xen_disk: use bdrv_aio_flush instead of bdrv_flush
[qemu/ar7.git] / hw / spapr_pci.c
blob25b400aa47865d056239e6496e03d304081bf1ca
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pci.h"
27 #include "pci_host.h"
28 #include "hw/spapr.h"
29 #include "hw/spapr_pci.h"
30 #include "exec-memory.h"
31 #include <libfdt.h>
33 #include "hw/pci_internals.h"
35 static PCIDevice *find_dev(sPAPREnvironment *spapr,
36 uint64_t buid, uint32_t config_addr)
38 DeviceState *qdev;
39 int devfn = (config_addr >> 8) & 0xFF;
40 sPAPRPHBState *phb;
42 QLIST_FOREACH(phb, &spapr->phbs, list) {
43 if (phb->buid != buid) {
44 continue;
47 QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
48 PCIDevice *dev = (PCIDevice *)qdev;
49 if (dev->devfn == devfn) {
50 return dev;
55 return NULL;
58 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
60 /* This handles the encoding of extended config space addresses */
61 return ((arg >> 20) & 0xf00) | (arg & 0xff);
64 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
65 uint32_t addr, uint32_t size,
66 target_ulong rets)
68 PCIDevice *pci_dev;
69 uint32_t val;
71 if ((size != 1) && (size != 2) && (size != 4)) {
72 /* access must be 1, 2 or 4 bytes */
73 rtas_st(rets, 0, -1);
74 return;
77 pci_dev = find_dev(spapr, buid, addr);
78 addr = rtas_pci_cfgaddr(addr);
80 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
81 /* Access must be to a valid device, within bounds and
82 * naturally aligned */
83 rtas_st(rets, 0, -1);
84 return;
87 val = pci_host_config_read_common(pci_dev, addr,
88 pci_config_size(pci_dev), size);
90 rtas_st(rets, 0, 0);
91 rtas_st(rets, 1, val);
94 static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
95 uint32_t token, uint32_t nargs,
96 target_ulong args,
97 uint32_t nret, target_ulong rets)
99 uint64_t buid;
100 uint32_t size, addr;
102 if ((nargs != 4) || (nret != 2)) {
103 rtas_st(rets, 0, -1);
104 return;
107 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
108 size = rtas_ld(args, 3);
109 addr = rtas_ld(args, 0);
111 finish_read_pci_config(spapr, buid, addr, size, rets);
114 static void rtas_read_pci_config(sPAPREnvironment *spapr,
115 uint32_t token, uint32_t nargs,
116 target_ulong args,
117 uint32_t nret, target_ulong rets)
119 uint32_t size, addr;
121 if ((nargs != 2) || (nret != 2)) {
122 rtas_st(rets, 0, -1);
123 return;
126 size = rtas_ld(args, 1);
127 addr = rtas_ld(args, 0);
129 finish_read_pci_config(spapr, 0, addr, size, rets);
132 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
133 uint32_t addr, uint32_t size,
134 uint32_t val, target_ulong rets)
136 PCIDevice *pci_dev;
138 if ((size != 1) && (size != 2) && (size != 4)) {
139 /* access must be 1, 2 or 4 bytes */
140 rtas_st(rets, 0, -1);
141 return;
144 pci_dev = find_dev(spapr, buid, addr);
145 addr = rtas_pci_cfgaddr(addr);
147 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
148 /* Access must be to a valid device, within bounds and
149 * naturally aligned */
150 rtas_st(rets, 0, -1);
151 return;
154 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
155 val, size);
157 rtas_st(rets, 0, 0);
160 static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
161 uint32_t token, uint32_t nargs,
162 target_ulong args,
163 uint32_t nret, target_ulong rets)
165 uint64_t buid;
166 uint32_t val, size, addr;
168 if ((nargs != 5) || (nret != 1)) {
169 rtas_st(rets, 0, -1);
170 return;
173 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
174 val = rtas_ld(args, 4);
175 size = rtas_ld(args, 3);
176 addr = rtas_ld(args, 0);
178 finish_write_pci_config(spapr, buid, addr, size, val, rets);
181 static void rtas_write_pci_config(sPAPREnvironment *spapr,
182 uint32_t token, uint32_t nargs,
183 target_ulong args,
184 uint32_t nret, target_ulong rets)
186 uint32_t val, size, addr;
188 if ((nargs != 3) || (nret != 1)) {
189 rtas_st(rets, 0, -1);
190 return;
194 val = rtas_ld(args, 2);
195 size = rtas_ld(args, 1);
196 addr = rtas_ld(args, 0);
198 finish_write_pci_config(spapr, 0, addr, size, val, rets);
201 static int pci_spapr_swizzle(int slot, int pin)
203 return (slot + pin) % PCI_NUM_PINS;
206 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
209 * Here we need to convert pci_dev + irq_num to some unique value
210 * which is less than number of IRQs on the specific bus (4). We
211 * use standard PCI swizzling, that is (slot number + pin number)
212 * % 4.
214 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
217 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
220 * Here we use the number returned by pci_spapr_map_irq to find a
221 * corresponding qemu_irq.
223 sPAPRPHBState *phb = opaque;
225 qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
228 static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
229 unsigned size)
231 switch (size) {
232 case 1:
233 return cpu_inb(addr);
234 case 2:
235 return cpu_inw(addr);
236 case 4:
237 return cpu_inl(addr);
239 assert(0);
242 static void spapr_io_write(void *opaque, target_phys_addr_t addr,
243 uint64_t data, unsigned size)
245 switch (size) {
246 case 1:
247 cpu_outb(addr, data);
248 return;
249 case 2:
250 cpu_outw(addr, data);
251 return;
252 case 4:
253 cpu_outl(addr, data);
254 return;
256 assert(0);
259 static const MemoryRegionOps spapr_io_ops = {
260 .endianness = DEVICE_LITTLE_ENDIAN,
261 .read = spapr_io_read,
262 .write = spapr_io_write
266 * PHB PCI device
268 static int spapr_phb_init(SysBusDevice *s)
270 sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
271 char *namebuf;
272 int i;
273 PCIBus *bus;
275 phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid);
276 namebuf = alloca(strlen(phb->dtbusname) + 32);
278 /* Initialize memory regions */
279 sprintf(namebuf, "%s.mmio", phb->dtbusname);
280 memory_region_init(&phb->memspace, namebuf, INT64_MAX);
282 sprintf(namebuf, "%s.mmio-alias", phb->dtbusname);
283 memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
284 SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size);
285 memory_region_add_subregion(get_system_memory(), phb->mem_win_addr,
286 &phb->memwindow);
288 /* On ppc, we only have MMIO no specific IO space from the CPU
289 * perspective. In theory we ought to be able to embed the PCI IO
290 * memory region direction in the system memory space. However,
291 * if any of the IO BAR subregions use the old_portio mechanism,
292 * that won't be processed properly unless accessed from the
293 * system io address space. This hack to bounce things via
294 * system_io works around the problem until all the users of
295 * old_portion are updated */
296 sprintf(namebuf, "%s.io", phb->dtbusname);
297 memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
298 /* FIXME: fix to support multiple PHBs */
299 memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
301 sprintf(namebuf, "%s.io-alias", phb->dtbusname);
302 memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
303 namebuf, SPAPR_PCI_IO_WIN_SIZE);
304 memory_region_add_subregion(get_system_memory(), phb->io_win_addr,
305 &phb->iowindow);
307 bus = pci_register_bus(&phb->busdev.qdev,
308 phb->busname ? phb->busname : phb->dtbusname,
309 pci_spapr_set_irq, pci_spapr_map_irq, phb,
310 &phb->memspace, &phb->iospace,
311 PCI_DEVFN(0, 0), PCI_NUM_PINS);
312 phb->host_state.bus = bus;
314 QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
316 /* Initialize the LSI table */
317 for (i = 0; i < PCI_NUM_PINS; i++) {
318 qemu_irq qirq;
319 uint32_t num;
321 qirq = spapr_allocate_lsi(0, &num);
322 if (!qirq) {
323 return -1;
326 phb->lsi_table[i].dt_irq = num;
327 phb->lsi_table[i].qirq = qirq;
330 return 0;
333 static Property spapr_phb_properties[] = {
334 DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0),
335 DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
336 DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0),
337 DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000),
338 DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0),
339 DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000),
340 DEFINE_PROP_END_OF_LIST(),
343 static void spapr_phb_class_init(ObjectClass *klass, void *data)
345 SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
346 DeviceClass *dc = DEVICE_CLASS(klass);
348 sdc->init = spapr_phb_init;
349 dc->props = spapr_phb_properties;
351 spapr_rtas_register("read-pci-config", rtas_read_pci_config);
352 spapr_rtas_register("write-pci-config", rtas_write_pci_config);
353 spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
354 spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
357 static TypeInfo spapr_phb_info = {
358 .name = "spapr-pci-host-bridge",
359 .parent = TYPE_SYS_BUS_DEVICE,
360 .instance_size = sizeof(sPAPRPHBState),
361 .class_init = spapr_phb_class_init,
364 void spapr_create_phb(sPAPREnvironment *spapr,
365 const char *busname, uint64_t buid,
366 uint64_t mem_win_addr, uint64_t mem_win_size,
367 uint64_t io_win_addr)
369 DeviceState *dev;
371 dev = qdev_create(NULL, spapr_phb_info.name);
373 if (busname) {
374 qdev_prop_set_string(dev, "busname", g_strdup(busname));
376 qdev_prop_set_uint64(dev, "buid", buid);
377 qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr);
378 qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size);
379 qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr);
381 qdev_init_nofail(dev);
384 /* Macros to operate with address in OF binding to PCI */
385 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
386 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
387 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
388 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
389 #define b_ss(x) b_x((x), 24, 2) /* the space code */
390 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
391 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
392 #define b_fff(x) b_x((x), 8, 3) /* function number */
393 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
395 int spapr_populate_pci_devices(sPAPRPHBState *phb,
396 uint32_t xics_phandle,
397 void *fdt)
399 int bus_off, i, j;
400 char nodename[256];
401 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
402 struct {
403 uint32_t hi;
404 uint64_t child;
405 uint64_t parent;
406 uint64_t size;
407 } __attribute__((packed)) ranges[] = {
409 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
410 cpu_to_be64(phb->io_win_addr),
411 cpu_to_be64(memory_region_size(&phb->iospace)),
414 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
415 cpu_to_be64(phb->mem_win_addr),
416 cpu_to_be64(memory_region_size(&phb->memwindow)),
419 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
420 uint32_t interrupt_map_mask[] = {
421 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
422 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
424 /* Start populating the FDT */
425 sprintf(nodename, "pci@%" PRIx64, phb->buid);
426 bus_off = fdt_add_subnode(fdt, 0, nodename);
427 if (bus_off < 0) {
428 return bus_off;
431 #define _FDT(exp) \
432 do { \
433 int ret = (exp); \
434 if (ret < 0) { \
435 return ret; \
437 } while (0)
439 /* Write PHB properties */
440 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
441 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
442 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
443 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
444 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
445 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
446 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
447 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
448 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
449 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
451 /* Build the interrupt-map, this must matches what is done
452 * in pci_spapr_map_irq
454 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
455 &interrupt_map_mask, sizeof(interrupt_map_mask)));
456 for (i = 0; i < PCI_SLOT_MAX; i++) {
457 for (j = 0; j < PCI_NUM_PINS; j++) {
458 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
459 int lsi_num = pci_spapr_swizzle(i, j);
461 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
462 irqmap[1] = 0;
463 irqmap[2] = 0;
464 irqmap[3] = cpu_to_be32(j+1);
465 irqmap[4] = cpu_to_be32(xics_phandle);
466 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].dt_irq);
467 irqmap[6] = cpu_to_be32(0x8);
470 /* Write interrupt map */
471 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
472 sizeof(interrupt_map)));
474 return 0;
477 static void register_types(void)
479 type_register_static(&spapr_phb_info);
481 type_init(register_types)