target/arm: Split s2walk_secure from ipa_secure in get_phys_addr
[qemu/ar7.git] / target / arm / ptw.c
blobb8c494ad9f0f246312313d36db6f83a89c1c460d
1 /*
2 * ARM page table walking.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "idau.h"
17 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
18 MMUAccessType access_type, ARMMMUIdx mmu_idx,
19 bool s1_is_el0, GetPhysAddrResult *result,
20 ARMMMUFaultInfo *fi)
21 __attribute__((nonnull));
23 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
24 static const uint8_t pamax_map[] = {
25 [0] = 32,
26 [1] = 36,
27 [2] = 40,
28 [3] = 42,
29 [4] = 44,
30 [5] = 48,
31 [6] = 52,
34 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
35 unsigned int arm_pamax(ARMCPU *cpu)
37 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
38 unsigned int parange =
39 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
42 * id_aa64mmfr0 is a read-only register so values outside of the
43 * supported mappings can be considered an implementation error.
45 assert(parange < ARRAY_SIZE(pamax_map));
46 return pamax_map[parange];
50 * In machvirt_init, we call arm_pamax on a cpu that is not fully
51 * initialized, so we can't rely on the propagation done in realize.
53 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
54 arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
55 /* v7 with LPAE */
56 return 40;
58 /* Anything else */
59 return 32;
63 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
65 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
67 switch (mmu_idx) {
68 case ARMMMUIdx_SE10_0:
69 return ARMMMUIdx_Stage1_SE0;
70 case ARMMMUIdx_SE10_1:
71 return ARMMMUIdx_Stage1_SE1;
72 case ARMMMUIdx_SE10_1_PAN:
73 return ARMMMUIdx_Stage1_SE1_PAN;
74 case ARMMMUIdx_E10_0:
75 return ARMMMUIdx_Stage1_E0;
76 case ARMMMUIdx_E10_1:
77 return ARMMMUIdx_Stage1_E1;
78 case ARMMMUIdx_E10_1_PAN:
79 return ARMMMUIdx_Stage1_E1_PAN;
80 default:
81 return mmu_idx;
85 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
87 return stage_1_mmu_idx(arm_mmu_idx(env));
90 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
92 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
95 static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
97 switch (mmu_idx) {
98 case ARMMMUIdx_SE10_0:
99 case ARMMMUIdx_E20_0:
100 case ARMMMUIdx_SE20_0:
101 case ARMMMUIdx_Stage1_E0:
102 case ARMMMUIdx_Stage1_SE0:
103 case ARMMMUIdx_MUser:
104 case ARMMMUIdx_MSUser:
105 case ARMMMUIdx_MUserNegPri:
106 case ARMMMUIdx_MSUserNegPri:
107 return true;
108 default:
109 return false;
110 case ARMMMUIdx_E10_0:
111 case ARMMMUIdx_E10_1:
112 case ARMMMUIdx_E10_1_PAN:
113 g_assert_not_reached();
117 /* Return the TTBR associated with this translation regime */
118 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
120 if (mmu_idx == ARMMMUIdx_Stage2) {
121 return env->cp15.vttbr_el2;
123 if (mmu_idx == ARMMMUIdx_Stage2_S) {
124 return env->cp15.vsttbr_el2;
126 if (ttbrn == 0) {
127 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
128 } else {
129 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
133 /* Return true if the specified stage of address translation is disabled */
134 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
136 uint64_t hcr_el2;
138 if (arm_feature(env, ARM_FEATURE_M)) {
139 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
140 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
141 case R_V7M_MPU_CTRL_ENABLE_MASK:
142 /* Enabled, but not for HardFault and NMI */
143 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
144 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
145 /* Enabled for all cases */
146 return false;
147 case 0:
148 default:
150 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
151 * we warned about that in armv7m_nvic.c when the guest set it.
153 return true;
157 hcr_el2 = arm_hcr_el2_eff(env);
159 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
160 /* HCR.DC means HCR.VM behaves as 1 */
161 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
164 if (hcr_el2 & HCR_TGE) {
165 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
166 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
167 return true;
171 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
172 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
173 return true;
176 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
179 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
182 * For an S1 page table walk, the stage 1 attributes are always
183 * some form of "this is Normal memory". The combined S1+S2
184 * attributes are therefore only Device if stage 2 specifies Device.
185 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
186 * ie when cacheattrs.attrs bits [3:2] are 0b00.
187 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
188 * when cacheattrs.attrs bit [2] is 0.
190 assert(cacheattrs.is_s2_format);
191 if (arm_hcr_el2_eff(env) & HCR_FWB) {
192 return (cacheattrs.attrs & 0x4) == 0;
193 } else {
194 return (cacheattrs.attrs & 0xc) == 0;
198 /* Translate a S1 pagetable walk through S2 if needed. */
199 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
200 hwaddr addr, bool *is_secure,
201 ARMMMUFaultInfo *fi)
203 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
204 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
205 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
206 : ARMMMUIdx_Stage2;
207 GetPhysAddrResult s2 = {};
208 int ret;
210 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
211 &s2, fi);
212 if (ret) {
213 assert(fi->type != ARMFault_None);
214 fi->s2addr = addr;
215 fi->stage2 = true;
216 fi->s1ptw = true;
217 fi->s1ns = !*is_secure;
218 return ~0;
220 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
221 ptw_attrs_are_device(env, s2.cacheattrs)) {
223 * PTW set and S1 walk touched S2 Device memory:
224 * generate Permission fault.
226 fi->type = ARMFault_Permission;
227 fi->s2addr = addr;
228 fi->stage2 = true;
229 fi->s1ptw = true;
230 fi->s1ns = !*is_secure;
231 return ~0;
234 if (arm_is_secure_below_el3(env)) {
235 /* Check if page table walk is to secure or non-secure PA space. */
236 if (*is_secure) {
237 *is_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
238 } else {
239 *is_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
241 } else {
242 assert(!*is_secure);
245 addr = s2.phys;
247 return addr;
250 /* All loads done in the course of a page table walk go through here. */
251 static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
252 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
254 CPUState *cs = env_cpu(env);
255 MemTxAttrs attrs = {};
256 MemTxResult result = MEMTX_OK;
257 AddressSpace *as;
258 uint32_t data;
260 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
261 attrs.secure = is_secure;
262 as = arm_addressspace(cs, attrs);
263 if (fi->s1ptw) {
264 return 0;
266 if (regime_translation_big_endian(env, mmu_idx)) {
267 data = address_space_ldl_be(as, addr, attrs, &result);
268 } else {
269 data = address_space_ldl_le(as, addr, attrs, &result);
271 if (result == MEMTX_OK) {
272 return data;
274 fi->type = ARMFault_SyncExternalOnWalk;
275 fi->ea = arm_extabort_type(result);
276 return 0;
279 static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
280 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
282 CPUState *cs = env_cpu(env);
283 MemTxAttrs attrs = {};
284 MemTxResult result = MEMTX_OK;
285 AddressSpace *as;
286 uint64_t data;
288 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
289 attrs.secure = is_secure;
290 as = arm_addressspace(cs, attrs);
291 if (fi->s1ptw) {
292 return 0;
294 if (regime_translation_big_endian(env, mmu_idx)) {
295 data = address_space_ldq_be(as, addr, attrs, &result);
296 } else {
297 data = address_space_ldq_le(as, addr, attrs, &result);
299 if (result == MEMTX_OK) {
300 return data;
302 fi->type = ARMFault_SyncExternalOnWalk;
303 fi->ea = arm_extabort_type(result);
304 return 0;
307 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
308 uint32_t *table, uint32_t address)
310 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
311 uint64_t tcr = regime_tcr(env, mmu_idx);
312 int maskshift = extract32(tcr, 0, 3);
313 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
314 uint32_t base_mask;
316 if (address & mask) {
317 if (tcr & TTBCR_PD1) {
318 /* Translation table walk disabled for TTBR1 */
319 return false;
321 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
322 } else {
323 if (tcr & TTBCR_PD0) {
324 /* Translation table walk disabled for TTBR0 */
325 return false;
327 base_mask = ~((uint32_t)0x3fffu >> maskshift);
328 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
330 *table |= (address >> 18) & 0x3ffc;
331 return true;
335 * Translate section/page access permissions to page R/W protection flags
336 * @env: CPUARMState
337 * @mmu_idx: MMU index indicating required translation regime
338 * @ap: The 3-bit access permissions (AP[2:0])
339 * @domain_prot: The 2-bit domain access permissions
341 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
342 int ap, int domain_prot)
344 bool is_user = regime_is_user(env, mmu_idx);
346 if (domain_prot == 3) {
347 return PAGE_READ | PAGE_WRITE;
350 switch (ap) {
351 case 0:
352 if (arm_feature(env, ARM_FEATURE_V7)) {
353 return 0;
355 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
356 case SCTLR_S:
357 return is_user ? 0 : PAGE_READ;
358 case SCTLR_R:
359 return PAGE_READ;
360 default:
361 return 0;
363 case 1:
364 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
365 case 2:
366 if (is_user) {
367 return PAGE_READ;
368 } else {
369 return PAGE_READ | PAGE_WRITE;
371 case 3:
372 return PAGE_READ | PAGE_WRITE;
373 case 4: /* Reserved. */
374 return 0;
375 case 5:
376 return is_user ? 0 : PAGE_READ;
377 case 6:
378 return PAGE_READ;
379 case 7:
380 if (!arm_feature(env, ARM_FEATURE_V6K)) {
381 return 0;
383 return PAGE_READ;
384 default:
385 g_assert_not_reached();
390 * Translate section/page access permissions to page R/W protection flags.
391 * @ap: The 2-bit simple AP (AP[2:1])
392 * @is_user: TRUE if accessing from PL0
394 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
396 switch (ap) {
397 case 0:
398 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
399 case 1:
400 return PAGE_READ | PAGE_WRITE;
401 case 2:
402 return is_user ? 0 : PAGE_READ;
403 case 3:
404 return PAGE_READ;
405 default:
406 g_assert_not_reached();
410 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
412 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
415 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
416 MMUAccessType access_type, ARMMMUIdx mmu_idx,
417 bool is_secure, GetPhysAddrResult *result,
418 ARMMMUFaultInfo *fi)
420 int level = 1;
421 uint32_t table;
422 uint32_t desc;
423 int type;
424 int ap;
425 int domain = 0;
426 int domain_prot;
427 hwaddr phys_addr;
428 uint32_t dacr;
430 /* Pagetable walk. */
431 /* Lookup l1 descriptor. */
432 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
433 /* Section translation fault if page walk is disabled by PD0 or PD1 */
434 fi->type = ARMFault_Translation;
435 goto do_fault;
437 desc = arm_ldl_ptw(env, table, is_secure, mmu_idx, fi);
438 if (fi->type != ARMFault_None) {
439 goto do_fault;
441 type = (desc & 3);
442 domain = (desc >> 5) & 0x0f;
443 if (regime_el(env, mmu_idx) == 1) {
444 dacr = env->cp15.dacr_ns;
445 } else {
446 dacr = env->cp15.dacr_s;
448 domain_prot = (dacr >> (domain * 2)) & 3;
449 if (type == 0) {
450 /* Section translation fault. */
451 fi->type = ARMFault_Translation;
452 goto do_fault;
454 if (type != 2) {
455 level = 2;
457 if (domain_prot == 0 || domain_prot == 2) {
458 fi->type = ARMFault_Domain;
459 goto do_fault;
461 if (type == 2) {
462 /* 1Mb section. */
463 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
464 ap = (desc >> 10) & 3;
465 result->page_size = 1024 * 1024;
466 } else {
467 /* Lookup l2 entry. */
468 if (type == 1) {
469 /* Coarse pagetable. */
470 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
471 } else {
472 /* Fine pagetable. */
473 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
475 desc = arm_ldl_ptw(env, table, is_secure, mmu_idx, fi);
476 if (fi->type != ARMFault_None) {
477 goto do_fault;
479 switch (desc & 3) {
480 case 0: /* Page translation fault. */
481 fi->type = ARMFault_Translation;
482 goto do_fault;
483 case 1: /* 64k page. */
484 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
485 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
486 result->page_size = 0x10000;
487 break;
488 case 2: /* 4k page. */
489 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
490 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
491 result->page_size = 0x1000;
492 break;
493 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
494 if (type == 1) {
495 /* ARMv6/XScale extended small page format */
496 if (arm_feature(env, ARM_FEATURE_XSCALE)
497 || arm_feature(env, ARM_FEATURE_V6)) {
498 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
499 result->page_size = 0x1000;
500 } else {
502 * UNPREDICTABLE in ARMv5; we choose to take a
503 * page translation fault.
505 fi->type = ARMFault_Translation;
506 goto do_fault;
508 } else {
509 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
510 result->page_size = 0x400;
512 ap = (desc >> 4) & 3;
513 break;
514 default:
515 /* Never happens, but compiler isn't smart enough to tell. */
516 g_assert_not_reached();
519 result->prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
520 result->prot |= result->prot ? PAGE_EXEC : 0;
521 if (!(result->prot & (1 << access_type))) {
522 /* Access permission fault. */
523 fi->type = ARMFault_Permission;
524 goto do_fault;
526 result->phys = phys_addr;
527 return false;
528 do_fault:
529 fi->domain = domain;
530 fi->level = level;
531 return true;
534 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
535 MMUAccessType access_type, ARMMMUIdx mmu_idx,
536 bool is_secure, GetPhysAddrResult *result,
537 ARMMMUFaultInfo *fi)
539 ARMCPU *cpu = env_archcpu(env);
540 int level = 1;
541 uint32_t table;
542 uint32_t desc;
543 uint32_t xn;
544 uint32_t pxn = 0;
545 int type;
546 int ap;
547 int domain = 0;
548 int domain_prot;
549 hwaddr phys_addr;
550 uint32_t dacr;
551 bool ns;
553 /* Pagetable walk. */
554 /* Lookup l1 descriptor. */
555 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
556 /* Section translation fault if page walk is disabled by PD0 or PD1 */
557 fi->type = ARMFault_Translation;
558 goto do_fault;
560 desc = arm_ldl_ptw(env, table, is_secure, mmu_idx, fi);
561 if (fi->type != ARMFault_None) {
562 goto do_fault;
564 type = (desc & 3);
565 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
566 /* Section translation fault, or attempt to use the encoding
567 * which is Reserved on implementations without PXN.
569 fi->type = ARMFault_Translation;
570 goto do_fault;
572 if ((type == 1) || !(desc & (1 << 18))) {
573 /* Page or Section. */
574 domain = (desc >> 5) & 0x0f;
576 if (regime_el(env, mmu_idx) == 1) {
577 dacr = env->cp15.dacr_ns;
578 } else {
579 dacr = env->cp15.dacr_s;
581 if (type == 1) {
582 level = 2;
584 domain_prot = (dacr >> (domain * 2)) & 3;
585 if (domain_prot == 0 || domain_prot == 2) {
586 /* Section or Page domain fault */
587 fi->type = ARMFault_Domain;
588 goto do_fault;
590 if (type != 1) {
591 if (desc & (1 << 18)) {
592 /* Supersection. */
593 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
594 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
595 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
596 result->page_size = 0x1000000;
597 } else {
598 /* Section. */
599 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
600 result->page_size = 0x100000;
602 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
603 xn = desc & (1 << 4);
604 pxn = desc & 1;
605 ns = extract32(desc, 19, 1);
606 } else {
607 if (cpu_isar_feature(aa32_pxn, cpu)) {
608 pxn = (desc >> 2) & 1;
610 ns = extract32(desc, 3, 1);
611 /* Lookup l2 entry. */
612 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
613 desc = arm_ldl_ptw(env, table, is_secure, mmu_idx, fi);
614 if (fi->type != ARMFault_None) {
615 goto do_fault;
617 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
618 switch (desc & 3) {
619 case 0: /* Page translation fault. */
620 fi->type = ARMFault_Translation;
621 goto do_fault;
622 case 1: /* 64k page. */
623 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
624 xn = desc & (1 << 15);
625 result->page_size = 0x10000;
626 break;
627 case 2: case 3: /* 4k page. */
628 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
629 xn = desc & 1;
630 result->page_size = 0x1000;
631 break;
632 default:
633 /* Never happens, but compiler isn't smart enough to tell. */
634 g_assert_not_reached();
637 if (domain_prot == 3) {
638 result->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
639 } else {
640 if (pxn && !regime_is_user(env, mmu_idx)) {
641 xn = 1;
643 if (xn && access_type == MMU_INST_FETCH) {
644 fi->type = ARMFault_Permission;
645 goto do_fault;
648 if (arm_feature(env, ARM_FEATURE_V6K) &&
649 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
650 /* The simplified model uses AP[0] as an access control bit. */
651 if ((ap & 1) == 0) {
652 /* Access flag fault. */
653 fi->type = ARMFault_AccessFlag;
654 goto do_fault;
656 result->prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
657 } else {
658 result->prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
660 if (result->prot && !xn) {
661 result->prot |= PAGE_EXEC;
663 if (!(result->prot & (1 << access_type))) {
664 /* Access permission fault. */
665 fi->type = ARMFault_Permission;
666 goto do_fault;
669 if (ns) {
670 /* The NS bit will (as required by the architecture) have no effect if
671 * the CPU doesn't support TZ or this is a non-secure translation
672 * regime, because the attribute will already be non-secure.
674 result->attrs.secure = false;
676 result->phys = phys_addr;
677 return false;
678 do_fault:
679 fi->domain = domain;
680 fi->level = level;
681 return true;
685 * Translate S2 section/page access permissions to protection flags
686 * @env: CPUARMState
687 * @s2ap: The 2-bit stage2 access permissions (S2AP)
688 * @xn: XN (execute-never) bits
689 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
691 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
693 int prot = 0;
695 if (s2ap & 1) {
696 prot |= PAGE_READ;
698 if (s2ap & 2) {
699 prot |= PAGE_WRITE;
702 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
703 switch (xn) {
704 case 0:
705 prot |= PAGE_EXEC;
706 break;
707 case 1:
708 if (s1_is_el0) {
709 prot |= PAGE_EXEC;
711 break;
712 case 2:
713 break;
714 case 3:
715 if (!s1_is_el0) {
716 prot |= PAGE_EXEC;
718 break;
719 default:
720 g_assert_not_reached();
722 } else {
723 if (!extract32(xn, 1, 1)) {
724 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
725 prot |= PAGE_EXEC;
729 return prot;
733 * Translate section/page access permissions to protection flags
734 * @env: CPUARMState
735 * @mmu_idx: MMU index indicating required translation regime
736 * @is_aa64: TRUE if AArch64
737 * @ap: The 2-bit simple AP (AP[2:1])
738 * @ns: NS (non-secure) bit
739 * @xn: XN (execute-never) bit
740 * @pxn: PXN (privileged execute-never) bit
742 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
743 int ap, int ns, int xn, int pxn)
745 bool is_user = regime_is_user(env, mmu_idx);
746 int prot_rw, user_rw;
747 bool have_wxn;
748 int wxn = 0;
750 assert(mmu_idx != ARMMMUIdx_Stage2);
751 assert(mmu_idx != ARMMMUIdx_Stage2_S);
753 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
754 if (is_user) {
755 prot_rw = user_rw;
756 } else {
757 if (user_rw && regime_is_pan(env, mmu_idx)) {
758 /* PAN forbids data accesses but doesn't affect insn fetch */
759 prot_rw = 0;
760 } else {
761 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
765 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
766 return prot_rw;
769 /* TODO have_wxn should be replaced with
770 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
771 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
772 * compatible processors have EL2, which is required for [U]WXN.
774 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
776 if (have_wxn) {
777 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
780 if (is_aa64) {
781 if (regime_has_2_ranges(mmu_idx) && !is_user) {
782 xn = pxn || (user_rw & PAGE_WRITE);
784 } else if (arm_feature(env, ARM_FEATURE_V7)) {
785 switch (regime_el(env, mmu_idx)) {
786 case 1:
787 case 3:
788 if (is_user) {
789 xn = xn || !(user_rw & PAGE_READ);
790 } else {
791 int uwxn = 0;
792 if (have_wxn) {
793 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
795 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
796 (uwxn && (user_rw & PAGE_WRITE));
798 break;
799 case 2:
800 break;
802 } else {
803 xn = wxn = 0;
806 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
807 return prot_rw;
809 return prot_rw | PAGE_EXEC;
812 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
813 ARMMMUIdx mmu_idx)
815 uint64_t tcr = regime_tcr(env, mmu_idx);
816 uint32_t el = regime_el(env, mmu_idx);
817 int select, tsz;
818 bool epd, hpd;
820 assert(mmu_idx != ARMMMUIdx_Stage2_S);
822 if (mmu_idx == ARMMMUIdx_Stage2) {
823 /* VTCR */
824 bool sext = extract32(tcr, 4, 1);
825 bool sign = extract32(tcr, 3, 1);
828 * If the sign-extend bit is not the same as t0sz[3], the result
829 * is unpredictable. Flag this as a guest error.
831 if (sign != sext) {
832 qemu_log_mask(LOG_GUEST_ERROR,
833 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
835 tsz = sextract32(tcr, 0, 4) + 8;
836 select = 0;
837 hpd = false;
838 epd = false;
839 } else if (el == 2) {
840 /* HTCR */
841 tsz = extract32(tcr, 0, 3);
842 select = 0;
843 hpd = extract64(tcr, 24, 1);
844 epd = false;
845 } else {
846 int t0sz = extract32(tcr, 0, 3);
847 int t1sz = extract32(tcr, 16, 3);
849 if (t1sz == 0) {
850 select = va > (0xffffffffu >> t0sz);
851 } else {
852 /* Note that we will detect errors later. */
853 select = va >= ~(0xffffffffu >> t1sz);
855 if (!select) {
856 tsz = t0sz;
857 epd = extract32(tcr, 7, 1);
858 hpd = extract64(tcr, 41, 1);
859 } else {
860 tsz = t1sz;
861 epd = extract32(tcr, 23, 1);
862 hpd = extract64(tcr, 42, 1);
864 /* For aarch32, hpd0 is not enabled without t2e as well. */
865 hpd &= extract32(tcr, 6, 1);
868 return (ARMVAParameters) {
869 .tsz = tsz,
870 .select = select,
871 .epd = epd,
872 .hpd = hpd,
877 * check_s2_mmu_setup
878 * @cpu: ARMCPU
879 * @is_aa64: True if the translation regime is in AArch64 state
880 * @startlevel: Suggested starting level
881 * @inputsize: Bitsize of IPAs
882 * @stride: Page-table stride (See the ARM ARM)
884 * Returns true if the suggested S2 translation parameters are OK and
885 * false otherwise.
887 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
888 int inputsize, int stride, int outputsize)
890 const int grainsize = stride + 3;
891 int startsizecheck;
894 * Negative levels are usually not allowed...
895 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
896 * begins with level -1. Note that previous feature tests will have
897 * eliminated this combination if it is not enabled.
899 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
900 return false;
903 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
904 if (startsizecheck < 1 || startsizecheck > stride + 4) {
905 return false;
908 if (is_aa64) {
909 switch (stride) {
910 case 13: /* 64KB Pages. */
911 if (level == 0 || (level == 1 && outputsize <= 42)) {
912 return false;
914 break;
915 case 11: /* 16KB Pages. */
916 if (level == 0 || (level == 1 && outputsize <= 40)) {
917 return false;
919 break;
920 case 9: /* 4KB Pages. */
921 if (level == 0 && outputsize <= 42) {
922 return false;
924 break;
925 default:
926 g_assert_not_reached();
929 /* Inputsize checks. */
930 if (inputsize > outputsize &&
931 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
932 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
933 return false;
935 } else {
936 /* AArch32 only supports 4KB pages. Assert on that. */
937 assert(stride == 9);
939 if (level == 0) {
940 return false;
943 return true;
947 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
949 * Returns false if the translation was successful. Otherwise, phys_ptr,
950 * attrs, prot and page_size may not be filled in, and the populated fsr
951 * value provides information on why the translation aborted, in the format
952 * of a long-format DFSR/IFSR fault register, with the following caveat:
953 * the WnR bit is never set (the caller must do this).
955 * @env: CPUARMState
956 * @address: virtual address to get physical address for
957 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
958 * @mmu_idx: MMU index indicating required translation regime
959 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page
960 * table walk), must be true if this is stage 2 of a stage 1+2
961 * walk for an EL0 access. If @mmu_idx is anything else,
962 * @s1_is_el0 is ignored.
963 * @result: set on translation success,
964 * @fi: set to fault info if the translation fails
966 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
967 MMUAccessType access_type, ARMMMUIdx mmu_idx,
968 bool s1_is_el0, GetPhysAddrResult *result,
969 ARMMMUFaultInfo *fi)
971 ARMCPU *cpu = env_archcpu(env);
972 /* Read an LPAE long-descriptor translation table. */
973 ARMFaultType fault_type = ARMFault_Translation;
974 uint32_t level;
975 ARMVAParameters param;
976 uint64_t ttbr;
977 hwaddr descaddr, indexmask, indexmask_grainsize;
978 uint32_t tableattrs;
979 target_ulong page_size;
980 uint32_t attrs;
981 int32_t stride;
982 int addrsize, inputsize, outputsize;
983 uint64_t tcr = regime_tcr(env, mmu_idx);
984 int ap, ns, xn, pxn;
985 uint32_t el = regime_el(env, mmu_idx);
986 uint64_t descaddrmask;
987 bool aarch64 = arm_el_is_aa64(env, el);
988 bool guarded = false;
990 /* TODO: This code does not support shareability levels. */
991 if (aarch64) {
992 int ps;
994 param = aa64_va_parameters(env, address, mmu_idx,
995 access_type != MMU_INST_FETCH);
996 level = 0;
999 * If TxSZ is programmed to a value larger than the maximum,
1000 * or smaller than the effective minimum, it is IMPLEMENTATION
1001 * DEFINED whether we behave as if the field were programmed
1002 * within bounds, or if a level 0 Translation fault is generated.
1004 * With FEAT_LVA, fault on less than minimum becomes required,
1005 * so our choice is to always raise the fault.
1007 if (param.tsz_oob) {
1008 fault_type = ARMFault_Translation;
1009 goto do_fault;
1012 addrsize = 64 - 8 * param.tbi;
1013 inputsize = 64 - param.tsz;
1016 * Bound PS by PARANGE to find the effective output address size.
1017 * ID_AA64MMFR0 is a read-only register so values outside of the
1018 * supported mappings can be considered an implementation error.
1020 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1021 ps = MIN(ps, param.ps);
1022 assert(ps < ARRAY_SIZE(pamax_map));
1023 outputsize = pamax_map[ps];
1024 } else {
1025 param = aa32_va_parameters(env, address, mmu_idx);
1026 level = 1;
1027 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1028 inputsize = addrsize - param.tsz;
1029 outputsize = 40;
1033 * We determined the region when collecting the parameters, but we
1034 * have not yet validated that the address is valid for the region.
1035 * Extract the top bits and verify that they all match select.
1037 * For aa32, if inputsize == addrsize, then we have selected the
1038 * region by exclusion in aa32_va_parameters and there is no more
1039 * validation to do here.
1041 if (inputsize < addrsize) {
1042 target_ulong top_bits = sextract64(address, inputsize,
1043 addrsize - inputsize);
1044 if (-top_bits != param.select) {
1045 /* The gap between the two regions is a Translation fault */
1046 fault_type = ARMFault_Translation;
1047 goto do_fault;
1051 if (param.using64k) {
1052 stride = 13;
1053 } else if (param.using16k) {
1054 stride = 11;
1055 } else {
1056 stride = 9;
1060 * Note that QEMU ignores shareability and cacheability attributes,
1061 * so we don't need to do anything with the SH, ORGN, IRGN fields
1062 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1063 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1064 * implement any ASID-like capability so we can ignore it (instead
1065 * we will always flush the TLB any time the ASID is changed).
1067 ttbr = regime_ttbr(env, mmu_idx, param.select);
1070 * Here we should have set up all the parameters for the translation:
1071 * inputsize, ttbr, epd, stride, tbi
1074 if (param.epd) {
1076 * Translation table walk disabled => Translation fault on TLB miss
1077 * Note: This is always 0 on 64-bit EL2 and EL3.
1079 goto do_fault;
1082 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
1084 * The starting level depends on the virtual address size (which can
1085 * be up to 48 bits) and the translation granule size. It indicates
1086 * the number of strides (stride bits at a time) needed to
1087 * consume the bits of the input address. In the pseudocode this is:
1088 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1089 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1090 * our 'stride + 3' and 'stride' is our 'stride'.
1091 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1092 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1093 * = 4 - (inputsize - 4) / stride;
1095 level = 4 - (inputsize - 4) / stride;
1096 } else {
1098 * For stage 2 translations the starting level is specified by the
1099 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
1101 uint32_t sl0 = extract32(tcr, 6, 2);
1102 uint32_t sl2 = extract64(tcr, 33, 1);
1103 uint32_t startlevel;
1104 bool ok;
1106 /* SL2 is RES0 unless DS=1 & 4kb granule. */
1107 if (param.ds && stride == 9 && sl2) {
1108 if (sl0 != 0) {
1109 level = 0;
1110 fault_type = ARMFault_Translation;
1111 goto do_fault;
1113 startlevel = -1;
1114 } else if (!aarch64 || stride == 9) {
1115 /* AArch32 or 4KB pages */
1116 startlevel = 2 - sl0;
1118 if (cpu_isar_feature(aa64_st, cpu)) {
1119 startlevel &= 3;
1121 } else {
1122 /* 16KB or 64KB pages */
1123 startlevel = 3 - sl0;
1126 /* Check that the starting level is valid. */
1127 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
1128 inputsize, stride, outputsize);
1129 if (!ok) {
1130 fault_type = ARMFault_Translation;
1131 goto do_fault;
1133 level = startlevel;
1136 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1137 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1139 /* Now we can extract the actual base address from the TTBR */
1140 descaddr = extract64(ttbr, 0, 48);
1143 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1145 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1146 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1147 * but we've just cleared the bits above 47, so simplify the test.
1149 if (outputsize > 48) {
1150 descaddr |= extract64(ttbr, 2, 4) << 48;
1151 } else if (descaddr >> outputsize) {
1152 level = 0;
1153 fault_type = ARMFault_AddressSize;
1154 goto do_fault;
1158 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1159 * and also to mask out CnP (bit 0) which could validly be non-zero.
1161 descaddr &= ~indexmask;
1164 * For AArch32, the address field in the descriptor goes up to bit 39
1165 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1166 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1167 * bits as part of the address, which will be checked via outputsize.
1168 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1169 * the highest bits of a 52-bit output are placed elsewhere.
1171 if (param.ds) {
1172 descaddrmask = MAKE_64BIT_MASK(0, 50);
1173 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1174 descaddrmask = MAKE_64BIT_MASK(0, 48);
1175 } else {
1176 descaddrmask = MAKE_64BIT_MASK(0, 40);
1178 descaddrmask &= ~indexmask_grainsize;
1181 * Secure accesses start with the page table in secure memory and
1182 * can be downgraded to non-secure at any step. Non-secure accesses
1183 * remain non-secure. We implement this by just ORing in the NSTable/NS
1184 * bits at each step.
1186 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
1187 for (;;) {
1188 uint64_t descriptor;
1189 bool nstable;
1191 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1192 descaddr &= ~7ULL;
1193 nstable = extract32(tableattrs, 4, 1);
1194 descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi);
1195 if (fi->type != ARMFault_None) {
1196 goto do_fault;
1199 if (!(descriptor & 1) ||
1200 (!(descriptor & 2) && (level == 3))) {
1201 /* Invalid, or the Reserved level 3 encoding */
1202 goto do_fault;
1205 descaddr = descriptor & descaddrmask;
1208 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1209 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1210 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1211 * raise AddressSizeFault.
1213 if (outputsize > 48) {
1214 if (param.ds) {
1215 descaddr |= extract64(descriptor, 8, 2) << 50;
1216 } else {
1217 descaddr |= extract64(descriptor, 12, 4) << 48;
1219 } else if (descaddr >> outputsize) {
1220 fault_type = ARMFault_AddressSize;
1221 goto do_fault;
1224 if ((descriptor & 2) && (level < 3)) {
1226 * Table entry. The top five bits are attributes which may
1227 * propagate down through lower levels of the table (and
1228 * which are all arranged so that 0 means "no effect", so
1229 * we can gather them up by ORing in the bits at each level).
1231 tableattrs |= extract64(descriptor, 59, 5);
1232 level++;
1233 indexmask = indexmask_grainsize;
1234 continue;
1237 * Block entry at level 1 or 2, or page entry at level 3.
1238 * These are basically the same thing, although the number
1239 * of bits we pull in from the vaddr varies. Note that although
1240 * descaddrmask masks enough of the low bits of the descriptor
1241 * to give a correct page or table address, the address field
1242 * in a block descriptor is smaller; so we need to explicitly
1243 * clear the lower bits here before ORing in the low vaddr bits.
1245 page_size = (1ULL << ((stride * (4 - level)) + 3));
1246 descaddr &= ~(hwaddr)(page_size - 1);
1247 descaddr |= (address & (page_size - 1));
1248 /* Extract attributes from the descriptor */
1249 attrs = extract64(descriptor, 2, 10)
1250 | (extract64(descriptor, 52, 12) << 10);
1252 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1253 /* Stage 2 table descriptors do not include any attribute fields */
1254 break;
1256 /* Merge in attributes from table descriptors */
1257 attrs |= nstable << 3; /* NS */
1258 guarded = extract64(descriptor, 50, 1); /* GP */
1259 if (param.hpd) {
1260 /* HPD disables all the table attributes except NSTable. */
1261 break;
1263 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
1265 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1266 * means "force PL1 access only", which means forcing AP[1] to 0.
1268 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
1269 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
1270 break;
1273 * Here descaddr is the final physical address, and attributes
1274 * are all in attrs.
1276 fault_type = ARMFault_AccessFlag;
1277 if ((attrs & (1 << 8)) == 0) {
1278 /* Access flag */
1279 goto do_fault;
1282 ap = extract32(attrs, 4, 2);
1284 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1285 ns = mmu_idx == ARMMMUIdx_Stage2;
1286 xn = extract32(attrs, 11, 2);
1287 result->prot = get_S2prot(env, ap, xn, s1_is_el0);
1288 } else {
1289 ns = extract32(attrs, 3, 1);
1290 xn = extract32(attrs, 12, 1);
1291 pxn = extract32(attrs, 11, 1);
1292 result->prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
1295 fault_type = ARMFault_Permission;
1296 if (!(result->prot & (1 << access_type))) {
1297 goto do_fault;
1300 if (ns) {
1302 * The NS bit will (as required by the architecture) have no effect if
1303 * the CPU doesn't support TZ or this is a non-secure translation
1304 * regime, because the attribute will already be non-secure.
1306 result->attrs.secure = false;
1308 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
1309 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
1310 arm_tlb_bti_gp(&result->attrs) = true;
1313 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
1314 result->cacheattrs.is_s2_format = true;
1315 result->cacheattrs.attrs = extract32(attrs, 0, 4);
1316 } else {
1317 /* Index into MAIR registers for cache attributes */
1318 uint8_t attrindx = extract32(attrs, 0, 3);
1319 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
1320 assert(attrindx <= 7);
1321 result->cacheattrs.is_s2_format = false;
1322 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
1326 * For FEAT_LPA2 and effective DS, the SH field in the attributes
1327 * was re-purposed for output address bits. The SH attribute in
1328 * that case comes from TCR_ELx, which we extracted earlier.
1330 if (param.ds) {
1331 result->cacheattrs.shareability = param.sh;
1332 } else {
1333 result->cacheattrs.shareability = extract32(attrs, 6, 2);
1336 result->phys = descaddr;
1337 result->page_size = page_size;
1338 return false;
1340 do_fault:
1341 fi->type = fault_type;
1342 fi->level = level;
1343 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
1344 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
1345 mmu_idx == ARMMMUIdx_Stage2_S);
1346 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
1347 return true;
1350 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
1351 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1352 bool is_secure, GetPhysAddrResult *result,
1353 ARMMMUFaultInfo *fi)
1355 int n;
1356 uint32_t mask;
1357 uint32_t base;
1358 bool is_user = regime_is_user(env, mmu_idx);
1360 if (regime_translation_disabled(env, mmu_idx)) {
1361 /* MPU disabled. */
1362 result->phys = address;
1363 result->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1364 return false;
1367 result->phys = address;
1368 for (n = 7; n >= 0; n--) {
1369 base = env->cp15.c6_region[n];
1370 if ((base & 1) == 0) {
1371 continue;
1373 mask = 1 << ((base >> 1) & 0x1f);
1374 /* Keep this shift separate from the above to avoid an
1375 (undefined) << 32. */
1376 mask = (mask << 1) - 1;
1377 if (((base ^ address) & ~mask) == 0) {
1378 break;
1381 if (n < 0) {
1382 fi->type = ARMFault_Background;
1383 return true;
1386 if (access_type == MMU_INST_FETCH) {
1387 mask = env->cp15.pmsav5_insn_ap;
1388 } else {
1389 mask = env->cp15.pmsav5_data_ap;
1391 mask = (mask >> (n * 4)) & 0xf;
1392 switch (mask) {
1393 case 0:
1394 fi->type = ARMFault_Permission;
1395 fi->level = 1;
1396 return true;
1397 case 1:
1398 if (is_user) {
1399 fi->type = ARMFault_Permission;
1400 fi->level = 1;
1401 return true;
1403 result->prot = PAGE_READ | PAGE_WRITE;
1404 break;
1405 case 2:
1406 result->prot = PAGE_READ;
1407 if (!is_user) {
1408 result->prot |= PAGE_WRITE;
1410 break;
1411 case 3:
1412 result->prot = PAGE_READ | PAGE_WRITE;
1413 break;
1414 case 5:
1415 if (is_user) {
1416 fi->type = ARMFault_Permission;
1417 fi->level = 1;
1418 return true;
1420 result->prot = PAGE_READ;
1421 break;
1422 case 6:
1423 result->prot = PAGE_READ;
1424 break;
1425 default:
1426 /* Bad permission. */
1427 fi->type = ARMFault_Permission;
1428 fi->level = 1;
1429 return true;
1431 result->prot |= PAGE_EXEC;
1432 return false;
1435 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
1436 int32_t address, int *prot)
1438 if (!arm_feature(env, ARM_FEATURE_M)) {
1439 *prot = PAGE_READ | PAGE_WRITE;
1440 switch (address) {
1441 case 0xF0000000 ... 0xFFFFFFFF:
1442 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
1443 /* hivecs execing is ok */
1444 *prot |= PAGE_EXEC;
1446 break;
1447 case 0x00000000 ... 0x7FFFFFFF:
1448 *prot |= PAGE_EXEC;
1449 break;
1451 } else {
1452 /* Default system address map for M profile cores.
1453 * The architecture specifies which regions are execute-never;
1454 * at the MPU level no other checks are defined.
1456 switch (address) {
1457 case 0x00000000 ... 0x1fffffff: /* ROM */
1458 case 0x20000000 ... 0x3fffffff: /* SRAM */
1459 case 0x60000000 ... 0x7fffffff: /* RAM */
1460 case 0x80000000 ... 0x9fffffff: /* RAM */
1461 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1462 break;
1463 case 0x40000000 ... 0x5fffffff: /* Peripheral */
1464 case 0xa0000000 ... 0xbfffffff: /* Device */
1465 case 0xc0000000 ... 0xdfffffff: /* Device */
1466 case 0xe0000000 ... 0xffffffff: /* System */
1467 *prot = PAGE_READ | PAGE_WRITE;
1468 break;
1469 default:
1470 g_assert_not_reached();
1475 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
1477 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
1478 return arm_feature(env, ARM_FEATURE_M) &&
1479 extract32(address, 20, 12) == 0xe00;
1482 static bool m_is_system_region(CPUARMState *env, uint32_t address)
1485 * True if address is in the M profile system region
1486 * 0xe0000000 - 0xffffffff
1488 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
1491 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
1492 bool is_secure, bool is_user)
1495 * Return true if we should use the default memory map as a
1496 * "background" region if there are no hits against any MPU regions.
1498 CPUARMState *env = &cpu->env;
1500 if (is_user) {
1501 return false;
1504 if (arm_feature(env, ARM_FEATURE_M)) {
1505 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
1506 } else {
1507 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
1511 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
1512 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1513 bool secure, GetPhysAddrResult *result,
1514 ARMMMUFaultInfo *fi)
1516 ARMCPU *cpu = env_archcpu(env);
1517 int n;
1518 bool is_user = regime_is_user(env, mmu_idx);
1520 result->phys = address;
1521 result->page_size = TARGET_PAGE_SIZE;
1522 result->prot = 0;
1524 if (regime_translation_disabled(env, mmu_idx) ||
1525 m_is_ppb_region(env, address)) {
1527 * MPU disabled or M profile PPB access: use default memory map.
1528 * The other case which uses the default memory map in the
1529 * v7M ARM ARM pseudocode is exception vector reads from the vector
1530 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
1531 * which always does a direct read using address_space_ldl(), rather
1532 * than going via this function, so we don't need to check that here.
1534 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->prot);
1535 } else { /* MPU enabled */
1536 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1537 /* region search */
1538 uint32_t base = env->pmsav7.drbar[n];
1539 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
1540 uint32_t rmask;
1541 bool srdis = false;
1543 if (!(env->pmsav7.drsr[n] & 0x1)) {
1544 continue;
1547 if (!rsize) {
1548 qemu_log_mask(LOG_GUEST_ERROR,
1549 "DRSR[%d]: Rsize field cannot be 0\n", n);
1550 continue;
1552 rsize++;
1553 rmask = (1ull << rsize) - 1;
1555 if (base & rmask) {
1556 qemu_log_mask(LOG_GUEST_ERROR,
1557 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
1558 "to DRSR region size, mask = 0x%" PRIx32 "\n",
1559 n, base, rmask);
1560 continue;
1563 if (address < base || address > base + rmask) {
1565 * Address not in this region. We must check whether the
1566 * region covers addresses in the same page as our address.
1567 * In that case we must not report a size that covers the
1568 * whole page for a subsequent hit against a different MPU
1569 * region or the background region, because it would result in
1570 * incorrect TLB hits for subsequent accesses to addresses that
1571 * are in this MPU region.
1573 if (ranges_overlap(base, rmask,
1574 address & TARGET_PAGE_MASK,
1575 TARGET_PAGE_SIZE)) {
1576 result->page_size = 1;
1578 continue;
1581 /* Region matched */
1583 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
1584 int i, snd;
1585 uint32_t srdis_mask;
1587 rsize -= 3; /* sub region size (power of 2) */
1588 snd = ((address - base) >> rsize) & 0x7;
1589 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
1591 srdis_mask = srdis ? 0x3 : 0x0;
1592 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
1594 * This will check in groups of 2, 4 and then 8, whether
1595 * the subregion bits are consistent. rsize is incremented
1596 * back up to give the region size, considering consistent
1597 * adjacent subregions as one region. Stop testing if rsize
1598 * is already big enough for an entire QEMU page.
1600 int snd_rounded = snd & ~(i - 1);
1601 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
1602 snd_rounded + 8, i);
1603 if (srdis_mask ^ srdis_multi) {
1604 break;
1606 srdis_mask = (srdis_mask << i) | srdis_mask;
1607 rsize++;
1610 if (srdis) {
1611 continue;
1613 if (rsize < TARGET_PAGE_BITS) {
1614 result->page_size = 1 << rsize;
1616 break;
1619 if (n == -1) { /* no hits */
1620 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1621 /* background fault */
1622 fi->type = ARMFault_Background;
1623 return true;
1625 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->prot);
1626 } else { /* a MPU hit! */
1627 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
1628 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
1630 if (m_is_system_region(env, address)) {
1631 /* System space is always execute never */
1632 xn = 1;
1635 if (is_user) { /* User mode AP bit decoding */
1636 switch (ap) {
1637 case 0:
1638 case 1:
1639 case 5:
1640 break; /* no access */
1641 case 3:
1642 result->prot |= PAGE_WRITE;
1643 /* fall through */
1644 case 2:
1645 case 6:
1646 result->prot |= PAGE_READ | PAGE_EXEC;
1647 break;
1648 case 7:
1649 /* for v7M, same as 6; for R profile a reserved value */
1650 if (arm_feature(env, ARM_FEATURE_M)) {
1651 result->prot |= PAGE_READ | PAGE_EXEC;
1652 break;
1654 /* fall through */
1655 default:
1656 qemu_log_mask(LOG_GUEST_ERROR,
1657 "DRACR[%d]: Bad value for AP bits: 0x%"
1658 PRIx32 "\n", n, ap);
1660 } else { /* Priv. mode AP bits decoding */
1661 switch (ap) {
1662 case 0:
1663 break; /* no access */
1664 case 1:
1665 case 2:
1666 case 3:
1667 result->prot |= PAGE_WRITE;
1668 /* fall through */
1669 case 5:
1670 case 6:
1671 result->prot |= PAGE_READ | PAGE_EXEC;
1672 break;
1673 case 7:
1674 /* for v7M, same as 6; for R profile a reserved value */
1675 if (arm_feature(env, ARM_FEATURE_M)) {
1676 result->prot |= PAGE_READ | PAGE_EXEC;
1677 break;
1679 /* fall through */
1680 default:
1681 qemu_log_mask(LOG_GUEST_ERROR,
1682 "DRACR[%d]: Bad value for AP bits: 0x%"
1683 PRIx32 "\n", n, ap);
1687 /* execute never */
1688 if (xn) {
1689 result->prot &= ~PAGE_EXEC;
1694 fi->type = ARMFault_Permission;
1695 fi->level = 1;
1696 return !(result->prot & (1 << access_type));
1699 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1700 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1701 bool secure, GetPhysAddrResult *result,
1702 ARMMMUFaultInfo *fi, uint32_t *mregion)
1705 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
1706 * that a full phys-to-virt translation does).
1707 * mregion is (if not NULL) set to the region number which matched,
1708 * or -1 if no region number is returned (MPU off, address did not
1709 * hit a region, address hit in multiple regions).
1710 * If the region hit doesn't cover the entire TARGET_PAGE the address
1711 * is within, then we set the result page_size to 1 to force the
1712 * memory system to use a subpage.
1714 ARMCPU *cpu = env_archcpu(env);
1715 bool is_user = regime_is_user(env, mmu_idx);
1716 int n;
1717 int matchregion = -1;
1718 bool hit = false;
1719 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1720 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1722 result->page_size = TARGET_PAGE_SIZE;
1723 result->phys = address;
1724 result->prot = 0;
1725 if (mregion) {
1726 *mregion = -1;
1730 * Unlike the ARM ARM pseudocode, we don't need to check whether this
1731 * was an exception vector read from the vector table (which is always
1732 * done using the default system address map), because those accesses
1733 * are done in arm_v7m_load_vector(), which always does a direct
1734 * read using address_space_ldl(), rather than going via this function.
1736 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
1737 hit = true;
1738 } else if (m_is_ppb_region(env, address)) {
1739 hit = true;
1740 } else {
1741 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
1742 hit = true;
1745 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
1746 /* region search */
1748 * Note that the base address is bits [31:5] from the register
1749 * with bits [4:0] all zeroes, but the limit address is bits
1750 * [31:5] from the register with bits [4:0] all ones.
1752 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
1753 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
1755 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
1756 /* Region disabled */
1757 continue;
1760 if (address < base || address > limit) {
1762 * Address not in this region. We must check whether the
1763 * region covers addresses in the same page as our address.
1764 * In that case we must not report a size that covers the
1765 * whole page for a subsequent hit against a different MPU
1766 * region or the background region, because it would result in
1767 * incorrect TLB hits for subsequent accesses to addresses that
1768 * are in this MPU region.
1770 if (limit >= base &&
1771 ranges_overlap(base, limit - base + 1,
1772 addr_page_base,
1773 TARGET_PAGE_SIZE)) {
1774 result->page_size = 1;
1776 continue;
1779 if (base > addr_page_base || limit < addr_page_limit) {
1780 result->page_size = 1;
1783 if (matchregion != -1) {
1785 * Multiple regions match -- always a failure (unlike
1786 * PMSAv7 where highest-numbered-region wins)
1788 fi->type = ARMFault_Permission;
1789 fi->level = 1;
1790 return true;
1793 matchregion = n;
1794 hit = true;
1798 if (!hit) {
1799 /* background fault */
1800 fi->type = ARMFault_Background;
1801 return true;
1804 if (matchregion == -1) {
1805 /* hit using the background region */
1806 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->prot);
1807 } else {
1808 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
1809 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
1810 bool pxn = false;
1812 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
1813 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
1816 if (m_is_system_region(env, address)) {
1817 /* System space is always execute never */
1818 xn = 1;
1821 result->prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
1822 if (result->prot && !xn && !(pxn && !is_user)) {
1823 result->prot |= PAGE_EXEC;
1826 * We don't need to look the attribute up in the MAIR0/MAIR1
1827 * registers because that only tells us about cacheability.
1829 if (mregion) {
1830 *mregion = matchregion;
1834 fi->type = ARMFault_Permission;
1835 fi->level = 1;
1836 return !(result->prot & (1 << access_type));
1839 static bool v8m_is_sau_exempt(CPUARMState *env,
1840 uint32_t address, MMUAccessType access_type)
1843 * The architecture specifies that certain address ranges are
1844 * exempt from v8M SAU/IDAU checks.
1846 return
1847 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
1848 (address >= 0xe0000000 && address <= 0xe0002fff) ||
1849 (address >= 0xe000e000 && address <= 0xe000efff) ||
1850 (address >= 0xe002e000 && address <= 0xe002efff) ||
1851 (address >= 0xe0040000 && address <= 0xe0041fff) ||
1852 (address >= 0xe00ff000 && address <= 0xe00fffff);
1855 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1856 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1857 bool is_secure, V8M_SAttributes *sattrs)
1860 * Look up the security attributes for this address. Compare the
1861 * pseudocode SecurityCheck() function.
1862 * We assume the caller has zero-initialized *sattrs.
1864 ARMCPU *cpu = env_archcpu(env);
1865 int r;
1866 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
1867 int idau_region = IREGION_NOTVALID;
1868 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
1869 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
1871 if (cpu->idau) {
1872 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
1873 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
1875 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
1876 &idau_nsc);
1879 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
1880 /* 0xf0000000..0xffffffff is always S for insn fetches */
1881 return;
1884 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
1885 sattrs->ns = !is_secure;
1886 return;
1889 if (idau_region != IREGION_NOTVALID) {
1890 sattrs->irvalid = true;
1891 sattrs->iregion = idau_region;
1894 switch (env->sau.ctrl & 3) {
1895 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
1896 break;
1897 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
1898 sattrs->ns = true;
1899 break;
1900 default: /* SAU.ENABLE == 1 */
1901 for (r = 0; r < cpu->sau_sregion; r++) {
1902 if (env->sau.rlar[r] & 1) {
1903 uint32_t base = env->sau.rbar[r] & ~0x1f;
1904 uint32_t limit = env->sau.rlar[r] | 0x1f;
1906 if (base <= address && limit >= address) {
1907 if (base > addr_page_base || limit < addr_page_limit) {
1908 sattrs->subpage = true;
1910 if (sattrs->srvalid) {
1912 * If we hit in more than one region then we must report
1913 * as Secure, not NS-Callable, with no valid region
1914 * number info.
1916 sattrs->ns = false;
1917 sattrs->nsc = false;
1918 sattrs->sregion = 0;
1919 sattrs->srvalid = false;
1920 break;
1921 } else {
1922 if (env->sau.rlar[r] & 2) {
1923 sattrs->nsc = true;
1924 } else {
1925 sattrs->ns = true;
1927 sattrs->srvalid = true;
1928 sattrs->sregion = r;
1930 } else {
1932 * Address not in this region. We must check whether the
1933 * region covers addresses in the same page as our address.
1934 * In that case we must not report a size that covers the
1935 * whole page for a subsequent hit against a different MPU
1936 * region or the background region, because it would result
1937 * in incorrect TLB hits for subsequent accesses to
1938 * addresses that are in this MPU region.
1940 if (limit >= base &&
1941 ranges_overlap(base, limit - base + 1,
1942 addr_page_base,
1943 TARGET_PAGE_SIZE)) {
1944 sattrs->subpage = true;
1949 break;
1953 * The IDAU will override the SAU lookup results if it specifies
1954 * higher security than the SAU does.
1956 if (!idau_ns) {
1957 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
1958 sattrs->ns = false;
1959 sattrs->nsc = idau_nsc;
1964 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
1965 MMUAccessType access_type, ARMMMUIdx mmu_idx,
1966 bool secure, GetPhysAddrResult *result,
1967 ARMMMUFaultInfo *fi)
1969 V8M_SAttributes sattrs = {};
1970 bool ret;
1972 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1973 v8m_security_lookup(env, address, access_type, mmu_idx,
1974 secure, &sattrs);
1975 if (access_type == MMU_INST_FETCH) {
1977 * Instruction fetches always use the MMU bank and the
1978 * transaction attribute determined by the fetch address,
1979 * regardless of CPU state. This is painful for QEMU
1980 * to handle, because it would mean we need to encode
1981 * into the mmu_idx not just the (user, negpri) information
1982 * for the current security state but also that for the
1983 * other security state, which would balloon the number
1984 * of mmu_idx values needed alarmingly.
1985 * Fortunately we can avoid this because it's not actually
1986 * possible to arbitrarily execute code from memory with
1987 * the wrong security attribute: it will always generate
1988 * an exception of some kind or another, apart from the
1989 * special case of an NS CPU executing an SG instruction
1990 * in S&NSC memory. So we always just fail the translation
1991 * here and sort things out in the exception handler
1992 * (including possibly emulating an SG instruction).
1994 if (sattrs.ns != !secure) {
1995 if (sattrs.nsc) {
1996 fi->type = ARMFault_QEMU_NSCExec;
1997 } else {
1998 fi->type = ARMFault_QEMU_SFault;
2000 result->page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2001 result->phys = address;
2002 result->prot = 0;
2003 return true;
2005 } else {
2007 * For data accesses we always use the MMU bank indicated
2008 * by the current CPU state, but the security attributes
2009 * might downgrade a secure access to nonsecure.
2011 if (sattrs.ns) {
2012 result->attrs.secure = false;
2013 } else if (!secure) {
2015 * NS access to S memory must fault.
2016 * Architecturally we should first check whether the
2017 * MPU information for this address indicates that we
2018 * are doing an unaligned access to Device memory, which
2019 * should generate a UsageFault instead. QEMU does not
2020 * currently check for that kind of unaligned access though.
2021 * If we added it we would need to do so as a special case
2022 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2024 fi->type = ARMFault_QEMU_SFault;
2025 result->page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
2026 result->phys = address;
2027 result->prot = 0;
2028 return true;
2033 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2034 result, fi, NULL);
2035 if (sattrs.subpage) {
2036 result->page_size = 1;
2038 return ret;
2042 * Translate from the 4-bit stage 2 representation of
2043 * memory attributes (without cache-allocation hints) to
2044 * the 8-bit representation of the stage 1 MAIR registers
2045 * (which includes allocation hints).
2047 * ref: shared/translation/attrs/S2AttrDecode()
2048 * .../S2ConvertAttrsHints()
2050 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
2052 uint8_t hiattr = extract32(s2attrs, 2, 2);
2053 uint8_t loattr = extract32(s2attrs, 0, 2);
2054 uint8_t hihint = 0, lohint = 0;
2056 if (hiattr != 0) { /* normal memory */
2057 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
2058 hiattr = loattr = 1; /* non-cacheable */
2059 } else {
2060 if (hiattr != 1) { /* Write-through or write-back */
2061 hihint = 3; /* RW allocate */
2063 if (loattr != 1) { /* Write-through or write-back */
2064 lohint = 3; /* RW allocate */
2069 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2073 * Combine either inner or outer cacheability attributes for normal
2074 * memory, according to table D4-42 and pseudocode procedure
2075 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2077 * NB: only stage 1 includes allocation hints (RW bits), leading to
2078 * some asymmetry.
2080 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
2082 if (s1 == 4 || s2 == 4) {
2083 /* non-cacheable has precedence */
2084 return 4;
2085 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
2086 /* stage 1 write-through takes precedence */
2087 return s1;
2088 } else if (extract32(s2, 2, 2) == 2) {
2089 /* stage 2 write-through takes precedence, but the allocation hint
2090 * is still taken from stage 1
2092 return (2 << 2) | extract32(s1, 0, 2);
2093 } else { /* write-back */
2094 return s1;
2099 * Combine the memory type and cacheability attributes of
2100 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
2101 * combined attributes in MAIR_EL1 format.
2103 static uint8_t combined_attrs_nofwb(CPUARMState *env,
2104 ARMCacheAttrs s1, ARMCacheAttrs s2)
2106 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
2108 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
2110 s1lo = extract32(s1.attrs, 0, 4);
2111 s2lo = extract32(s2_mair_attrs, 0, 4);
2112 s1hi = extract32(s1.attrs, 4, 4);
2113 s2hi = extract32(s2_mair_attrs, 4, 4);
2115 /* Combine memory type and cacheability attributes */
2116 if (s1hi == 0 || s2hi == 0) {
2117 /* Device has precedence over normal */
2118 if (s1lo == 0 || s2lo == 0) {
2119 /* nGnRnE has precedence over anything */
2120 ret_attrs = 0;
2121 } else if (s1lo == 4 || s2lo == 4) {
2122 /* non-Reordering has precedence over Reordering */
2123 ret_attrs = 4; /* nGnRE */
2124 } else if (s1lo == 8 || s2lo == 8) {
2125 /* non-Gathering has precedence over Gathering */
2126 ret_attrs = 8; /* nGRE */
2127 } else {
2128 ret_attrs = 0xc; /* GRE */
2130 } else { /* Normal memory */
2131 /* Outer/inner cacheability combine independently */
2132 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
2133 | combine_cacheattr_nibble(s1lo, s2lo);
2135 return ret_attrs;
2138 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
2141 * Given the 4 bits specifying the outer or inner cacheability
2142 * in MAIR format, return a value specifying Normal Write-Back,
2143 * with the allocation and transient hints taken from the input
2144 * if the input specified some kind of cacheable attribute.
2146 if (attr == 0 || attr == 4) {
2148 * 0 == an UNPREDICTABLE encoding
2149 * 4 == Non-cacheable
2150 * Either way, force Write-Back RW allocate non-transient
2152 return 0xf;
2154 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
2155 return attr | 4;
2159 * Combine the memory type and cacheability attributes of
2160 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
2161 * combined attributes in MAIR_EL1 format.
2163 static uint8_t combined_attrs_fwb(CPUARMState *env,
2164 ARMCacheAttrs s1, ARMCacheAttrs s2)
2166 switch (s2.attrs) {
2167 case 7:
2168 /* Use stage 1 attributes */
2169 return s1.attrs;
2170 case 6:
2172 * Force Normal Write-Back. Note that if S1 is Normal cacheable
2173 * then we take the allocation hints from it; otherwise it is
2174 * RW allocate, non-transient.
2176 if ((s1.attrs & 0xf0) == 0) {
2177 /* S1 is Device */
2178 return 0xff;
2180 /* Need to check the Inner and Outer nibbles separately */
2181 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
2182 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
2183 case 5:
2184 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
2185 if ((s1.attrs & 0xf0) == 0) {
2186 return s1.attrs;
2188 return 0x44;
2189 case 0 ... 3:
2190 /* Force Device, of subtype specified by S2 */
2191 return s2.attrs << 2;
2192 default:
2194 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
2195 * arbitrarily force Device.
2197 return 0;
2202 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
2203 * and CombineS1S2Desc()
2205 * @env: CPUARMState
2206 * @s1: Attributes from stage 1 walk
2207 * @s2: Attributes from stage 2 walk
2209 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
2210 ARMCacheAttrs s1, ARMCacheAttrs s2)
2212 ARMCacheAttrs ret;
2213 bool tagged = false;
2215 assert(s2.is_s2_format && !s1.is_s2_format);
2216 ret.is_s2_format = false;
2218 if (s1.attrs == 0xf0) {
2219 tagged = true;
2220 s1.attrs = 0xff;
2223 /* Combine shareability attributes (table D4-43) */
2224 if (s1.shareability == 2 || s2.shareability == 2) {
2225 /* if either are outer-shareable, the result is outer-shareable */
2226 ret.shareability = 2;
2227 } else if (s1.shareability == 3 || s2.shareability == 3) {
2228 /* if either are inner-shareable, the result is inner-shareable */
2229 ret.shareability = 3;
2230 } else {
2231 /* both non-shareable */
2232 ret.shareability = 0;
2235 /* Combine memory type and cacheability attributes */
2236 if (arm_hcr_el2_eff(env) & HCR_FWB) {
2237 ret.attrs = combined_attrs_fwb(env, s1, s2);
2238 } else {
2239 ret.attrs = combined_attrs_nofwb(env, s1, s2);
2243 * Any location for which the resultant memory type is any
2244 * type of Device memory is always treated as Outer Shareable.
2245 * Any location for which the resultant memory type is Normal
2246 * Inner Non-cacheable, Outer Non-cacheable is always treated
2247 * as Outer Shareable.
2248 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
2250 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
2251 ret.shareability = 2;
2254 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
2255 if (tagged && ret.attrs == 0xff) {
2256 ret.attrs = 0xf0;
2259 return ret;
2263 * get_phys_addr - get the physical address for this virtual address
2265 * Find the physical address corresponding to the given virtual address,
2266 * by doing a translation table walk on MMU based systems or using the
2267 * MPU state on MPU based systems.
2269 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
2270 * prot and page_size may not be filled in, and the populated fsr value provides
2271 * information on why the translation aborted, in the format of a
2272 * DFSR/IFSR fault register, with the following caveats:
2273 * * we honour the short vs long DFSR format differences.
2274 * * the WnR bit is never set (the caller must do this).
2275 * * for PSMAv5 based systems we don't bother to return a full FSR format
2276 * value.
2278 * @env: CPUARMState
2279 * @address: virtual address to get physical address for
2280 * @access_type: 0 for read, 1 for write, 2 for execute
2281 * @mmu_idx: MMU index indicating required translation regime
2282 * @result: set on translation success.
2283 * @fi: set to fault info if the translation fails
2285 bool get_phys_addr(CPUARMState *env, target_ulong address,
2286 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2287 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
2289 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
2290 bool is_secure = regime_is_secure(env, mmu_idx);
2292 if (mmu_idx != s1_mmu_idx) {
2294 * Call ourselves recursively to do the stage 1 and then stage 2
2295 * translations if mmu_idx is a two-stage regime.
2297 if (arm_feature(env, ARM_FEATURE_EL2)) {
2298 hwaddr ipa;
2299 int s1_prot;
2300 int ret;
2301 bool ipa_secure, s2walk_secure;
2302 ARMCacheAttrs cacheattrs1;
2303 ARMMMUIdx s2_mmu_idx;
2304 bool is_el0;
2306 ret = get_phys_addr(env, address, access_type, s1_mmu_idx,
2307 result, fi);
2309 /* If S1 fails or S2 is disabled, return early. */
2310 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
2311 return ret;
2314 ipa = result->phys;
2315 ipa_secure = result->attrs.secure;
2316 if (is_secure) {
2317 /* Select TCR based on the NS bit from the S1 walk. */
2318 s2walk_secure = !(ipa_secure
2319 ? env->cp15.vstcr_el2 & VSTCR_SW
2320 : env->cp15.vtcr_el2 & VTCR_NSW);
2321 } else {
2322 assert(!ipa_secure);
2323 s2walk_secure = false;
2326 s2_mmu_idx = (s2walk_secure
2327 ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2);
2328 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
2331 * S1 is done, now do S2 translation.
2332 * Save the stage1 results so that we may merge
2333 * prot and cacheattrs later.
2335 s1_prot = result->prot;
2336 cacheattrs1 = result->cacheattrs;
2337 memset(result, 0, sizeof(*result));
2339 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx,
2340 is_el0, result, fi);
2341 fi->s2addr = ipa;
2343 /* Combine the S1 and S2 perms. */
2344 result->prot &= s1_prot;
2346 /* If S2 fails, return early. */
2347 if (ret) {
2348 return ret;
2351 /* Combine the S1 and S2 cache attributes. */
2352 if (arm_hcr_el2_eff(env) & HCR_DC) {
2354 * HCR.DC forces the first stage attributes to
2355 * Normal Non-Shareable,
2356 * Inner Write-Back Read-Allocate Write-Allocate,
2357 * Outer Write-Back Read-Allocate Write-Allocate.
2358 * Do not overwrite Tagged within attrs.
2360 if (cacheattrs1.attrs != 0xf0) {
2361 cacheattrs1.attrs = 0xff;
2363 cacheattrs1.shareability = 0;
2365 result->cacheattrs = combine_cacheattrs(env, cacheattrs1,
2366 result->cacheattrs);
2368 /* Check if IPA translates to secure or non-secure PA space. */
2369 if (is_secure) {
2370 if (ipa_secure) {
2371 result->attrs.secure =
2372 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW));
2373 } else {
2374 result->attrs.secure =
2375 !((env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW))
2376 || (env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW)));
2379 return 0;
2380 } else {
2382 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
2384 mmu_idx = stage_1_mmu_idx(mmu_idx);
2389 * The page table entries may downgrade secure to non-secure, but
2390 * cannot upgrade an non-secure translation regime's attributes
2391 * to secure.
2393 result->attrs.secure = is_secure;
2394 result->attrs.user = regime_is_user(env, mmu_idx);
2397 * Fast Context Switch Extension. This doesn't exist at all in v8.
2398 * In v7 and earlier it affects all stage 1 translations.
2400 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
2401 && !arm_feature(env, ARM_FEATURE_V8)) {
2402 if (regime_el(env, mmu_idx) == 3) {
2403 address += env->cp15.fcseidr_s;
2404 } else {
2405 address += env->cp15.fcseidr_ns;
2409 if (arm_feature(env, ARM_FEATURE_PMSA)) {
2410 bool ret;
2411 result->page_size = TARGET_PAGE_SIZE;
2413 if (arm_feature(env, ARM_FEATURE_V8)) {
2414 /* PMSAv8 */
2415 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
2416 is_secure, result, fi);
2417 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2418 /* PMSAv7 */
2419 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
2420 is_secure, result, fi);
2421 } else {
2422 /* Pre-v7 MPU */
2423 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
2424 is_secure, result, fi);
2426 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
2427 " mmu_idx %u -> %s (prot %c%c%c)\n",
2428 access_type == MMU_DATA_LOAD ? "reading" :
2429 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
2430 (uint32_t)address, mmu_idx,
2431 ret ? "Miss" : "Hit",
2432 result->prot & PAGE_READ ? 'r' : '-',
2433 result->prot & PAGE_WRITE ? 'w' : '-',
2434 result->prot & PAGE_EXEC ? 'x' : '-');
2436 return ret;
2439 /* Definitely a real MMU, not an MPU */
2441 if (regime_translation_disabled(env, mmu_idx)) {
2442 uint64_t hcr;
2443 uint8_t memattr;
2446 * MMU disabled. S1 addresses within aa64 translation regimes are
2447 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
2449 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
2450 int r_el = regime_el(env, mmu_idx);
2451 if (arm_el_is_aa64(env, r_el)) {
2452 int pamax = arm_pamax(env_archcpu(env));
2453 uint64_t tcr = env->cp15.tcr_el[r_el];
2454 int addrtop, tbi;
2456 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
2457 if (access_type == MMU_INST_FETCH) {
2458 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
2460 tbi = (tbi >> extract64(address, 55, 1)) & 1;
2461 addrtop = (tbi ? 55 : 63);
2463 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
2464 fi->type = ARMFault_AddressSize;
2465 fi->level = 0;
2466 fi->stage2 = false;
2467 return 1;
2471 * When TBI is disabled, we've just validated that all of the
2472 * bits above PAMax are zero, so logically we only need to
2473 * clear the top byte for TBI. But it's clearer to follow
2474 * the pseudocode set of addrdesc.paddress.
2476 address = extract64(address, 0, 52);
2479 result->phys = address;
2480 result->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2481 result->page_size = TARGET_PAGE_SIZE;
2483 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
2484 hcr = arm_hcr_el2_eff(env);
2485 result->cacheattrs.shareability = 0;
2486 result->cacheattrs.is_s2_format = false;
2487 if (hcr & HCR_DC) {
2488 if (hcr & HCR_DCT) {
2489 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
2490 } else {
2491 memattr = 0xff; /* Normal, WB, RWA */
2493 } else if (access_type == MMU_INST_FETCH) {
2494 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
2495 memattr = 0xee; /* Normal, WT, RA, NT */
2496 } else {
2497 memattr = 0x44; /* Normal, NC, No */
2499 result->cacheattrs.shareability = 2; /* outer sharable */
2500 } else {
2501 memattr = 0x00; /* Device, nGnRnE */
2503 result->cacheattrs.attrs = memattr;
2504 return 0;
2507 if (regime_using_lpae_format(env, mmu_idx)) {
2508 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
2509 result, fi);
2510 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
2511 return get_phys_addr_v6(env, address, access_type, mmu_idx,
2512 is_secure, result, fi);
2513 } else {
2514 return get_phys_addr_v5(env, address, access_type, mmu_idx,
2515 is_secure, result, fi);
2519 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
2520 MemTxAttrs *attrs)
2522 ARMCPU *cpu = ARM_CPU(cs);
2523 CPUARMState *env = &cpu->env;
2524 GetPhysAddrResult res = {};
2525 ARMMMUFaultInfo fi = {};
2526 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
2527 bool ret;
2529 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &res, &fi);
2530 *attrs = res.attrs;
2532 if (ret) {
2533 return -1;
2535 return res.phys;