target/avr: Add basic parameters of the new platform
[qemu/ar7.git] / hw / arm / mps2-tz.c
blob28d9e8bfac8d382870e53b1e15e6d3f53aff96ca
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
66 #define MPS2TZ_NUMIRQ 92
68 typedef enum MPS2TZFPGAType {
69 FPGA_AN505,
70 FPGA_AN521,
71 } MPS2TZFPGAType;
73 typedef struct {
74 MachineClass parent;
75 MPS2TZFPGAType fpga_type;
76 uint32_t scc_id;
77 const char *armsse_type;
78 } MPS2TZMachineClass;
80 typedef struct {
81 MachineState parent;
83 ARMSSE iotkit;
84 MemoryRegion ssram[3];
85 MemoryRegion ssram1_m;
86 MPS2SCC scc;
87 MPS2FPGAIO fpgaio;
88 TZPPC ppc[5];
89 TZMPC ssram_mpc[3];
90 PL022State spi[5];
91 ArmSbconI2CState i2c[4];
92 UnimplementedDeviceState i2s_audio;
93 UnimplementedDeviceState gpio[4];
94 UnimplementedDeviceState gfx;
95 PL080State dma[4];
96 TZMSC msc[4];
97 CMSDKAPBUART uart[5];
98 SplitIRQ sec_resp_splitter;
99 qemu_or_irq uart_irq_orgate;
100 DeviceState *lan9118;
101 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
102 } MPS2TZMachineState;
104 #define TYPE_MPS2TZ_MACHINE "mps2tz"
105 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
106 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
108 #define MPS2TZ_MACHINE(obj) \
109 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
110 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
111 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
112 #define MPS2TZ_MACHINE_CLASS(klass) \
113 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
115 /* Main SYSCLK frequency in Hz */
116 #define SYSCLK_FRQ 20000000
118 /* Create an alias of an entire original MemoryRegion @orig
119 * located at @base in the memory map.
121 static void make_ram_alias(MemoryRegion *mr, const char *name,
122 MemoryRegion *orig, hwaddr base)
124 memory_region_init_alias(mr, NULL, name, orig, 0,
125 memory_region_size(orig));
126 memory_region_add_subregion(get_system_memory(), base, mr);
129 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
131 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
132 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
134 assert(irqno < MPS2TZ_NUMIRQ);
136 switch (mmc->fpga_type) {
137 case FPGA_AN505:
138 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
139 case FPGA_AN521:
140 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
141 default:
142 g_assert_not_reached();
146 /* Most of the devices in the AN505 FPGA image sit behind
147 * Peripheral Protection Controllers. These data structures
148 * define the layout of which devices sit behind which PPCs.
149 * The devfn for each port is a function which creates, configures
150 * and initializes the device, returning the MemoryRegion which
151 * needs to be plugged into the downstream end of the PPC port.
153 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
154 const char *name, hwaddr size);
156 typedef struct PPCPortInfo {
157 const char *name;
158 MakeDevFn *devfn;
159 void *opaque;
160 hwaddr addr;
161 hwaddr size;
162 } PPCPortInfo;
164 typedef struct PPCInfo {
165 const char *name;
166 PPCPortInfo ports[TZ_NUM_PORTS];
167 } PPCInfo;
169 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
170 void *opaque,
171 const char *name, hwaddr size)
173 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
174 * and return a pointer to its MemoryRegion.
176 UnimplementedDeviceState *uds = opaque;
178 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
179 qdev_prop_set_string(DEVICE(uds), "name", name);
180 qdev_prop_set_uint64(DEVICE(uds), "size", size);
181 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186 const char *name, hwaddr size)
188 CMSDKAPBUART *uart = opaque;
189 int i = uart - &mms->uart[0];
190 int rxirqno = i * 2;
191 int txirqno = i * 2 + 1;
192 int combirqno = i + 10;
193 SysBusDevice *s;
194 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
196 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
197 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
198 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
199 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
200 s = SYS_BUS_DEVICE(uart);
201 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
202 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
203 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
204 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
205 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
206 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
209 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
210 const char *name, hwaddr size)
212 MPS2SCC *scc = opaque;
213 DeviceState *sccdev;
214 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
216 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
217 sccdev = DEVICE(scc);
218 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
219 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
220 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
221 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
222 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
225 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
226 const char *name, hwaddr size)
228 MPS2FPGAIO *fpgaio = opaque;
230 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
231 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
232 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
235 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
236 const char *name, hwaddr size)
238 SysBusDevice *s;
239 NICInfo *nd = &nd_table[0];
241 /* In hardware this is a LAN9220; the LAN9118 is software compatible
242 * except that it doesn't support the checksum-offload feature.
244 qemu_check_nic_model(nd, "lan9118");
245 mms->lan9118 = qdev_new(TYPE_LAN9118);
246 qdev_set_nic_properties(mms->lan9118, nd);
248 s = SYS_BUS_DEVICE(mms->lan9118);
249 sysbus_realize_and_unref(s, &error_fatal);
250 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
251 return sysbus_mmio_get_region(s, 0);
254 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
255 const char *name, hwaddr size)
257 TZMPC *mpc = opaque;
258 int i = mpc - &mms->ssram_mpc[0];
259 MemoryRegion *ssram = &mms->ssram[i];
260 MemoryRegion *upstream;
261 char *mpcname = g_strdup_printf("%s-mpc", name);
262 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
263 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
265 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
267 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
268 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
269 &error_fatal);
270 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
271 /* Map the upstream end of the MPC into system memory */
272 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
273 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
274 /* and connect its interrupt to the IoTKit */
275 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
276 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
277 "mpcexp_status", i));
279 /* The first SSRAM is a special case as it has an alias; accesses to
280 * the alias region at 0x00400000 must also go to the MPC upstream.
282 if (i == 0) {
283 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
286 g_free(mpcname);
287 /* Return the register interface MR for our caller to map behind the PPC */
288 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
291 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
292 const char *name, hwaddr size)
294 PL080State *dma = opaque;
295 int i = dma - &mms->dma[0];
296 SysBusDevice *s;
297 char *mscname = g_strdup_printf("%s-msc", name);
298 TZMSC *msc = &mms->msc[i];
299 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
300 MemoryRegion *msc_upstream;
301 MemoryRegion *msc_downstream;
304 * Each DMA device is a PL081 whose transaction master interface
305 * is guarded by a Master Security Controller. The downstream end of
306 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
307 * DMA devices can see all devices and memory that the CPU does.
309 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
310 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
311 object_property_set_link(OBJECT(msc), "downstream",
312 OBJECT(msc_downstream), &error_fatal);
313 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
314 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
316 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
317 qdev_get_gpio_in_named(iotkitdev,
318 "mscexp_status", i));
319 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
320 qdev_get_gpio_in_named(DEVICE(msc),
321 "irq_clear", 0));
322 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
323 qdev_get_gpio_in_named(DEVICE(msc),
324 "cfg_nonsec", 0));
325 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
326 ARRAY_SIZE(mms->ppc) + i,
327 qdev_get_gpio_in_named(DEVICE(msc),
328 "cfg_sec_resp", 0));
329 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
331 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
332 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
333 &error_fatal);
334 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
336 s = SYS_BUS_DEVICE(dma);
337 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
338 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
339 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
340 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
342 g_free(mscname);
343 return sysbus_mmio_get_region(s, 0);
346 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
347 const char *name, hwaddr size)
350 * The AN505 has five PL022 SPI controllers.
351 * One of these should have the LCD controller behind it; the others
352 * are connected only to the FPGA's "general purpose SPI connector"
353 * or "shield" expansion connectors.
354 * Note that if we do implement devices behind SPI, the chip select
355 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
357 PL022State *spi = opaque;
358 int i = spi - &mms->spi[0];
359 SysBusDevice *s;
361 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
362 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
363 s = SYS_BUS_DEVICE(spi);
364 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
365 return sysbus_mmio_get_region(s, 0);
368 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
369 const char *name, hwaddr size)
371 ArmSbconI2CState *i2c = opaque;
372 SysBusDevice *s;
374 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
375 s = SYS_BUS_DEVICE(i2c);
376 sysbus_realize(s, &error_fatal);
377 return sysbus_mmio_get_region(s, 0);
380 static void mps2tz_common_init(MachineState *machine)
382 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
383 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
384 MachineClass *mc = MACHINE_GET_CLASS(machine);
385 MemoryRegion *system_memory = get_system_memory();
386 DeviceState *iotkitdev;
387 DeviceState *dev_splitter;
388 int i;
390 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
391 error_report("This board can only be used with CPU %s",
392 mc->default_cpu_type);
393 exit(1);
396 if (machine->ram_size != mc->default_ram_size) {
397 char *sz = size_to_str(mc->default_ram_size);
398 error_report("Invalid RAM size, should be %s", sz);
399 g_free(sz);
400 exit(EXIT_FAILURE);
403 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
404 mmc->armsse_type);
405 iotkitdev = DEVICE(&mms->iotkit);
406 object_property_set_link(OBJECT(&mms->iotkit), "memory",
407 OBJECT(system_memory), &error_abort);
408 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
409 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
410 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
413 * The AN521 needs us to create splitters to feed the IRQ inputs
414 * for each CPU in the SSE-200 from each device in the board.
416 if (mmc->fpga_type == FPGA_AN521) {
417 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
418 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
419 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
421 object_initialize_child_with_props(OBJECT(machine), name,
422 splitter, sizeof(*splitter),
423 TYPE_SPLIT_IRQ, &error_fatal,
424 NULL);
425 g_free(name);
427 object_property_set_int(OBJECT(splitter), "num-lines", 2,
428 &error_fatal);
429 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
430 qdev_connect_gpio_out(DEVICE(splitter), 0,
431 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
432 "EXP_IRQ", i));
433 qdev_connect_gpio_out(DEVICE(splitter), 1,
434 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
435 "EXP_CPU1_IRQ", i));
439 /* The sec_resp_cfg output from the IoTKit must be split into multiple
440 * lines, one for each of the PPCs we create here, plus one per MSC.
442 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
443 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
444 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
445 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
446 &error_fatal);
447 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
448 dev_splitter = DEVICE(&mms->sec_resp_splitter);
449 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
450 qdev_get_gpio_in(dev_splitter, 0));
452 /* The IoTKit sets up much of the memory layout, including
453 * the aliases between secure and non-secure regions in the
454 * address space. The FPGA itself contains:
456 * 0x00000000..0x003fffff SSRAM1
457 * 0x00400000..0x007fffff alias of SSRAM1
458 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
459 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
460 * 0x80000000..0x80ffffff 16MB PSRAM
463 /* The FPGA images have an odd combination of different RAMs,
464 * because in hardware they are different implementations and
465 * connected to different buses, giving varying performance/size
466 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
467 * call the 16MB our "system memory", as it's the largest lump.
469 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
471 /* The overflow IRQs for all UARTs are ORed together.
472 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
473 * Create the OR gate for this.
475 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
476 &mms->uart_irq_orgate, TYPE_OR_IRQ);
477 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
478 &error_fatal);
479 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
480 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
481 get_sse_irq_in(mms, 15));
483 /* Most of the devices in the FPGA are behind Peripheral Protection
484 * Controllers. The required order for initializing things is:
485 * + initialize the PPC
486 * + initialize, configure and realize downstream devices
487 * + connect downstream device MemoryRegions to the PPC
488 * + realize the PPC
489 * + map the PPC's MemoryRegions to the places in the address map
490 * where the downstream devices should appear
491 * + wire up the PPC's control lines to the IoTKit object
494 const PPCInfo ppcs[] = { {
495 .name = "apb_ppcexp0",
496 .ports = {
497 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
498 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
499 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
501 }, {
502 .name = "apb_ppcexp1",
503 .ports = {
504 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
505 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
506 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
507 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
508 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
509 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
510 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
511 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
512 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
513 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
514 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
515 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
516 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
517 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
519 }, {
520 .name = "apb_ppcexp2",
521 .ports = {
522 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
523 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
524 0x40301000, 0x1000 },
525 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
527 }, {
528 .name = "ahb_ppcexp0",
529 .ports = {
530 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
531 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
532 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
533 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
534 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
535 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
537 }, {
538 .name = "ahb_ppcexp1",
539 .ports = {
540 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
541 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
542 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
543 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
548 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
549 const PPCInfo *ppcinfo = &ppcs[i];
550 TZPPC *ppc = &mms->ppc[i];
551 DeviceState *ppcdev;
552 int port;
553 char *gpioname;
555 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
556 TYPE_TZ_PPC);
557 ppcdev = DEVICE(ppc);
559 for (port = 0; port < TZ_NUM_PORTS; port++) {
560 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
561 MemoryRegion *mr;
562 char *portname;
564 if (!pinfo->devfn) {
565 continue;
568 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
569 portname = g_strdup_printf("port[%d]", port);
570 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
571 &error_fatal);
572 g_free(portname);
575 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
577 for (port = 0; port < TZ_NUM_PORTS; port++) {
578 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
580 if (!pinfo->devfn) {
581 continue;
583 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
585 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
586 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
587 qdev_get_gpio_in_named(ppcdev,
588 "cfg_nonsec",
589 port));
590 g_free(gpioname);
591 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
592 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
593 qdev_get_gpio_in_named(ppcdev,
594 "cfg_ap", port));
595 g_free(gpioname);
598 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
599 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
600 qdev_get_gpio_in_named(ppcdev,
601 "irq_enable", 0));
602 g_free(gpioname);
603 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
604 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
605 qdev_get_gpio_in_named(ppcdev,
606 "irq_clear", 0));
607 g_free(gpioname);
608 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
609 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
610 qdev_get_gpio_in_named(iotkitdev,
611 gpioname, 0));
612 g_free(gpioname);
614 qdev_connect_gpio_out(dev_splitter, i,
615 qdev_get_gpio_in_named(ppcdev,
616 "cfg_sec_resp", 0));
619 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
621 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
624 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
625 int *iregion, bool *exempt, bool *ns, bool *nsc)
628 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
629 * the Master Security Controllers. Thes have the same logic as
630 * is used by the IoTKit for the IDAU connected to the CPU, except
631 * that MSCs don't care about the NSC attribute.
633 int region = extract32(address, 28, 4);
635 *ns = !(region & 1);
636 *nsc = false;
637 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
638 *exempt = (address & 0xeff00000) == 0xe0000000;
639 *iregion = region;
642 static void mps2tz_class_init(ObjectClass *oc, void *data)
644 MachineClass *mc = MACHINE_CLASS(oc);
645 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
647 mc->init = mps2tz_common_init;
648 iic->check = mps2_tz_idau_check;
649 mc->default_ram_size = 16 * MiB;
650 mc->default_ram_id = "mps.ram";
653 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
655 MachineClass *mc = MACHINE_CLASS(oc);
656 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
658 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
659 mc->default_cpus = 1;
660 mc->min_cpus = mc->default_cpus;
661 mc->max_cpus = mc->default_cpus;
662 mmc->fpga_type = FPGA_AN505;
663 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
664 mmc->scc_id = 0x41045050;
665 mmc->armsse_type = TYPE_IOTKIT;
668 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
670 MachineClass *mc = MACHINE_CLASS(oc);
671 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
673 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
674 mc->default_cpus = 2;
675 mc->min_cpus = mc->default_cpus;
676 mc->max_cpus = mc->default_cpus;
677 mmc->fpga_type = FPGA_AN521;
678 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
679 mmc->scc_id = 0x41045210;
680 mmc->armsse_type = TYPE_SSE200;
683 static const TypeInfo mps2tz_info = {
684 .name = TYPE_MPS2TZ_MACHINE,
685 .parent = TYPE_MACHINE,
686 .abstract = true,
687 .instance_size = sizeof(MPS2TZMachineState),
688 .class_size = sizeof(MPS2TZMachineClass),
689 .class_init = mps2tz_class_init,
690 .interfaces = (InterfaceInfo[]) {
691 { TYPE_IDAU_INTERFACE },
696 static const TypeInfo mps2tz_an505_info = {
697 .name = TYPE_MPS2TZ_AN505_MACHINE,
698 .parent = TYPE_MPS2TZ_MACHINE,
699 .class_init = mps2tz_an505_class_init,
702 static const TypeInfo mps2tz_an521_info = {
703 .name = TYPE_MPS2TZ_AN521_MACHINE,
704 .parent = TYPE_MPS2TZ_MACHINE,
705 .class_init = mps2tz_an521_class_init,
708 static void mps2tz_machine_init(void)
710 type_register_static(&mps2tz_info);
711 type_register_static(&mps2tz_an505_info);
712 type_register_static(&mps2tz_an521_info);
715 type_init(mps2tz_machine_init);