2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu/osdep.h"
25 #include "qemu/cutils.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/replay.h"
31 #include "hw/timer/mc146818rtc.h"
32 #include "qapi/visitor.h"
33 #include "qapi-event.h"
34 #include "qmp-commands.h"
37 #include "hw/i386/apic.h"
41 //#define DEBUG_COALESCED
44 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
46 # define CMOS_DPRINTF(format, ...) do { } while (0)
49 #ifdef DEBUG_COALESCED
50 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
52 # define DPRINTF_C(format, ...) do { } while (0)
55 #define SEC_PER_MIN 60
56 #define MIN_PER_HOUR 60
57 #define SEC_PER_HOUR 3600
58 #define HOUR_PER_DAY 24
59 #define SEC_PER_DAY 86400
61 #define RTC_REINJECT_ON_ACK_COUNT 20
62 #define RTC_CLOCK_RATE 32768
63 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
65 #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
67 typedef struct RTCState
{
71 uint8_t cmos_data
[128];
80 QEMUTimer
*periodic_timer
;
81 int64_t next_periodic_time
;
82 /* update-ended timer */
83 QEMUTimer
*update_timer
;
84 uint64_t next_alarm_time
;
85 uint16_t irq_reinject_on_ack_count
;
86 uint32_t irq_coalesced
;
88 QEMUTimer
*coalesced_timer
;
89 Notifier clock_reset_notifier
;
90 LostTickPolicy lost_tick_policy
;
91 Notifier suspend_notifier
;
92 QLIST_ENTRY(RTCState
) link
;
95 static void rtc_set_time(RTCState
*s
);
96 static void rtc_update_time(RTCState
*s
);
97 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
);
98 static inline int rtc_from_bcd(RTCState
*s
, int a
);
99 static uint64_t get_next_alarm(RTCState
*s
);
101 static inline bool rtc_running(RTCState
*s
)
103 return (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
104 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20);
107 static uint64_t get_guest_rtc_ns(RTCState
*s
)
109 uint64_t guest_clock
= qemu_clock_get_ns(rtc_clock
);
111 return s
->base_rtc
* NANOSECONDS_PER_SECOND
+
112 guest_clock
- s
->last_update
+ s
->offset
;
116 static void rtc_coalesced_timer_update(RTCState
*s
)
118 if (s
->irq_coalesced
== 0) {
119 timer_del(s
->coalesced_timer
);
121 /* divide each RTC interval to 2 - 8 smaller intervals */
122 int c
= MIN(s
->irq_coalesced
, 7) + 1;
123 int64_t next_clock
= qemu_clock_get_ns(rtc_clock
) +
124 muldiv64(s
->period
/ c
, NANOSECONDS_PER_SECOND
, RTC_CLOCK_RATE
);
125 timer_mod(s
->coalesced_timer
, next_clock
);
129 static void rtc_coalesced_timer(void *opaque
)
131 RTCState
*s
= opaque
;
133 if (s
->irq_coalesced
!= 0) {
134 apic_reset_irq_delivered();
135 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
136 DPRINTF_C("cmos: injecting from timer\n");
137 qemu_irq_raise(s
->irq
);
138 if (apic_get_irq_delivered()) {
140 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
145 rtc_coalesced_timer_update(s
);
149 /* handle periodic timer */
150 static void periodic_timer_update(RTCState
*s
, int64_t current_time
)
152 int period_code
, period
;
153 int64_t cur_clock
, next_irq_clock
;
155 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
157 && (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)) {
158 if (period_code
<= 2)
160 /* period in 32 Khz cycles */
161 period
= 1 << (period_code
- 1);
163 if (period
!= s
->period
) {
164 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
165 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
169 /* compute 32 khz clock */
171 muldiv64(current_time
, RTC_CLOCK_RATE
, NANOSECONDS_PER_SECOND
);
173 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
174 s
->next_periodic_time
= muldiv64(next_irq_clock
, NANOSECONDS_PER_SECOND
,
176 timer_mod(s
->periodic_timer
, s
->next_periodic_time
);
179 s
->irq_coalesced
= 0;
181 timer_del(s
->periodic_timer
);
185 static void rtc_periodic_timer(void *opaque
)
187 RTCState
*s
= opaque
;
189 periodic_timer_update(s
, s
->next_periodic_time
);
190 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
191 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
192 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
194 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
195 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
196 s
->irq_reinject_on_ack_count
= 0;
197 apic_reset_irq_delivered();
198 qemu_irq_raise(s
->irq
);
199 if (!apic_get_irq_delivered()) {
201 rtc_coalesced_timer_update(s
);
202 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
207 qemu_irq_raise(s
->irq
);
211 /* handle update-ended timer */
212 static void check_update_timer(RTCState
*s
)
214 uint64_t next_update_time
;
218 /* From the data sheet: "Holding the dividers in reset prevents
219 * interrupts from operating, while setting the SET bit allows"
220 * them to occur. However, it will prevent an alarm interrupt
221 * from occurring, because the time of day is not updated.
223 if ((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) {
224 timer_del(s
->update_timer
);
227 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
228 (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
229 timer_del(s
->update_timer
);
232 if ((s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) &&
233 (s
->cmos_data
[RTC_REG_C
] & REG_C_AF
)) {
234 timer_del(s
->update_timer
);
238 guest_nsec
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
239 /* if UF is clear, reprogram to next second */
240 next_update_time
= qemu_clock_get_ns(rtc_clock
)
241 + NANOSECONDS_PER_SECOND
- guest_nsec
;
243 /* Compute time of next alarm. One second is already accounted
244 * for in next_update_time.
246 next_alarm_sec
= get_next_alarm(s
);
247 s
->next_alarm_time
= next_update_time
+
248 (next_alarm_sec
- 1) * NANOSECONDS_PER_SECOND
;
250 if (s
->cmos_data
[RTC_REG_C
] & REG_C_UF
) {
251 /* UF is set, but AF is clear. Program the timer to target
253 next_update_time
= s
->next_alarm_time
;
255 if (next_update_time
!= timer_expire_time_ns(s
->update_timer
)) {
256 timer_mod(s
->update_timer
, next_update_time
);
260 static inline uint8_t convert_hour(RTCState
*s
, uint8_t hour
)
262 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
264 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
271 static uint64_t get_next_alarm(RTCState
*s
)
273 int32_t alarm_sec
, alarm_min
, alarm_hour
, cur_hour
, cur_min
, cur_sec
;
274 int32_t hour
, min
, sec
;
278 alarm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]);
279 alarm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]);
280 alarm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]);
281 alarm_hour
= alarm_hour
== -1 ? -1 : convert_hour(s
, alarm_hour
);
283 cur_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
284 cur_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
285 cur_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
]);
286 cur_hour
= convert_hour(s
, cur_hour
);
288 if (alarm_hour
== -1) {
289 alarm_hour
= cur_hour
;
290 if (alarm_min
== -1) {
292 if (alarm_sec
== -1) {
293 alarm_sec
= cur_sec
+ 1;
294 } else if (cur_sec
> alarm_sec
) {
297 } else if (cur_min
== alarm_min
) {
298 if (alarm_sec
== -1) {
299 alarm_sec
= cur_sec
+ 1;
301 if (cur_sec
> alarm_sec
) {
305 if (alarm_sec
== SEC_PER_MIN
) {
306 /* wrap to next hour, minutes is not in don't care mode */
310 } else if (cur_min
> alarm_min
) {
313 } else if (cur_hour
== alarm_hour
) {
314 if (alarm_min
== -1) {
316 if (alarm_sec
== -1) {
317 alarm_sec
= cur_sec
+ 1;
318 } else if (cur_sec
> alarm_sec
) {
322 if (alarm_sec
== SEC_PER_MIN
) {
326 /* wrap to next day, hour is not in don't care mode */
327 alarm_min
%= MIN_PER_HOUR
;
328 } else if (cur_min
== alarm_min
) {
329 if (alarm_sec
== -1) {
330 alarm_sec
= cur_sec
+ 1;
332 /* wrap to next day, hours+minutes not in don't care mode */
333 alarm_sec
%= SEC_PER_MIN
;
337 /* values that are still don't care fire at the next min/sec */
338 if (alarm_min
== -1) {
341 if (alarm_sec
== -1) {
345 /* keep values in range */
346 if (alarm_sec
== SEC_PER_MIN
) {
350 if (alarm_min
== MIN_PER_HOUR
) {
354 alarm_hour
%= HOUR_PER_DAY
;
356 hour
= alarm_hour
- cur_hour
;
357 min
= hour
* MIN_PER_HOUR
+ alarm_min
- cur_min
;
358 sec
= min
* SEC_PER_MIN
+ alarm_sec
- cur_sec
;
359 return sec
<= 0 ? sec
+ SEC_PER_DAY
: sec
;
362 static void rtc_update_timer(void *opaque
)
364 RTCState
*s
= opaque
;
365 int32_t irqs
= REG_C_UF
;
368 assert((s
->cmos_data
[RTC_REG_A
] & 0x60) != 0x60);
370 /* UIP might have been latched, update time and clear it. */
372 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
374 if (qemu_clock_get_ns(rtc_clock
) >= s
->next_alarm_time
) {
376 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
377 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
381 new_irqs
= irqs
& ~s
->cmos_data
[RTC_REG_C
];
382 s
->cmos_data
[RTC_REG_C
] |= irqs
;
383 if ((new_irqs
& s
->cmos_data
[RTC_REG_B
]) != 0) {
384 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
385 qemu_irq_raise(s
->irq
);
387 check_update_timer(s
);
390 static void cmos_ioport_write(void *opaque
, hwaddr addr
,
391 uint64_t data
, unsigned size
)
393 RTCState
*s
= opaque
;
395 if ((addr
& 1) == 0) {
396 s
->cmos_index
= data
& 0x7f;
398 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64
"\n",
399 s
->cmos_index
, data
);
400 switch(s
->cmos_index
) {
401 case RTC_SECONDS_ALARM
:
402 case RTC_MINUTES_ALARM
:
403 case RTC_HOURS_ALARM
:
404 s
->cmos_data
[s
->cmos_index
] = data
;
405 check_update_timer(s
);
407 case RTC_IBM_PS2_CENTURY_BYTE
:
408 s
->cmos_index
= RTC_CENTURY
;
414 case RTC_DAY_OF_WEEK
:
415 case RTC_DAY_OF_MONTH
:
418 s
->cmos_data
[s
->cmos_index
] = data
;
419 /* if in set mode, do not update the time */
420 if (rtc_running(s
)) {
422 check_update_timer(s
);
426 if ((data
& 0x60) == 0x60) {
427 if (rtc_running(s
)) {
430 /* What happens to UIP when divider reset is enabled is
431 * unclear from the datasheet. Shouldn't matter much
434 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
435 } else if (((s
->cmos_data
[RTC_REG_A
] & 0x60) == 0x60) &&
436 (data
& 0x70) <= 0x20) {
437 /* when the divider reset is removed, the first update cycle
438 * begins one-half second later*/
439 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
440 s
->offset
= 500000000;
443 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
445 /* UIP bit is read only */
446 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
447 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
448 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
449 check_update_timer(s
);
452 if (data
& REG_B_SET
) {
453 /* update cmos to when the rtc was stopping */
454 if (rtc_running(s
)) {
457 /* set mode: reset UIP mode */
458 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
461 /* if disabling set mode, update the time */
462 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) &&
463 (s
->cmos_data
[RTC_REG_A
] & 0x70) <= 0x20) {
464 s
->offset
= get_guest_rtc_ns(s
) % NANOSECONDS_PER_SECOND
;
468 /* if an interrupt flag is already set when the interrupt
469 * becomes enabled, raise an interrupt immediately. */
470 if (data
& s
->cmos_data
[RTC_REG_C
] & REG_C_MASK
) {
471 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
472 qemu_irq_raise(s
->irq
);
474 s
->cmos_data
[RTC_REG_C
] &= ~REG_C_IRQF
;
475 qemu_irq_lower(s
->irq
);
477 s
->cmos_data
[RTC_REG_B
] = data
;
478 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
479 check_update_timer(s
);
483 /* cannot write to them */
486 s
->cmos_data
[s
->cmos_index
] = data
;
492 static inline int rtc_to_bcd(RTCState
*s
, int a
)
494 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
497 return ((a
/ 10) << 4) | (a
% 10);
501 static inline int rtc_from_bcd(RTCState
*s
, int a
)
503 if ((a
& 0xc0) == 0xc0) {
506 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
509 return ((a
>> 4) * 10) + (a
& 0x0f);
513 static void rtc_get_time(RTCState
*s
, struct tm
*tm
)
515 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
516 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
517 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
518 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
520 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
524 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
525 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
526 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
528 rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
+
529 rtc_from_bcd(s
, s
->cmos_data
[RTC_CENTURY
]) * 100 - 1900;
532 static QLIST_HEAD(, RTCState
) rtc_devices
=
533 QLIST_HEAD_INITIALIZER(rtc_devices
);
536 void qmp_rtc_reset_reinjection(Error
**errp
)
540 QLIST_FOREACH(s
, &rtc_devices
, link
) {
541 s
->irq_coalesced
= 0;
546 static void rtc_set_time(RTCState
*s
)
550 rtc_get_time(s
, &tm
);
551 s
->base_rtc
= mktimegm(&tm
);
552 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
554 qapi_event_send_rtc_change(qemu_timedate_diff(&tm
), &error_abort
);
557 static void rtc_set_cmos(RTCState
*s
, const struct tm
*tm
)
561 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
562 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
563 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
565 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
568 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
569 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
570 if (tm
->tm_hour
>= 12)
571 s
->cmos_data
[RTC_HOURS
] |= 0x80;
573 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
574 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
575 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
576 year
= tm
->tm_year
+ 1900 - s
->base_year
;
577 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
% 100);
578 s
->cmos_data
[RTC_CENTURY
] = rtc_to_bcd(s
, year
/ 100);
581 static void rtc_update_time(RTCState
*s
)
587 guest_nsec
= get_guest_rtc_ns(s
);
588 guest_sec
= guest_nsec
/ NANOSECONDS_PER_SECOND
;
589 gmtime_r(&guest_sec
, &ret
);
591 /* Is SET flag of Register B disabled? */
592 if ((s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) == 0) {
593 rtc_set_cmos(s
, &ret
);
597 static int update_in_progress(RTCState
*s
)
601 if (!rtc_running(s
)) {
604 if (timer_pending(s
->update_timer
)) {
605 int64_t next_update_time
= timer_expire_time_ns(s
->update_timer
);
606 /* Latch UIP until the timer expires. */
607 if (qemu_clock_get_ns(rtc_clock
) >=
608 (next_update_time
- UIP_HOLD_LENGTH
)) {
609 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
614 guest_nsec
= get_guest_rtc_ns(s
);
615 /* UIP bit will be set at last 244us of every second. */
616 if ((guest_nsec
% NANOSECONDS_PER_SECOND
) >=
617 (NANOSECONDS_PER_SECOND
- UIP_HOLD_LENGTH
)) {
623 static uint64_t cmos_ioport_read(void *opaque
, hwaddr addr
,
626 RTCState
*s
= opaque
;
628 if ((addr
& 1) == 0) {
631 switch(s
->cmos_index
) {
632 case RTC_IBM_PS2_CENTURY_BYTE
:
633 s
->cmos_index
= RTC_CENTURY
;
639 case RTC_DAY_OF_WEEK
:
640 case RTC_DAY_OF_MONTH
:
643 /* if not in set mode, calibrate cmos before
645 if (rtc_running(s
)) {
648 ret
= s
->cmos_data
[s
->cmos_index
];
651 if (update_in_progress(s
)) {
652 s
->cmos_data
[s
->cmos_index
] |= REG_A_UIP
;
654 s
->cmos_data
[s
->cmos_index
] &= ~REG_A_UIP
;
656 ret
= s
->cmos_data
[s
->cmos_index
];
659 ret
= s
->cmos_data
[s
->cmos_index
];
660 qemu_irq_lower(s
->irq
);
661 s
->cmos_data
[RTC_REG_C
] = 0x00;
662 if (ret
& (REG_C_UF
| REG_C_AF
)) {
663 check_update_timer(s
);
666 if(s
->irq_coalesced
&&
667 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
668 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
669 s
->irq_reinject_on_ack_count
++;
670 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
671 apic_reset_irq_delivered();
672 DPRINTF_C("cmos: injecting on ack\n");
673 qemu_irq_raise(s
->irq
);
674 if (apic_get_irq_delivered()) {
676 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
683 ret
= s
->cmos_data
[s
->cmos_index
];
686 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
692 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
694 RTCState
*s
= MC146818_RTC(dev
);
695 if (addr
>= 0 && addr
<= 127)
696 s
->cmos_data
[addr
] = val
;
699 int rtc_get_memory(ISADevice
*dev
, int addr
)
701 RTCState
*s
= MC146818_RTC(dev
);
702 assert(addr
>= 0 && addr
<= 127);
703 return s
->cmos_data
[addr
];
706 static void rtc_set_date_from_host(ISADevice
*dev
)
708 RTCState
*s
= MC146818_RTC(dev
);
711 qemu_get_timedate(&tm
, 0);
713 s
->base_rtc
= mktimegm(&tm
);
714 s
->last_update
= qemu_clock_get_ns(rtc_clock
);
717 /* set the CMOS date */
718 rtc_set_cmos(s
, &tm
);
721 static void rtc_pre_save(void *opaque
)
723 RTCState
*s
= opaque
;
728 static int rtc_post_load(void *opaque
, int version_id
)
730 RTCState
*s
= opaque
;
732 if (version_id
<= 2 || rtc_clock
== QEMU_CLOCK_REALTIME
) {
735 check_update_timer(s
);
738 /* The periodic timer is deterministic in record/replay mode,
739 * so there is no need to update it after loading the vmstate.
740 * Reading RTC here would misalign record and replay.
742 if (replay_mode
== REPLAY_MODE_NONE
) {
743 uint64_t now
= qemu_clock_get_ns(rtc_clock
);
744 if (now
< s
->next_periodic_time
||
745 now
> (s
->next_periodic_time
+ get_max_clock_jump())) {
746 periodic_timer_update(s
, qemu_clock_get_ns(rtc_clock
));
751 if (version_id
>= 2) {
752 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
753 rtc_coalesced_timer_update(s
);
760 static bool rtc_irq_reinject_on_ack_count_needed(void *opaque
)
762 RTCState
*s
= (RTCState
*)opaque
;
763 return s
->irq_reinject_on_ack_count
!= 0;
766 static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count
= {
767 .name
= "mc146818rtc/irq_reinject_on_ack_count",
769 .minimum_version_id
= 1,
770 .needed
= rtc_irq_reinject_on_ack_count_needed
,
771 .fields
= (VMStateField
[]) {
772 VMSTATE_UINT16(irq_reinject_on_ack_count
, RTCState
),
773 VMSTATE_END_OF_LIST()
777 static const VMStateDescription vmstate_rtc
= {
778 .name
= "mc146818rtc",
780 .minimum_version_id
= 1,
781 .pre_save
= rtc_pre_save
,
782 .post_load
= rtc_post_load
,
783 .fields
= (VMStateField
[]) {
784 VMSTATE_BUFFER(cmos_data
, RTCState
),
785 VMSTATE_UINT8(cmos_index
, RTCState
),
787 VMSTATE_TIMER_PTR(periodic_timer
, RTCState
),
788 VMSTATE_INT64(next_periodic_time
, RTCState
),
790 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
791 VMSTATE_UINT32_V(period
, RTCState
, 2),
792 VMSTATE_UINT64_V(base_rtc
, RTCState
, 3),
793 VMSTATE_UINT64_V(last_update
, RTCState
, 3),
794 VMSTATE_INT64_V(offset
, RTCState
, 3),
795 VMSTATE_TIMER_PTR_V(update_timer
, RTCState
, 3),
796 VMSTATE_UINT64_V(next_alarm_time
, RTCState
, 3),
797 VMSTATE_END_OF_LIST()
799 .subsections
= (const VMStateDescription
*[]) {
800 &vmstate_rtc_irq_reinject_on_ack_count
,
805 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
807 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
808 int64_t now
= *(int64_t *)data
;
810 rtc_set_date_from_host(ISA_DEVICE(s
));
811 periodic_timer_update(s
, now
);
812 check_update_timer(s
);
814 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
815 rtc_coalesced_timer_update(s
);
820 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
821 BIOS will read it and start S3 resume at POST Entry */
822 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
824 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
825 rtc_set_memory(ISA_DEVICE(s
), 0xF, 0xFE);
828 static void rtc_reset(void *opaque
)
830 RTCState
*s
= opaque
;
832 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
833 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
834 check_update_timer(s
);
836 qemu_irq_lower(s
->irq
);
839 if (s
->lost_tick_policy
== LOST_TICK_POLICY_SLEW
) {
840 s
->irq_coalesced
= 0;
841 s
->irq_reinject_on_ack_count
= 0;
846 static const MemoryRegionOps cmos_ops
= {
847 .read
= cmos_ioport_read
,
848 .write
= cmos_ioport_write
,
850 .min_access_size
= 1,
851 .max_access_size
= 1,
853 .endianness
= DEVICE_LITTLE_ENDIAN
,
856 static void rtc_get_date(Object
*obj
, struct tm
*current_tm
, Error
**errp
)
858 RTCState
*s
= MC146818_RTC(obj
);
861 rtc_get_time(s
, current_tm
);
864 static void rtc_realizefn(DeviceState
*dev
, Error
**errp
)
866 ISADevice
*isadev
= ISA_DEVICE(dev
);
867 RTCState
*s
= MC146818_RTC(dev
);
870 s
->cmos_data
[RTC_REG_A
] = 0x26;
871 s
->cmos_data
[RTC_REG_B
] = 0x02;
872 s
->cmos_data
[RTC_REG_C
] = 0x00;
873 s
->cmos_data
[RTC_REG_D
] = 0x80;
875 /* This is for historical reasons. The default base year qdev property
876 * was set to 2000 for most machine types before the century byte was
879 * This if statement means that the century byte will be always 0
880 * (at least until 2079...) for base_year = 1980, but will be set
881 * correctly for base_year = 2000.
883 if (s
->base_year
== 2000) {
887 rtc_set_date_from_host(isadev
);
890 switch (s
->lost_tick_policy
) {
891 case LOST_TICK_POLICY_SLEW
:
893 timer_new_ns(rtc_clock
, rtc_coalesced_timer
, s
);
895 case LOST_TICK_POLICY_DISCARD
:
898 error_setg(errp
, "Invalid lost tick policy.");
903 s
->periodic_timer
= timer_new_ns(rtc_clock
, rtc_periodic_timer
, s
);
904 s
->update_timer
= timer_new_ns(rtc_clock
, rtc_update_timer
, s
);
905 check_update_timer(s
);
907 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
908 qemu_clock_register_reset_notifier(rtc_clock
,
909 &s
->clock_reset_notifier
);
911 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
912 qemu_register_suspend_notifier(&s
->suspend_notifier
);
914 memory_region_init_io(&s
->io
, OBJECT(s
), &cmos_ops
, s
, "rtc", 2);
915 isa_register_ioport(isadev
, &s
->io
, base
);
917 qdev_set_legacy_instance_id(dev
, base
, 3);
918 qemu_register_reset(rtc_reset
, s
);
920 object_property_add_tm(OBJECT(s
), "date", rtc_get_date
, NULL
);
922 object_property_add_alias(qdev_get_machine(), "rtc-time",
923 OBJECT(s
), "date", NULL
);
925 qdev_init_gpio_out(dev
, &s
->irq
, 1);
928 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
934 isadev
= isa_create(bus
, TYPE_MC146818_RTC
);
935 dev
= DEVICE(isadev
);
936 s
= MC146818_RTC(isadev
);
937 qdev_prop_set_int32(dev
, "base_year", base_year
);
938 qdev_init_nofail(dev
);
940 qdev_connect_gpio_out(dev
, 0, intercept_irq
);
942 isa_connect_gpio_out(isadev
, 0, RTC_ISA_IRQ
);
944 QLIST_INSERT_HEAD(&rtc_devices
, s
, link
);
949 static Property mc146818rtc_properties
[] = {
950 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
951 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
952 lost_tick_policy
, LOST_TICK_POLICY_DISCARD
),
953 DEFINE_PROP_END_OF_LIST(),
956 static void rtc_resetdev(DeviceState
*d
)
958 RTCState
*s
= MC146818_RTC(d
);
960 /* Reason: VM do suspend self will set 0xfe
961 * Reset any values other than 0xfe(Guest suspend case) */
962 if (s
->cmos_data
[0x0f] != 0xfe) {
963 s
->cmos_data
[0x0f] = 0x00;
967 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
969 DeviceClass
*dc
= DEVICE_CLASS(klass
);
971 dc
->realize
= rtc_realizefn
;
972 dc
->reset
= rtc_resetdev
;
973 dc
->vmsd
= &vmstate_rtc
;
974 dc
->props
= mc146818rtc_properties
;
975 /* Reason: needs to be wired up by rtc_init() */
976 dc
->user_creatable
= false;
979 static void rtc_finalize(Object
*obj
)
981 object_property_del(qdev_get_machine(), "rtc", NULL
);
984 static const TypeInfo mc146818rtc_info
= {
985 .name
= TYPE_MC146818_RTC
,
986 .parent
= TYPE_ISA_DEVICE
,
987 .instance_size
= sizeof(RTCState
),
988 .class_init
= rtc_class_initfn
,
989 .instance_finalize
= rtc_finalize
,
992 static void mc146818rtc_register_types(void)
994 type_register_static(&mc146818rtc_info
);
997 type_init(mc146818rtc_register_types
)