icount: Take iothread lock when running QEMU timers
[qemu/ar7.git] / hw / riscv / boot.c
blob06b4fc5ac3056093af346d98c7eb7f5ab16604f8
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
29 #include "elf.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
32 #include "sysemu/kvm.h"
34 #include <libfdt.h>
36 bool riscv_is_32bit(RISCVHartArrayState *harts)
38 return harts->harts[0].env.misa_mxl_max == MXL_RV32;
42 * Return the per-socket PLIC hart topology configuration string
43 * (caller must free with g_free())
45 char *riscv_plic_hart_config_string(int hart_count)
47 g_autofree const char **vals = g_new(const char *, hart_count + 1);
48 int i;
50 for (i = 0; i < hart_count; i++) {
51 CPUState *cs = qemu_get_cpu(i);
52 CPURISCVState *env = &RISCV_CPU(cs)->env;
54 if (kvm_enabled()) {
55 vals[i] = "S";
56 } else if (riscv_has_ext(env, RVS)) {
57 vals[i] = "MS";
58 } else {
59 vals[i] = "M";
62 vals[i] = NULL;
64 /* g_strjoinv() obliges us to cast away const here */
65 return g_strjoinv(",", (char **)vals);
68 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
69 target_ulong firmware_end_addr) {
70 if (riscv_is_32bit(harts)) {
71 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
72 } else {
73 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
77 target_ulong riscv_find_and_load_firmware(MachineState *machine,
78 const char *default_machine_firmware,
79 hwaddr firmware_load_addr,
80 symbol_fn_t sym_cb)
82 char *firmware_filename = NULL;
83 target_ulong firmware_end_addr = firmware_load_addr;
85 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
87 * The user didn't specify -bios, or has specified "-bios default".
88 * That means we are going to load the OpenSBI binary included in
89 * the QEMU source.
91 firmware_filename = riscv_find_firmware(default_machine_firmware);
92 } else if (strcmp(machine->firmware, "none")) {
93 firmware_filename = riscv_find_firmware(machine->firmware);
96 if (firmware_filename) {
97 /* If not "none" load the firmware */
98 firmware_end_addr = riscv_load_firmware(firmware_filename,
99 firmware_load_addr, sym_cb);
100 g_free(firmware_filename);
103 return firmware_end_addr;
106 char *riscv_find_firmware(const char *firmware_filename)
108 char *filename;
110 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
111 if (filename == NULL) {
112 if (!qtest_enabled()) {
114 * We only ship plain binary bios images in the QEMU source.
115 * With Spike machine that uses ELF images as the default bios,
116 * running QEMU test will complain hence let's suppress the error
117 * report for QEMU testing.
119 error_report("Unable to load the RISC-V firmware \"%s\"",
120 firmware_filename);
121 exit(1);
125 return filename;
128 target_ulong riscv_load_firmware(const char *firmware_filename,
129 hwaddr firmware_load_addr,
130 symbol_fn_t sym_cb)
132 uint64_t firmware_entry, firmware_end;
133 ssize_t firmware_size;
135 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
136 &firmware_entry, NULL, &firmware_end, NULL,
137 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
138 return firmware_end;
141 firmware_size = load_image_targphys_as(firmware_filename,
142 firmware_load_addr,
143 current_machine->ram_size, NULL);
145 if (firmware_size > 0) {
146 return firmware_load_addr + firmware_size;
149 error_report("could not load firmware '%s'", firmware_filename);
150 exit(1);
153 target_ulong riscv_load_kernel(const char *kernel_filename,
154 target_ulong kernel_start_addr,
155 symbol_fn_t sym_cb)
157 uint64_t kernel_load_base, kernel_entry;
160 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
161 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
162 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
163 * the (expected) load address load address. This allows kernels to have
164 * separate SBI and ELF entry points (used by FreeBSD, for example).
166 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
167 NULL, &kernel_load_base, NULL, NULL, 0,
168 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
169 return kernel_load_base;
172 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
173 NULL, NULL, NULL) > 0) {
174 return kernel_entry;
177 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
178 current_machine->ram_size, NULL) > 0) {
179 return kernel_start_addr;
182 error_report("could not load kernel '%s'", kernel_filename);
183 exit(1);
186 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
187 uint64_t kernel_entry, hwaddr *start)
189 ssize_t size;
192 * We want to put the initrd far enough into RAM that when the
193 * kernel is uncompressed it will not clobber the initrd. However
194 * on boards without much RAM we must ensure that we still leave
195 * enough room for a decent sized initrd, and on boards with large
196 * amounts of RAM we must avoid the initrd being so far up in RAM
197 * that it is outside lowmem and inaccessible to the kernel.
198 * So for boards with less than 256MB of RAM we put the initrd
199 * halfway into RAM, and for boards with 256MB of RAM or more we put
200 * the initrd at 128MB.
202 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
204 size = load_ramdisk(filename, *start, mem_size - *start);
205 if (size == -1) {
206 size = load_image_targphys(filename, *start, mem_size - *start);
207 if (size == -1) {
208 error_report("could not load ramdisk '%s'", filename);
209 exit(1);
213 return *start + size;
216 uint64_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
218 uint64_t temp, fdt_addr;
219 hwaddr dram_end = dram_base + mem_size;
220 int ret, fdtsize = fdt_totalsize(fdt);
222 if (fdtsize <= 0) {
223 error_report("invalid device-tree");
224 exit(1);
228 * We should put fdt as far as possible to avoid kernel/initrd overwriting
229 * its content. But it should be addressable by 32 bit system as well.
230 * Thus, put it at an 2MB aligned address that less than fdt size from the
231 * end of dram or 3GB whichever is lesser.
233 temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
234 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
236 ret = fdt_pack(fdt);
237 /* Should only fail if we've built a corrupted tree */
238 g_assert(ret == 0);
239 /* copy in the device tree */
240 qemu_fdt_dumpdtb(fdt, fdtsize);
242 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
243 &address_space_memory);
245 return fdt_addr;
248 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
249 hwaddr rom_size, uint32_t reset_vec_size,
250 uint64_t kernel_entry)
252 struct fw_dynamic_info dinfo;
253 size_t dinfo_len;
255 if (sizeof(dinfo.magic) == 4) {
256 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
257 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
258 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
259 dinfo.next_addr = cpu_to_le32(kernel_entry);
260 } else {
261 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
262 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
263 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
264 dinfo.next_addr = cpu_to_le64(kernel_entry);
266 dinfo.options = 0;
267 dinfo.boot_hart = 0;
268 dinfo_len = sizeof(dinfo);
271 * copy the dynamic firmware info. This information is specific to
272 * OpenSBI but doesn't break any other firmware as long as they don't
273 * expect any certain value in "a2" register.
275 if (dinfo_len > (rom_size - reset_vec_size)) {
276 error_report("not enough space to store dynamic firmware info");
277 exit(1);
280 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
281 rom_base + reset_vec_size,
282 &address_space_memory);
285 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
286 hwaddr start_addr,
287 hwaddr rom_base, hwaddr rom_size,
288 uint64_t kernel_entry,
289 uint64_t fdt_load_addr, void *fdt)
291 int i;
292 uint32_t start_addr_hi32 = 0x00000000;
293 uint32_t fdt_load_addr_hi32 = 0x00000000;
295 if (!riscv_is_32bit(harts)) {
296 start_addr_hi32 = start_addr >> 32;
297 fdt_load_addr_hi32 = fdt_load_addr >> 32;
299 /* reset vector */
300 uint32_t reset_vec[10] = {
301 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
302 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
303 0xf1402573, /* csrr a0, mhartid */
306 0x00028067, /* jr t0 */
307 start_addr, /* start: .dword */
308 start_addr_hi32,
309 fdt_load_addr, /* fdt_laddr: .dword */
310 fdt_load_addr_hi32,
311 /* fw_dyn: */
313 if (riscv_is_32bit(harts)) {
314 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
315 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
316 } else {
317 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
318 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
321 /* copy in the reset vector in little_endian byte order */
322 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
323 reset_vec[i] = cpu_to_le32(reset_vec[i]);
325 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
326 rom_base, &address_space_memory);
327 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
328 kernel_entry);
330 return;
333 void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
335 CPUState *cs;
337 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
338 RISCVCPU *riscv_cpu = RISCV_CPU(cs);
339 riscv_cpu->env.kernel_addr = kernel_addr;
340 riscv_cpu->env.fdt_addr = fdt_addr;