qemu-ga: debug printouts to help troubleshoot installation
[qemu/ar7.git] / hw / ppc / spapr_rtas.c
blobfa28d43f81cc4d512f53fce1716169975f91364c
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Hypercall based emulated RTAS
6 * Copyright (c) 2010-2011 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "cpu.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/char.h"
30 #include "hw/qdev.h"
31 #include "sysemu/device_tree.h"
33 #include "hw/ppc/spapr.h"
34 #include "hw/ppc/spapr_vio.h"
35 #include "qapi-event.h"
37 #include <libfdt.h>
38 #include "hw/ppc/spapr_drc.h"
40 /* #define DEBUG_SPAPR */
42 #ifdef DEBUG_SPAPR
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define DPRINTF(fmt, ...) \
47 do { } while (0)
48 #endif
50 static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPREnvironment *spapr,
51 uint32_t drc_index)
53 sPAPRConfigureConnectorState *ccs = NULL;
55 QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) {
56 if (ccs->drc_index == drc_index) {
57 break;
61 return ccs;
64 static void spapr_ccs_add(sPAPREnvironment *spapr,
65 sPAPRConfigureConnectorState *ccs)
67 g_assert(!spapr_ccs_find(spapr, ccs->drc_index));
68 QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next);
71 static void spapr_ccs_remove(sPAPREnvironment *spapr,
72 sPAPRConfigureConnectorState *ccs)
74 QTAILQ_REMOVE(&spapr->ccs_list, ccs, next);
75 g_free(ccs);
78 void spapr_ccs_reset_hook(void *opaque)
80 sPAPREnvironment *spapr = opaque;
81 sPAPRConfigureConnectorState *ccs, *ccs_tmp;
83 QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) {
84 spapr_ccs_remove(spapr, ccs);
88 static void rtas_display_character(PowerPCCPU *cpu, sPAPREnvironment *spapr,
89 uint32_t token, uint32_t nargs,
90 target_ulong args,
91 uint32_t nret, target_ulong rets)
93 uint8_t c = rtas_ld(args, 0);
94 VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
96 if (!sdev) {
97 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
98 } else {
99 vty_putchars(sdev, &c, sizeof(c));
100 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
104 static void rtas_power_off(PowerPCCPU *cpu, sPAPREnvironment *spapr,
105 uint32_t token, uint32_t nargs, target_ulong args,
106 uint32_t nret, target_ulong rets)
108 if (nargs != 2 || nret != 1) {
109 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
110 return;
112 qemu_system_shutdown_request();
113 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
116 static void rtas_system_reboot(PowerPCCPU *cpu, sPAPREnvironment *spapr,
117 uint32_t token, uint32_t nargs,
118 target_ulong args,
119 uint32_t nret, target_ulong rets)
121 if (nargs != 0 || nret != 1) {
122 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
123 return;
125 qemu_system_reset_request();
126 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
129 static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
130 sPAPREnvironment *spapr,
131 uint32_t token, uint32_t nargs,
132 target_ulong args,
133 uint32_t nret, target_ulong rets)
135 target_ulong id;
136 PowerPCCPU *cpu;
138 if (nargs != 1 || nret != 2) {
139 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
140 return;
143 id = rtas_ld(args, 0);
144 cpu = ppc_get_vcpu_by_dt_id(id);
145 if (cpu != NULL) {
146 if (CPU(cpu)->halted) {
147 rtas_st(rets, 1, 0);
148 } else {
149 rtas_st(rets, 1, 2);
152 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
153 return;
156 /* Didn't find a matching cpu */
157 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
160 static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPREnvironment *spapr,
161 uint32_t token, uint32_t nargs,
162 target_ulong args,
163 uint32_t nret, target_ulong rets)
165 target_ulong id, start, r3;
166 PowerPCCPU *cpu;
168 if (nargs != 3 || nret != 1) {
169 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
170 return;
173 id = rtas_ld(args, 0);
174 start = rtas_ld(args, 1);
175 r3 = rtas_ld(args, 2);
177 cpu = ppc_get_vcpu_by_dt_id(id);
178 if (cpu != NULL) {
179 CPUState *cs = CPU(cpu);
180 CPUPPCState *env = &cpu->env;
182 if (!cs->halted) {
183 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
184 return;
187 /* This will make sure qemu state is up to date with kvm, and
188 * mark it dirty so our changes get flushed back before the
189 * new cpu enters */
190 kvm_cpu_synchronize_state(cs);
192 env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
193 env->nip = start;
194 env->gpr[3] = r3;
195 cs->halted = 0;
197 qemu_cpu_kick(cs);
199 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
200 return;
203 /* Didn't find a matching cpu */
204 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
207 static void rtas_stop_self(PowerPCCPU *cpu, sPAPREnvironment *spapr,
208 uint32_t token, uint32_t nargs,
209 target_ulong args,
210 uint32_t nret, target_ulong rets)
212 CPUState *cs = CPU(cpu);
213 CPUPPCState *env = &cpu->env;
215 cs->halted = 1;
216 cpu_exit(cs);
218 * While stopping a CPU, the guest calls H_CPPR which
219 * effectively disables interrupts on XICS level.
220 * However decrementer interrupts in TCG can still
221 * wake the CPU up so here we disable interrupts in MSR
222 * as well.
223 * As rtas_start_cpu() resets the whole MSR anyway, there is
224 * no need to bother with specific bits, we just clear it.
226 env->msr = 0;
229 static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
230 sPAPREnvironment *spapr,
231 uint32_t token, uint32_t nargs,
232 target_ulong args,
233 uint32_t nret, target_ulong rets)
235 target_ulong parameter = rtas_ld(args, 0);
236 target_ulong buffer = rtas_ld(args, 1);
237 target_ulong length = rtas_ld(args, 2);
238 target_ulong ret = RTAS_OUT_SUCCESS;
240 switch (parameter) {
241 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: {
242 char *param_val = g_strdup_printf("MaxEntCap=%d,MaxPlatProcs=%d",
243 max_cpus, smp_cpus);
244 rtas_st_buffer(buffer, length, (uint8_t *)param_val, strlen(param_val));
245 g_free(param_val);
246 break;
248 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: {
249 uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED;
251 rtas_st_buffer(buffer, length, &param_val, sizeof(param_val));
252 break;
254 case RTAS_SYSPARM_UUID:
255 rtas_st_buffer(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0));
256 break;
257 default:
258 ret = RTAS_OUT_NOT_SUPPORTED;
261 rtas_st(rets, 0, ret);
264 static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
265 sPAPREnvironment *spapr,
266 uint32_t token, uint32_t nargs,
267 target_ulong args,
268 uint32_t nret, target_ulong rets)
270 target_ulong parameter = rtas_ld(args, 0);
271 target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
273 switch (parameter) {
274 case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS:
275 case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE:
276 case RTAS_SYSPARM_UUID:
277 ret = RTAS_OUT_NOT_AUTHORIZED;
278 break;
281 rtas_st(rets, 0, ret);
284 static void rtas_ibm_os_term(PowerPCCPU *cpu,
285 sPAPREnvironment *spapr,
286 uint32_t token, uint32_t nargs,
287 target_ulong args,
288 uint32_t nret, target_ulong rets)
290 target_ulong ret = 0;
292 qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort);
294 rtas_st(rets, 0, ret);
297 static void rtas_set_power_level(PowerPCCPU *cpu, sPAPREnvironment *spapr,
298 uint32_t token, uint32_t nargs,
299 target_ulong args, uint32_t nret,
300 target_ulong rets)
302 int32_t power_domain;
304 if (nargs != 2 || nret != 2) {
305 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
306 return;
309 /* we currently only use a single, "live insert" powerdomain for
310 * hotplugged/dlpar'd resources, so the power is always live/full (100)
312 power_domain = rtas_ld(args, 0);
313 if (power_domain != -1) {
314 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
315 return;
318 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
319 rtas_st(rets, 1, 100);
322 static void rtas_get_power_level(PowerPCCPU *cpu, sPAPREnvironment *spapr,
323 uint32_t token, uint32_t nargs,
324 target_ulong args, uint32_t nret,
325 target_ulong rets)
327 int32_t power_domain;
329 if (nargs != 1 || nret != 2) {
330 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
331 return;
334 /* we currently only use a single, "live insert" powerdomain for
335 * hotplugged/dlpar'd resources, so the power is always live/full (100)
337 power_domain = rtas_ld(args, 0);
338 if (power_domain != -1) {
339 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
340 return;
343 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
344 rtas_st(rets, 1, 100);
347 static bool sensor_type_is_dr(uint32_t sensor_type)
349 switch (sensor_type) {
350 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
351 case RTAS_SENSOR_TYPE_DR:
352 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
353 return true;
356 return false;
359 static void rtas_set_indicator(PowerPCCPU *cpu, sPAPREnvironment *spapr,
360 uint32_t token, uint32_t nargs,
361 target_ulong args, uint32_t nret,
362 target_ulong rets)
364 uint32_t sensor_type;
365 uint32_t sensor_index;
366 uint32_t sensor_state;
367 sPAPRDRConnector *drc;
368 sPAPRDRConnectorClass *drck;
370 if (nargs != 3 || nret != 1) {
371 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
372 return;
375 sensor_type = rtas_ld(args, 0);
376 sensor_index = rtas_ld(args, 1);
377 sensor_state = rtas_ld(args, 2);
379 if (!sensor_type_is_dr(sensor_type)) {
380 goto out_unimplemented;
383 /* if this is a DR sensor we can assume sensor_index == drc_index */
384 drc = spapr_dr_connector_by_index(sensor_index);
385 if (!drc) {
386 DPRINTF("rtas_set_indicator: invalid sensor/DRC index: %xh\n",
387 sensor_index);
388 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
389 return;
391 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
393 switch (sensor_type) {
394 case RTAS_SENSOR_TYPE_ISOLATION_STATE:
395 /* if the guest is configuring a device attached to this
396 * DRC, we should reset the configuration state at this
397 * point since it may no longer be reliable (guest released
398 * device and needs to start over, or unplug occurred so
399 * the FDT is no longer valid)
401 if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
402 sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr,
403 sensor_index);
404 if (ccs) {
405 spapr_ccs_remove(spapr, ccs);
408 drck->set_isolation_state(drc, sensor_state);
409 break;
410 case RTAS_SENSOR_TYPE_DR:
411 drck->set_indicator_state(drc, sensor_state);
412 break;
413 case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
414 drck->set_allocation_state(drc, sensor_state);
415 break;
416 default:
417 goto out_unimplemented;
420 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
421 return;
423 out_unimplemented:
424 /* currently only DR-related sensors are implemented */
425 DPRINTF("rtas_set_indicator: sensor/indicator not implemented: %d\n",
426 sensor_type);
427 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
430 static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPREnvironment *spapr,
431 uint32_t token, uint32_t nargs,
432 target_ulong args, uint32_t nret,
433 target_ulong rets)
435 uint32_t sensor_type;
436 uint32_t sensor_index;
437 sPAPRDRConnector *drc;
438 sPAPRDRConnectorClass *drck;
439 uint32_t entity_sense;
441 if (nargs != 2 || nret != 2) {
442 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
443 return;
446 sensor_type = rtas_ld(args, 0);
447 sensor_index = rtas_ld(args, 1);
449 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
450 /* currently only DR-related sensors are implemented */
451 DPRINTF("rtas_get_sensor_state: sensor/indicator not implemented: %d\n",
452 sensor_type);
453 rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED);
454 return;
457 drc = spapr_dr_connector_by_index(sensor_index);
458 if (!drc) {
459 DPRINTF("rtas_get_sensor_state: invalid sensor/DRC index: %xh\n",
460 sensor_index);
461 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
462 return;
464 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
465 entity_sense = drck->entity_sense(drc);
467 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
468 rtas_st(rets, 1, entity_sense);
471 /* configure-connector work area offsets, int32_t units for field
472 * indexes, bytes for field offset/len values.
474 * as documented by PAPR+ v2.7, 13.5.3.5
476 #define CC_IDX_NODE_NAME_OFFSET 2
477 #define CC_IDX_PROP_NAME_OFFSET 2
478 #define CC_IDX_PROP_LEN 3
479 #define CC_IDX_PROP_DATA_OFFSET 4
480 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
481 #define CC_WA_LEN 4096
483 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
484 sPAPREnvironment *spapr,
485 uint32_t token, uint32_t nargs,
486 target_ulong args, uint32_t nret,
487 target_ulong rets)
489 uint64_t wa_addr;
490 uint64_t wa_offset;
491 uint32_t drc_index;
492 sPAPRDRConnector *drc;
493 sPAPRDRConnectorClass *drck;
494 sPAPRConfigureConnectorState *ccs;
495 sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
496 int rc;
497 const void *fdt;
499 if (nargs != 2 || nret != 1) {
500 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
501 return;
504 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
506 drc_index = rtas_ld(wa_addr, 0);
507 drc = spapr_dr_connector_by_index(drc_index);
508 if (!drc) {
509 DPRINTF("rtas_ibm_configure_connector: invalid DRC index: %xh\n",
510 drc_index);
511 rc = RTAS_OUT_PARAM_ERROR;
512 goto out;
515 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
516 fdt = drck->get_fdt(drc, NULL);
518 ccs = spapr_ccs_find(spapr, drc_index);
519 if (!ccs) {
520 ccs = g_new0(sPAPRConfigureConnectorState, 1);
521 (void)drck->get_fdt(drc, &ccs->fdt_offset);
522 ccs->drc_index = drc_index;
523 spapr_ccs_add(spapr, ccs);
526 do {
527 uint32_t tag;
528 const char *name;
529 const struct fdt_property *prop;
530 int fdt_offset_next, prop_len;
532 tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next);
534 switch (tag) {
535 case FDT_BEGIN_NODE:
536 ccs->fdt_depth++;
537 name = fdt_get_name(fdt, ccs->fdt_offset, NULL);
539 /* provide the name of the next OF node */
540 wa_offset = CC_VAL_DATA_OFFSET;
541 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
542 rtas_st_buffer_direct(wa_addr + wa_offset, CC_WA_LEN - wa_offset,
543 (uint8_t *)name, strlen(name) + 1);
544 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
545 break;
546 case FDT_END_NODE:
547 ccs->fdt_depth--;
548 if (ccs->fdt_depth == 0) {
549 /* done sending the device tree, don't need to track
550 * the state anymore
552 drck->set_configured(drc);
553 spapr_ccs_remove(spapr, ccs);
554 ccs = NULL;
555 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
556 } else {
557 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
559 break;
560 case FDT_PROP:
561 prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset,
562 &prop_len);
563 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
565 /* provide the name of the next OF property */
566 wa_offset = CC_VAL_DATA_OFFSET;
567 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
568 rtas_st_buffer_direct(wa_addr + wa_offset, CC_WA_LEN - wa_offset,
569 (uint8_t *)name, strlen(name) + 1);
571 /* provide the length and value of the OF property. data gets
572 * placed immediately after NULL terminator of the OF property's
573 * name string
575 wa_offset += strlen(name) + 1,
576 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
577 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
578 rtas_st_buffer_direct(wa_addr + wa_offset, CC_WA_LEN - wa_offset,
579 (uint8_t *)((struct fdt_property *)prop)->data,
580 prop_len);
581 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
582 break;
583 case FDT_END:
584 resp = SPAPR_DR_CC_RESPONSE_ERROR;
585 default:
586 /* keep seeking for an actionable tag */
587 break;
589 if (ccs) {
590 ccs->fdt_offset = fdt_offset_next;
592 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
594 rc = resp;
595 out:
596 rtas_st(rets, 0, rc);
599 static struct rtas_call {
600 const char *name;
601 spapr_rtas_fn fn;
602 } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
604 target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPREnvironment *spapr,
605 uint32_t token, uint32_t nargs, target_ulong args,
606 uint32_t nret, target_ulong rets)
608 if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
609 struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
611 if (call->fn) {
612 call->fn(cpu, spapr, token, nargs, args, nret, rets);
613 return H_SUCCESS;
617 /* HACK: Some Linux early debug code uses RTAS display-character,
618 * but assumes the token value is 0xa (which it is on some real
619 * machines) without looking it up in the device tree. This
620 * special case makes this work */
621 if (token == 0xa) {
622 rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
623 return H_SUCCESS;
626 hcall_dprintf("Unknown RTAS token 0x%x\n", token);
627 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
628 return H_PARAMETER;
631 void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
633 if (!((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX))) {
634 fprintf(stderr, "RTAS invalid token 0x%x\n", token);
635 exit(1);
638 token -= RTAS_TOKEN_BASE;
639 if (rtas_table[token].name) {
640 fprintf(stderr, "RTAS call \"%s\" is registered already as 0x%x\n",
641 rtas_table[token].name, token);
642 exit(1);
645 rtas_table[token].name = name;
646 rtas_table[token].fn = fn;
649 int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr,
650 hwaddr rtas_size)
652 int ret;
653 int i;
655 ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size);
656 if (ret < 0) {
657 fprintf(stderr, "Couldn't add RTAS reserve entry: %s\n",
658 fdt_strerror(ret));
659 return ret;
662 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base",
663 rtas_addr);
664 if (ret < 0) {
665 fprintf(stderr, "Couldn't add linux,rtas-base property: %s\n",
666 fdt_strerror(ret));
667 return ret;
670 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry",
671 rtas_addr);
672 if (ret < 0) {
673 fprintf(stderr, "Couldn't add linux,rtas-entry property: %s\n",
674 fdt_strerror(ret));
675 return ret;
678 ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size",
679 rtas_size);
680 if (ret < 0) {
681 fprintf(stderr, "Couldn't add rtas-size property: %s\n",
682 fdt_strerror(ret));
683 return ret;
686 for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
687 struct rtas_call *call = &rtas_table[i];
689 if (!call->name) {
690 continue;
693 ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name,
694 i + RTAS_TOKEN_BASE);
695 if (ret < 0) {
696 fprintf(stderr, "Couldn't add rtas token for %s: %s\n",
697 call->name, fdt_strerror(ret));
698 return ret;
702 return 0;
705 static void core_rtas_register_types(void)
707 spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
708 rtas_display_character);
709 spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
710 spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
711 rtas_system_reboot);
712 spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
713 rtas_query_cpu_stopped_state);
714 spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
715 spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
716 spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
717 "ibm,get-system-parameter",
718 rtas_ibm_get_system_parameter);
719 spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
720 "ibm,set-system-parameter",
721 rtas_ibm_set_system_parameter);
722 spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term",
723 rtas_ibm_os_term);
724 spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level",
725 rtas_set_power_level);
726 spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level",
727 rtas_get_power_level);
728 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
729 rtas_set_indicator);
730 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
731 rtas_get_sensor_state);
732 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
733 rtas_ibm_configure_connector);
736 type_init(core_rtas_register_types)