alpha: convert "naked" qemu_log to tracepoint
[qemu/ar7.git] / hw / timer / cadence_ttc.c
blob35bc88033e66e5fb5bff24ec9339898131073587
1 /*
2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
8 * M. Habib
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "qemu/timer.h"
22 #ifdef CADENCE_TTC_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
26 } while (0);
27 #else
28 #define DB_PRINT(...)
29 #endif
31 #define COUNTER_INTR_IV 0x00000001
32 #define COUNTER_INTR_M1 0x00000002
33 #define COUNTER_INTR_M2 0x00000004
34 #define COUNTER_INTR_M3 0x00000008
35 #define COUNTER_INTR_OV 0x00000010
36 #define COUNTER_INTR_EV 0x00000020
38 #define COUNTER_CTRL_DIS 0x00000001
39 #define COUNTER_CTRL_INT 0x00000002
40 #define COUNTER_CTRL_DEC 0x00000004
41 #define COUNTER_CTRL_MATCH 0x00000008
42 #define COUNTER_CTRL_RST 0x00000010
44 #define CLOCK_CTRL_PS_EN 0x00000001
45 #define CLOCK_CTRL_PS_V 0x0000001e
47 typedef struct {
48 QEMUTimer *timer;
49 int freq;
51 uint32_t reg_clock;
52 uint32_t reg_count;
53 uint32_t reg_value;
54 uint16_t reg_interval;
55 uint16_t reg_match[3];
56 uint32_t reg_intr;
57 uint32_t reg_intr_en;
58 uint32_t reg_event_ctrl;
59 uint32_t reg_event;
61 uint64_t cpu_time;
62 unsigned int cpu_time_valid;
64 qemu_irq irq;
65 } CadenceTimerState;
67 #define TYPE_CADENCE_TTC "cadence_ttc"
68 #define CADENCE_TTC(obj) \
69 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
71 typedef struct CadenceTTCState {
72 SysBusDevice parent_obj;
74 MemoryRegion iomem;
75 CadenceTimerState timer[3];
76 } CadenceTTCState;
78 static void cadence_timer_update(CadenceTimerState *s)
80 qemu_set_irq(s->irq, !!(s->reg_intr & s->reg_intr_en));
83 static CadenceTimerState *cadence_timer_from_addr(void *opaque,
84 hwaddr offset)
86 unsigned int index;
87 CadenceTTCState *s = (CadenceTTCState *)opaque;
89 index = (offset >> 2) % 3;
91 return &s->timer[index];
94 static uint64_t cadence_timer_get_ns(CadenceTimerState *s, uint64_t timer_steps)
96 /* timer_steps has max value of 0x100000000. double check it
97 * (or overflow can happen below) */
98 assert(timer_steps <= 1ULL << 32);
100 uint64_t r = timer_steps * 1000000000ULL;
101 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
102 r >>= 16 - (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
103 } else {
104 r >>= 16;
106 r /= (uint64_t)s->freq;
107 return r;
110 static uint64_t cadence_timer_get_steps(CadenceTimerState *s, uint64_t ns)
112 uint64_t to_divide = 1000000000ULL;
114 uint64_t r = ns;
115 /* for very large intervals (> 8s) do some division first to stop
116 * overflow (costs some prescision) */
117 while (r >= 8ULL << 30 && to_divide > 1) {
118 r /= 1000;
119 to_divide /= 1000;
121 r <<= 16;
122 /* keep early-dividing as needed */
123 while (r >= 8ULL << 30 && to_divide > 1) {
124 r /= 1000;
125 to_divide /= 1000;
127 r *= (uint64_t)s->freq;
128 if (s->reg_clock & CLOCK_CTRL_PS_EN) {
129 r /= 1 << (((s->reg_clock & CLOCK_CTRL_PS_V) >> 1) + 1);
132 r /= to_divide;
133 return r;
136 /* determine if x is in between a and b, exclusive of a, inclusive of b */
138 static inline int64_t is_between(int64_t x, int64_t a, int64_t b)
140 if (a < b) {
141 return x > a && x <= b;
143 return x < a && x >= b;
146 static void cadence_timer_run(CadenceTimerState *s)
148 int i;
149 int64_t event_interval, next_value;
151 assert(s->cpu_time_valid); /* cadence_timer_sync must be called first */
153 if (s->reg_count & COUNTER_CTRL_DIS) {
154 s->cpu_time_valid = 0;
155 return;
158 { /* figure out what's going to happen next (rollover or match) */
159 int64_t interval = (uint64_t)((s->reg_count & COUNTER_CTRL_INT) ?
160 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
161 next_value = (s->reg_count & COUNTER_CTRL_DEC) ? -1ULL : interval;
162 for (i = 0; i < 3; ++i) {
163 int64_t cand = (uint64_t)s->reg_match[i] << 16;
164 if (is_between(cand, (uint64_t)s->reg_value, next_value)) {
165 next_value = cand;
169 DB_PRINT("next timer event value: %09llx\n",
170 (unsigned long long)next_value);
172 event_interval = next_value - (int64_t)s->reg_value;
173 event_interval = (event_interval < 0) ? -event_interval : event_interval;
175 timer_mod(s->timer, s->cpu_time +
176 cadence_timer_get_ns(s, event_interval));
179 static void cadence_timer_sync(CadenceTimerState *s)
181 int i;
182 int64_t r, x;
183 int64_t interval = ((s->reg_count & COUNTER_CTRL_INT) ?
184 (int64_t)s->reg_interval + 1 : 0x10000ULL) << 16;
185 uint64_t old_time = s->cpu_time;
187 s->cpu_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
188 DB_PRINT("cpu time: %lld ns\n", (long long)old_time);
190 if (!s->cpu_time_valid || old_time == s->cpu_time) {
191 s->cpu_time_valid = 1;
192 return;
195 r = (int64_t)cadence_timer_get_steps(s, s->cpu_time - old_time);
196 x = (int64_t)s->reg_value + ((s->reg_count & COUNTER_CTRL_DEC) ? -r : r);
198 for (i = 0; i < 3; ++i) {
199 int64_t m = (int64_t)s->reg_match[i] << 16;
200 if (m > interval) {
201 continue;
203 /* check to see if match event has occurred. check m +/- interval
204 * to account for match events in wrap around cases */
205 if (is_between(m, s->reg_value, x) ||
206 is_between(m + interval, s->reg_value, x) ||
207 is_between(m - interval, s->reg_value, x)) {
208 s->reg_intr |= (2 << i);
211 if ((x < 0) || (x >= interval)) {
212 s->reg_intr |= (s->reg_count & COUNTER_CTRL_INT) ?
213 COUNTER_INTR_IV : COUNTER_INTR_OV;
215 while (x < 0) {
216 x += interval;
218 s->reg_value = (uint32_t)(x % interval);
219 cadence_timer_update(s);
222 static void cadence_timer_tick(void *opaque)
224 CadenceTimerState *s = opaque;
226 DB_PRINT("\n");
227 cadence_timer_sync(s);
228 cadence_timer_run(s);
231 static uint32_t cadence_ttc_read_imp(void *opaque, hwaddr offset)
233 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
234 uint32_t value;
236 cadence_timer_sync(s);
237 cadence_timer_run(s);
239 switch (offset) {
240 case 0x00: /* clock control */
241 case 0x04:
242 case 0x08:
243 return s->reg_clock;
245 case 0x0c: /* counter control */
246 case 0x10:
247 case 0x14:
248 return s->reg_count;
250 case 0x18: /* counter value */
251 case 0x1c:
252 case 0x20:
253 return (uint16_t)(s->reg_value >> 16);
255 case 0x24: /* reg_interval counter */
256 case 0x28:
257 case 0x2c:
258 return s->reg_interval;
260 case 0x30: /* match 1 counter */
261 case 0x34:
262 case 0x38:
263 return s->reg_match[0];
265 case 0x3c: /* match 2 counter */
266 case 0x40:
267 case 0x44:
268 return s->reg_match[1];
270 case 0x48: /* match 3 counter */
271 case 0x4c:
272 case 0x50:
273 return s->reg_match[2];
275 case 0x54: /* interrupt register */
276 case 0x58:
277 case 0x5c:
278 /* cleared after read */
279 value = s->reg_intr;
280 s->reg_intr = 0;
281 cadence_timer_update(s);
282 return value;
284 case 0x60: /* interrupt enable */
285 case 0x64:
286 case 0x68:
287 return s->reg_intr_en;
289 case 0x6c:
290 case 0x70:
291 case 0x74:
292 return s->reg_event_ctrl;
294 case 0x78:
295 case 0x7c:
296 case 0x80:
297 return s->reg_event;
299 default:
300 return 0;
304 static uint64_t cadence_ttc_read(void *opaque, hwaddr offset,
305 unsigned size)
307 uint32_t ret = cadence_ttc_read_imp(opaque, offset);
309 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)ret);
310 return ret;
313 static void cadence_ttc_write(void *opaque, hwaddr offset,
314 uint64_t value, unsigned size)
316 CadenceTimerState *s = cadence_timer_from_addr(opaque, offset);
318 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset, (unsigned)value);
320 cadence_timer_sync(s);
322 switch (offset) {
323 case 0x00: /* clock control */
324 case 0x04:
325 case 0x08:
326 s->reg_clock = value & 0x3F;
327 break;
329 case 0x0c: /* counter control */
330 case 0x10:
331 case 0x14:
332 if (value & COUNTER_CTRL_RST) {
333 s->reg_value = 0;
335 s->reg_count = value & 0x3f & ~COUNTER_CTRL_RST;
336 break;
338 case 0x24: /* interval register */
339 case 0x28:
340 case 0x2c:
341 s->reg_interval = value & 0xffff;
342 break;
344 case 0x30: /* match register */
345 case 0x34:
346 case 0x38:
347 s->reg_match[0] = value & 0xffff;
348 break;
350 case 0x3c: /* match register */
351 case 0x40:
352 case 0x44:
353 s->reg_match[1] = value & 0xffff;
354 break;
356 case 0x48: /* match register */
357 case 0x4c:
358 case 0x50:
359 s->reg_match[2] = value & 0xffff;
360 break;
362 case 0x54: /* interrupt register */
363 case 0x58:
364 case 0x5c:
365 break;
367 case 0x60: /* interrupt enable */
368 case 0x64:
369 case 0x68:
370 s->reg_intr_en = value & 0x3f;
371 break;
373 case 0x6c: /* event control */
374 case 0x70:
375 case 0x74:
376 s->reg_event_ctrl = value & 0x07;
377 break;
379 default:
380 return;
383 cadence_timer_run(s);
384 cadence_timer_update(s);
387 static const MemoryRegionOps cadence_ttc_ops = {
388 .read = cadence_ttc_read,
389 .write = cadence_ttc_write,
390 .endianness = DEVICE_NATIVE_ENDIAN,
393 static void cadence_timer_reset(CadenceTimerState *s)
395 s->reg_count = 0x21;
398 static void cadence_timer_init(uint32_t freq, CadenceTimerState *s)
400 memset(s, 0, sizeof(CadenceTimerState));
401 s->freq = freq;
403 cadence_timer_reset(s);
405 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cadence_timer_tick, s);
408 static void cadence_ttc_init(Object *obj)
410 CadenceTTCState *s = CADENCE_TTC(obj);
411 int i;
413 for (i = 0; i < 3; ++i) {
414 cadence_timer_init(133000000, &s->timer[i]);
415 sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->timer[i].irq);
418 memory_region_init_io(&s->iomem, obj, &cadence_ttc_ops, s,
419 "timer", 0x1000);
420 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
423 static void cadence_timer_pre_save(void *opaque)
425 cadence_timer_sync((CadenceTimerState *)opaque);
428 static int cadence_timer_post_load(void *opaque, int version_id)
430 CadenceTimerState *s = opaque;
432 s->cpu_time_valid = 0;
433 cadence_timer_sync(s);
434 cadence_timer_run(s);
435 cadence_timer_update(s);
436 return 0;
439 static const VMStateDescription vmstate_cadence_timer = {
440 .name = "cadence_timer",
441 .version_id = 1,
442 .minimum_version_id = 1,
443 .pre_save = cadence_timer_pre_save,
444 .post_load = cadence_timer_post_load,
445 .fields = (VMStateField[]) {
446 VMSTATE_UINT32(reg_clock, CadenceTimerState),
447 VMSTATE_UINT32(reg_count, CadenceTimerState),
448 VMSTATE_UINT32(reg_value, CadenceTimerState),
449 VMSTATE_UINT16(reg_interval, CadenceTimerState),
450 VMSTATE_UINT16_ARRAY(reg_match, CadenceTimerState, 3),
451 VMSTATE_UINT32(reg_intr, CadenceTimerState),
452 VMSTATE_UINT32(reg_intr_en, CadenceTimerState),
453 VMSTATE_UINT32(reg_event_ctrl, CadenceTimerState),
454 VMSTATE_UINT32(reg_event, CadenceTimerState),
455 VMSTATE_END_OF_LIST()
459 static const VMStateDescription vmstate_cadence_ttc = {
460 .name = "cadence_TTC",
461 .version_id = 1,
462 .minimum_version_id = 1,
463 .fields = (VMStateField[]) {
464 VMSTATE_STRUCT_ARRAY(timer, CadenceTTCState, 3, 0,
465 vmstate_cadence_timer,
466 CadenceTimerState),
467 VMSTATE_END_OF_LIST()
471 static void cadence_ttc_class_init(ObjectClass *klass, void *data)
473 DeviceClass *dc = DEVICE_CLASS(klass);
475 dc->vmsd = &vmstate_cadence_ttc;
478 static const TypeInfo cadence_ttc_info = {
479 .name = TYPE_CADENCE_TTC,
480 .parent = TYPE_SYS_BUS_DEVICE,
481 .instance_size = sizeof(CadenceTTCState),
482 .instance_init = cadence_ttc_init,
483 .class_init = cadence_ttc_class_init,
486 static void cadence_ttc_register_types(void)
488 type_register_static(&cadence_ttc_info);
491 type_init(cadence_ttc_register_types)