32 <= oprsz
; i
+= 32) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
501 for (; i
+ 16 <= oprsz
; i
+= 16) {
502 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
506 for (; i
< oprsz
; i
+= 8) {
507 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
511 g_assert_not_reached();
515 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
524 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
529 TCGv_i32 t_32
, t_desc
;
533 assert(vece
<= (in_32
? MO_32
: MO_64
));
534 assert(in_32
== NULL
|| in_64
== NULL
);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32
== NULL
&& in_64
== NULL
) {
538 in_c
= dup_const(vece
, in_c
);
542 } else if (in_c
== dup_const(MO_8
, in_c
)) {
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type
= choose_vector_type(NULL
, vece
, oprsz
,
551 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
552 && (in_64
== NULL
|| vece
== MO_64
)));
554 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
557 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
559 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
561 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
563 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
564 tcg_temp_free_vec(t_vec
);
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
577 if (TCG_TARGET_REG_BITS
== 64
578 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
579 t_64
= tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64
, in_32
);
581 gen_dup_i64(vece
, t_64
, t_64
);
583 t_32
= tcg_temp_new_i32();
584 gen_dup_i32(vece
, t_32
, in_32
);
587 /* We are given a 64-bit variable input. */
588 t_64
= tcg_temp_new_i64();
589 gen_dup_i64(vece
, t_64
, in_64
);
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
596 || (TCG_TARGET_REG_BITS
== 64
597 && (in_c
== 0 || in_c
== -1
598 || !check_size_impl(oprsz
, 4)))) {
599 t_64
= tcg_constant_i64(in_c
);
601 t_32
= tcg_constant_i32(in_c
);
605 /* Implement inline if we picked an implementation size above. */
607 for (i
= 0; i
< oprsz
; i
+= 4) {
608 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
610 tcg_temp_free_i32(t_32
);
614 for (i
= 0; i
< oprsz
; i
+= 8) {
615 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
617 tcg_temp_free_i64(t_64
);
622 /* Otherwise implement out of line. */
623 t_ptr
= tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
632 if (oprsz
== maxsz
&& vece
== MO_8
) {
633 TCGv_ptr t_size
= tcg_const_ptr(oprsz
);
639 t_val
= tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val
, in_64
);
642 t_val
= tcg_constant_i32(in_c
);
644 gen_helper_memset(t_ptr
, t_ptr
, t_val
, t_size
);
647 tcg_temp_free_i32(t_val
);
649 tcg_temp_free_ptr(t_size
);
650 tcg_temp_free_ptr(t_ptr
);
654 t_desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, 0));
658 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
660 t_64
= tcg_constant_i64(in_c
);
661 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
664 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
665 static dup_fn
* const fns
[3] = {
666 gen_helper_gvec_dup8
,
667 gen_helper_gvec_dup16
,
668 gen_helper_gvec_dup32
672 fns
[vece
](t_ptr
, t_desc
, in_32
);
674 t_32
= tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32
, in_64
);
676 fns
[vece
](t_ptr
, t_desc
, t_32
);
677 tcg_temp_free_i32(t_32
);
681 } else if (vece
== MO_16
) {
684 t_32
= tcg_constant_i32(in_c
);
685 fns
[vece
](t_ptr
, t_desc
, t_32
);
689 tcg_temp_free_ptr(t_ptr
);
694 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
701 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
706 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
708 TCGv_i32 t0
= tcg_temp_new_i32();
709 TCGv_i32 t1
= tcg_temp_new_i32();
712 for (i
= 0; i
< oprsz
; i
+= 4) {
713 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
715 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
718 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
720 tcg_temp_free_i32(t0
);
721 tcg_temp_free_i32(t1
);
724 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
725 int32_t c
, bool load_dest
,
726 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
728 TCGv_i32 t0
= tcg_temp_new_i32();
729 TCGv_i32 t1
= tcg_temp_new_i32();
732 for (i
= 0; i
< oprsz
; i
+= 4) {
733 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
735 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
738 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
740 tcg_temp_free_i32(t0
);
741 tcg_temp_free_i32(t1
);
744 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
745 TCGv_i32 c
, bool scalar_first
,
746 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
748 TCGv_i32 t0
= tcg_temp_new_i32();
749 TCGv_i32 t1
= tcg_temp_new_i32();
752 for (i
= 0; i
< oprsz
; i
+= 4) {
753 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
759 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
761 tcg_temp_free_i32(t0
);
762 tcg_temp_free_i32(t1
);
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
767 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
768 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
770 TCGv_i32 t0
= tcg_temp_new_i32();
771 TCGv_i32 t1
= tcg_temp_new_i32();
772 TCGv_i32 t2
= tcg_temp_new_i32();
775 for (i
= 0; i
< oprsz
; i
+= 4) {
776 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
777 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
779 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
782 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
784 tcg_temp_free_i32(t2
);
785 tcg_temp_free_i32(t1
);
786 tcg_temp_free_i32(t0
);
789 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
790 uint32_t oprsz
, int32_t c
, bool load_dest
,
791 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
793 TCGv_i32 t0
= tcg_temp_new_i32();
794 TCGv_i32 t1
= tcg_temp_new_i32();
795 TCGv_i32 t2
= tcg_temp_new_i32();
798 for (i
= 0; i
< oprsz
; i
+= 4) {
799 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
800 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
802 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
805 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
807 tcg_temp_free_i32(t0
);
808 tcg_temp_free_i32(t1
);
809 tcg_temp_free_i32(t2
);
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
814 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
815 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
817 TCGv_i32 t0
= tcg_temp_new_i32();
818 TCGv_i32 t1
= tcg_temp_new_i32();
819 TCGv_i32 t2
= tcg_temp_new_i32();
820 TCGv_i32 t3
= tcg_temp_new_i32();
823 for (i
= 0; i
< oprsz
; i
+= 4) {
824 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
825 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
826 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
828 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
830 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
833 tcg_temp_free_i32(t3
);
834 tcg_temp_free_i32(t2
);
835 tcg_temp_free_i32(t1
);
836 tcg_temp_free_i32(t0
);
839 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
840 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
841 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
843 TCGv_i64 t0
= tcg_temp_new_i64();
844 TCGv_i64 t1
= tcg_temp_new_i64();
847 for (i
= 0; i
< oprsz
; i
+= 8) {
848 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
850 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
853 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
855 tcg_temp_free_i64(t0
);
856 tcg_temp_free_i64(t1
);
859 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
860 int64_t c
, bool load_dest
,
861 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
863 TCGv_i64 t0
= tcg_temp_new_i64();
864 TCGv_i64 t1
= tcg_temp_new_i64();
867 for (i
= 0; i
< oprsz
; i
+= 8) {
868 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
870 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
873 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
875 tcg_temp_free_i64(t0
);
876 tcg_temp_free_i64(t1
);
879 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
880 TCGv_i64 c
, bool scalar_first
,
881 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
883 TCGv_i64 t0
= tcg_temp_new_i64();
884 TCGv_i64 t1
= tcg_temp_new_i64();
887 for (i
= 0; i
< oprsz
; i
+= 8) {
888 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
894 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
896 tcg_temp_free_i64(t0
);
897 tcg_temp_free_i64(t1
);
900 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
901 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
902 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
903 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
905 TCGv_i64 t0
= tcg_temp_new_i64();
906 TCGv_i64 t1
= tcg_temp_new_i64();
907 TCGv_i64 t2
= tcg_temp_new_i64();
910 for (i
= 0; i
< oprsz
; i
+= 8) {
911 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
912 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
914 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
917 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
919 tcg_temp_free_i64(t2
);
920 tcg_temp_free_i64(t1
);
921 tcg_temp_free_i64(t0
);
924 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
925 uint32_t oprsz
, int64_t c
, bool load_dest
,
926 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
928 TCGv_i64 t0
= tcg_temp_new_i64();
929 TCGv_i64 t1
= tcg_temp_new_i64();
930 TCGv_i64 t2
= tcg_temp_new_i64();
933 for (i
= 0; i
< oprsz
; i
+= 8) {
934 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
935 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
937 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
940 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
942 tcg_temp_free_i64(t0
);
943 tcg_temp_free_i64(t1
);
944 tcg_temp_free_i64(t2
);
947 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
948 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
949 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
950 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
952 TCGv_i64 t0
= tcg_temp_new_i64();
953 TCGv_i64 t1
= tcg_temp_new_i64();
954 TCGv_i64 t2
= tcg_temp_new_i64();
955 TCGv_i64 t3
= tcg_temp_new_i64();
958 for (i
= 0; i
< oprsz
; i
+= 8) {
959 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
960 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
961 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
963 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
965 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
968 tcg_temp_free_i64(t3
);
969 tcg_temp_free_i64(t2
);
970 tcg_temp_free_i64(t1
);
971 tcg_temp_free_i64(t0
);
974 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
975 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
976 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
978 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
980 TCGv_vec t0
= tcg_temp_new_vec(type
);
981 TCGv_vec t1
= tcg_temp_new_vec(type
);
984 for (i
= 0; i
< oprsz
; i
+= tysz
) {
985 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
987 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
990 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
992 tcg_temp_free_vec(t0
);
993 tcg_temp_free_vec(t1
);
996 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
997 using host vectors. */
998 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
999 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1000 int64_t c
, bool load_dest
,
1001 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
1003 TCGv_vec t0
= tcg_temp_new_vec(type
);
1004 TCGv_vec t1
= tcg_temp_new_vec(type
);
1007 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1008 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1010 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1012 fni(vece
, t1
, t0
, c
);
1013 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1015 tcg_temp_free_vec(t0
);
1016 tcg_temp_free_vec(t1
);
1019 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1020 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1021 TCGv_vec c
, bool scalar_first
,
1022 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1024 TCGv_vec t0
= tcg_temp_new_vec(type
);
1025 TCGv_vec t1
= tcg_temp_new_vec(type
);
1028 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1029 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1031 fni(vece
, t1
, c
, t0
);
1033 fni(vece
, t1
, t0
, c
);
1035 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1037 tcg_temp_free_vec(t0
);
1038 tcg_temp_free_vec(t1
);
1041 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1042 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1043 uint32_t bofs
, uint32_t oprsz
,
1044 uint32_t tysz
, TCGType type
, bool load_dest
,
1045 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1047 TCGv_vec t0
= tcg_temp_new_vec(type
);
1048 TCGv_vec t1
= tcg_temp_new_vec(type
);
1049 TCGv_vec t2
= tcg_temp_new_vec(type
);
1052 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1053 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1054 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1056 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1058 fni(vece
, t2
, t0
, t1
);
1059 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1061 tcg_temp_free_vec(t2
);
1062 tcg_temp_free_vec(t1
);
1063 tcg_temp_free_vec(t0
);
1067 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1068 * using host vectors.
1070 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1071 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1072 TCGType type
, int64_t c
, bool load_dest
,
1073 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1076 TCGv_vec t0
= tcg_temp_new_vec(type
);
1077 TCGv_vec t1
= tcg_temp_new_vec(type
);
1078 TCGv_vec t2
= tcg_temp_new_vec(type
);
1081 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1082 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1083 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1085 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1087 fni(vece
, t2
, t0
, t1
, c
);
1088 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1090 tcg_temp_free_vec(t0
);
1091 tcg_temp_free_vec(t1
);
1092 tcg_temp_free_vec(t2
);
1095 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1096 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1097 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1098 uint32_t tysz
, TCGType type
, bool write_aofs
,
1099 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1100 TCGv_vec
, TCGv_vec
))
1102 TCGv_vec t0
= tcg_temp_new_vec(type
);
1103 TCGv_vec t1
= tcg_temp_new_vec(type
);
1104 TCGv_vec t2
= tcg_temp_new_vec(type
);
1105 TCGv_vec t3
= tcg_temp_new_vec(type
);
1108 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1109 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1110 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1111 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1112 fni(vece
, t0
, t1
, t2
, t3
);
1113 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1115 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1118 tcg_temp_free_vec(t3
);
1119 tcg_temp_free_vec(t2
);
1120 tcg_temp_free_vec(t1
);
1121 tcg_temp_free_vec(t0
);
1124 /* Expand a vector two-operand operation. */
1125 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1126 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1128 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1129 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1133 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1134 check_overlap_2(dofs
, aofs
, maxsz
);
1138 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1142 /* Recall that ARM SVE allows vector sizes that are not a
1143 * power of 2, but always a multiple of 16. The intent is
1144 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1146 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1147 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1148 g
->load_dest
, g
->fniv
);
1149 if (some
== oprsz
) {
1158 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1159 g
->load_dest
, g
->fniv
);
1162 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1163 g
->load_dest
, g
->fniv
);
1167 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1168 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1169 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1170 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1172 assert(g
->fno
!= NULL
);
1173 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1179 g_assert_not_reached();
1181 tcg_swap_vecop_list(hold_list
);
1183 if (oprsz
< maxsz
) {
1184 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1188 /* Expand a vector operation with two vectors and an immediate. */
1189 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1190 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1192 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1193 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1197 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1198 check_overlap_2(dofs
, aofs
, maxsz
);
1202 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1206 /* Recall that ARM SVE allows vector sizes that are not a
1207 * power of 2, but always a multiple of 16. The intent is
1208 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1210 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1211 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1212 c
, g
->load_dest
, g
->fniv
);
1213 if (some
== oprsz
) {
1222 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1223 c
, g
->load_dest
, g
->fniv
);
1226 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1227 c
, g
->load_dest
, g
->fniv
);
1231 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1232 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1233 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1234 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1237 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1239 TCGv_i64 tcg_c
= tcg_constant_i64(c
);
1240 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1248 g_assert_not_reached();
1250 tcg_swap_vecop_list(hold_list
);
1252 if (oprsz
< maxsz
) {
1253 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1257 /* Expand a vector operation with two vectors and a scalar. */
1258 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1259 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1263 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1264 check_overlap_2(dofs
, aofs
, maxsz
);
1268 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1271 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1272 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1273 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1276 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1280 /* Recall that ARM SVE allows vector sizes that are not a
1281 * power of 2, but always a multiple of 16. The intent is
1282 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1284 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1285 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1286 t_vec
, g
->scalar_first
, g
->fniv
);
1287 if (some
== oprsz
) {
1297 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1298 t_vec
, g
->scalar_first
, g
->fniv
);
1302 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1303 t_vec
, g
->scalar_first
, g
->fniv
);
1307 g_assert_not_reached();
1309 tcg_temp_free_vec(t_vec
);
1310 tcg_swap_vecop_list(hold_list
);
1311 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1312 TCGv_i64 t64
= tcg_temp_new_i64();
1314 gen_dup_i64(g
->vece
, t64
, c
);
1315 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1316 tcg_temp_free_i64(t64
);
1317 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1318 TCGv_i32 t32
= tcg_temp_new_i32();
1320 tcg_gen_extrl_i64_i32(t32
, c
);
1321 gen_dup_i32(g
->vece
, t32
, t32
);
1322 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1323 tcg_temp_free_i32(t32
);
1325 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1329 if (oprsz
< maxsz
) {
1330 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1334 /* Expand a vector three-operand operation. */
1335 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1336 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1338 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1339 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1343 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1344 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1348 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1352 /* Recall that ARM SVE allows vector sizes that are not a
1353 * power of 2, but always a multiple of 16. The intent is
1354 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1356 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1357 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1358 g
->load_dest
, g
->fniv
);
1359 if (some
== oprsz
) {
1369 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1370 g
->load_dest
, g
->fniv
);
1373 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1374 g
->load_dest
, g
->fniv
);
1378 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1379 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1380 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1381 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1383 assert(g
->fno
!= NULL
);
1384 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1385 maxsz
, g
->data
, g
->fno
);
1391 g_assert_not_reached();
1393 tcg_swap_vecop_list(hold_list
);
1395 if (oprsz
< maxsz
) {
1396 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1400 /* Expand a vector operation with three vectors and an immediate. */
1401 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1402 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1405 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1406 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1410 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1411 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1415 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1420 * Recall that ARM SVE allows vector sizes that are not a
1421 * power of 2, but always a multiple of 16. The intent is
1422 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1424 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1425 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1426 c
, g
->load_dest
, g
->fniv
);
1427 if (some
== oprsz
) {
1437 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1438 c
, g
->load_dest
, g
->fniv
);
1441 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1442 c
, g
->load_dest
, g
->fniv
);
1446 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1447 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1448 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1449 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1451 assert(g
->fno
!= NULL
);
1452 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1458 g_assert_not_reached();
1460 tcg_swap_vecop_list(hold_list
);
1462 if (oprsz
< maxsz
) {
1463 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1467 /* Expand a vector four-operand operation. */
1468 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1469 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1471 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1472 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1476 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1477 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1481 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1485 /* Recall that ARM SVE allows vector sizes that are not a
1486 * power of 2, but always a multiple of 16. The intent is
1487 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1489 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1490 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1491 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1492 if (some
== oprsz
) {
1503 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1504 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1507 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1508 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1512 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1513 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1514 g
->write_aofs
, g
->fni8
);
1515 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1516 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1517 g
->write_aofs
, g
->fni4
);
1519 assert(g
->fno
!= NULL
);
1520 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1521 oprsz
, maxsz
, g
->data
, g
->fno
);
1527 g_assert_not_reached();
1529 tcg_swap_vecop_list(hold_list
);
1531 if (oprsz
< maxsz
) {
1532 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1537 * Expand specific vector operations.
1540 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1542 tcg_gen_mov_vec(a
, b
);
1545 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1546 uint32_t oprsz
, uint32_t maxsz
)
1548 static const GVecGen2 g
= {
1549 .fni8
= tcg_gen_mov_i64
,
1551 .fno
= gen_helper_gvec_mov
,
1552 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1555 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1557 check_size_align(oprsz
, maxsz
, dofs
);
1558 if (oprsz
< maxsz
) {
1559 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1564 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1565 uint32_t maxsz
, TCGv_i32 in
)
1567 check_size_align(oprsz
, maxsz
, dofs
);
1568 tcg_debug_assert(vece
<= MO_32
);
1569 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1572 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1573 uint32_t maxsz
, TCGv_i64 in
)
1575 check_size_align(oprsz
, maxsz
, dofs
);
1576 tcg_debug_assert(vece
<= MO_64
);
1577 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1580 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1581 uint32_t oprsz
, uint32_t maxsz
)
1583 check_size_align(oprsz
, maxsz
, dofs
);
1584 if (vece
<= MO_64
) {
1585 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1587 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1588 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1589 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1590 tcg_temp_free_vec(t_vec
);
1591 } else if (vece
<= MO_32
) {
1592 TCGv_i32 in
= tcg_temp_new_i32();
1595 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1598 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1601 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1604 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1605 tcg_temp_free_i32(in
);
1607 TCGv_i64 in
= tcg_temp_new_i64();
1608 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1609 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1610 tcg_temp_free_i64(in
);
1612 } else if (vece
== 4) {
1613 /* 128-bit duplicate. */
1616 tcg_debug_assert(oprsz
>= 16);
1617 if (TCG_TARGET_HAS_v128
) {
1618 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1620 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1621 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1622 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1624 tcg_temp_free_vec(in
);
1626 TCGv_i64 in0
= tcg_temp_new_i64();
1627 TCGv_i64 in1
= tcg_temp_new_i64();
1629 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1630 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1631 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1632 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1633 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1635 tcg_temp_free_i64(in0
);
1636 tcg_temp_free_i64(in1
);
1638 if (oprsz
< maxsz
) {
1639 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1641 } else if (vece
== 5) {
1642 /* 256-bit duplicate. */
1645 tcg_debug_assert(oprsz
>= 32);
1646 tcg_debug_assert(oprsz
% 32 == 0);
1647 if (TCG_TARGET_HAS_v256
) {
1648 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1650 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1651 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1652 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1654 tcg_temp_free_vec(in
);
1655 } else if (TCG_TARGET_HAS_v128
) {
1656 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1657 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1659 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1660 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1661 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1662 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1663 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1665 tcg_temp_free_vec(in0
);
1666 tcg_temp_free_vec(in1
);
1671 for (j
= 0; j
< 4; ++j
) {
1672 in
[j
] = tcg_temp_new_i64();
1673 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1675 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1676 for (j
= 0; j
< 4; ++j
) {
1677 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1680 for (j
= 0; j
< 4; ++j
) {
1681 tcg_temp_free_i64(in
[j
]);
1684 if (oprsz
< maxsz
) {
1685 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1688 g_assert_not_reached();
1692 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1693 uint32_t maxsz
, uint64_t x
)
1695 check_size_align(oprsz
, maxsz
, dofs
);
1696 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1699 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1700 uint32_t oprsz
, uint32_t maxsz
)
1702 static const GVecGen2 g
= {
1703 .fni8
= tcg_gen_not_i64
,
1704 .fniv
= tcg_gen_not_vec
,
1705 .fno
= gen_helper_gvec_not
,
1706 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1708 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1711 /* Perform a vector addition using normal addition and a mask. The mask
1712 should be the sign bit of each lane. This 6-operation form is more
1713 efficient than separate additions when there are 4 or more lanes in
1714 the 64-bit operation. */
1715 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1717 TCGv_i64 t1
= tcg_temp_new_i64();
1718 TCGv_i64 t2
= tcg_temp_new_i64();
1719 TCGv_i64 t3
= tcg_temp_new_i64();
1721 tcg_gen_andc_i64(t1
, a
, m
);
1722 tcg_gen_andc_i64(t2
, b
, m
);
1723 tcg_gen_xor_i64(t3
, a
, b
);
1724 tcg_gen_add_i64(d
, t1
, t2
);
1725 tcg_gen_and_i64(t3
, t3
, m
);
1726 tcg_gen_xor_i64(d
, d
, t3
);
1728 tcg_temp_free_i64(t1
);
1729 tcg_temp_free_i64(t2
);
1730 tcg_temp_free_i64(t3
);
1733 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1735 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1736 gen_addv_mask(d
, a
, b
, m
);
1739 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1741 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1742 gen_addv_mask(d
, a
, b
, m
);
1745 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1747 TCGv_i64 t1
= tcg_temp_new_i64();
1748 TCGv_i64 t2
= tcg_temp_new_i64();
1750 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1751 tcg_gen_add_i64(t2
, a
, b
);
1752 tcg_gen_add_i64(t1
, t1
, b
);
1753 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1755 tcg_temp_free_i64(t1
);
1756 tcg_temp_free_i64(t2
);
1759 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1761 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1762 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1764 static const GVecGen3 g
[4] = {
1765 { .fni8
= tcg_gen_vec_add8_i64
,
1766 .fniv
= tcg_gen_add_vec
,
1767 .fno
= gen_helper_gvec_add8
,
1768 .opt_opc
= vecop_list_add
,
1770 { .fni8
= tcg_gen_vec_add16_i64
,
1771 .fniv
= tcg_gen_add_vec
,
1772 .fno
= gen_helper_gvec_add16
,
1773 .opt_opc
= vecop_list_add
,
1775 { .fni4
= tcg_gen_add_i32
,
1776 .fniv
= tcg_gen_add_vec
,
1777 .fno
= gen_helper_gvec_add32
,
1778 .opt_opc
= vecop_list_add
,
1780 { .fni8
= tcg_gen_add_i64
,
1781 .fniv
= tcg_gen_add_vec
,
1782 .fno
= gen_helper_gvec_add64
,
1783 .opt_opc
= vecop_list_add
,
1784 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1788 tcg_debug_assert(vece
<= MO_64
);
1789 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1792 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1793 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1795 static const GVecGen2s g
[4] = {
1796 { .fni8
= tcg_gen_vec_add8_i64
,
1797 .fniv
= tcg_gen_add_vec
,
1798 .fno
= gen_helper_gvec_adds8
,
1799 .opt_opc
= vecop_list_add
,
1801 { .fni8
= tcg_gen_vec_add16_i64
,
1802 .fniv
= tcg_gen_add_vec
,
1803 .fno
= gen_helper_gvec_adds16
,
1804 .opt_opc
= vecop_list_add
,
1806 { .fni4
= tcg_gen_add_i32
,
1807 .fniv
= tcg_gen_add_vec
,
1808 .fno
= gen_helper_gvec_adds32
,
1809 .opt_opc
= vecop_list_add
,
1811 { .fni8
= tcg_gen_add_i64
,
1812 .fniv
= tcg_gen_add_vec
,
1813 .fno
= gen_helper_gvec_adds64
,
1814 .opt_opc
= vecop_list_add
,
1815 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1819 tcg_debug_assert(vece
<= MO_64
);
1820 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1823 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1824 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1826 TCGv_i64 tmp
= tcg_constant_i64(c
);
1827 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1830 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1832 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1833 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1835 static const GVecGen2s g
[4] = {
1836 { .fni8
= tcg_gen_vec_sub8_i64
,
1837 .fniv
= tcg_gen_sub_vec
,
1838 .fno
= gen_helper_gvec_subs8
,
1839 .opt_opc
= vecop_list_sub
,
1841 { .fni8
= tcg_gen_vec_sub16_i64
,
1842 .fniv
= tcg_gen_sub_vec
,
1843 .fno
= gen_helper_gvec_subs16
,
1844 .opt_opc
= vecop_list_sub
,
1846 { .fni4
= tcg_gen_sub_i32
,
1847 .fniv
= tcg_gen_sub_vec
,
1848 .fno
= gen_helper_gvec_subs32
,
1849 .opt_opc
= vecop_list_sub
,
1851 { .fni8
= tcg_gen_sub_i64
,
1852 .fniv
= tcg_gen_sub_vec
,
1853 .fno
= gen_helper_gvec_subs64
,
1854 .opt_opc
= vecop_list_sub
,
1855 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1859 tcg_debug_assert(vece
<= MO_64
);
1860 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1863 /* Perform a vector subtraction using normal subtraction and a mask.
1864 Compare gen_addv_mask above. */
1865 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1867 TCGv_i64 t1
= tcg_temp_new_i64();
1868 TCGv_i64 t2
= tcg_temp_new_i64();
1869 TCGv_i64 t3
= tcg_temp_new_i64();
1871 tcg_gen_or_i64(t1
, a
, m
);
1872 tcg_gen_andc_i64(t2
, b
, m
);
1873 tcg_gen_eqv_i64(t3
, a
, b
);
1874 tcg_gen_sub_i64(d
, t1
, t2
);
1875 tcg_gen_and_i64(t3
, t3
, m
);
1876 tcg_gen_xor_i64(d
, d
, t3
);
1878 tcg_temp_free_i64(t1
);
1879 tcg_temp_free_i64(t2
);
1880 tcg_temp_free_i64(t3
);
1883 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1885 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1886 gen_subv_mask(d
, a
, b
, m
);
1889 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1891 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1892 gen_subv_mask(d
, a
, b
, m
);
1895 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1897 TCGv_i64 t1
= tcg_temp_new_i64();
1898 TCGv_i64 t2
= tcg_temp_new_i64();
1900 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
1901 tcg_gen_sub_i64(t2
, a
, b
);
1902 tcg_gen_sub_i64(t1
, a
, t1
);
1903 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1905 tcg_temp_free_i64(t1
);
1906 tcg_temp_free_i64(t2
);
1909 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1910 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1912 static const GVecGen3 g
[4] = {
1913 { .fni8
= tcg_gen_vec_sub8_i64
,
1914 .fniv
= tcg_gen_sub_vec
,
1915 .fno
= gen_helper_gvec_sub8
,
1916 .opt_opc
= vecop_list_sub
,
1918 { .fni8
= tcg_gen_vec_sub16_i64
,
1919 .fniv
= tcg_gen_sub_vec
,
1920 .fno
= gen_helper_gvec_sub16
,
1921 .opt_opc
= vecop_list_sub
,
1923 { .fni4
= tcg_gen_sub_i32
,
1924 .fniv
= tcg_gen_sub_vec
,
1925 .fno
= gen_helper_gvec_sub32
,
1926 .opt_opc
= vecop_list_sub
,
1928 { .fni8
= tcg_gen_sub_i64
,
1929 .fniv
= tcg_gen_sub_vec
,
1930 .fno
= gen_helper_gvec_sub64
,
1931 .opt_opc
= vecop_list_sub
,
1932 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1936 tcg_debug_assert(vece
<= MO_64
);
1937 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1940 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
1942 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1943 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1945 static const GVecGen3 g
[4] = {
1946 { .fniv
= tcg_gen_mul_vec
,
1947 .fno
= gen_helper_gvec_mul8
,
1948 .opt_opc
= vecop_list_mul
,
1950 { .fniv
= tcg_gen_mul_vec
,
1951 .fno
= gen_helper_gvec_mul16
,
1952 .opt_opc
= vecop_list_mul
,
1954 { .fni4
= tcg_gen_mul_i32
,
1955 .fniv
= tcg_gen_mul_vec
,
1956 .fno
= gen_helper_gvec_mul32
,
1957 .opt_opc
= vecop_list_mul
,
1959 { .fni8
= tcg_gen_mul_i64
,
1960 .fniv
= tcg_gen_mul_vec
,
1961 .fno
= gen_helper_gvec_mul64
,
1962 .opt_opc
= vecop_list_mul
,
1963 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1967 tcg_debug_assert(vece
<= MO_64
);
1968 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1971 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1972 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1974 static const GVecGen2s g
[4] = {
1975 { .fniv
= tcg_gen_mul_vec
,
1976 .fno
= gen_helper_gvec_muls8
,
1977 .opt_opc
= vecop_list_mul
,
1979 { .fniv
= tcg_gen_mul_vec
,
1980 .fno
= gen_helper_gvec_muls16
,
1981 .opt_opc
= vecop_list_mul
,
1983 { .fni4
= tcg_gen_mul_i32
,
1984 .fniv
= tcg_gen_mul_vec
,
1985 .fno
= gen_helper_gvec_muls32
,
1986 .opt_opc
= vecop_list_mul
,
1988 { .fni8
= tcg_gen_mul_i64
,
1989 .fniv
= tcg_gen_mul_vec
,
1990 .fno
= gen_helper_gvec_muls64
,
1991 .opt_opc
= vecop_list_mul
,
1992 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1996 tcg_debug_assert(vece
<= MO_64
);
1997 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2000 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2001 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2003 TCGv_i64 tmp
= tcg_constant_i64(c
);
2004 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2007 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2008 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2010 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
2011 static const GVecGen3 g
[4] = {
2012 { .fniv
= tcg_gen_ssadd_vec
,
2013 .fno
= gen_helper_gvec_ssadd8
,
2014 .opt_opc
= vecop_list
,
2016 { .fniv
= tcg_gen_ssadd_vec
,
2017 .fno
= gen_helper_gvec_ssadd16
,
2018 .opt_opc
= vecop_list
,
2020 { .fniv
= tcg_gen_ssadd_vec
,
2021 .fno
= gen_helper_gvec_ssadd32
,
2022 .opt_opc
= vecop_list
,
2024 { .fniv
= tcg_gen_ssadd_vec
,
2025 .fno
= gen_helper_gvec_ssadd64
,
2026 .opt_opc
= vecop_list
,
2029 tcg_debug_assert(vece
<= MO_64
);
2030 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2033 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2034 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2036 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2037 static const GVecGen3 g
[4] = {
2038 { .fniv
= tcg_gen_sssub_vec
,
2039 .fno
= gen_helper_gvec_sssub8
,
2040 .opt_opc
= vecop_list
,
2042 { .fniv
= tcg_gen_sssub_vec
,
2043 .fno
= gen_helper_gvec_sssub16
,
2044 .opt_opc
= vecop_list
,
2046 { .fniv
= tcg_gen_sssub_vec
,
2047 .fno
= gen_helper_gvec_sssub32
,
2048 .opt_opc
= vecop_list
,
2050 { .fniv
= tcg_gen_sssub_vec
,
2051 .fno
= gen_helper_gvec_sssub64
,
2052 .opt_opc
= vecop_list
,
2055 tcg_debug_assert(vece
<= MO_64
);
2056 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2059 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2061 TCGv_i32 max
= tcg_constant_i32(-1);
2062 tcg_gen_add_i32(d
, a
, b
);
2063 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2066 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2068 TCGv_i64 max
= tcg_constant_i64(-1);
2069 tcg_gen_add_i64(d
, a
, b
);
2070 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2073 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2074 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2076 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2077 static const GVecGen3 g
[4] = {
2078 { .fniv
= tcg_gen_usadd_vec
,
2079 .fno
= gen_helper_gvec_usadd8
,
2080 .opt_opc
= vecop_list
,
2082 { .fniv
= tcg_gen_usadd_vec
,
2083 .fno
= gen_helper_gvec_usadd16
,
2084 .opt_opc
= vecop_list
,
2086 { .fni4
= tcg_gen_usadd_i32
,
2087 .fniv
= tcg_gen_usadd_vec
,
2088 .fno
= gen_helper_gvec_usadd32
,
2089 .opt_opc
= vecop_list
,
2091 { .fni8
= tcg_gen_usadd_i64
,
2092 .fniv
= tcg_gen_usadd_vec
,
2093 .fno
= gen_helper_gvec_usadd64
,
2094 .opt_opc
= vecop_list
,
2097 tcg_debug_assert(vece
<= MO_64
);
2098 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2101 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2103 TCGv_i32 min
= tcg_constant_i32(0);
2104 tcg_gen_sub_i32(d
, a
, b
);
2105 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2108 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2110 TCGv_i64 min
= tcg_constant_i64(0);
2111 tcg_gen_sub_i64(d
, a
, b
);
2112 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2115 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2116 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2118 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2119 static const GVecGen3 g
[4] = {
2120 { .fniv
= tcg_gen_ussub_vec
,
2121 .fno
= gen_helper_gvec_ussub8
,
2122 .opt_opc
= vecop_list
,
2124 { .fniv
= tcg_gen_ussub_vec
,
2125 .fno
= gen_helper_gvec_ussub16
,
2126 .opt_opc
= vecop_list
,
2128 { .fni4
= tcg_gen_ussub_i32
,
2129 .fniv
= tcg_gen_ussub_vec
,
2130 .fno
= gen_helper_gvec_ussub32
,
2131 .opt_opc
= vecop_list
,
2133 { .fni8
= tcg_gen_ussub_i64
,
2134 .fniv
= tcg_gen_ussub_vec
,
2135 .fno
= gen_helper_gvec_ussub64
,
2136 .opt_opc
= vecop_list
,
2139 tcg_debug_assert(vece
<= MO_64
);
2140 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2143 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2144 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2146 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2147 static const GVecGen3 g
[4] = {
2148 { .fniv
= tcg_gen_smin_vec
,
2149 .fno
= gen_helper_gvec_smin8
,
2150 .opt_opc
= vecop_list
,
2152 { .fniv
= tcg_gen_smin_vec
,
2153 .fno
= gen_helper_gvec_smin16
,
2154 .opt_opc
= vecop_list
,
2156 { .fni4
= tcg_gen_smin_i32
,
2157 .fniv
= tcg_gen_smin_vec
,
2158 .fno
= gen_helper_gvec_smin32
,
2159 .opt_opc
= vecop_list
,
2161 { .fni8
= tcg_gen_smin_i64
,
2162 .fniv
= tcg_gen_smin_vec
,
2163 .fno
= gen_helper_gvec_smin64
,
2164 .opt_opc
= vecop_list
,
2167 tcg_debug_assert(vece
<= MO_64
);
2168 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2171 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2172 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2174 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2175 static const GVecGen3 g
[4] = {
2176 { .fniv
= tcg_gen_umin_vec
,
2177 .fno
= gen_helper_gvec_umin8
,
2178 .opt_opc
= vecop_list
,
2180 { .fniv
= tcg_gen_umin_vec
,
2181 .fno
= gen_helper_gvec_umin16
,
2182 .opt_opc
= vecop_list
,
2184 { .fni4
= tcg_gen_umin_i32
,
2185 .fniv
= tcg_gen_umin_vec
,
2186 .fno
= gen_helper_gvec_umin32
,
2187 .opt_opc
= vecop_list
,
2189 { .fni8
= tcg_gen_umin_i64
,
2190 .fniv
= tcg_gen_umin_vec
,
2191 .fno
= gen_helper_gvec_umin64
,
2192 .opt_opc
= vecop_list
,
2195 tcg_debug_assert(vece
<= MO_64
);
2196 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2199 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2200 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2202 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2203 static const GVecGen3 g
[4] = {
2204 { .fniv
= tcg_gen_smax_vec
,
2205 .fno
= gen_helper_gvec_smax8
,
2206 .opt_opc
= vecop_list
,
2208 { .fniv
= tcg_gen_smax_vec
,
2209 .fno
= gen_helper_gvec_smax16
,
2210 .opt_opc
= vecop_list
,
2212 { .fni4
= tcg_gen_smax_i32
,
2213 .fniv
= tcg_gen_smax_vec
,
2214 .fno
= gen_helper_gvec_smax32
,
2215 .opt_opc
= vecop_list
,
2217 { .fni8
= tcg_gen_smax_i64
,
2218 .fniv
= tcg_gen_smax_vec
,
2219 .fno
= gen_helper_gvec_smax64
,
2220 .opt_opc
= vecop_list
,
2223 tcg_debug_assert(vece
<= MO_64
);
2224 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2227 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2228 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2230 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2231 static const GVecGen3 g
[4] = {
2232 { .fniv
= tcg_gen_umax_vec
,
2233 .fno
= gen_helper_gvec_umax8
,
2234 .opt_opc
= vecop_list
,
2236 { .fniv
= tcg_gen_umax_vec
,
2237 .fno
= gen_helper_gvec_umax16
,
2238 .opt_opc
= vecop_list
,
2240 { .fni4
= tcg_gen_umax_i32
,
2241 .fniv
= tcg_gen_umax_vec
,
2242 .fno
= gen_helper_gvec_umax32
,
2243 .opt_opc
= vecop_list
,
2245 { .fni8
= tcg_gen_umax_i64
,
2246 .fniv
= tcg_gen_umax_vec
,
2247 .fno
= gen_helper_gvec_umax64
,
2248 .opt_opc
= vecop_list
,
2251 tcg_debug_assert(vece
<= MO_64
);
2252 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2255 /* Perform a vector negation using normal negation and a mask.
2256 Compare gen_subv_mask above. */
2257 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2259 TCGv_i64 t2
= tcg_temp_new_i64();
2260 TCGv_i64 t3
= tcg_temp_new_i64();
2262 tcg_gen_andc_i64(t3
, m
, b
);
2263 tcg_gen_andc_i64(t2
, b
, m
);
2264 tcg_gen_sub_i64(d
, m
, t2
);
2265 tcg_gen_xor_i64(d
, d
, t3
);
2267 tcg_temp_free_i64(t2
);
2268 tcg_temp_free_i64(t3
);
2271 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2273 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2274 gen_negv_mask(d
, b
, m
);
2277 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2279 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2280 gen_negv_mask(d
, b
, m
);
2283 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2285 TCGv_i64 t1
= tcg_temp_new_i64();
2286 TCGv_i64 t2
= tcg_temp_new_i64();
2288 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2289 tcg_gen_neg_i64(t2
, b
);
2290 tcg_gen_neg_i64(t1
, t1
);
2291 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2293 tcg_temp_free_i64(t1
);
2294 tcg_temp_free_i64(t2
);
2297 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2298 uint32_t oprsz
, uint32_t maxsz
)
2300 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2301 static const GVecGen2 g
[4] = {
2302 { .fni8
= tcg_gen_vec_neg8_i64
,
2303 .fniv
= tcg_gen_neg_vec
,
2304 .fno
= gen_helper_gvec_neg8
,
2305 .opt_opc
= vecop_list
,
2307 { .fni8
= tcg_gen_vec_neg16_i64
,
2308 .fniv
= tcg_gen_neg_vec
,
2309 .fno
= gen_helper_gvec_neg16
,
2310 .opt_opc
= vecop_list
,
2312 { .fni4
= tcg_gen_neg_i32
,
2313 .fniv
= tcg_gen_neg_vec
,
2314 .fno
= gen_helper_gvec_neg32
,
2315 .opt_opc
= vecop_list
,
2317 { .fni8
= tcg_gen_neg_i64
,
2318 .fniv
= tcg_gen_neg_vec
,
2319 .fno
= gen_helper_gvec_neg64
,
2320 .opt_opc
= vecop_list
,
2321 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2325 tcg_debug_assert(vece
<= MO_64
);
2326 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2329 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2331 TCGv_i64 t
= tcg_temp_new_i64();
2332 int nbit
= 8 << vece
;
2334 /* Create -1 for each negative element. */
2335 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2336 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2337 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2340 * Invert (via xor -1) and add one.
2341 * Because of the ordering the msb is cleared,
2342 * so we never have carry into the next element.
2344 tcg_gen_xor_i64(d
, b
, t
);
2345 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2346 tcg_gen_add_i64(d
, d
, t
);
2348 tcg_temp_free_i64(t
);
2351 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2353 gen_absv_mask(d
, b
, MO_8
);
2356 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2358 gen_absv_mask(d
, b
, MO_16
);
2361 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2362 uint32_t oprsz
, uint32_t maxsz
)
2364 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2365 static const GVecGen2 g
[4] = {
2366 { .fni8
= tcg_gen_vec_abs8_i64
,
2367 .fniv
= tcg_gen_abs_vec
,
2368 .fno
= gen_helper_gvec_abs8
,
2369 .opt_opc
= vecop_list
,
2371 { .fni8
= tcg_gen_vec_abs16_i64
,
2372 .fniv
= tcg_gen_abs_vec
,
2373 .fno
= gen_helper_gvec_abs16
,
2374 .opt_opc
= vecop_list
,
2376 { .fni4
= tcg_gen_abs_i32
,
2377 .fniv
= tcg_gen_abs_vec
,
2378 .fno
= gen_helper_gvec_abs32
,
2379 .opt_opc
= vecop_list
,
2381 { .fni8
= tcg_gen_abs_i64
,
2382 .fniv
= tcg_gen_abs_vec
,
2383 .fno
= gen_helper_gvec_abs64
,
2384 .opt_opc
= vecop_list
,
2385 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2389 tcg_debug_assert(vece
<= MO_64
);
2390 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2393 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2394 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2396 static const GVecGen3 g
= {
2397 .fni8
= tcg_gen_and_i64
,
2398 .fniv
= tcg_gen_and_vec
,
2399 .fno
= gen_helper_gvec_and
,
2400 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2404 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2406 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2410 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2411 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2413 static const GVecGen3 g
= {
2414 .fni8
= tcg_gen_or_i64
,
2415 .fniv
= tcg_gen_or_vec
,
2416 .fno
= gen_helper_gvec_or
,
2417 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2421 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2423 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2427 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2428 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2430 static const GVecGen3 g
= {
2431 .fni8
= tcg_gen_xor_i64
,
2432 .fniv
= tcg_gen_xor_vec
,
2433 .fno
= gen_helper_gvec_xor
,
2434 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2438 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2440 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2444 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2445 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2447 static const GVecGen3 g
= {
2448 .fni8
= tcg_gen_andc_i64
,
2449 .fniv
= tcg_gen_andc_vec
,
2450 .fno
= gen_helper_gvec_andc
,
2451 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2455 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2457 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2461 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2462 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2464 static const GVecGen3 g
= {
2465 .fni8
= tcg_gen_orc_i64
,
2466 .fniv
= tcg_gen_orc_vec
,
2467 .fno
= gen_helper_gvec_orc
,
2468 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2472 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2474 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2478 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2479 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2481 static const GVecGen3 g
= {
2482 .fni8
= tcg_gen_nand_i64
,
2483 .fniv
= tcg_gen_nand_vec
,
2484 .fno
= gen_helper_gvec_nand
,
2485 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2489 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2491 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2495 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2496 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2498 static const GVecGen3 g
= {
2499 .fni8
= tcg_gen_nor_i64
,
2500 .fniv
= tcg_gen_nor_vec
,
2501 .fno
= gen_helper_gvec_nor
,
2502 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2506 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2508 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2512 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2513 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2515 static const GVecGen3 g
= {
2516 .fni8
= tcg_gen_eqv_i64
,
2517 .fniv
= tcg_gen_eqv_vec
,
2518 .fno
= gen_helper_gvec_eqv
,
2519 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2523 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2525 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2529 static const GVecGen2s gop_ands
= {
2530 .fni8
= tcg_gen_and_i64
,
2531 .fniv
= tcg_gen_and_vec
,
2532 .fno
= gen_helper_gvec_ands
,
2533 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2537 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2538 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2540 TCGv_i64 tmp
= tcg_temp_new_i64();
2541 gen_dup_i64(vece
, tmp
, c
);
2542 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2543 tcg_temp_free_i64(tmp
);
2546 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2547 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2549 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2550 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2553 static const GVecGen2s gop_xors
= {
2554 .fni8
= tcg_gen_xor_i64
,
2555 .fniv
= tcg_gen_xor_vec
,
2556 .fno
= gen_helper_gvec_xors
,
2557 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2561 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2562 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2564 TCGv_i64 tmp
= tcg_temp_new_i64();
2565 gen_dup_i64(vece
, tmp
, c
);
2566 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2567 tcg_temp_free_i64(tmp
);
2570 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2571 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2573 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2574 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2577 static const GVecGen2s gop_ors
= {
2578 .fni8
= tcg_gen_or_i64
,
2579 .fniv
= tcg_gen_or_vec
,
2580 .fno
= gen_helper_gvec_ors
,
2581 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2585 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2586 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2588 TCGv_i64 tmp
= tcg_temp_new_i64();
2589 gen_dup_i64(vece
, tmp
, c
);
2590 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2591 tcg_temp_free_i64(tmp
);
2594 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2595 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2597 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2598 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2601 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2603 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2604 tcg_gen_shli_i64(d
, a
, c
);
2605 tcg_gen_andi_i64(d
, d
, mask
);
2608 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2610 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2611 tcg_gen_shli_i64(d
, a
, c
);
2612 tcg_gen_andi_i64(d
, d
, mask
);
2615 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2616 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2618 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2619 static const GVecGen2i g
[4] = {
2620 { .fni8
= tcg_gen_vec_shl8i_i64
,
2621 .fniv
= tcg_gen_shli_vec
,
2622 .fno
= gen_helper_gvec_shl8i
,
2623 .opt_opc
= vecop_list
,
2625 { .fni8
= tcg_gen_vec_shl16i_i64
,
2626 .fniv
= tcg_gen_shli_vec
,
2627 .fno
= gen_helper_gvec_shl16i
,
2628 .opt_opc
= vecop_list
,
2630 { .fni4
= tcg_gen_shli_i32
,
2631 .fniv
= tcg_gen_shli_vec
,
2632 .fno
= gen_helper_gvec_shl32i
,
2633 .opt_opc
= vecop_list
,
2635 { .fni8
= tcg_gen_shli_i64
,
2636 .fniv
= tcg_gen_shli_vec
,
2637 .fno
= gen_helper_gvec_shl64i
,
2638 .opt_opc
= vecop_list
,
2639 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2643 tcg_debug_assert(vece
<= MO_64
);
2644 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2646 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2648 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2652 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2654 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2655 tcg_gen_shri_i64(d
, a
, c
);
2656 tcg_gen_andi_i64(d
, d
, mask
);
2659 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2661 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2662 tcg_gen_shri_i64(d
, a
, c
);
2663 tcg_gen_andi_i64(d
, d
, mask
);
2666 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2667 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2669 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2670 static const GVecGen2i g
[4] = {
2671 { .fni8
= tcg_gen_vec_shr8i_i64
,
2672 .fniv
= tcg_gen_shri_vec
,
2673 .fno
= gen_helper_gvec_shr8i
,
2674 .opt_opc
= vecop_list
,
2676 { .fni8
= tcg_gen_vec_shr16i_i64
,
2677 .fniv
= tcg_gen_shri_vec
,
2678 .fno
= gen_helper_gvec_shr16i
,
2679 .opt_opc
= vecop_list
,
2681 { .fni4
= tcg_gen_shri_i32
,
2682 .fniv
= tcg_gen_shri_vec
,
2683 .fno
= gen_helper_gvec_shr32i
,
2684 .opt_opc
= vecop_list
,
2686 { .fni8
= tcg_gen_shri_i64
,
2687 .fniv
= tcg_gen_shri_vec
,
2688 .fno
= gen_helper_gvec_shr64i
,
2689 .opt_opc
= vecop_list
,
2690 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2694 tcg_debug_assert(vece
<= MO_64
);
2695 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2697 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2699 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2703 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2705 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2706 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2707 TCGv_i64 s
= tcg_temp_new_i64();
2709 tcg_gen_shri_i64(d
, a
, c
);
2710 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2711 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2712 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2713 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2714 tcg_temp_free_i64(s
);
2717 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2719 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2720 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2721 TCGv_i64 s
= tcg_temp_new_i64();
2723 tcg_gen_shri_i64(d
, a
, c
);
2724 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2725 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2726 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2727 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2728 tcg_temp_free_i64(s
);
2731 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2732 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2734 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
2735 static const GVecGen2i g
[4] = {
2736 { .fni8
= tcg_gen_vec_sar8i_i64
,
2737 .fniv
= tcg_gen_sari_vec
,
2738 .fno
= gen_helper_gvec_sar8i
,
2739 .opt_opc
= vecop_list
,
2741 { .fni8
= tcg_gen_vec_sar16i_i64
,
2742 .fniv
= tcg_gen_sari_vec
,
2743 .fno
= gen_helper_gvec_sar16i
,
2744 .opt_opc
= vecop_list
,
2746 { .fni4
= tcg_gen_sari_i32
,
2747 .fniv
= tcg_gen_sari_vec
,
2748 .fno
= gen_helper_gvec_sar32i
,
2749 .opt_opc
= vecop_list
,
2751 { .fni8
= tcg_gen_sari_i64
,
2752 .fniv
= tcg_gen_sari_vec
,
2753 .fno
= gen_helper_gvec_sar64i
,
2754 .opt_opc
= vecop_list
,
2755 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2759 tcg_debug_assert(vece
<= MO_64
);
2760 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2762 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2764 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2768 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2770 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2772 tcg_gen_shli_i64(d
, a
, c
);
2773 tcg_gen_shri_i64(a
, a
, 8 - c
);
2774 tcg_gen_andi_i64(d
, d
, mask
);
2775 tcg_gen_andi_i64(a
, a
, ~mask
);
2776 tcg_gen_or_i64(d
, d
, a
);
2779 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2781 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2783 tcg_gen_shli_i64(d
, a
, c
);
2784 tcg_gen_shri_i64(a
, a
, 16 - c
);
2785 tcg_gen_andi_i64(d
, d
, mask
);
2786 tcg_gen_andi_i64(a
, a
, ~mask
);
2787 tcg_gen_or_i64(d
, d
, a
);
2790 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2791 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2793 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
2794 static const GVecGen2i g
[4] = {
2795 { .fni8
= tcg_gen_vec_rotl8i_i64
,
2796 .fniv
= tcg_gen_rotli_vec
,
2797 .fno
= gen_helper_gvec_rotl8i
,
2798 .opt_opc
= vecop_list
,
2800 { .fni8
= tcg_gen_vec_rotl16i_i64
,
2801 .fniv
= tcg_gen_rotli_vec
,
2802 .fno
= gen_helper_gvec_rotl16i
,
2803 .opt_opc
= vecop_list
,
2805 { .fni4
= tcg_gen_rotli_i32
,
2806 .fniv
= tcg_gen_rotli_vec
,
2807 .fno
= gen_helper_gvec_rotl32i
,
2808 .opt_opc
= vecop_list
,
2810 { .fni8
= tcg_gen_rotli_i64
,
2811 .fniv
= tcg_gen_rotli_vec
,
2812 .fno
= gen_helper_gvec_rotl64i
,
2813 .opt_opc
= vecop_list
,
2814 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2818 tcg_debug_assert(vece
<= MO_64
);
2819 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2821 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2823 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2827 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2828 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2830 tcg_debug_assert(vece
<= MO_64
);
2831 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2832 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
2837 * Specialized generation vector shifts by a non-constant scalar.
2841 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
2842 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
2843 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
2844 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
2845 gen_helper_gvec_2
*fno
[4];
2846 TCGOpcode s_list
[2];
2847 TCGOpcode v_list
[2];
2850 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2851 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
2853 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
2855 TCGv_vec t0
= tcg_temp_new_vec(type
);
2858 for (i
= 0; i
< oprsz
; i
+= tysz
) {
2859 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
2860 fni(vece
, t0
, t0
, shift
);
2861 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
2863 tcg_temp_free_vec(t0
);
2867 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
2868 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
2873 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
2874 check_overlap_2(dofs
, aofs
, maxsz
);
2876 /* If the backend has a scalar expansion, great. */
2877 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
2879 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2882 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2883 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
2884 TCG_TYPE_V256
, shift
, g
->fniv_s
);
2885 if (some
== oprsz
) {
2894 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
2895 TCG_TYPE_V128
, shift
, g
->fniv_s
);
2898 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
2899 TCG_TYPE_V64
, shift
, g
->fniv_s
);
2902 g_assert_not_reached();
2904 tcg_swap_vecop_list(hold_list
);
2908 /* If the backend supports variable vector shifts, also cool. */
2909 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
2911 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2912 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
2914 if (vece
== MO_64
) {
2915 TCGv_i64 sh64
= tcg_temp_new_i64();
2916 tcg_gen_extu_i32_i64(sh64
, shift
);
2917 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
2918 tcg_temp_free_i64(sh64
);
2920 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
2925 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2926 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
2927 v_shift
, false, g
->fniv_v
);
2928 if (some
== oprsz
) {
2937 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
2938 v_shift
, false, g
->fniv_v
);
2941 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
2942 v_shift
, false, g
->fniv_v
);
2945 g_assert_not_reached();
2947 tcg_temp_free_vec(v_shift
);
2948 tcg_swap_vecop_list(hold_list
);
2952 /* Otherwise fall back to integral... */
2953 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
2954 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
2955 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
2956 TCGv_i64 sh64
= tcg_temp_new_i64();
2957 tcg_gen_extu_i32_i64(sh64
, shift
);
2958 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
2959 tcg_temp_free_i64(sh64
);
2961 TCGv_ptr a0
= tcg_temp_new_ptr();
2962 TCGv_ptr a1
= tcg_temp_new_ptr();
2963 TCGv_i32 desc
= tcg_temp_new_i32();
2965 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
2966 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
2967 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
2968 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
2970 g
->fno
[vece
](a0
, a1
, desc
);
2972 tcg_temp_free_ptr(a0
);
2973 tcg_temp_free_ptr(a1
);
2974 tcg_temp_free_i32(desc
);
2979 if (oprsz
< maxsz
) {
2980 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
2984 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2985 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2987 static const GVecGen2sh g
= {
2988 .fni4
= tcg_gen_shl_i32
,
2989 .fni8
= tcg_gen_shl_i64
,
2990 .fniv_s
= tcg_gen_shls_vec
,
2991 .fniv_v
= tcg_gen_shlv_vec
,
2993 gen_helper_gvec_shl8i
,
2994 gen_helper_gvec_shl16i
,
2995 gen_helper_gvec_shl32i
,
2996 gen_helper_gvec_shl64i
,
2998 .s_list
= { INDEX_op_shls_vec
, 0 },
2999 .v_list
= { INDEX_op_shlv_vec
, 0 },
3002 tcg_debug_assert(vece
<= MO_64
);
3003 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3006 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3007 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3009 static const GVecGen2sh g
= {
3010 .fni4
= tcg_gen_shr_i32
,
3011 .fni8
= tcg_gen_shr_i64
,
3012 .fniv_s
= tcg_gen_shrs_vec
,
3013 .fniv_v
= tcg_gen_shrv_vec
,
3015 gen_helper_gvec_shr8i
,
3016 gen_helper_gvec_shr16i
,
3017 gen_helper_gvec_shr32i
,
3018 gen_helper_gvec_shr64i
,
3020 .s_list
= { INDEX_op_shrs_vec
, 0 },
3021 .v_list
= { INDEX_op_shrv_vec
, 0 },
3024 tcg_debug_assert(vece
<= MO_64
);
3025 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3028 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3029 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3031 static const GVecGen2sh g
= {
3032 .fni4
= tcg_gen_sar_i32
,
3033 .fni8
= tcg_gen_sar_i64
,
3034 .fniv_s
= tcg_gen_sars_vec
,
3035 .fniv_v
= tcg_gen_sarv_vec
,
3037 gen_helper_gvec_sar8i
,
3038 gen_helper_gvec_sar16i
,
3039 gen_helper_gvec_sar32i
,
3040 gen_helper_gvec_sar64i
,
3042 .s_list
= { INDEX_op_sars_vec
, 0 },
3043 .v_list
= { INDEX_op_sarv_vec
, 0 },
3046 tcg_debug_assert(vece
<= MO_64
);
3047 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3050 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3051 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3053 static const GVecGen2sh g
= {
3054 .fni4
= tcg_gen_rotl_i32
,
3055 .fni8
= tcg_gen_rotl_i64
,
3056 .fniv_s
= tcg_gen_rotls_vec
,
3057 .fniv_v
= tcg_gen_rotlv_vec
,
3059 gen_helper_gvec_rotl8i
,
3060 gen_helper_gvec_rotl16i
,
3061 gen_helper_gvec_rotl32i
,
3062 gen_helper_gvec_rotl64i
,
3064 .s_list
= { INDEX_op_rotls_vec
, 0 },
3065 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3068 tcg_debug_assert(vece
<= MO_64
);
3069 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3073 * Expand D = A << (B % element bits)
3075 * Unlike scalar shifts, where it is easy for the target front end
3076 * to include the modulo as part of the expansion. If the target
3077 * naturally includes the modulo as part of the operation, great!
3078 * If the target has some other behaviour from out-of-range shifts,
3079 * then it could not use this function anyway, and would need to
3080 * do it's own expansion with custom functions.
3082 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3083 TCGv_vec a
, TCGv_vec b
)
3085 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3086 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3088 tcg_gen_and_vec(vece
, t
, b
, m
);
3089 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3090 tcg_temp_free_vec(t
);
3093 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3095 TCGv_i32 t
= tcg_temp_new_i32();
3097 tcg_gen_andi_i32(t
, b
, 31);
3098 tcg_gen_shl_i32(d
, a
, t
);
3099 tcg_temp_free_i32(t
);
3102 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3104 TCGv_i64 t
= tcg_temp_new_i64();
3106 tcg_gen_andi_i64(t
, b
, 63);
3107 tcg_gen_shl_i64(d
, a
, t
);
3108 tcg_temp_free_i64(t
);
3111 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3112 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3114 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3115 static const GVecGen3 g
[4] = {
3116 { .fniv
= tcg_gen_shlv_mod_vec
,
3117 .fno
= gen_helper_gvec_shl8v
,
3118 .opt_opc
= vecop_list
,
3120 { .fniv
= tcg_gen_shlv_mod_vec
,
3121 .fno
= gen_helper_gvec_shl16v
,
3122 .opt_opc
= vecop_list
,
3124 { .fni4
= tcg_gen_shl_mod_i32
,
3125 .fniv
= tcg_gen_shlv_mod_vec
,
3126 .fno
= gen_helper_gvec_shl32v
,
3127 .opt_opc
= vecop_list
,
3129 { .fni8
= tcg_gen_shl_mod_i64
,
3130 .fniv
= tcg_gen_shlv_mod_vec
,
3131 .fno
= gen_helper_gvec_shl64v
,
3132 .opt_opc
= vecop_list
,
3133 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3137 tcg_debug_assert(vece
<= MO_64
);
3138 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3142 * Similarly for logical right shifts.
3145 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3146 TCGv_vec a
, TCGv_vec b
)
3148 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3149 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3151 tcg_gen_and_vec(vece
, t
, b
, m
);
3152 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3153 tcg_temp_free_vec(t
);
3156 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3158 TCGv_i32 t
= tcg_temp_new_i32();
3160 tcg_gen_andi_i32(t
, b
, 31);
3161 tcg_gen_shr_i32(d
, a
, t
);
3162 tcg_temp_free_i32(t
);
3165 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3167 TCGv_i64 t
= tcg_temp_new_i64();
3169 tcg_gen_andi_i64(t
, b
, 63);
3170 tcg_gen_shr_i64(d
, a
, t
);
3171 tcg_temp_free_i64(t
);
3174 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3175 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3177 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3178 static const GVecGen3 g
[4] = {
3179 { .fniv
= tcg_gen_shrv_mod_vec
,
3180 .fno
= gen_helper_gvec_shr8v
,
3181 .opt_opc
= vecop_list
,
3183 { .fniv
= tcg_gen_shrv_mod_vec
,
3184 .fno
= gen_helper_gvec_shr16v
,
3185 .opt_opc
= vecop_list
,
3187 { .fni4
= tcg_gen_shr_mod_i32
,
3188 .fniv
= tcg_gen_shrv_mod_vec
,
3189 .fno
= gen_helper_gvec_shr32v
,
3190 .opt_opc
= vecop_list
,
3192 { .fni8
= tcg_gen_shr_mod_i64
,
3193 .fniv
= tcg_gen_shrv_mod_vec
,
3194 .fno
= gen_helper_gvec_shr64v
,
3195 .opt_opc
= vecop_list
,
3196 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3200 tcg_debug_assert(vece
<= MO_64
);
3201 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3205 * Similarly for arithmetic right shifts.
3208 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3209 TCGv_vec a
, TCGv_vec b
)
3211 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3212 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3214 tcg_gen_and_vec(vece
, t
, b
, m
);
3215 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3216 tcg_temp_free_vec(t
);
3219 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3221 TCGv_i32 t
= tcg_temp_new_i32();
3223 tcg_gen_andi_i32(t
, b
, 31);
3224 tcg_gen_sar_i32(d
, a
, t
);
3225 tcg_temp_free_i32(t
);
3228 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3230 TCGv_i64 t
= tcg_temp_new_i64();
3232 tcg_gen_andi_i64(t
, b
, 63);
3233 tcg_gen_sar_i64(d
, a
, t
);
3234 tcg_temp_free_i64(t
);
3237 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3238 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3240 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3241 static const GVecGen3 g
[4] = {
3242 { .fniv
= tcg_gen_sarv_mod_vec
,
3243 .fno
= gen_helper_gvec_sar8v
,
3244 .opt_opc
= vecop_list
,
3246 { .fniv
= tcg_gen_sarv_mod_vec
,
3247 .fno
= gen_helper_gvec_sar16v
,
3248 .opt_opc
= vecop_list
,
3250 { .fni4
= tcg_gen_sar_mod_i32
,
3251 .fniv
= tcg_gen_sarv_mod_vec
,
3252 .fno
= gen_helper_gvec_sar32v
,
3253 .opt_opc
= vecop_list
,
3255 { .fni8
= tcg_gen_sar_mod_i64
,
3256 .fniv
= tcg_gen_sarv_mod_vec
,
3257 .fno
= gen_helper_gvec_sar64v
,
3258 .opt_opc
= vecop_list
,
3259 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3263 tcg_debug_assert(vece
<= MO_64
);
3264 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3268 * Similarly for rotates.
3271 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3272 TCGv_vec a
, TCGv_vec b
)
3274 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3275 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3277 tcg_gen_and_vec(vece
, t
, b
, m
);
3278 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3279 tcg_temp_free_vec(t
);
3282 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3284 TCGv_i32 t
= tcg_temp_new_i32();
3286 tcg_gen_andi_i32(t
, b
, 31);
3287 tcg_gen_rotl_i32(d
, a
, t
);
3288 tcg_temp_free_i32(t
);
3291 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3293 TCGv_i64 t
= tcg_temp_new_i64();
3295 tcg_gen_andi_i64(t
, b
, 63);
3296 tcg_gen_rotl_i64(d
, a
, t
);
3297 tcg_temp_free_i64(t
);
3300 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3301 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3303 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3304 static const GVecGen3 g
[4] = {
3305 { .fniv
= tcg_gen_rotlv_mod_vec
,
3306 .fno
= gen_helper_gvec_rotl8v
,
3307 .opt_opc
= vecop_list
,
3309 { .fniv
= tcg_gen_rotlv_mod_vec
,
3310 .fno
= gen_helper_gvec_rotl16v
,
3311 .opt_opc
= vecop_list
,
3313 { .fni4
= tcg_gen_rotl_mod_i32
,
3314 .fniv
= tcg_gen_rotlv_mod_vec
,
3315 .fno
= gen_helper_gvec_rotl32v
,
3316 .opt_opc
= vecop_list
,
3318 { .fni8
= tcg_gen_rotl_mod_i64
,
3319 .fniv
= tcg_gen_rotlv_mod_vec
,
3320 .fno
= gen_helper_gvec_rotl64v
,
3321 .opt_opc
= vecop_list
,
3322 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3326 tcg_debug_assert(vece
<= MO_64
);
3327 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3330 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3331 TCGv_vec a
, TCGv_vec b
)
3333 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3334 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3336 tcg_gen_and_vec(vece
, t
, b
, m
);
3337 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3338 tcg_temp_free_vec(t
);
3341 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3343 TCGv_i32 t
= tcg_temp_new_i32();
3345 tcg_gen_andi_i32(t
, b
, 31);
3346 tcg_gen_rotr_i32(d
, a
, t
);
3347 tcg_temp_free_i32(t
);
3350 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3352 TCGv_i64 t
= tcg_temp_new_i64();
3354 tcg_gen_andi_i64(t
, b
, 63);
3355 tcg_gen_rotr_i64(d
, a
, t
);
3356 tcg_temp_free_i64(t
);
3359 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3360 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3362 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3363 static const GVecGen3 g
[4] = {
3364 { .fniv
= tcg_gen_rotrv_mod_vec
,
3365 .fno
= gen_helper_gvec_rotr8v
,
3366 .opt_opc
= vecop_list
,
3368 { .fniv
= tcg_gen_rotrv_mod_vec
,
3369 .fno
= gen_helper_gvec_rotr16v
,
3370 .opt_opc
= vecop_list
,
3372 { .fni4
= tcg_gen_rotr_mod_i32
,
3373 .fniv
= tcg_gen_rotrv_mod_vec
,
3374 .fno
= gen_helper_gvec_rotr32v
,
3375 .opt_opc
= vecop_list
,
3377 { .fni8
= tcg_gen_rotr_mod_i64
,
3378 .fniv
= tcg_gen_rotrv_mod_vec
,
3379 .fno
= gen_helper_gvec_rotr64v
,
3380 .opt_opc
= vecop_list
,
3381 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3385 tcg_debug_assert(vece
<= MO_64
);
3386 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3389 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3390 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3391 uint32_t oprsz
, TCGCond cond
)
3393 TCGv_i32 t0
= tcg_temp_new_i32();
3394 TCGv_i32 t1
= tcg_temp_new_i32();
3397 for (i
= 0; i
< oprsz
; i
+= 4) {
3398 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3399 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3400 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3401 tcg_gen_neg_i32(t0
, t0
);
3402 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3404 tcg_temp_free_i32(t1
);
3405 tcg_temp_free_i32(t0
);
3408 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3409 uint32_t oprsz
, TCGCond cond
)
3411 TCGv_i64 t0
= tcg_temp_new_i64();
3412 TCGv_i64 t1
= tcg_temp_new_i64();
3415 for (i
= 0; i
< oprsz
; i
+= 8) {
3416 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3417 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3418 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3419 tcg_gen_neg_i64(t0
, t0
);
3420 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3422 tcg_temp_free_i64(t1
);
3423 tcg_temp_free_i64(t0
);
3426 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3427 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3428 TCGType type
, TCGCond cond
)
3430 TCGv_vec t0
= tcg_temp_new_vec(type
);
3431 TCGv_vec t1
= tcg_temp_new_vec(type
);
3434 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3435 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3436 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3437 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3438 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3440 tcg_temp_free_vec(t1
);
3441 tcg_temp_free_vec(t0
);
3444 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3445 uint32_t aofs
, uint32_t bofs
,
3446 uint32_t oprsz
, uint32_t maxsz
)
3448 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3449 static gen_helper_gvec_3
* const eq_fn
[4] = {
3450 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3451 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3453 static gen_helper_gvec_3
* const ne_fn
[4] = {
3454 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3455 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3457 static gen_helper_gvec_3
* const lt_fn
[4] = {
3458 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3459 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3461 static gen_helper_gvec_3
* const le_fn
[4] = {
3462 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3463 gen_helper_gvec_le32
, gen_helper_gvec_le64
3465 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3466 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3467 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3469 static gen_helper_gvec_3
* const leu_fn
[4] = {
3470 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3471 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3473 static gen_helper_gvec_3
* const * const fns
[16] = {
3474 [TCG_COND_EQ
] = eq_fn
,
3475 [TCG_COND_NE
] = ne_fn
,
3476 [TCG_COND_LT
] = lt_fn
,
3477 [TCG_COND_LE
] = le_fn
,
3478 [TCG_COND_LTU
] = ltu_fn
,
3479 [TCG_COND_LEU
] = leu_fn
,
3482 const TCGOpcode
*hold_list
;
3486 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3487 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3489 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3490 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3491 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3496 * Implement inline with a vector type, if possible.
3497 * Prefer integer when 64-bit host and 64-bit comparison.
3499 hold_list
= tcg_swap_vecop_list(cmp_list
);
3500 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3501 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3504 /* Recall that ARM SVE allows vector sizes that are not a
3505 * power of 2, but always a multiple of 16. The intent is
3506 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3508 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3509 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3510 if (some
== oprsz
) {
3520 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3523 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3527 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3528 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3529 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3530 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3532 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3536 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3537 cond
= tcg_swap_cond(cond
);
3541 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3547 g_assert_not_reached();
3549 tcg_swap_vecop_list(hold_list
);
3551 if (oprsz
< maxsz
) {
3552 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3556 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3558 TCGv_i64 t
= tcg_temp_new_i64();
3560 tcg_gen_and_i64(t
, b
, a
);
3561 tcg_gen_andc_i64(d
, c
, a
);
3562 tcg_gen_or_i64(d
, d
, t
);
3563 tcg_temp_free_i64(t
);
3566 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3567 uint32_t bofs
, uint32_t cofs
,
3568 uint32_t oprsz
, uint32_t maxsz
)
3570 static const GVecGen4 g
= {
3571 .fni8
= tcg_gen_bitsel_i64
,
3572 .fniv
= tcg_gen_bitsel_vec
,
3573 .fno
= gen_helper_gvec_bitsel
,
3576 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);