2 * QEMU ESP/NCR53C9x emulation
4 * Copyright (c) 2005-2006 Fabrice Bellard
5 * Copyright (c) 2012 Herve Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu/osdep.h"
27 #include "hw/sysbus.h"
28 #include "migration/vmstate.h"
30 #include "hw/scsi/esp.h"
33 #include "qemu/module.h"
36 * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
37 * also produced as NCR89C100. See
38 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
42 * On Macintosh Quadra it is a NCR53C96.
45 static void esp_raise_irq(ESPState
*s
)
47 if (!(s
->rregs
[ESP_RSTAT
] & STAT_INT
)) {
48 s
->rregs
[ESP_RSTAT
] |= STAT_INT
;
49 qemu_irq_raise(s
->irq
);
50 trace_esp_raise_irq();
54 static void esp_lower_irq(ESPState
*s
)
56 if (s
->rregs
[ESP_RSTAT
] & STAT_INT
) {
57 s
->rregs
[ESP_RSTAT
] &= ~STAT_INT
;
58 qemu_irq_lower(s
->irq
);
59 trace_esp_lower_irq();
63 static void esp_raise_drq(ESPState
*s
)
65 qemu_irq_raise(s
->irq_data
);
68 static void esp_lower_drq(ESPState
*s
)
70 qemu_irq_lower(s
->irq_data
);
73 void esp_dma_enable(ESPState
*s
, int irq
, int level
)
77 trace_esp_dma_enable();
83 trace_esp_dma_disable();
88 void esp_request_cancelled(SCSIRequest
*req
)
90 ESPState
*s
= req
->hba_private
;
92 if (req
== s
->current_req
) {
93 scsi_req_unref(s
->current_req
);
94 s
->current_req
= NULL
;
95 s
->current_dev
= NULL
;
99 static void set_pdma(ESPState
*s
, enum pdma_origin_id origin
,
100 uint32_t index
, uint32_t len
)
102 s
->pdma_origin
= origin
;
103 s
->pdma_start
= index
;
108 static uint8_t *get_pdma_buf(ESPState
*s
)
110 switch (s
->pdma_origin
) {
123 static int get_cmd_cb(ESPState
*s
)
127 target
= s
->wregs
[ESP_WBUSID
] & BUSID_DID
;
133 if (s
->current_req
) {
134 /* Started a new command before the old one finished. Cancel it. */
135 scsi_req_cancel(s
->current_req
);
139 s
->current_dev
= scsi_device_find(&s
->bus
, 0, target
, 0);
140 if (!s
->current_dev
) {
142 s
->rregs
[ESP_RSTAT
] = 0;
143 s
->rregs
[ESP_RINTR
] = INTR_DC
;
144 s
->rregs
[ESP_RSEQ
] = SEQ_0
;
151 static uint32_t get_cmd(ESPState
*s
, uint8_t *buf
, uint8_t buflen
)
156 target
= s
->wregs
[ESP_WBUSID
] & BUSID_DID
;
158 dmalen
= s
->rregs
[ESP_TCLO
];
159 dmalen
|= s
->rregs
[ESP_TCMID
] << 8;
160 dmalen
|= s
->rregs
[ESP_TCHI
] << 16;
161 if (dmalen
> buflen
) {
164 if (s
->dma_memory_read
) {
165 s
->dma_memory_read(s
->dma_opaque
, buf
, dmalen
);
167 memcpy(s
->pdma_buf
, buf
, dmalen
);
168 set_pdma(s
, PDMA
, 0, dmalen
);
174 if (dmalen
> TI_BUFSZ
) {
177 memcpy(buf
, s
->ti_buf
, dmalen
);
178 buf
[0] = buf
[2] >> 5;
180 trace_esp_get_cmd(dmalen
, target
);
182 if (get_cmd_cb(s
) < 0) {
188 static void do_busid_cmd(ESPState
*s
, uint8_t *buf
, uint8_t busid
)
192 SCSIDevice
*current_lun
;
194 trace_esp_do_busid_cmd(busid
);
196 current_lun
= scsi_device_find(&s
->bus
, 0, s
->current_dev
->id
, lun
);
197 s
->current_req
= scsi_req_new(current_lun
, 0, lun
, buf
, s
);
198 datalen
= scsi_req_enqueue(s
->current_req
);
199 s
->ti_size
= datalen
;
201 s
->rregs
[ESP_RSTAT
] = STAT_TC
;
205 s
->rregs
[ESP_RSTAT
] |= STAT_DI
;
207 s
->rregs
[ESP_RSTAT
] |= STAT_DO
;
209 scsi_req_continue(s
->current_req
);
211 s
->rregs
[ESP_RINTR
] = INTR_BS
| INTR_FC
;
212 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
216 static void do_cmd(ESPState
*s
, uint8_t *buf
)
218 uint8_t busid
= buf
[0];
220 do_busid_cmd(s
, &buf
[1], busid
);
223 static void satn_pdma_cb(ESPState
*s
)
225 if (get_cmd_cb(s
) < 0) {
228 if (s
->pdma_cur
!= s
->pdma_start
) {
229 do_cmd(s
, get_pdma_buf(s
) + s
->pdma_start
);
233 static void handle_satn(ESPState
*s
)
238 if (s
->dma
&& !s
->dma_enabled
) {
239 s
->dma_cb
= handle_satn
;
242 s
->pdma_cb
= satn_pdma_cb
;
243 len
= get_cmd(s
, buf
, sizeof(buf
));
248 static void s_without_satn_pdma_cb(ESPState
*s
)
250 if (get_cmd_cb(s
) < 0) {
253 if (s
->pdma_cur
!= s
->pdma_start
) {
254 do_busid_cmd(s
, get_pdma_buf(s
) + s
->pdma_start
, 0);
258 static void handle_s_without_atn(ESPState
*s
)
263 if (s
->dma
&& !s
->dma_enabled
) {
264 s
->dma_cb
= handle_s_without_atn
;
267 s
->pdma_cb
= s_without_satn_pdma_cb
;
268 len
= get_cmd(s
, buf
, sizeof(buf
));
270 do_busid_cmd(s
, buf
, 0);
274 static void satn_stop_pdma_cb(ESPState
*s
)
276 if (get_cmd_cb(s
) < 0) {
279 s
->cmdlen
= s
->pdma_cur
- s
->pdma_start
;
281 trace_esp_handle_satn_stop(s
->cmdlen
);
283 s
->rregs
[ESP_RSTAT
] = STAT_TC
| STAT_CD
;
284 s
->rregs
[ESP_RINTR
] = INTR_BS
| INTR_FC
;
285 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
290 static void handle_satn_stop(ESPState
*s
)
292 if (s
->dma
&& !s
->dma_enabled
) {
293 s
->dma_cb
= handle_satn_stop
;
296 s
->pdma_cb
= satn_stop_pdma_cb
;
297 s
->cmdlen
= get_cmd(s
, s
->cmdbuf
, sizeof(s
->cmdbuf
));
299 trace_esp_handle_satn_stop(s
->cmdlen
);
301 s
->rregs
[ESP_RSTAT
] = STAT_TC
| STAT_CD
;
302 s
->rregs
[ESP_RINTR
] = INTR_BS
| INTR_FC
;
303 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
308 static void write_response_pdma_cb(ESPState
*s
)
310 s
->rregs
[ESP_RSTAT
] = STAT_TC
| STAT_ST
;
311 s
->rregs
[ESP_RINTR
] = INTR_BS
| INTR_FC
;
312 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
316 static void write_response(ESPState
*s
)
318 trace_esp_write_response(s
->status
);
319 s
->ti_buf
[0] = s
->status
;
322 if (s
->dma_memory_write
) {
323 s
->dma_memory_write(s
->dma_opaque
, s
->ti_buf
, 2);
324 s
->rregs
[ESP_RSTAT
] = STAT_TC
| STAT_ST
;
325 s
->rregs
[ESP_RINTR
] = INTR_BS
| INTR_FC
;
326 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
328 set_pdma(s
, TI
, 0, 2);
329 s
->pdma_cb
= write_response_pdma_cb
;
337 s
->rregs
[ESP_RFLAGS
] = 2;
342 static void esp_dma_done(ESPState
*s
)
344 s
->rregs
[ESP_RSTAT
] |= STAT_TC
;
345 s
->rregs
[ESP_RINTR
] = INTR_BS
;
346 s
->rregs
[ESP_RSEQ
] = 0;
347 s
->rregs
[ESP_RFLAGS
] = 0;
348 s
->rregs
[ESP_TCLO
] = 0;
349 s
->rregs
[ESP_TCMID
] = 0;
350 s
->rregs
[ESP_TCHI
] = 0;
354 static void do_dma_pdma_cb(ESPState
*s
)
356 int to_device
= (s
->ti_size
< 0);
357 int len
= s
->pdma_cur
- s
->pdma_start
;
362 do_cmd(s
, s
->cmdbuf
);
373 if (s
->async_len
== 0) {
374 scsi_req_continue(s
->current_req
);
376 * If there is still data to be read from the device then
377 * complete the DMA operation immediately. Otherwise defer
378 * until the scsi layer has completed.
380 if (to_device
|| s
->dma_left
!= 0 || s
->ti_size
== 0) {
385 /* Partially filled a scsi buffer. Complete immediately. */
389 static void esp_do_dma(ESPState
*s
)
397 * handle_ti_cmd() case: esp_do_dma() is called only from
398 * handle_ti_cmd() with do_cmd != NULL (see the assert())
400 trace_esp_do_dma(s
->cmdlen
, len
);
401 assert (s
->cmdlen
<= sizeof(s
->cmdbuf
) &&
402 len
<= sizeof(s
->cmdbuf
) - s
->cmdlen
);
403 if (s
->dma_memory_read
) {
404 s
->dma_memory_read(s
->dma_opaque
, &s
->cmdbuf
[s
->cmdlen
], len
);
406 set_pdma(s
, CMD
, s
->cmdlen
, len
);
407 s
->pdma_cb
= do_dma_pdma_cb
;
411 trace_esp_handle_ti_cmd(s
->cmdlen
);
415 do_cmd(s
, s
->cmdbuf
);
418 if (s
->async_len
== 0) {
419 /* Defer until data is available. */
422 if (len
> s
->async_len
) {
425 to_device
= (s
->ti_size
< 0);
427 if (s
->dma_memory_read
) {
428 s
->dma_memory_read(s
->dma_opaque
, s
->async_buf
, len
);
430 set_pdma(s
, ASYNC
, 0, len
);
431 s
->pdma_cb
= do_dma_pdma_cb
;
436 if (s
->dma_memory_write
) {
437 s
->dma_memory_write(s
->dma_opaque
, s
->async_buf
, len
);
439 set_pdma(s
, ASYNC
, 0, len
);
440 s
->pdma_cb
= do_dma_pdma_cb
;
452 if (s
->async_len
== 0) {
453 scsi_req_continue(s
->current_req
);
454 /* If there is still data to be read from the device then
455 complete the DMA operation immediately. Otherwise defer
456 until the scsi layer has completed. */
457 if (to_device
|| s
->dma_left
!= 0 || s
->ti_size
== 0) {
462 /* Partially filled a scsi buffer. Complete immediately. */
466 static void esp_report_command_complete(ESPState
*s
, uint32_t status
)
468 trace_esp_command_complete();
469 if (s
->ti_size
!= 0) {
470 trace_esp_command_complete_unexpected();
476 trace_esp_command_complete_fail();
479 s
->rregs
[ESP_RSTAT
] = STAT_ST
;
481 if (s
->current_req
) {
482 scsi_req_unref(s
->current_req
);
483 s
->current_req
= NULL
;
484 s
->current_dev
= NULL
;
488 void esp_command_complete(SCSIRequest
*req
, uint32_t status
,
491 ESPState
*s
= req
->hba_private
;
493 if (s
->rregs
[ESP_RSTAT
] & STAT_INT
) {
494 /* Defer handling command complete until the previous
495 * interrupt has been handled.
497 trace_esp_command_complete_deferred();
498 s
->deferred_status
= status
;
499 s
->deferred_complete
= true;
502 esp_report_command_complete(s
, status
);
505 void esp_transfer_data(SCSIRequest
*req
, uint32_t len
)
507 ESPState
*s
= req
->hba_private
;
510 trace_esp_transfer_data(s
->dma_left
, s
->ti_size
);
512 s
->async_buf
= scsi_req_get_buf(req
);
515 } else if (s
->dma_counter
!= 0 && s
->ti_size
<= 0) {
516 /* If this was the last part of a DMA transfer then the
517 completion interrupt is deferred to here. */
522 static void handle_ti(ESPState
*s
)
524 uint32_t dmalen
, minlen
;
526 if (s
->dma
&& !s
->dma_enabled
) {
527 s
->dma_cb
= handle_ti
;
531 dmalen
= s
->rregs
[ESP_TCLO
];
532 dmalen
|= s
->rregs
[ESP_TCMID
] << 8;
533 dmalen
|= s
->rregs
[ESP_TCHI
] << 16;
537 s
->dma_counter
= dmalen
;
540 minlen
= (dmalen
< ESP_CMDBUF_SZ
) ? dmalen
: ESP_CMDBUF_SZ
;
541 else if (s
->ti_size
< 0)
542 minlen
= (dmalen
< -s
->ti_size
) ? dmalen
: -s
->ti_size
;
544 minlen
= (dmalen
< s
->ti_size
) ? dmalen
: s
->ti_size
;
545 trace_esp_handle_ti(minlen
);
547 s
->dma_left
= minlen
;
548 s
->rregs
[ESP_RSTAT
] &= ~STAT_TC
;
550 } else if (s
->do_cmd
) {
551 trace_esp_handle_ti_cmd(s
->cmdlen
);
555 do_cmd(s
, s
->cmdbuf
);
559 void esp_hard_reset(ESPState
*s
)
561 memset(s
->rregs
, 0, ESP_REGS
);
562 memset(s
->wregs
, 0, ESP_REGS
);
571 s
->rregs
[ESP_CFG1
] = 7;
574 static void esp_soft_reset(ESPState
*s
)
576 qemu_irq_lower(s
->irq
);
577 qemu_irq_lower(s
->irq_data
);
581 static void parent_esp_reset(ESPState
*s
, int irq
, int level
)
588 uint64_t esp_reg_read(ESPState
*s
, uint32_t saddr
)
592 trace_esp_mem_readb(saddr
, s
->rregs
[saddr
]);
595 if ((s
->rregs
[ESP_RSTAT
] & STAT_PIO_MASK
) == 0) {
597 qemu_log_mask(LOG_UNIMP
, "esp: PIO data read not implemented\n");
598 s
->rregs
[ESP_FIFO
] = 0;
599 } else if (s
->ti_rptr
< s
->ti_wptr
) {
601 s
->rregs
[ESP_FIFO
] = s
->ti_buf
[s
->ti_rptr
++];
603 if (s
->ti_rptr
== s
->ti_wptr
) {
609 /* Clear sequence step, interrupt register and all status bits
611 old_val
= s
->rregs
[ESP_RINTR
];
612 s
->rregs
[ESP_RINTR
] = 0;
613 s
->rregs
[ESP_RSTAT
] &= ~STAT_TC
;
614 s
->rregs
[ESP_RSEQ
] = SEQ_CD
;
616 if (s
->deferred_complete
) {
617 esp_report_command_complete(s
, s
->deferred_status
);
618 s
->deferred_complete
= false;
622 /* Return the unique id if the value has never been written */
623 if (!s
->tchi_written
) {
629 return s
->rregs
[saddr
];
632 void esp_reg_write(ESPState
*s
, uint32_t saddr
, uint64_t val
)
634 trace_esp_mem_writeb(saddr
, s
->wregs
[saddr
], val
);
637 s
->tchi_written
= true;
641 s
->rregs
[ESP_RSTAT
] &= ~STAT_TC
;
645 if (s
->cmdlen
< ESP_CMDBUF_SZ
) {
646 s
->cmdbuf
[s
->cmdlen
++] = val
& 0xff;
648 trace_esp_error_fifo_overrun();
650 } else if (s
->ti_wptr
== TI_BUFSZ
- 1) {
651 trace_esp_error_fifo_overrun();
654 s
->ti_buf
[s
->ti_wptr
++] = val
& 0xff;
658 s
->rregs
[saddr
] = val
;
661 /* Reload DMA counter. */
662 s
->rregs
[ESP_TCLO
] = s
->wregs
[ESP_TCLO
];
663 s
->rregs
[ESP_TCMID
] = s
->wregs
[ESP_TCMID
];
664 s
->rregs
[ESP_TCHI
] = s
->wregs
[ESP_TCHI
];
668 switch(val
& CMD_CMD
) {
670 trace_esp_mem_writeb_cmd_nop(val
);
673 trace_esp_mem_writeb_cmd_flush(val
);
675 s
->rregs
[ESP_RINTR
] = INTR_FC
;
676 s
->rregs
[ESP_RSEQ
] = 0;
677 s
->rregs
[ESP_RFLAGS
] = 0;
680 trace_esp_mem_writeb_cmd_reset(val
);
684 trace_esp_mem_writeb_cmd_bus_reset(val
);
685 s
->rregs
[ESP_RINTR
] = INTR_RST
;
686 if (!(s
->wregs
[ESP_CFG1
] & CFG1_RESREPT
)) {
694 trace_esp_mem_writeb_cmd_iccs(val
);
696 s
->rregs
[ESP_RINTR
] = INTR_FC
;
697 s
->rregs
[ESP_RSTAT
] |= STAT_MI
;
700 trace_esp_mem_writeb_cmd_msgacc(val
);
701 s
->rregs
[ESP_RINTR
] = INTR_DC
;
702 s
->rregs
[ESP_RSEQ
] = 0;
703 s
->rregs
[ESP_RFLAGS
] = 0;
707 trace_esp_mem_writeb_cmd_pad(val
);
708 s
->rregs
[ESP_RSTAT
] = STAT_TC
;
709 s
->rregs
[ESP_RINTR
] = INTR_FC
;
710 s
->rregs
[ESP_RSEQ
] = 0;
713 trace_esp_mem_writeb_cmd_satn(val
);
716 trace_esp_mem_writeb_cmd_rstatn(val
);
719 trace_esp_mem_writeb_cmd_sel(val
);
720 handle_s_without_atn(s
);
723 trace_esp_mem_writeb_cmd_selatn(val
);
727 trace_esp_mem_writeb_cmd_selatns(val
);
731 trace_esp_mem_writeb_cmd_ensel(val
);
732 s
->rregs
[ESP_RINTR
] = 0;
735 trace_esp_mem_writeb_cmd_dissel(val
);
736 s
->rregs
[ESP_RINTR
] = 0;
740 trace_esp_error_unhandled_command(val
);
744 case ESP_WBUSID
... ESP_WSYNO
:
747 case ESP_CFG2
: case ESP_CFG3
:
748 case ESP_RES3
: case ESP_RES4
:
749 s
->rregs
[saddr
] = val
;
751 case ESP_WCCF
... ESP_WTEST
:
754 trace_esp_error_invalid_write(val
, saddr
);
757 s
->wregs
[saddr
] = val
;
760 static bool esp_mem_accepts(void *opaque
, hwaddr addr
,
761 unsigned size
, bool is_write
,
764 return (size
== 1) || (is_write
&& size
== 4);
767 static bool esp_pdma_needed(void *opaque
)
769 ESPState
*s
= opaque
;
770 return s
->dma_memory_read
== NULL
&& s
->dma_memory_write
== NULL
&&
774 static const VMStateDescription vmstate_esp_pdma
= {
777 .minimum_version_id
= 1,
778 .needed
= esp_pdma_needed
,
779 .fields
= (VMStateField
[]) {
780 VMSTATE_BUFFER(pdma_buf
, ESPState
),
781 VMSTATE_INT32(pdma_origin
, ESPState
),
782 VMSTATE_UINT32(pdma_len
, ESPState
),
783 VMSTATE_UINT32(pdma_start
, ESPState
),
784 VMSTATE_UINT32(pdma_cur
, ESPState
),
785 VMSTATE_END_OF_LIST()
789 const VMStateDescription vmstate_esp
= {
792 .minimum_version_id
= 3,
793 .fields
= (VMStateField
[]) {
794 VMSTATE_BUFFER(rregs
, ESPState
),
795 VMSTATE_BUFFER(wregs
, ESPState
),
796 VMSTATE_INT32(ti_size
, ESPState
),
797 VMSTATE_UINT32(ti_rptr
, ESPState
),
798 VMSTATE_UINT32(ti_wptr
, ESPState
),
799 VMSTATE_BUFFER(ti_buf
, ESPState
),
800 VMSTATE_UINT32(status
, ESPState
),
801 VMSTATE_UINT32(deferred_status
, ESPState
),
802 VMSTATE_BOOL(deferred_complete
, ESPState
),
803 VMSTATE_UINT32(dma
, ESPState
),
804 VMSTATE_PARTIAL_BUFFER(cmdbuf
, ESPState
, 16),
805 VMSTATE_BUFFER_START_MIDDLE_V(cmdbuf
, ESPState
, 16, 4),
806 VMSTATE_UINT32(cmdlen
, ESPState
),
807 VMSTATE_UINT32(do_cmd
, ESPState
),
808 VMSTATE_UINT32(dma_left
, ESPState
),
809 VMSTATE_END_OF_LIST()
811 .subsections
= (const VMStateDescription
* []) {
817 static void sysbus_esp_mem_write(void *opaque
, hwaddr addr
,
818 uint64_t val
, unsigned int size
)
820 SysBusESPState
*sysbus
= opaque
;
823 saddr
= addr
>> sysbus
->it_shift
;
824 esp_reg_write(&sysbus
->esp
, saddr
, val
);
827 static uint64_t sysbus_esp_mem_read(void *opaque
, hwaddr addr
,
830 SysBusESPState
*sysbus
= opaque
;
833 saddr
= addr
>> sysbus
->it_shift
;
834 return esp_reg_read(&sysbus
->esp
, saddr
);
837 static const MemoryRegionOps sysbus_esp_mem_ops
= {
838 .read
= sysbus_esp_mem_read
,
839 .write
= sysbus_esp_mem_write
,
840 .endianness
= DEVICE_NATIVE_ENDIAN
,
841 .valid
.accepts
= esp_mem_accepts
,
844 static void sysbus_esp_pdma_write(void *opaque
, hwaddr addr
,
845 uint64_t val
, unsigned int size
)
847 SysBusESPState
*sysbus
= opaque
;
848 ESPState
*s
= &sysbus
->esp
;
850 uint8_t *buf
= get_pdma_buf(s
);
852 dmalen
= s
->rregs
[ESP_TCLO
];
853 dmalen
|= s
->rregs
[ESP_TCMID
] << 8;
854 dmalen
|= s
->rregs
[ESP_TCHI
] << 16;
855 if (dmalen
== 0 || s
->pdma_len
== 0) {
860 buf
[s
->pdma_cur
++] = val
;
865 buf
[s
->pdma_cur
++] = val
>> 8;
866 buf
[s
->pdma_cur
++] = val
;
871 s
->rregs
[ESP_TCLO
] = dmalen
& 0xff;
872 s
->rregs
[ESP_TCMID
] = dmalen
>> 8;
873 s
->rregs
[ESP_TCHI
] = dmalen
>> 16;
874 if (s
->pdma_len
== 0 && s
->pdma_cb
) {
881 static uint64_t sysbus_esp_pdma_read(void *opaque
, hwaddr addr
,
884 SysBusESPState
*sysbus
= opaque
;
885 ESPState
*s
= &sysbus
->esp
;
886 uint8_t *buf
= get_pdma_buf(s
);
889 if (s
->pdma_len
== 0) {
894 val
= buf
[s
->pdma_cur
++];
898 val
= buf
[s
->pdma_cur
++];
899 val
= (val
<< 8) | buf
[s
->pdma_cur
++];
904 if (s
->pdma_len
== 0 && s
->pdma_cb
) {
912 static const MemoryRegionOps sysbus_esp_pdma_ops
= {
913 .read
= sysbus_esp_pdma_read
,
914 .write
= sysbus_esp_pdma_write
,
915 .endianness
= DEVICE_NATIVE_ENDIAN
,
916 .valid
.min_access_size
= 1,
917 .valid
.max_access_size
= 2,
920 static const struct SCSIBusInfo esp_scsi_info
= {
922 .max_target
= ESP_MAX_DEVS
,
925 .transfer_data
= esp_transfer_data
,
926 .complete
= esp_command_complete
,
927 .cancel
= esp_request_cancelled
930 static void sysbus_esp_gpio_demux(void *opaque
, int irq
, int level
)
932 SysBusESPState
*sysbus
= ESP(opaque
);
933 ESPState
*s
= &sysbus
->esp
;
937 parent_esp_reset(s
, irq
, level
);
940 esp_dma_enable(opaque
, irq
, level
);
945 static void sysbus_esp_realize(DeviceState
*dev
, Error
**errp
)
947 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
948 SysBusESPState
*sysbus
= ESP(dev
);
949 ESPState
*s
= &sysbus
->esp
;
951 sysbus_init_irq(sbd
, &s
->irq
);
952 sysbus_init_irq(sbd
, &s
->irq_data
);
953 assert(sysbus
->it_shift
!= -1);
955 s
->chip_id
= TCHI_FAS100A
;
956 memory_region_init_io(&sysbus
->iomem
, OBJECT(sysbus
), &sysbus_esp_mem_ops
,
957 sysbus
, "esp-regs", ESP_REGS
<< sysbus
->it_shift
);
958 sysbus_init_mmio(sbd
, &sysbus
->iomem
);
959 memory_region_init_io(&sysbus
->pdma
, OBJECT(sysbus
), &sysbus_esp_pdma_ops
,
960 sysbus
, "esp-pdma", 2);
961 sysbus_init_mmio(sbd
, &sysbus
->pdma
);
963 qdev_init_gpio_in(dev
, sysbus_esp_gpio_demux
, 2);
965 scsi_bus_new(&s
->bus
, sizeof(s
->bus
), dev
, &esp_scsi_info
, NULL
);
968 static void sysbus_esp_hard_reset(DeviceState
*dev
)
970 SysBusESPState
*sysbus
= ESP(dev
);
971 esp_hard_reset(&sysbus
->esp
);
974 static const VMStateDescription vmstate_sysbus_esp_scsi
= {
975 .name
= "sysbusespscsi",
977 .minimum_version_id
= 1,
978 .fields
= (VMStateField
[]) {
979 VMSTATE_STRUCT(esp
, SysBusESPState
, 0, vmstate_esp
, ESPState
),
980 VMSTATE_END_OF_LIST()
984 static void sysbus_esp_class_init(ObjectClass
*klass
, void *data
)
986 DeviceClass
*dc
= DEVICE_CLASS(klass
);
988 dc
->realize
= sysbus_esp_realize
;
989 dc
->reset
= sysbus_esp_hard_reset
;
990 dc
->vmsd
= &vmstate_sysbus_esp_scsi
;
991 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
994 static const TypeInfo sysbus_esp_info
= {
996 .parent
= TYPE_SYS_BUS_DEVICE
,
997 .instance_size
= sizeof(SysBusESPState
),
998 .class_init
= sysbus_esp_class_init
,
1001 static void esp_register_types(void)
1003 type_register_static(&sysbus_esp_info
);
1006 type_init(esp_register_types
)