icount: Take iothread lock when running QEMU timers
[qemu/ar7.git] / hw / i386 / x86.c
blob050eedc0c8e2c212cd646851974a88db587d7339
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu/datadir.h"
29 #include "qemu/guest-random.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/cpu-timers.h"
42 #include "sysemu/xen.h"
43 #include "trace.h"
45 #include "hw/i386/x86.h"
46 #include "target/i386/cpu.h"
47 #include "hw/i386/topology.h"
48 #include "hw/i386/fw_cfg.h"
49 #include "hw/intc/i8259.h"
50 #include "hw/rtc/mc146818rtc.h"
51 #include "target/i386/sev.h"
53 #include "hw/acpi/cpu_hotplug.h"
54 #include "hw/irq.h"
55 #include "hw/nmi.h"
56 #include "hw/loader.h"
57 #include "multiboot.h"
58 #include "elf.h"
59 #include "standard-headers/asm-x86/bootparam.h"
60 #include CONFIG_DEVICES
61 #include "kvm/kvm_i386.h"
63 /* Physical Address of PVH entry point read from kernel ELF NOTE */
64 static size_t pvh_start_addr;
66 inline void init_topo_info(X86CPUTopoInfo *topo_info,
67 const X86MachineState *x86ms)
69 MachineState *ms = MACHINE(x86ms);
71 topo_info->dies_per_pkg = ms->smp.dies;
72 topo_info->cores_per_die = ms->smp.cores;
73 topo_info->threads_per_core = ms->smp.threads;
77 * Calculates initial APIC ID for a specific CPU index
79 * Currently we need to be able to calculate the APIC ID from the CPU index
80 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
81 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
82 * all CPUs up to max_cpus.
84 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
85 unsigned int cpu_index)
87 X86CPUTopoInfo topo_info;
89 init_topo_info(&topo_info, x86ms);
91 return x86_apicid_from_cpu_idx(&topo_info, cpu_index);
95 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
97 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
99 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
100 goto out;
102 qdev_realize(DEVICE(cpu), NULL, errp);
104 out:
105 object_unref(cpu);
108 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
110 int i;
111 const CPUArchIdList *possible_cpus;
112 MachineState *ms = MACHINE(x86ms);
113 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
115 x86_cpu_set_default_version(default_cpu_version);
118 * Calculates the limit to CPU APIC ID values
120 * Limit for the APIC ID value, so that all
121 * CPU APIC IDs are < x86ms->apic_id_limit.
123 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
125 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
126 ms->smp.max_cpus - 1) + 1;
129 * Can we support APIC ID 255 or higher?
131 * Under Xen: yes.
132 * With userspace emulated lapic: no
133 * With KVM's in-kernel lapic: only if X2APIC API is enabled.
135 if (x86ms->apic_id_limit > 255 && !xen_enabled() &&
136 (!kvm_irqchip_in_kernel() || !kvm_enable_x2apic())) {
137 error_report("current -smp configuration requires kernel "
138 "irqchip and X2APIC API support.");
139 exit(EXIT_FAILURE);
142 possible_cpus = mc->possible_cpu_arch_ids(ms);
143 for (i = 0; i < ms->smp.cpus; i++) {
144 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
148 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
150 if (cpus_count > 0xff) {
152 * If the number of CPUs can't be represented in 8 bits, the
153 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
154 * to make old BIOSes fail more predictably.
156 rtc_set_memory(rtc, 0x5f, 0);
157 } else {
158 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
162 static int x86_apic_cmp(const void *a, const void *b)
164 CPUArchId *apic_a = (CPUArchId *)a;
165 CPUArchId *apic_b = (CPUArchId *)b;
167 return apic_a->arch_id - apic_b->arch_id;
171 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
172 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
173 * entry corresponding to CPU's apic_id returns NULL.
175 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
177 CPUArchId apic_id, *found_cpu;
179 apic_id.arch_id = id;
180 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
181 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
182 x86_apic_cmp);
183 if (found_cpu && idx) {
184 *idx = found_cpu - ms->possible_cpus->cpus;
186 return found_cpu;
189 void x86_cpu_plug(HotplugHandler *hotplug_dev,
190 DeviceState *dev, Error **errp)
192 CPUArchId *found_cpu;
193 Error *local_err = NULL;
194 X86CPU *cpu = X86_CPU(dev);
195 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
197 if (x86ms->acpi_dev) {
198 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
199 if (local_err) {
200 goto out;
204 /* increment the number of CPUs */
205 x86ms->boot_cpus++;
206 if (x86ms->rtc) {
207 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
209 if (x86ms->fw_cfg) {
210 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
213 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
214 found_cpu->cpu = OBJECT(dev);
215 out:
216 error_propagate(errp, local_err);
219 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
220 DeviceState *dev, Error **errp)
222 int idx = -1;
223 X86CPU *cpu = X86_CPU(dev);
224 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
226 if (!x86ms->acpi_dev) {
227 error_setg(errp, "CPU hot unplug not supported without ACPI");
228 return;
231 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
232 assert(idx != -1);
233 if (idx == 0) {
234 error_setg(errp, "Boot CPU is unpluggable");
235 return;
238 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
239 errp);
242 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
243 DeviceState *dev, Error **errp)
245 CPUArchId *found_cpu;
246 Error *local_err = NULL;
247 X86CPU *cpu = X86_CPU(dev);
248 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
250 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
251 if (local_err) {
252 goto out;
255 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
256 found_cpu->cpu = NULL;
257 qdev_unrealize(dev);
259 /* decrement the number of CPUs */
260 x86ms->boot_cpus--;
261 /* Update the number of CPUs in CMOS */
262 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
263 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
264 out:
265 error_propagate(errp, local_err);
268 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
269 DeviceState *dev, Error **errp)
271 int idx;
272 CPUState *cs;
273 CPUArchId *cpu_slot;
274 X86CPUTopoIDs topo_ids;
275 X86CPU *cpu = X86_CPU(dev);
276 CPUX86State *env = &cpu->env;
277 MachineState *ms = MACHINE(hotplug_dev);
278 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
279 unsigned int smp_cores = ms->smp.cores;
280 unsigned int smp_threads = ms->smp.threads;
281 X86CPUTopoInfo topo_info;
283 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
284 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
285 ms->cpu_type);
286 return;
289 if (x86ms->acpi_dev) {
290 Error *local_err = NULL;
292 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
293 &local_err);
294 if (local_err) {
295 error_propagate(errp, local_err);
296 return;
300 init_topo_info(&topo_info, x86ms);
302 env->nr_dies = ms->smp.dies;
305 * If APIC ID is not set,
306 * set it based on socket/die/core/thread properties.
308 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
309 int max_socket = (ms->smp.max_cpus - 1) /
310 smp_threads / smp_cores / ms->smp.dies;
313 * die-id was optional in QEMU 4.0 and older, so keep it optional
314 * if there's only one die per socket.
316 if (cpu->die_id < 0 && ms->smp.dies == 1) {
317 cpu->die_id = 0;
320 if (cpu->socket_id < 0) {
321 error_setg(errp, "CPU socket-id is not set");
322 return;
323 } else if (cpu->socket_id > max_socket) {
324 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
325 cpu->socket_id, max_socket);
326 return;
328 if (cpu->die_id < 0) {
329 error_setg(errp, "CPU die-id is not set");
330 return;
331 } else if (cpu->die_id > ms->smp.dies - 1) {
332 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
333 cpu->die_id, ms->smp.dies - 1);
334 return;
336 if (cpu->core_id < 0) {
337 error_setg(errp, "CPU core-id is not set");
338 return;
339 } else if (cpu->core_id > (smp_cores - 1)) {
340 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
341 cpu->core_id, smp_cores - 1);
342 return;
344 if (cpu->thread_id < 0) {
345 error_setg(errp, "CPU thread-id is not set");
346 return;
347 } else if (cpu->thread_id > (smp_threads - 1)) {
348 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
349 cpu->thread_id, smp_threads - 1);
350 return;
353 topo_ids.pkg_id = cpu->socket_id;
354 topo_ids.die_id = cpu->die_id;
355 topo_ids.core_id = cpu->core_id;
356 topo_ids.smt_id = cpu->thread_id;
357 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
360 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
361 if (!cpu_slot) {
362 MachineState *ms = MACHINE(x86ms);
364 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
365 error_setg(errp,
366 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
367 " APIC ID %" PRIu32 ", valid index range 0:%d",
368 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
369 cpu->apic_id, ms->possible_cpus->len - 1);
370 return;
373 if (cpu_slot->cpu) {
374 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
375 idx, cpu->apic_id);
376 return;
379 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
380 * so that machine_query_hotpluggable_cpus would show correct values
382 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
383 * once -smp refactoring is complete and there will be CPU private
384 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
385 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
386 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
387 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
388 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
389 topo_ids.pkg_id);
390 return;
392 cpu->socket_id = topo_ids.pkg_id;
394 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
395 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
396 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
397 return;
399 cpu->die_id = topo_ids.die_id;
401 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
402 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
403 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
404 topo_ids.core_id);
405 return;
407 cpu->core_id = topo_ids.core_id;
409 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
410 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
411 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
412 topo_ids.smt_id);
413 return;
415 cpu->thread_id = topo_ids.smt_id;
417 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
418 !kvm_hv_vpindex_settable()) {
419 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
420 return;
423 cs = CPU(cpu);
424 cs->cpu_index = idx;
426 numa_cpu_pre_plug(cpu_slot, dev, errp);
429 CpuInstanceProperties
430 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
432 MachineClass *mc = MACHINE_GET_CLASS(ms);
433 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
435 assert(cpu_index < possible_cpus->len);
436 return possible_cpus->cpus[cpu_index].props;
439 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
441 X86CPUTopoIDs topo_ids;
442 X86MachineState *x86ms = X86_MACHINE(ms);
443 X86CPUTopoInfo topo_info;
445 init_topo_info(&topo_info, x86ms);
447 assert(idx < ms->possible_cpus->len);
448 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
449 &topo_info, &topo_ids);
450 return topo_ids.pkg_id % ms->numa_state->num_nodes;
453 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
455 X86MachineState *x86ms = X86_MACHINE(ms);
456 unsigned int max_cpus = ms->smp.max_cpus;
457 X86CPUTopoInfo topo_info;
458 int i;
460 if (ms->possible_cpus) {
462 * make sure that max_cpus hasn't changed since the first use, i.e.
463 * -smp hasn't been parsed after it
465 assert(ms->possible_cpus->len == max_cpus);
466 return ms->possible_cpus;
469 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
470 sizeof(CPUArchId) * max_cpus);
471 ms->possible_cpus->len = max_cpus;
473 init_topo_info(&topo_info, x86ms);
475 for (i = 0; i < ms->possible_cpus->len; i++) {
476 X86CPUTopoIDs topo_ids;
478 ms->possible_cpus->cpus[i].type = ms->cpu_type;
479 ms->possible_cpus->cpus[i].vcpus_count = 1;
480 ms->possible_cpus->cpus[i].arch_id =
481 x86_cpu_apic_id_from_index(x86ms, i);
482 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
483 &topo_info, &topo_ids);
484 ms->possible_cpus->cpus[i].props.has_socket_id = true;
485 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
486 if (ms->smp.dies > 1) {
487 ms->possible_cpus->cpus[i].props.has_die_id = true;
488 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
490 ms->possible_cpus->cpus[i].props.has_core_id = true;
491 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
492 ms->possible_cpus->cpus[i].props.has_thread_id = true;
493 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
495 return ms->possible_cpus;
498 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
500 /* cpu index isn't used */
501 CPUState *cs;
503 CPU_FOREACH(cs) {
504 X86CPU *cpu = X86_CPU(cs);
506 if (!cpu->apic_state) {
507 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
508 } else {
509 apic_deliver_nmi(cpu->apic_state);
514 static long get_file_size(FILE *f)
516 long where, size;
518 /* XXX: on Unix systems, using fstat() probably makes more sense */
520 where = ftell(f);
521 fseek(f, 0, SEEK_END);
522 size = ftell(f);
523 fseek(f, where, SEEK_SET);
525 return size;
528 /* TSC handling */
529 uint64_t cpu_get_tsc(CPUX86State *env)
531 return cpus_get_elapsed_ticks();
534 /* IRQ handling */
535 static void pic_irq_request(void *opaque, int irq, int level)
537 CPUState *cs = first_cpu;
538 X86CPU *cpu = X86_CPU(cs);
540 trace_x86_pic_interrupt(irq, level);
541 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
542 !whpx_apic_in_platform()) {
543 CPU_FOREACH(cs) {
544 cpu = X86_CPU(cs);
545 if (apic_accept_pic_intr(cpu->apic_state)) {
546 apic_deliver_pic_intr(cpu->apic_state, level);
549 } else {
550 if (level) {
551 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
552 } else {
553 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
558 qemu_irq x86_allocate_cpu_irq(void)
560 return qemu_allocate_irq(pic_irq_request, NULL, 0);
563 int cpu_get_pic_interrupt(CPUX86State *env)
565 X86CPU *cpu = env_archcpu(env);
566 int intno;
568 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
569 intno = apic_get_interrupt(cpu->apic_state);
570 if (intno >= 0) {
571 return intno;
573 /* read the irq from the PIC */
574 if (!apic_accept_pic_intr(cpu->apic_state)) {
575 return -1;
579 intno = pic_read_irq(isa_pic);
580 return intno;
583 DeviceState *cpu_get_current_apic(void)
585 if (current_cpu) {
586 X86CPU *cpu = X86_CPU(current_cpu);
587 return cpu->apic_state;
588 } else {
589 return NULL;
593 void gsi_handler(void *opaque, int n, int level)
595 GSIState *s = opaque;
597 trace_x86_gsi_interrupt(n, level);
598 switch (n) {
599 case 0 ... ISA_NUM_IRQS - 1:
600 if (s->i8259_irq[n]) {
601 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
602 qemu_set_irq(s->i8259_irq[n], level);
604 /* fall through */
605 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
606 qemu_set_irq(s->ioapic_irq[n], level);
607 break;
608 case IO_APIC_SECONDARY_IRQBASE
609 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
610 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
611 break;
615 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
617 DeviceState *dev;
618 SysBusDevice *d;
619 unsigned int i;
621 assert(parent_name);
622 if (kvm_ioapic_in_kernel()) {
623 dev = qdev_new(TYPE_KVM_IOAPIC);
624 } else {
625 dev = qdev_new(TYPE_IOAPIC);
627 object_property_add_child(object_resolve_path(parent_name, NULL),
628 "ioapic", OBJECT(dev));
629 d = SYS_BUS_DEVICE(dev);
630 sysbus_realize_and_unref(d, &error_fatal);
631 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
633 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
634 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
638 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
640 DeviceState *dev;
641 SysBusDevice *d;
642 unsigned int i;
644 dev = qdev_new(TYPE_IOAPIC);
645 d = SYS_BUS_DEVICE(dev);
646 sysbus_realize_and_unref(d, &error_fatal);
647 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
649 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
650 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
652 return dev;
655 struct setup_data {
656 uint64_t next;
657 uint32_t type;
658 uint32_t len;
659 uint8_t data[];
660 } __attribute__((packed));
664 * The entry point into the kernel for PVH boot is different from
665 * the native entry point. The PVH entry is defined by the x86/HVM
666 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
668 * This function is passed to load_elf() when it is called from
669 * load_elfboot() which then additionally checks for an ELF Note of
670 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
671 * parse the PVH entry address from the ELF Note.
673 * Due to trickery in elf_opts.h, load_elf() is actually available as
674 * load_elf32() or load_elf64() and this routine needs to be able
675 * to deal with being called as 32 or 64 bit.
677 * The address of the PVH entry point is saved to the 'pvh_start_addr'
678 * global variable. (although the entry point is 32-bit, the kernel
679 * binary can be either 32-bit or 64-bit).
681 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
683 size_t *elf_note_data_addr;
685 /* Check if ELF Note header passed in is valid */
686 if (arg1 == NULL) {
687 return 0;
690 if (is64) {
691 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
692 uint64_t nhdr_size64 = sizeof(struct elf64_note);
693 uint64_t phdr_align = *(uint64_t *)arg2;
694 uint64_t nhdr_namesz = nhdr64->n_namesz;
696 elf_note_data_addr =
697 ((void *)nhdr64) + nhdr_size64 +
698 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
700 pvh_start_addr = *elf_note_data_addr;
701 } else {
702 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
703 uint32_t nhdr_size32 = sizeof(struct elf32_note);
704 uint32_t phdr_align = *(uint32_t *)arg2;
705 uint32_t nhdr_namesz = nhdr32->n_namesz;
707 elf_note_data_addr =
708 ((void *)nhdr32) + nhdr_size32 +
709 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
711 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
714 return pvh_start_addr;
717 static bool load_elfboot(const char *kernel_filename,
718 int kernel_file_size,
719 uint8_t *header,
720 size_t pvh_xen_start_addr,
721 FWCfgState *fw_cfg)
723 uint32_t flags = 0;
724 uint32_t mh_load_addr = 0;
725 uint32_t elf_kernel_size = 0;
726 uint64_t elf_entry;
727 uint64_t elf_low, elf_high;
728 int kernel_size;
730 if (ldl_p(header) != 0x464c457f) {
731 return false; /* no elfboot */
734 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
735 flags = elf_is64 ?
736 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
738 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
739 error_report("elfboot unsupported flags = %x", flags);
740 exit(1);
743 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
744 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
745 NULL, &elf_note_type, &elf_entry,
746 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
747 0, 0);
749 if (kernel_size < 0) {
750 error_report("Error while loading elf kernel");
751 exit(1);
753 mh_load_addr = elf_low;
754 elf_kernel_size = elf_high - elf_low;
756 if (pvh_start_addr == 0) {
757 error_report("Error loading uncompressed kernel without PVH ELF Note");
758 exit(1);
760 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
761 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
762 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
764 return true;
767 void x86_load_linux(X86MachineState *x86ms,
768 FWCfgState *fw_cfg,
769 int acpi_data_size,
770 bool pvh_enabled,
771 bool legacy_no_rng_seed)
773 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
774 uint16_t protocol;
775 int setup_size, kernel_size, cmdline_size;
776 int dtb_size, setup_data_offset;
777 uint32_t initrd_max;
778 uint8_t header[8192], *setup, *kernel;
779 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0, first_setup_data = 0;
780 FILE *f;
781 char *vmode;
782 MachineState *machine = MACHINE(x86ms);
783 struct setup_data *setup_data;
784 const char *kernel_filename = machine->kernel_filename;
785 const char *initrd_filename = machine->initrd_filename;
786 const char *dtb_filename = machine->dtb;
787 const char *kernel_cmdline = machine->kernel_cmdline;
788 SevKernelLoaderContext sev_load_ctx = {};
789 enum { RNG_SEED_LENGTH = 32 };
791 /* Align to 16 bytes as a paranoia measure */
792 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
794 /* load the kernel header */
795 f = fopen(kernel_filename, "rb");
796 if (!f) {
797 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
798 kernel_filename, strerror(errno));
799 exit(1);
802 kernel_size = get_file_size(f);
803 if (!kernel_size ||
804 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
805 MIN(ARRAY_SIZE(header), kernel_size)) {
806 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
807 kernel_filename, strerror(errno));
808 exit(1);
811 /* kernel protocol version */
812 if (ldl_p(header + 0x202) == 0x53726448) {
813 protocol = lduw_p(header + 0x206);
814 } else {
816 * This could be a multiboot kernel. If it is, let's stop treating it
817 * like a Linux kernel.
818 * Note: some multiboot images could be in the ELF format (the same of
819 * PVH), so we try multiboot first since we check the multiboot magic
820 * header before to load it.
822 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
823 kernel_cmdline, kernel_size, header)) {
824 return;
827 * Check if the file is an uncompressed kernel file (ELF) and load it,
828 * saving the PVH entry point used by the x86/HVM direct boot ABI.
829 * If load_elfboot() is successful, populate the fw_cfg info.
831 if (pvh_enabled &&
832 load_elfboot(kernel_filename, kernel_size,
833 header, pvh_start_addr, fw_cfg)) {
834 fclose(f);
836 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
837 strlen(kernel_cmdline) + 1);
838 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
840 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
841 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
842 header, sizeof(header));
844 /* load initrd */
845 if (initrd_filename) {
846 GMappedFile *mapped_file;
847 gsize initrd_size;
848 gchar *initrd_data;
849 GError *gerr = NULL;
851 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
852 if (!mapped_file) {
853 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
854 initrd_filename, gerr->message);
855 exit(1);
857 x86ms->initrd_mapped_file = mapped_file;
859 initrd_data = g_mapped_file_get_contents(mapped_file);
860 initrd_size = g_mapped_file_get_length(mapped_file);
861 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
862 if (initrd_size >= initrd_max) {
863 fprintf(stderr, "qemu: initrd is too large, cannot support."
864 "(max: %"PRIu32", need %"PRId64")\n",
865 initrd_max, (uint64_t)initrd_size);
866 exit(1);
869 initrd_addr = (initrd_max - initrd_size) & ~4095;
871 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
872 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
873 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
874 initrd_size);
877 option_rom[nb_option_roms].bootindex = 0;
878 option_rom[nb_option_roms].name = "pvh.bin";
879 nb_option_roms++;
881 return;
883 protocol = 0;
886 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
887 /* Low kernel */
888 real_addr = 0x90000;
889 cmdline_addr = 0x9a000 - cmdline_size;
890 prot_addr = 0x10000;
891 } else if (protocol < 0x202) {
892 /* High but ancient kernel */
893 real_addr = 0x90000;
894 cmdline_addr = 0x9a000 - cmdline_size;
895 prot_addr = 0x100000;
896 } else {
897 /* High and recent kernel */
898 real_addr = 0x10000;
899 cmdline_addr = 0x20000;
900 prot_addr = 0x100000;
903 /* highest address for loading the initrd */
904 if (protocol >= 0x20c &&
905 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
907 * Linux has supported initrd up to 4 GB for a very long time (2007,
908 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
909 * though it only sets initrd_max to 2 GB to "work around bootloader
910 * bugs". Luckily, QEMU firmware(which does something like bootloader)
911 * has supported this.
913 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
914 * be loaded into any address.
916 * In addition, initrd_max is uint32_t simply because QEMU doesn't
917 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
918 * field).
920 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
922 initrd_max = UINT32_MAX;
923 } else if (protocol >= 0x203) {
924 initrd_max = ldl_p(header + 0x22c);
925 } else {
926 initrd_max = 0x37ffffff;
929 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
930 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
933 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
934 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
935 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
936 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
937 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
939 if (protocol >= 0x202) {
940 stl_p(header + 0x228, cmdline_addr);
941 } else {
942 stw_p(header + 0x20, 0xA33F);
943 stw_p(header + 0x22, cmdline_addr - real_addr);
946 /* handle vga= parameter */
947 vmode = strstr(kernel_cmdline, "vga=");
948 if (vmode) {
949 unsigned int video_mode;
950 const char *end;
951 int ret;
952 /* skip "vga=" */
953 vmode += 4;
954 if (!strncmp(vmode, "normal", 6)) {
955 video_mode = 0xffff;
956 } else if (!strncmp(vmode, "ext", 3)) {
957 video_mode = 0xfffe;
958 } else if (!strncmp(vmode, "ask", 3)) {
959 video_mode = 0xfffd;
960 } else {
961 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
962 if (ret != 0 || (*end && *end != ' ')) {
963 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
964 exit(1);
967 stw_p(header + 0x1fa, video_mode);
970 /* loader type */
972 * High nybble = B reserved for QEMU; low nybble is revision number.
973 * If this code is substantially changed, you may want to consider
974 * incrementing the revision.
976 if (protocol >= 0x200) {
977 header[0x210] = 0xB0;
979 /* heap */
980 if (protocol >= 0x201) {
981 header[0x211] |= 0x80; /* CAN_USE_HEAP */
982 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
985 /* load initrd */
986 if (initrd_filename) {
987 GMappedFile *mapped_file;
988 gsize initrd_size;
989 gchar *initrd_data;
990 GError *gerr = NULL;
992 if (protocol < 0x200) {
993 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
994 exit(1);
997 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
998 if (!mapped_file) {
999 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1000 initrd_filename, gerr->message);
1001 exit(1);
1003 x86ms->initrd_mapped_file = mapped_file;
1005 initrd_data = g_mapped_file_get_contents(mapped_file);
1006 initrd_size = g_mapped_file_get_length(mapped_file);
1007 if (initrd_size >= initrd_max) {
1008 fprintf(stderr, "qemu: initrd is too large, cannot support."
1009 "(max: %"PRIu32", need %"PRId64")\n",
1010 initrd_max, (uint64_t)initrd_size);
1011 exit(1);
1014 initrd_addr = (initrd_max - initrd_size) & ~4095;
1016 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1017 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1018 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1019 sev_load_ctx.initrd_data = initrd_data;
1020 sev_load_ctx.initrd_size = initrd_size;
1022 stl_p(header + 0x218, initrd_addr);
1023 stl_p(header + 0x21c, initrd_size);
1026 /* load kernel and setup */
1027 setup_size = header[0x1f1];
1028 if (setup_size == 0) {
1029 setup_size = 4;
1031 setup_size = (setup_size + 1) * 512;
1032 if (setup_size > kernel_size) {
1033 fprintf(stderr, "qemu: invalid kernel header\n");
1034 exit(1);
1036 kernel_size -= setup_size;
1038 setup = g_malloc(setup_size);
1039 kernel = g_malloc(kernel_size);
1040 fseek(f, 0, SEEK_SET);
1041 if (fread(setup, 1, setup_size, f) != setup_size) {
1042 fprintf(stderr, "fread() failed\n");
1043 exit(1);
1045 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1046 fprintf(stderr, "fread() failed\n");
1047 exit(1);
1049 fclose(f);
1051 /* append dtb to kernel */
1052 if (dtb_filename) {
1053 if (protocol < 0x209) {
1054 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1055 exit(1);
1058 dtb_size = get_image_size(dtb_filename);
1059 if (dtb_size <= 0) {
1060 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1061 dtb_filename, strerror(errno));
1062 exit(1);
1065 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1066 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1067 kernel = g_realloc(kernel, kernel_size);
1070 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1071 setup_data->next = cpu_to_le64(first_setup_data);
1072 first_setup_data = prot_addr + setup_data_offset;
1073 setup_data->type = cpu_to_le32(SETUP_DTB);
1074 setup_data->len = cpu_to_le32(dtb_size);
1076 load_image_size(dtb_filename, setup_data->data, dtb_size);
1079 if (!legacy_no_rng_seed) {
1080 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1081 kernel_size = setup_data_offset + sizeof(struct setup_data) + RNG_SEED_LENGTH;
1082 kernel = g_realloc(kernel, kernel_size);
1083 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1084 setup_data->next = cpu_to_le64(first_setup_data);
1085 first_setup_data = prot_addr + setup_data_offset;
1086 setup_data->type = cpu_to_le32(SETUP_RNG_SEED);
1087 setup_data->len = cpu_to_le32(RNG_SEED_LENGTH);
1088 qemu_guest_getrandom_nofail(setup_data->data, RNG_SEED_LENGTH);
1091 /* Offset 0x250 is a pointer to the first setup_data link. */
1092 stq_p(header + 0x250, first_setup_data);
1095 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1096 * efi stub for booting and doesn't require any values to be placed in the
1097 * kernel header. We therefore don't update the header so the hash of the
1098 * kernel on the other side of the fw_cfg interface matches the hash of the
1099 * file the user passed in.
1101 if (!sev_enabled()) {
1102 memcpy(setup, header, MIN(sizeof(header), setup_size));
1105 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1106 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1107 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1108 sev_load_ctx.kernel_data = (char *)kernel;
1109 sev_load_ctx.kernel_size = kernel_size;
1111 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1112 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1113 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1114 sev_load_ctx.setup_data = (char *)setup;
1115 sev_load_ctx.setup_size = setup_size;
1117 if (sev_enabled()) {
1118 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1121 option_rom[nb_option_roms].bootindex = 0;
1122 option_rom[nb_option_roms].name = "linuxboot.bin";
1123 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1124 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1126 nb_option_roms++;
1129 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1130 MemoryRegion *rom_memory, bool isapc_ram_fw)
1132 const char *bios_name;
1133 char *filename;
1134 MemoryRegion *bios, *isa_bios;
1135 int bios_size, isa_bios_size;
1136 ssize_t ret;
1138 /* BIOS load */
1139 bios_name = ms->firmware ?: default_firmware;
1140 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1141 if (filename) {
1142 bios_size = get_image_size(filename);
1143 } else {
1144 bios_size = -1;
1146 if (bios_size <= 0 ||
1147 (bios_size % 65536) != 0) {
1148 goto bios_error;
1150 bios = g_malloc(sizeof(*bios));
1151 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1152 if (sev_enabled()) {
1154 * The concept of a "reset" simply doesn't exist for
1155 * confidential computing guests, we have to destroy and
1156 * re-launch them instead. So there is no need to register
1157 * the firmware as rom to properly re-initialize on reset.
1158 * Just go for a straight file load instead.
1160 void *ptr = memory_region_get_ram_ptr(bios);
1161 load_image_size(filename, ptr, bios_size);
1162 x86_firmware_configure(ptr, bios_size);
1163 } else {
1164 if (!isapc_ram_fw) {
1165 memory_region_set_readonly(bios, true);
1167 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1168 if (ret != 0) {
1169 goto bios_error;
1172 g_free(filename);
1174 /* map the last 128KB of the BIOS in ISA space */
1175 isa_bios_size = MIN(bios_size, 128 * KiB);
1176 isa_bios = g_malloc(sizeof(*isa_bios));
1177 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1178 bios_size - isa_bios_size, isa_bios_size);
1179 memory_region_add_subregion_overlap(rom_memory,
1180 0x100000 - isa_bios_size,
1181 isa_bios,
1183 if (!isapc_ram_fw) {
1184 memory_region_set_readonly(isa_bios, true);
1187 /* map all the bios at the top of memory */
1188 memory_region_add_subregion(rom_memory,
1189 (uint32_t)(-bios_size),
1190 bios);
1191 return;
1193 bios_error:
1194 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1195 exit(1);
1198 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1200 bool smm_available = false;
1202 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1203 return false;
1206 if (tcg_enabled() || qtest_enabled()) {
1207 smm_available = true;
1208 } else if (kvm_enabled()) {
1209 smm_available = kvm_has_smm();
1212 if (smm_available) {
1213 return true;
1216 if (x86ms->smm == ON_OFF_AUTO_ON) {
1217 error_report("System Management Mode not supported by this hypervisor.");
1218 exit(1);
1220 return false;
1223 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1224 void *opaque, Error **errp)
1226 X86MachineState *x86ms = X86_MACHINE(obj);
1227 OnOffAuto smm = x86ms->smm;
1229 visit_type_OnOffAuto(v, name, &smm, errp);
1232 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1233 void *opaque, Error **errp)
1235 X86MachineState *x86ms = X86_MACHINE(obj);
1237 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1240 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1242 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1243 return false;
1245 return true;
1248 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1249 void *opaque, Error **errp)
1251 X86MachineState *x86ms = X86_MACHINE(obj);
1252 OnOffAuto acpi = x86ms->acpi;
1254 visit_type_OnOffAuto(v, name, &acpi, errp);
1257 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1258 void *opaque, Error **errp)
1260 X86MachineState *x86ms = X86_MACHINE(obj);
1262 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1265 static void x86_machine_get_pit(Object *obj, Visitor *v, const char *name,
1266 void *opaque, Error **errp)
1268 X86MachineState *x86ms = X86_MACHINE(obj);
1269 OnOffAuto pit = x86ms->pit;
1271 visit_type_OnOffAuto(v, name, &pit, errp);
1274 static void x86_machine_set_pit(Object *obj, Visitor *v, const char *name,
1275 void *opaque, Error **errp)
1277 X86MachineState *x86ms = X86_MACHINE(obj);;
1279 visit_type_OnOffAuto(v, name, &x86ms->pit, errp);
1282 static void x86_machine_get_pic(Object *obj, Visitor *v, const char *name,
1283 void *opaque, Error **errp)
1285 X86MachineState *x86ms = X86_MACHINE(obj);
1286 OnOffAuto pic = x86ms->pic;
1288 visit_type_OnOffAuto(v, name, &pic, errp);
1291 static void x86_machine_set_pic(Object *obj, Visitor *v, const char *name,
1292 void *opaque, Error **errp)
1294 X86MachineState *x86ms = X86_MACHINE(obj);
1296 visit_type_OnOffAuto(v, name, &x86ms->pic, errp);
1299 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1301 X86MachineState *x86ms = X86_MACHINE(obj);
1303 return g_strdup(x86ms->oem_id);
1306 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1308 X86MachineState *x86ms = X86_MACHINE(obj);
1309 size_t len = strlen(value);
1311 if (len > 6) {
1312 error_setg(errp,
1313 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1314 "6 bytes in size");
1315 return;
1318 strncpy(x86ms->oem_id, value, 6);
1321 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1323 X86MachineState *x86ms = X86_MACHINE(obj);
1325 return g_strdup(x86ms->oem_table_id);
1328 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1329 Error **errp)
1331 X86MachineState *x86ms = X86_MACHINE(obj);
1332 size_t len = strlen(value);
1334 if (len > 8) {
1335 error_setg(errp,
1336 "User specified "X86_MACHINE_OEM_TABLE_ID
1337 " value is bigger than "
1338 "8 bytes in size");
1339 return;
1341 strncpy(x86ms->oem_table_id, value, 8);
1344 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1345 const char *name, void *opaque, Error **errp)
1347 X86MachineState *x86ms = X86_MACHINE(obj);
1348 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1350 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1353 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1354 const char *name, void *opaque, Error **errp)
1356 X86MachineState *x86ms = X86_MACHINE(obj);
1358 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1361 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1362 void *opaque, Error **errp)
1364 X86MachineState *x86ms = X86_MACHINE(obj);
1365 SgxEPCList *list = x86ms->sgx_epc_list;
1367 visit_type_SgxEPCList(v, name, &list, errp);
1370 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1371 void *opaque, Error **errp)
1373 X86MachineState *x86ms = X86_MACHINE(obj);
1374 SgxEPCList *list;
1376 list = x86ms->sgx_epc_list;
1377 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1379 qapi_free_SgxEPCList(list);
1382 static void x86_machine_initfn(Object *obj)
1384 X86MachineState *x86ms = X86_MACHINE(obj);
1386 x86ms->smm = ON_OFF_AUTO_AUTO;
1387 x86ms->acpi = ON_OFF_AUTO_AUTO;
1388 x86ms->pit = ON_OFF_AUTO_AUTO;
1389 x86ms->pic = ON_OFF_AUTO_AUTO;
1390 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1391 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1392 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1393 x86ms->bus_lock_ratelimit = 0;
1394 x86ms->above_4g_mem_start = 4 * GiB;
1397 static void x86_machine_class_init(ObjectClass *oc, void *data)
1399 MachineClass *mc = MACHINE_CLASS(oc);
1400 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1401 NMIClass *nc = NMI_CLASS(oc);
1403 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1404 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1405 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1406 x86mc->save_tsc_khz = true;
1407 x86mc->fwcfg_dma_enabled = true;
1408 nc->nmi_monitor_handler = x86_nmi;
1410 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1411 x86_machine_get_smm, x86_machine_set_smm,
1412 NULL, NULL);
1413 object_class_property_set_description(oc, X86_MACHINE_SMM,
1414 "Enable SMM");
1416 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1417 x86_machine_get_acpi, x86_machine_set_acpi,
1418 NULL, NULL);
1419 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1420 "Enable ACPI");
1422 object_class_property_add(oc, X86_MACHINE_PIT, "OnOffAuto",
1423 x86_machine_get_pit,
1424 x86_machine_set_pit,
1425 NULL, NULL);
1426 object_class_property_set_description(oc, X86_MACHINE_PIT,
1427 "Enable i8254 PIT");
1429 object_class_property_add(oc, X86_MACHINE_PIC, "OnOffAuto",
1430 x86_machine_get_pic,
1431 x86_machine_set_pic,
1432 NULL, NULL);
1433 object_class_property_set_description(oc, X86_MACHINE_PIC,
1434 "Enable i8259 PIC");
1436 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1437 x86_machine_get_oem_id,
1438 x86_machine_set_oem_id);
1439 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1440 "Override the default value of field OEMID "
1441 "in ACPI table header."
1442 "The string may be up to 6 bytes in size");
1445 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1446 x86_machine_get_oem_table_id,
1447 x86_machine_set_oem_table_id);
1448 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1449 "Override the default value of field OEM Table ID "
1450 "in ACPI table header."
1451 "The string may be up to 8 bytes in size");
1453 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1454 x86_machine_get_bus_lock_ratelimit,
1455 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1456 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1457 "Set the ratelimit for the bus locks acquired in VMs");
1459 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1460 machine_get_sgx_epc, machine_set_sgx_epc,
1461 NULL, NULL);
1462 object_class_property_set_description(oc, "sgx-epc",
1463 "SGX EPC device");
1466 static const TypeInfo x86_machine_info = {
1467 .name = TYPE_X86_MACHINE,
1468 .parent = TYPE_MACHINE,
1469 .abstract = true,
1470 .instance_size = sizeof(X86MachineState),
1471 .instance_init = x86_machine_initfn,
1472 .class_size = sizeof(X86MachineClass),
1473 .class_init = x86_machine_class_init,
1474 .interfaces = (InterfaceInfo[]) {
1475 { TYPE_NMI },
1480 static void x86_machine_register_types(void)
1482 type_register_static(&x86_machine_info);
1485 type_init(x86_machine_register_types)