alpha: convert "naked" qemu_log to tracepoint
[qemu/ar7.git] / hw / audio / fmopl.c
blob81c0c1be2043971890eba0fe57e38f3475ab76e4
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
12 preliminary :
13 Problem :
14 note:
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #define HAS_YM3812 1
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <stdarg.h>
39 #include <math.h>
40 //#include "driver.h" /* use M.A.M.E. */
41 #include "fmopl.h"
43 #ifndef PI
44 #define PI 3.14159265358979323846
45 #endif
47 #ifndef ARRAY_SIZE
48 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
49 #endif
51 /* -------------------- for debug --------------------- */
52 /* #define OPL_OUTPUT_LOG */
53 #ifdef OPL_OUTPUT_LOG
54 static FILE *opl_dbg_fp = NULL;
55 static FM_OPL *opl_dbg_opl[16];
56 static int opl_dbg_maxchip,opl_dbg_chip;
57 #endif
59 /* -------------------- preliminary define section --------------------- */
60 /* attack/decay rate time rate */
61 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
62 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
64 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
66 #define FREQ_BITS 24 /* frequency turn */
68 /* counter bits = 20 , octerve 7 */
69 #define FREQ_RATE (1<<(FREQ_BITS-20))
70 #define TL_BITS (FREQ_BITS+2)
72 /* final output shift , limit minimum and maximum */
73 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
74 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
75 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
77 /* -------------------- quality selection --------------------- */
79 /* sinwave entries */
80 /* used static memory = SIN_ENT * 4 (byte) */
81 #define SIN_ENT 2048
83 /* output level entries (envelope,sinwave) */
84 /* envelope counter lower bits */
85 #define ENV_BITS 16
86 /* envelope output entries */
87 #define EG_ENT 4096
88 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
89 /* used static memory = EG_ENT*4 (byte) */
91 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
92 #define EG_DED EG_OFF
93 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
94 #define EG_AED EG_DST
95 #define EG_AST 0 /* ATTACK START */
97 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
99 /* LFO table entries */
100 #define VIB_ENT 512
101 #define VIB_SHIFT (32-9)
102 #define AMS_ENT 512
103 #define AMS_SHIFT (32-9)
105 #define VIB_RATE 256
107 /* -------------------- local defines , macros --------------------- */
109 /* register number to channel number , slot offset */
110 #define SLOT1 0
111 #define SLOT2 1
113 /* envelope phase */
114 #define ENV_MOD_RR 0x00
115 #define ENV_MOD_DR 0x01
116 #define ENV_MOD_AR 0x02
118 /* -------------------- tables --------------------- */
119 static const int slot_array[32]=
121 0, 2, 4, 1, 3, 5,-1,-1,
122 6, 8,10, 7, 9,11,-1,-1,
123 12,14,16,13,15,17,-1,-1,
124 -1,-1,-1,-1,-1,-1,-1,-1
127 /* key scale level */
128 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
129 #define DV (EG_STEP/2)
130 static const UINT32 KSL_TABLE[8*16]=
132 /* OCT 0 */
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 /* OCT 1 */
138 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
139 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
140 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
141 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
142 /* OCT 2 */
143 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
144 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
145 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
146 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
147 /* OCT 3 */
148 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
149 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
150 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
151 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
152 /* OCT 4 */
153 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
154 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
155 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
156 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
157 /* OCT 5 */
158 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
159 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
160 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
161 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
162 /* OCT 6 */
163 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
164 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
165 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
166 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
167 /* OCT 7 */
168 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
169 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
170 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
171 19.875/DV,20.250/DV,20.625/DV,21.000/DV
173 #undef DV
175 /* sustain lebel table (3db per step) */
176 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
177 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
178 static const INT32 SL_TABLE[16]={
179 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
180 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
182 #undef SC
184 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
185 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
186 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
187 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
188 static INT32 *TL_TABLE;
190 /* pointers to TL_TABLE with sinwave output offset */
191 static INT32 **SIN_TABLE;
193 /* LFO table */
194 static INT32 *AMS_TABLE;
195 static INT32 *VIB_TABLE;
197 /* envelope output curve table */
198 /* attack + decay + OFF */
199 static INT32 ENV_CURVE[2*EG_ENT+1];
201 /* multiple table */
202 #define ML 2
203 static const UINT32 MUL_TABLE[16]= {
204 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
205 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
206 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
208 #undef ML
210 /* dummy attack / decay rate ( when rate == 0 ) */
211 static INT32 RATE_0[16]=
212 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
214 /* -------------------- static state --------------------- */
216 /* lock level of common table */
217 static int num_lock = 0;
219 /* work table */
220 static void *cur_chip = NULL; /* current chip point */
221 /* currenct chip state */
222 /* static OPLSAMPLE *bufL,*bufR; */
223 static OPL_CH *S_CH;
224 static OPL_CH *E_CH;
225 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
227 static INT32 outd[1];
228 static INT32 ams;
229 static INT32 vib;
230 static INT32 *ams_table;
231 static INT32 *vib_table;
232 static INT32 amsIncr;
233 static INT32 vibIncr;
234 static INT32 feedback2; /* connect for SLOT 2 */
236 /* log output level */
237 #define LOG_ERR 3 /* ERROR */
238 #define LOG_WAR 2 /* WARNING */
239 #define LOG_INF 1 /* INFORMATION */
241 //#define LOG_LEVEL LOG_INF
242 #define LOG_LEVEL LOG_ERR
244 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
245 #define LOG(n,x)
247 /* --------------------- subroutines --------------------- */
249 static inline int Limit( int val, int max, int min ) {
250 if ( val > max )
251 val = max;
252 else if ( val < min )
253 val = min;
255 return val;
258 /* status set and IRQ handling */
259 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
261 /* set status flag */
262 OPL->status |= flag;
263 if(!(OPL->status & 0x80))
265 if(OPL->status & OPL->statusmask)
266 { /* IRQ on */
267 OPL->status |= 0x80;
268 /* callback user interrupt handler (IRQ is OFF to ON) */
269 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
274 /* status reset and IRQ handling */
275 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
277 /* reset status flag */
278 OPL->status &=~flag;
279 if((OPL->status & 0x80))
281 if (!(OPL->status & OPL->statusmask) )
283 OPL->status &= 0x7f;
284 /* callback user interrupt handler (IRQ is ON to OFF) */
285 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
290 /* IRQ mask set */
291 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
293 OPL->statusmask = flag;
294 /* IRQ handling check */
295 OPL_STATUS_SET(OPL,0);
296 OPL_STATUS_RESET(OPL,0);
299 /* ----- key on ----- */
300 static inline void OPL_KEYON(OPL_SLOT *SLOT)
302 /* sin wave restart */
303 SLOT->Cnt = 0;
304 /* set attack */
305 SLOT->evm = ENV_MOD_AR;
306 SLOT->evs = SLOT->evsa;
307 SLOT->evc = EG_AST;
308 SLOT->eve = EG_AED;
310 /* ----- key off ----- */
311 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
313 if( SLOT->evm > ENV_MOD_RR)
315 /* set envelope counter from envleope output */
316 SLOT->evm = ENV_MOD_RR;
317 if( !(SLOT->evc&EG_DST) )
318 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
319 SLOT->evc = EG_DST;
320 SLOT->eve = EG_DED;
321 SLOT->evs = SLOT->evsr;
325 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
326 /* return : envelope output */
327 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
329 /* calcrate envelope generator */
330 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
332 switch( SLOT->evm ){
333 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
334 /* next DR */
335 SLOT->evm = ENV_MOD_DR;
336 SLOT->evc = EG_DST;
337 SLOT->eve = SLOT->SL;
338 SLOT->evs = SLOT->evsd;
339 break;
340 case ENV_MOD_DR: /* DECAY -> SL or RR */
341 SLOT->evc = SLOT->SL;
342 SLOT->eve = EG_DED;
343 if(SLOT->eg_typ)
345 SLOT->evs = 0;
347 else
349 SLOT->evm = ENV_MOD_RR;
350 SLOT->evs = SLOT->evsr;
352 break;
353 case ENV_MOD_RR: /* RR -> OFF */
354 SLOT->evc = EG_OFF;
355 SLOT->eve = EG_OFF+1;
356 SLOT->evs = 0;
357 break;
360 /* calcrate envelope */
361 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
364 /* set algorithm connection */
365 static void set_algorithm( OPL_CH *CH)
367 INT32 *carrier = &outd[0];
368 CH->connect1 = CH->CON ? carrier : &feedback2;
369 CH->connect2 = carrier;
372 /* ---------- frequency counter for operater update ---------- */
373 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
375 int ksr;
377 /* frequency step counter */
378 SLOT->Incr = CH->fc * SLOT->mul;
379 ksr = CH->kcode >> SLOT->KSR;
381 if( SLOT->ksr != ksr )
383 SLOT->ksr = ksr;
384 /* attack , decay rate recalcration */
385 SLOT->evsa = SLOT->AR[ksr];
386 SLOT->evsd = SLOT->DR[ksr];
387 SLOT->evsr = SLOT->RR[ksr];
389 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
392 /* set multi,am,vib,EG-TYP,KSR,mul */
393 static inline void set_mul(FM_OPL *OPL,int slot,int v)
395 OPL_CH *CH = &OPL->P_CH[slot/2];
396 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
398 SLOT->mul = MUL_TABLE[v&0x0f];
399 SLOT->KSR = (v&0x10) ? 0 : 2;
400 SLOT->eg_typ = (v&0x20)>>5;
401 SLOT->vib = (v&0x40);
402 SLOT->ams = (v&0x80);
403 CALC_FCSLOT(CH,SLOT);
406 /* set ksl & tl */
407 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
409 OPL_CH *CH = &OPL->P_CH[slot/2];
410 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
411 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
413 SLOT->ksl = ksl ? 3-ksl : 31;
414 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
416 if( !(OPL->mode&0x80) )
417 { /* not CSM latch total level */
418 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
422 /* set attack rate & decay rate */
423 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
425 OPL_CH *CH = &OPL->P_CH[slot/2];
426 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
427 int ar = v>>4;
428 int dr = v&0x0f;
430 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
431 SLOT->evsa = SLOT->AR[SLOT->ksr];
432 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
434 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
435 SLOT->evsd = SLOT->DR[SLOT->ksr];
436 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
439 /* set sustain level & release rate */
440 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
442 OPL_CH *CH = &OPL->P_CH[slot/2];
443 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
444 int sl = v>>4;
445 int rr = v & 0x0f;
447 SLOT->SL = SL_TABLE[sl];
448 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
449 SLOT->RR = &OPL->DR_TABLE[rr<<2];
450 SLOT->evsr = SLOT->RR[SLOT->ksr];
451 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
454 /* operator output calcrator */
455 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
456 /* ---------- calcrate one of channel ---------- */
457 static inline void OPL_CALC_CH( OPL_CH *CH )
459 UINT32 env_out;
460 OPL_SLOT *SLOT;
462 feedback2 = 0;
463 /* SLOT 1 */
464 SLOT = &CH->SLOT[SLOT1];
465 env_out=OPL_CALC_SLOT(SLOT);
466 if( env_out < EG_ENT-1 )
468 /* PG */
469 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
470 else SLOT->Cnt += SLOT->Incr;
471 /* connectoion */
472 if(CH->FB)
474 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
475 CH->op1_out[1] = CH->op1_out[0];
476 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
478 else
480 *CH->connect1 += OP_OUT(SLOT,env_out,0);
482 }else
484 CH->op1_out[1] = CH->op1_out[0];
485 CH->op1_out[0] = 0;
487 /* SLOT 2 */
488 SLOT = &CH->SLOT[SLOT2];
489 env_out=OPL_CALC_SLOT(SLOT);
490 if( env_out < EG_ENT-1 )
492 /* PG */
493 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
494 else SLOT->Cnt += SLOT->Incr;
495 /* connectoion */
496 outd[0] += OP_OUT(SLOT,env_out, feedback2);
500 /* ---------- calcrate rhythm block ---------- */
501 #define WHITE_NOISE_db 6.0
502 static inline void OPL_CALC_RH( OPL_CH *CH )
504 UINT32 env_tam,env_sd,env_top,env_hh;
505 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
506 INT32 tone8;
508 OPL_SLOT *SLOT;
509 int env_out;
511 /* BD : same as FM serial mode and output level is large */
512 feedback2 = 0;
513 /* SLOT 1 */
514 SLOT = &CH[6].SLOT[SLOT1];
515 env_out=OPL_CALC_SLOT(SLOT);
516 if( env_out < EG_ENT-1 )
518 /* PG */
519 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
520 else SLOT->Cnt += SLOT->Incr;
521 /* connectoion */
522 if(CH[6].FB)
524 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
525 CH[6].op1_out[1] = CH[6].op1_out[0];
526 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
528 else
530 feedback2 = OP_OUT(SLOT,env_out,0);
532 }else
534 feedback2 = 0;
535 CH[6].op1_out[1] = CH[6].op1_out[0];
536 CH[6].op1_out[0] = 0;
538 /* SLOT 2 */
539 SLOT = &CH[6].SLOT[SLOT2];
540 env_out=OPL_CALC_SLOT(SLOT);
541 if( env_out < EG_ENT-1 )
543 /* PG */
544 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
545 else SLOT->Cnt += SLOT->Incr;
546 /* connectoion */
547 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
550 // SD (17) = mul14[fnum7] + white noise
551 // TAM (15) = mul15[fnum8]
552 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
553 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
554 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
555 env_tam=OPL_CALC_SLOT(SLOT8_1);
556 env_top=OPL_CALC_SLOT(SLOT8_2);
557 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
559 /* PG */
560 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
561 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
562 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
563 else SLOT7_2->Cnt += (CH[7].fc*8);
564 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
565 else SLOT8_1->Cnt += SLOT8_1->Incr;
566 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
567 else SLOT8_2->Cnt += (CH[8].fc*48);
569 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
571 /* SD */
572 if( env_sd < EG_ENT-1 )
573 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
574 /* TAM */
575 if( env_tam < EG_ENT-1 )
576 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
577 /* TOP-CY */
578 if( env_top < EG_ENT-1 )
579 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
580 /* HH */
581 if( env_hh < EG_ENT-1 )
582 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
585 /* ----------- initialize time tabls ----------- */
586 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
588 int i;
589 double rate;
591 /* make attack rate & decay rate tables */
592 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
593 for (i = 4;i <= 60;i++){
594 rate = OPL->freqbase; /* frequency rate */
595 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
596 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
597 rate *= (double)(EG_ENT<<ENV_BITS);
598 OPL->AR_TABLE[i] = rate / ARRATE;
599 OPL->DR_TABLE[i] = rate / DRRATE;
601 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
603 OPL->AR_TABLE[i] = EG_AED-1;
604 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
606 #if 0
607 for (i = 0;i < 64 ;i++){ /* make for overflow area */
608 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
609 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
610 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
612 #endif
615 /* ---------- generic table initialize ---------- */
616 static int OPLOpenTable( void )
618 int s,t;
619 double rate;
620 int i,j;
621 double pom;
623 /* allocate dynamic tables */
624 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
625 return 0;
626 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
628 free(TL_TABLE);
629 return 0;
631 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
633 free(TL_TABLE);
634 free(SIN_TABLE);
635 return 0;
637 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
639 free(TL_TABLE);
640 free(SIN_TABLE);
641 free(AMS_TABLE);
642 return 0;
644 /* make total level table */
645 for (t = 0;t < EG_ENT-1 ;t++){
646 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
647 TL_TABLE[ t] = (int)rate;
648 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
649 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
651 /* fill volume off area */
652 for ( t = EG_ENT-1; t < TL_MAX ;t++){
653 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
656 /* make sinwave table (total level offet) */
657 /* degree 0 = degree 180 = off */
658 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
659 for (s = 1;s <= SIN_ENT/4;s++){
660 pom = sin(2*PI*s/SIN_ENT); /* sin */
661 pom = 20*log10(1/pom); /* decibel */
662 j = pom / EG_STEP; /* TL_TABLE steps */
664 /* degree 0 - 90 , degree 180 - 90 : plus section */
665 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
666 /* degree 180 - 270 , degree 360 - 270 : minus section */
667 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
668 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
670 for (s = 0;s < SIN_ENT;s++)
672 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
673 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
674 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
677 /* envelope counter -> envelope output table */
678 for (i=0; i<EG_ENT; i++)
680 /* ATTACK curve */
681 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
682 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
683 ENV_CURVE[i] = (int)pom;
684 /* DECAY ,RELEASE curve */
685 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
687 /* off */
688 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
689 /* make LFO ams table */
690 for (i=0; i<AMS_ENT; i++)
692 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
693 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
694 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
696 /* make LFO vibrate table */
697 for (i=0; i<VIB_ENT; i++)
699 /* 100cent = 1seminote = 6% ?? */
700 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
701 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
702 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
703 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
705 return 1;
709 static void OPLCloseTable( void )
711 free(TL_TABLE);
712 free(SIN_TABLE);
713 free(AMS_TABLE);
714 free(VIB_TABLE);
717 /* CSM Key Control */
718 static inline void CSMKeyControll(OPL_CH *CH)
720 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
721 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
722 /* all key off */
723 OPL_KEYOFF(slot1);
724 OPL_KEYOFF(slot2);
725 /* total level latch */
726 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
727 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
728 /* key on */
729 CH->op1_out[0] = CH->op1_out[1] = 0;
730 OPL_KEYON(slot1);
731 OPL_KEYON(slot2);
734 /* ---------- opl initialize ---------- */
735 static void OPL_initialize(FM_OPL *OPL)
737 int fn;
739 /* frequency base */
740 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
741 /* Timer base time */
742 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
743 /* make time tables */
744 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
745 /* make fnumber -> increment counter table */
746 for( fn=0 ; fn < 1024 ; fn++ )
748 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
750 /* LFO freq.table */
751 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
752 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
755 /* ---------- write a OPL registers ---------- */
756 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
758 OPL_CH *CH;
759 int slot;
760 int block_fnum;
762 switch(r&0xe0)
764 case 0x00: /* 00-1f:control */
765 switch(r&0x1f)
767 case 0x01:
768 /* wave selector enable */
769 if(OPL->type&OPL_TYPE_WAVESEL)
771 OPL->wavesel = v&0x20;
772 if(!OPL->wavesel)
774 /* preset compatible mode */
775 int c;
776 for(c=0;c<OPL->max_ch;c++)
778 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
779 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
783 return;
784 case 0x02: /* Timer 1 */
785 OPL->T[0] = (256-v)*4;
786 break;
787 case 0x03: /* Timer 2 */
788 OPL->T[1] = (256-v)*16;
789 return;
790 case 0x04: /* IRQ clear / mask and Timer enable */
791 if(v&0x80)
792 { /* IRQ flag clear */
793 OPL_STATUS_RESET(OPL,0x7f);
795 else
796 { /* set IRQ mask ,timer enable*/
797 UINT8 st1 = v&1;
798 UINT8 st2 = (v>>1)&1;
799 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
800 OPL_STATUS_RESET(OPL,v&0x78);
801 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
802 /* timer 2 */
803 if(OPL->st[1] != st2)
805 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
806 OPL->st[1] = st2;
807 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
809 /* timer 1 */
810 if(OPL->st[0] != st1)
812 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
813 OPL->st[0] = st1;
814 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
817 return;
818 #if BUILD_Y8950
819 case 0x06: /* Key Board OUT */
820 if(OPL->type&OPL_TYPE_KEYBOARD)
822 if(OPL->keyboardhandler_w)
823 OPL->keyboardhandler_w(OPL->keyboard_param,v);
824 else
825 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
827 return;
828 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
829 if(OPL->type&OPL_TYPE_ADPCM)
830 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
831 return;
832 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
833 OPL->mode = v;
834 v&=0x1f; /* for DELTA-T unit */
835 case 0x09: /* START ADD */
836 case 0x0a:
837 case 0x0b: /* STOP ADD */
838 case 0x0c:
839 case 0x0d: /* PRESCALE */
840 case 0x0e:
841 case 0x0f: /* ADPCM data */
842 case 0x10: /* DELTA-N */
843 case 0x11: /* DELTA-N */
844 case 0x12: /* EG-CTRL */
845 if(OPL->type&OPL_TYPE_ADPCM)
846 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
847 return;
848 #if 0
849 case 0x15: /* DAC data */
850 case 0x16:
851 case 0x17: /* SHIFT */
852 return;
853 case 0x18: /* I/O CTRL (Direction) */
854 if(OPL->type&OPL_TYPE_IO)
855 OPL->portDirection = v&0x0f;
856 return;
857 case 0x19: /* I/O DATA */
858 if(OPL->type&OPL_TYPE_IO)
860 OPL->portLatch = v;
861 if(OPL->porthandler_w)
862 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
864 return;
865 case 0x1a: /* PCM data */
866 return;
867 #endif
868 #endif
870 break;
871 case 0x20: /* am,vib,ksr,eg type,mul */
872 slot = slot_array[r&0x1f];
873 if(slot == -1) return;
874 set_mul(OPL,slot,v);
875 return;
876 case 0x40:
877 slot = slot_array[r&0x1f];
878 if(slot == -1) return;
879 set_ksl_tl(OPL,slot,v);
880 return;
881 case 0x60:
882 slot = slot_array[r&0x1f];
883 if(slot == -1) return;
884 set_ar_dr(OPL,slot,v);
885 return;
886 case 0x80:
887 slot = slot_array[r&0x1f];
888 if(slot == -1) return;
889 set_sl_rr(OPL,slot,v);
890 return;
891 case 0xa0:
892 switch(r)
894 case 0xbd:
895 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
897 UINT8 rkey = OPL->rhythm^v;
898 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
899 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
900 OPL->rhythm = v&0x3f;
901 if(OPL->rhythm&0x20)
903 #if 0
904 usrintf_showmessage("OPL Rhythm mode select");
905 #endif
906 /* BD key on/off */
907 if(rkey&0x10)
909 if(v&0x10)
911 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
912 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
913 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
915 else
917 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
918 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
921 /* SD key on/off */
922 if(rkey&0x08)
924 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
925 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
926 }/* TAM key on/off */
927 if(rkey&0x04)
929 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
930 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
932 /* TOP-CY key on/off */
933 if(rkey&0x02)
935 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
936 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
938 /* HH key on/off */
939 if(rkey&0x01)
941 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
942 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
946 return;
948 /* keyon,block,fnum */
949 if( (r&0x0f) > 8) return;
950 CH = &OPL->P_CH[r&0x0f];
951 if(!(r&0x10))
952 { /* a0-a8 */
953 block_fnum = (CH->block_fnum&0x1f00) | v;
955 else
956 { /* b0-b8 */
957 int keyon = (v>>5)&1;
958 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
959 if(CH->keyon != keyon)
961 if( (CH->keyon=keyon) )
963 CH->op1_out[0] = CH->op1_out[1] = 0;
964 OPL_KEYON(&CH->SLOT[SLOT1]);
965 OPL_KEYON(&CH->SLOT[SLOT2]);
967 else
969 OPL_KEYOFF(&CH->SLOT[SLOT1]);
970 OPL_KEYOFF(&CH->SLOT[SLOT2]);
974 /* update */
975 if(CH->block_fnum != block_fnum)
977 int blockRv = 7-(block_fnum>>10);
978 int fnum = block_fnum&0x3ff;
979 CH->block_fnum = block_fnum;
981 CH->ksl_base = KSL_TABLE[block_fnum>>6];
982 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
983 CH->kcode = CH->block_fnum>>9;
984 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
985 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
986 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
988 return;
989 case 0xc0:
990 /* FB,C */
991 if( (r&0x0f) > 8) return;
992 CH = &OPL->P_CH[r&0x0f];
994 int feedback = (v>>1)&7;
995 CH->FB = feedback ? (8+1) - feedback : 0;
996 CH->CON = v&1;
997 set_algorithm(CH);
999 return;
1000 case 0xe0: /* wave type */
1001 slot = slot_array[r&0x1f];
1002 if(slot == -1) return;
1003 CH = &OPL->P_CH[slot/2];
1004 if(OPL->wavesel)
1006 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1007 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1009 return;
1013 /* lock/unlock for common table */
1014 static int OPL_LockTable(void)
1016 num_lock++;
1017 if(num_lock>1) return 0;
1018 /* first time */
1019 cur_chip = NULL;
1020 /* allocate total level table (128kb space) */
1021 if( !OPLOpenTable() )
1023 num_lock--;
1024 return -1;
1026 return 0;
1029 static void OPL_UnLockTable(void)
1031 if(num_lock) num_lock--;
1032 if(num_lock) return;
1033 /* last time */
1034 cur_chip = NULL;
1035 OPLCloseTable();
1038 #if (BUILD_YM3812 || BUILD_YM3526)
1039 /*******************************************************************************/
1040 /* YM3812 local section */
1041 /*******************************************************************************/
1043 /* ---------- update one of chip ----------- */
1044 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1046 int i;
1047 int data;
1048 OPLSAMPLE *buf = buffer;
1049 UINT32 amsCnt = OPL->amsCnt;
1050 UINT32 vibCnt = OPL->vibCnt;
1051 UINT8 rhythm = OPL->rhythm&0x20;
1052 OPL_CH *CH,*R_CH;
1054 if( (void *)OPL != cur_chip ){
1055 cur_chip = (void *)OPL;
1056 /* channel pointers */
1057 S_CH = OPL->P_CH;
1058 E_CH = &S_CH[9];
1059 /* rhythm slot */
1060 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1061 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1062 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1063 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1064 /* LFO state */
1065 amsIncr = OPL->amsIncr;
1066 vibIncr = OPL->vibIncr;
1067 ams_table = OPL->ams_table;
1068 vib_table = OPL->vib_table;
1070 R_CH = rhythm ? &S_CH[6] : E_CH;
1071 for( i=0; i < length ; i++ )
1073 /* channel A channel B channel C */
1074 /* LFO */
1075 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1076 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1077 outd[0] = 0;
1078 /* FM part */
1079 for(CH=S_CH ; CH < R_CH ; CH++)
1080 OPL_CALC_CH(CH);
1081 /* Rythn part */
1082 if(rhythm)
1083 OPL_CALC_RH(S_CH);
1084 /* limit check */
1085 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1086 /* store to sound buffer */
1087 buf[i] = data >> OPL_OUTSB;
1090 OPL->amsCnt = amsCnt;
1091 OPL->vibCnt = vibCnt;
1092 #ifdef OPL_OUTPUT_LOG
1093 if(opl_dbg_fp)
1095 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1096 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1097 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1099 #endif
1101 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1103 #if BUILD_Y8950
1105 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1107 int i;
1108 int data;
1109 OPLSAMPLE *buf = buffer;
1110 UINT32 amsCnt = OPL->amsCnt;
1111 UINT32 vibCnt = OPL->vibCnt;
1112 UINT8 rhythm = OPL->rhythm&0x20;
1113 OPL_CH *CH,*R_CH;
1114 YM_DELTAT *DELTAT = OPL->deltat;
1116 /* setup DELTA-T unit */
1117 YM_DELTAT_DECODE_PRESET(DELTAT);
1119 if( (void *)OPL != cur_chip ){
1120 cur_chip = (void *)OPL;
1121 /* channel pointers */
1122 S_CH = OPL->P_CH;
1123 E_CH = &S_CH[9];
1124 /* rhythm slot */
1125 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1126 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1127 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1128 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1129 /* LFO state */
1130 amsIncr = OPL->amsIncr;
1131 vibIncr = OPL->vibIncr;
1132 ams_table = OPL->ams_table;
1133 vib_table = OPL->vib_table;
1135 R_CH = rhythm ? &S_CH[6] : E_CH;
1136 for( i=0; i < length ; i++ )
1138 /* channel A channel B channel C */
1139 /* LFO */
1140 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1141 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1142 outd[0] = 0;
1143 /* deltaT ADPCM */
1144 if( DELTAT->portstate )
1145 YM_DELTAT_ADPCM_CALC(DELTAT);
1146 /* FM part */
1147 for(CH=S_CH ; CH < R_CH ; CH++)
1148 OPL_CALC_CH(CH);
1149 /* Rythn part */
1150 if(rhythm)
1151 OPL_CALC_RH(S_CH);
1152 /* limit check */
1153 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1154 /* store to sound buffer */
1155 buf[i] = data >> OPL_OUTSB;
1157 OPL->amsCnt = amsCnt;
1158 OPL->vibCnt = vibCnt;
1159 /* deltaT START flag */
1160 if( !DELTAT->portstate )
1161 OPL->status &= 0xfe;
1163 #endif
1165 /* ---------- reset one of chip ---------- */
1166 void OPLResetChip(FM_OPL *OPL)
1168 int c,s;
1169 int i;
1171 /* reset chip */
1172 OPL->mode = 0; /* normal mode */
1173 OPL_STATUS_RESET(OPL,0x7f);
1174 /* reset with register write */
1175 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1176 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1177 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1178 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1179 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1180 /* reset operator parameter */
1181 for( c = 0 ; c < OPL->max_ch ; c++ )
1183 OPL_CH *CH = &OPL->P_CH[c];
1184 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1185 for(s = 0 ; s < 2 ; s++ )
1187 /* wave table */
1188 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1189 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1190 CH->SLOT[s].evc = EG_OFF;
1191 CH->SLOT[s].eve = EG_OFF+1;
1192 CH->SLOT[s].evs = 0;
1195 #if BUILD_Y8950
1196 if(OPL->type&OPL_TYPE_ADPCM)
1198 YM_DELTAT *DELTAT = OPL->deltat;
1200 DELTAT->freqbase = OPL->freqbase;
1201 DELTAT->output_pointer = outd;
1202 DELTAT->portshift = 5;
1203 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1204 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1206 #endif
1209 /* ---------- Create one of vietual YM3812 ---------- */
1210 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1211 FM_OPL *OPLCreate(int type, int clock, int rate)
1213 char *ptr;
1214 FM_OPL *OPL;
1215 int state_size;
1216 int max_ch = 9; /* normaly 9 channels */
1218 if( OPL_LockTable() ==-1) return NULL;
1219 /* allocate OPL state space */
1220 state_size = sizeof(FM_OPL);
1221 state_size += sizeof(OPL_CH)*max_ch;
1222 #if BUILD_Y8950
1223 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1224 #endif
1225 /* allocate memory block */
1226 ptr = malloc(state_size);
1227 if(ptr==NULL) return NULL;
1228 /* clear */
1229 memset(ptr,0,state_size);
1230 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1231 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1232 #if BUILD_Y8950
1233 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1234 #endif
1235 /* set channel state pointer */
1236 OPL->type = type;
1237 OPL->clock = clock;
1238 OPL->rate = rate;
1239 OPL->max_ch = max_ch;
1240 /* init grobal tables */
1241 OPL_initialize(OPL);
1242 /* reset chip */
1243 OPLResetChip(OPL);
1244 #ifdef OPL_OUTPUT_LOG
1245 if(!opl_dbg_fp)
1247 opl_dbg_fp = fopen("opllog.opl","wb");
1248 opl_dbg_maxchip = 0;
1250 if(opl_dbg_fp)
1252 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1253 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1254 type,
1255 clock&0xff,
1256 (clock/0x100)&0xff,
1257 (clock/0x10000)&0xff,
1258 (clock/0x1000000)&0xff);
1259 opl_dbg_maxchip++;
1261 #endif
1262 return OPL;
1265 /* ---------- Destroy one of vietual YM3812 ---------- */
1266 void OPLDestroy(FM_OPL *OPL)
1268 #ifdef OPL_OUTPUT_LOG
1269 if(opl_dbg_fp)
1271 fclose(opl_dbg_fp);
1272 opl_dbg_fp = NULL;
1274 #endif
1275 OPL_UnLockTable();
1276 free(OPL);
1279 /* ---------- Option handlers ---------- */
1281 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1283 OPL->TimerHandler = TimerHandler;
1284 OPL->TimerParam = channelOffset;
1286 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1288 OPL->IRQHandler = IRQHandler;
1289 OPL->IRQParam = param;
1291 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1293 OPL->UpdateHandler = UpdateHandler;
1294 OPL->UpdateParam = param;
1296 #if BUILD_Y8950
1297 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1299 OPL->porthandler_w = PortHandler_w;
1300 OPL->porthandler_r = PortHandler_r;
1301 OPL->port_param = param;
1304 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1306 OPL->keyboardhandler_w = KeyboardHandler_w;
1307 OPL->keyboardhandler_r = KeyboardHandler_r;
1308 OPL->keyboard_param = param;
1310 #endif
1311 /* ---------- YM3812 I/O interface ---------- */
1312 int OPLWrite(FM_OPL *OPL,int a,int v)
1314 if( !(a&1) )
1315 { /* address port */
1316 OPL->address = v & 0xff;
1318 else
1319 { /* data port */
1320 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1321 #ifdef OPL_OUTPUT_LOG
1322 if(opl_dbg_fp)
1324 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1325 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1326 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1328 #endif
1329 OPLWriteReg(OPL,OPL->address,v);
1331 return OPL->status>>7;
1334 unsigned char OPLRead(FM_OPL *OPL,int a)
1336 if( !(a&1) )
1337 { /* status port */
1338 return OPL->status & (OPL->statusmask|0x80);
1340 /* data port */
1341 switch(OPL->address)
1343 case 0x05: /* KeyBoard IN */
1344 if(OPL->type&OPL_TYPE_KEYBOARD)
1346 if(OPL->keyboardhandler_r)
1347 return OPL->keyboardhandler_r(OPL->keyboard_param);
1348 else {
1349 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1352 return 0;
1353 #if 0
1354 case 0x0f: /* ADPCM-DATA */
1355 return 0;
1356 #endif
1357 case 0x19: /* I/O DATA */
1358 if(OPL->type&OPL_TYPE_IO)
1360 if(OPL->porthandler_r)
1361 return OPL->porthandler_r(OPL->port_param);
1362 else {
1363 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1366 return 0;
1367 case 0x1a: /* PCM-DATA */
1368 return 0;
1370 return 0;
1373 int OPLTimerOver(FM_OPL *OPL,int c)
1375 if( c )
1376 { /* Timer B */
1377 OPL_STATUS_SET(OPL,0x20);
1379 else
1380 { /* Timer A */
1381 OPL_STATUS_SET(OPL,0x40);
1382 /* CSM mode key,TL control */
1383 if( OPL->mode & 0x80 )
1384 { /* CSM mode total level latch and auto key on */
1385 int ch;
1386 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1387 for(ch=0;ch<9;ch++)
1388 CSMKeyControll( &OPL->P_CH[ch] );
1391 /* reload timer */
1392 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1393 return OPL->status>>7;