hw/arm/smmuv3: Remove SMMUNotifierNode
[qemu/ar7.git] / hw / arm / smmuv3.c
blobfd8ec7860eea180c8122fca52016eeb1b0ee9ee0
1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/boards.h"
21 #include "sysemu/sysemu.h"
22 #include "hw/sysbus.h"
23 #include "hw/qdev-core.h"
24 #include "hw/pci/pci.h"
25 #include "exec/address-spaces.h"
26 #include "cpu.h"
27 #include "trace.h"
28 #include "qemu/log.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
32 #include "hw/arm/smmuv3.h"
33 #include "smmuv3-internal.h"
35 /**
36 * smmuv3_trigger_irq - pulse @irq if enabled and update
37 * GERROR register in case of GERROR interrupt
39 * @irq: irq type
40 * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
42 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
43 uint32_t gerror_mask)
46 bool pulse = false;
48 switch (irq) {
49 case SMMU_IRQ_EVTQ:
50 pulse = smmuv3_eventq_irq_enabled(s);
51 break;
52 case SMMU_IRQ_PRIQ:
53 qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
54 break;
55 case SMMU_IRQ_CMD_SYNC:
56 pulse = true;
57 break;
58 case SMMU_IRQ_GERROR:
60 uint32_t pending = s->gerror ^ s->gerrorn;
61 uint32_t new_gerrors = ~pending & gerror_mask;
63 if (!new_gerrors) {
64 /* only toggle non pending errors */
65 return;
67 s->gerror ^= new_gerrors;
68 trace_smmuv3_write_gerror(new_gerrors, s->gerror);
70 pulse = smmuv3_gerror_irq_enabled(s);
71 break;
74 if (pulse) {
75 trace_smmuv3_trigger_irq(irq);
76 qemu_irq_pulse(s->irq[irq]);
80 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
82 uint32_t pending = s->gerror ^ s->gerrorn;
83 uint32_t toggled = s->gerrorn ^ new_gerrorn;
85 if (toggled & ~pending) {
86 qemu_log_mask(LOG_GUEST_ERROR,
87 "guest toggles non pending errors = 0x%x\n",
88 toggled & ~pending);
92 * We do not raise any error in case guest toggles bits corresponding
93 * to not active IRQs (CONSTRAINED UNPREDICTABLE)
95 s->gerrorn = new_gerrorn;
97 trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
100 static inline MemTxResult queue_read(SMMUQueue *q, void *data)
102 dma_addr_t addr = Q_CONS_ENTRY(q);
104 return dma_memory_read(&address_space_memory, addr, data, q->entry_size);
107 static MemTxResult queue_write(SMMUQueue *q, void *data)
109 dma_addr_t addr = Q_PROD_ENTRY(q);
110 MemTxResult ret;
112 ret = dma_memory_write(&address_space_memory, addr, data, q->entry_size);
113 if (ret != MEMTX_OK) {
114 return ret;
117 queue_prod_incr(q);
118 return MEMTX_OK;
121 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
123 SMMUQueue *q = &s->eventq;
124 MemTxResult r;
126 if (!smmuv3_eventq_enabled(s)) {
127 return MEMTX_ERROR;
130 if (smmuv3_q_full(q)) {
131 return MEMTX_ERROR;
134 r = queue_write(q, evt);
135 if (r != MEMTX_OK) {
136 return r;
139 if (!smmuv3_q_empty(q)) {
140 smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
142 return MEMTX_OK;
145 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
147 Evt evt = {};
148 MemTxResult r;
150 if (!smmuv3_eventq_enabled(s)) {
151 return;
154 EVT_SET_TYPE(&evt, info->type);
155 EVT_SET_SID(&evt, info->sid);
157 switch (info->type) {
158 case SMMU_EVT_NONE:
159 return;
160 case SMMU_EVT_F_UUT:
161 EVT_SET_SSID(&evt, info->u.f_uut.ssid);
162 EVT_SET_SSV(&evt, info->u.f_uut.ssv);
163 EVT_SET_ADDR(&evt, info->u.f_uut.addr);
164 EVT_SET_RNW(&evt, info->u.f_uut.rnw);
165 EVT_SET_PNU(&evt, info->u.f_uut.pnu);
166 EVT_SET_IND(&evt, info->u.f_uut.ind);
167 break;
168 case SMMU_EVT_C_BAD_STREAMID:
169 EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
170 EVT_SET_SSV(&evt, info->u.c_bad_streamid.ssv);
171 break;
172 case SMMU_EVT_F_STE_FETCH:
173 EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
174 EVT_SET_SSV(&evt, info->u.f_ste_fetch.ssv);
175 EVT_SET_ADDR(&evt, info->u.f_ste_fetch.addr);
176 break;
177 case SMMU_EVT_C_BAD_STE:
178 EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
179 EVT_SET_SSV(&evt, info->u.c_bad_ste.ssv);
180 break;
181 case SMMU_EVT_F_STREAM_DISABLED:
182 break;
183 case SMMU_EVT_F_TRANS_FORBIDDEN:
184 EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
185 EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
186 break;
187 case SMMU_EVT_C_BAD_SUBSTREAMID:
188 EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
189 break;
190 case SMMU_EVT_F_CD_FETCH:
191 EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
192 EVT_SET_SSV(&evt, info->u.f_cd_fetch.ssv);
193 EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
194 break;
195 case SMMU_EVT_C_BAD_CD:
196 EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
197 EVT_SET_SSV(&evt, info->u.c_bad_cd.ssv);
198 break;
199 case SMMU_EVT_F_WALK_EABT:
200 case SMMU_EVT_F_TRANSLATION:
201 case SMMU_EVT_F_ADDR_SIZE:
202 case SMMU_EVT_F_ACCESS:
203 case SMMU_EVT_F_PERMISSION:
204 EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
205 EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
206 EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
207 EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
208 EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
209 EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
210 EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
211 EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
212 EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
213 EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
214 EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
215 break;
216 case SMMU_EVT_F_CFG_CONFLICT:
217 EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
218 EVT_SET_SSV(&evt, info->u.f_cfg_conflict.ssv);
219 break;
220 /* rest is not implemented */
221 case SMMU_EVT_F_BAD_ATS_TREQ:
222 case SMMU_EVT_F_TLB_CONFLICT:
223 case SMMU_EVT_E_PAGE_REQ:
224 default:
225 g_assert_not_reached();
228 trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
229 r = smmuv3_write_eventq(s, &evt);
230 if (r != MEMTX_OK) {
231 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
233 info->recorded = true;
236 static void smmuv3_init_regs(SMMUv3State *s)
239 * IDR0: stage1 only, AArch64 only, coherent access, 16b ASID,
240 * multi-level stream table
242 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1); /* stage 1 supported */
243 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
244 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
245 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
246 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
247 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
248 /* terminated transaction will always be aborted/error returned */
249 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
250 /* 2-level stream table supported */
251 s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
253 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
254 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
255 s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS, SMMU_CMDQS);
257 /* 4K and 64K granule support */
258 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
259 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
260 s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
262 s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
263 s->cmdq.prod = 0;
264 s->cmdq.cons = 0;
265 s->cmdq.entry_size = sizeof(struct Cmd);
266 s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
267 s->eventq.prod = 0;
268 s->eventq.cons = 0;
269 s->eventq.entry_size = sizeof(struct Evt);
271 s->features = 0;
272 s->sid_split = 0;
275 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
276 SMMUEventInfo *event)
278 int ret;
280 trace_smmuv3_get_ste(addr);
281 /* TODO: guarantee 64-bit single-copy atomicity */
282 ret = dma_memory_read(&address_space_memory, addr,
283 (void *)buf, sizeof(*buf));
284 if (ret != MEMTX_OK) {
285 qemu_log_mask(LOG_GUEST_ERROR,
286 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
287 event->type = SMMU_EVT_F_STE_FETCH;
288 event->u.f_ste_fetch.addr = addr;
289 return -EINVAL;
291 return 0;
295 /* @ssid > 0 not supported yet */
296 static int smmu_get_cd(SMMUv3State *s, STE *ste, uint32_t ssid,
297 CD *buf, SMMUEventInfo *event)
299 dma_addr_t addr = STE_CTXPTR(ste);
300 int ret;
302 trace_smmuv3_get_cd(addr);
303 /* TODO: guarantee 64-bit single-copy atomicity */
304 ret = dma_memory_read(&address_space_memory, addr,
305 (void *)buf, sizeof(*buf));
306 if (ret != MEMTX_OK) {
307 qemu_log_mask(LOG_GUEST_ERROR,
308 "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
309 event->type = SMMU_EVT_F_CD_FETCH;
310 event->u.f_ste_fetch.addr = addr;
311 return -EINVAL;
313 return 0;
316 /* Returns < 0 in case of invalid STE, 0 otherwise */
317 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
318 STE *ste, SMMUEventInfo *event)
320 uint32_t config;
322 if (!STE_VALID(ste)) {
323 goto bad_ste;
326 config = STE_CONFIG(ste);
328 if (STE_CFG_ABORT(config)) {
329 cfg->aborted = true;
330 return 0;
333 if (STE_CFG_BYPASS(config)) {
334 cfg->bypassed = true;
335 return 0;
338 if (STE_CFG_S2_ENABLED(config)) {
339 qemu_log_mask(LOG_UNIMP, "SMMUv3 does not support stage 2 yet\n");
340 goto bad_ste;
343 if (STE_S1CDMAX(ste) != 0) {
344 qemu_log_mask(LOG_UNIMP,
345 "SMMUv3 does not support multiple context descriptors yet\n");
346 goto bad_ste;
349 if (STE_S1STALLD(ste)) {
350 qemu_log_mask(LOG_UNIMP,
351 "SMMUv3 S1 stalling fault model not allowed yet\n");
352 goto bad_ste;
354 return 0;
356 bad_ste:
357 event->type = SMMU_EVT_C_BAD_STE;
358 return -EINVAL;
362 * smmu_find_ste - Return the stream table entry associated
363 * to the sid
365 * @s: smmuv3 handle
366 * @sid: stream ID
367 * @ste: returned stream table entry
368 * @event: handle to an event info
370 * Supports linear and 2-level stream table
371 * Return 0 on success, -EINVAL otherwise
373 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
374 SMMUEventInfo *event)
376 dma_addr_t addr;
377 int ret;
379 trace_smmuv3_find_ste(sid, s->features, s->sid_split);
380 /* Check SID range */
381 if (sid > (1 << SMMU_IDR1_SIDSIZE)) {
382 event->type = SMMU_EVT_C_BAD_STREAMID;
383 return -EINVAL;
385 if (s->features & SMMU_FEATURE_2LVL_STE) {
386 int l1_ste_offset, l2_ste_offset, max_l2_ste, span;
387 dma_addr_t strtab_base, l1ptr, l2ptr;
388 STEDesc l1std;
390 strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK;
391 l1_ste_offset = sid >> s->sid_split;
392 l2_ste_offset = sid & ((1 << s->sid_split) - 1);
393 l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
394 /* TODO: guarantee 64-bit single-copy atomicity */
395 ret = dma_memory_read(&address_space_memory, l1ptr,
396 (uint8_t *)&l1std, sizeof(l1std));
397 if (ret != MEMTX_OK) {
398 qemu_log_mask(LOG_GUEST_ERROR,
399 "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
400 event->type = SMMU_EVT_F_STE_FETCH;
401 event->u.f_ste_fetch.addr = l1ptr;
402 return -EINVAL;
405 span = L1STD_SPAN(&l1std);
407 if (!span) {
408 /* l2ptr is not valid */
409 qemu_log_mask(LOG_GUEST_ERROR,
410 "invalid sid=%d (L1STD span=0)\n", sid);
411 event->type = SMMU_EVT_C_BAD_STREAMID;
412 return -EINVAL;
414 max_l2_ste = (1 << span) - 1;
415 l2ptr = l1std_l2ptr(&l1std);
416 trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
417 l2ptr, l2_ste_offset, max_l2_ste);
418 if (l2_ste_offset > max_l2_ste) {
419 qemu_log_mask(LOG_GUEST_ERROR,
420 "l2_ste_offset=%d > max_l2_ste=%d\n",
421 l2_ste_offset, max_l2_ste);
422 event->type = SMMU_EVT_C_BAD_STE;
423 return -EINVAL;
425 addr = l2ptr + l2_ste_offset * sizeof(*ste);
426 } else {
427 addr = s->strtab_base + sid * sizeof(*ste);
430 if (smmu_get_ste(s, addr, ste, event)) {
431 return -EINVAL;
434 return 0;
437 static int decode_cd(SMMUTransCfg *cfg, CD *cd, SMMUEventInfo *event)
439 int ret = -EINVAL;
440 int i;
442 if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
443 goto bad_cd;
445 if (!CD_A(cd)) {
446 goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
448 if (CD_S(cd)) {
449 goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
451 if (CD_HA(cd) || CD_HD(cd)) {
452 goto bad_cd; /* HTTU = 0 */
455 /* we support only those at the moment */
456 cfg->aa64 = true;
457 cfg->stage = 1;
459 cfg->oas = oas2bits(CD_IPS(cd));
460 cfg->oas = MIN(oas2bits(SMMU_IDR5_OAS), cfg->oas);
461 cfg->tbi = CD_TBI(cd);
462 cfg->asid = CD_ASID(cd);
464 trace_smmuv3_decode_cd(cfg->oas);
466 /* decode data dependent on TT */
467 for (i = 0; i <= 1; i++) {
468 int tg, tsz;
469 SMMUTransTableInfo *tt = &cfg->tt[i];
471 cfg->tt[i].disabled = CD_EPD(cd, i);
472 if (cfg->tt[i].disabled) {
473 continue;
476 tsz = CD_TSZ(cd, i);
477 if (tsz < 16 || tsz > 39) {
478 goto bad_cd;
481 tg = CD_TG(cd, i);
482 tt->granule_sz = tg2granule(tg, i);
483 if ((tt->granule_sz != 12 && tt->granule_sz != 16) || CD_ENDI(cd)) {
484 goto bad_cd;
487 tt->tsz = tsz;
488 tt->ttb = CD_TTB(cd, i);
489 if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
490 goto bad_cd;
492 trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz);
495 event->record_trans_faults = CD_R(cd);
497 return 0;
499 bad_cd:
500 event->type = SMMU_EVT_C_BAD_CD;
501 return ret;
505 * smmuv3_decode_config - Prepare the translation configuration
506 * for the @mr iommu region
507 * @mr: iommu memory region the translation config must be prepared for
508 * @cfg: output translation configuration which is populated through
509 * the different configuration decoding steps
510 * @event: must be zero'ed by the caller
512 * return < 0 in case of config decoding error (@event is filled
513 * accordingly). Return 0 otherwise.
515 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
516 SMMUEventInfo *event)
518 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
519 uint32_t sid = smmu_get_sid(sdev);
520 SMMUv3State *s = sdev->smmu;
521 int ret;
522 STE ste;
523 CD cd;
525 ret = smmu_find_ste(s, sid, &ste, event);
526 if (ret) {
527 return ret;
530 ret = decode_ste(s, cfg, &ste, event);
531 if (ret) {
532 return ret;
535 if (cfg->aborted || cfg->bypassed) {
536 return 0;
539 ret = smmu_get_cd(s, &ste, 0 /* ssid */, &cd, event);
540 if (ret) {
541 return ret;
544 return decode_cd(cfg, &cd, event);
548 * smmuv3_get_config - Look up for a cached copy of configuration data for
549 * @sdev and on cache miss performs a configuration structure decoding from
550 * guest RAM.
552 * @sdev: SMMUDevice handle
553 * @event: output event info
555 * The configuration cache contains data resulting from both STE and CD
556 * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
557 * by the SMMUDevice handle.
559 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
561 SMMUv3State *s = sdev->smmu;
562 SMMUState *bc = &s->smmu_state;
563 SMMUTransCfg *cfg;
565 cfg = g_hash_table_lookup(bc->configs, sdev);
566 if (cfg) {
567 sdev->cfg_cache_hits++;
568 trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
569 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
570 100 * sdev->cfg_cache_hits /
571 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
572 } else {
573 sdev->cfg_cache_misses++;
574 trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
575 sdev->cfg_cache_hits, sdev->cfg_cache_misses,
576 100 * sdev->cfg_cache_hits /
577 (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
578 cfg = g_new0(SMMUTransCfg, 1);
580 if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
581 g_hash_table_insert(bc->configs, sdev, cfg);
582 } else {
583 g_free(cfg);
584 cfg = NULL;
587 return cfg;
590 static void smmuv3_flush_config(SMMUDevice *sdev)
592 SMMUv3State *s = sdev->smmu;
593 SMMUState *bc = &s->smmu_state;
595 trace_smmuv3_config_cache_inv(smmu_get_sid(sdev));
596 g_hash_table_remove(bc->configs, sdev);
599 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
600 IOMMUAccessFlags flag, int iommu_idx)
602 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
603 SMMUv3State *s = sdev->smmu;
604 uint32_t sid = smmu_get_sid(sdev);
605 SMMUEventInfo event = {.type = SMMU_EVT_NONE, .sid = sid};
606 SMMUPTWEventInfo ptw_info = {};
607 SMMUTranslationStatus status;
608 SMMUState *bs = ARM_SMMU(s);
609 uint64_t page_mask, aligned_addr;
610 IOMMUTLBEntry *cached_entry = NULL;
611 SMMUTransTableInfo *tt;
612 SMMUTransCfg *cfg = NULL;
613 IOMMUTLBEntry entry = {
614 .target_as = &address_space_memory,
615 .iova = addr,
616 .translated_addr = addr,
617 .addr_mask = ~(hwaddr)0,
618 .perm = IOMMU_NONE,
620 SMMUIOTLBKey key, *new_key;
622 qemu_mutex_lock(&s->mutex);
624 if (!smmu_enabled(s)) {
625 status = SMMU_TRANS_DISABLE;
626 goto epilogue;
629 cfg = smmuv3_get_config(sdev, &event);
630 if (!cfg) {
631 status = SMMU_TRANS_ERROR;
632 goto epilogue;
635 if (cfg->aborted) {
636 status = SMMU_TRANS_ABORT;
637 goto epilogue;
640 if (cfg->bypassed) {
641 status = SMMU_TRANS_BYPASS;
642 goto epilogue;
645 tt = select_tt(cfg, addr);
646 if (!tt) {
647 if (event.record_trans_faults) {
648 event.type = SMMU_EVT_F_TRANSLATION;
649 event.u.f_translation.addr = addr;
650 event.u.f_translation.rnw = flag & 0x1;
652 status = SMMU_TRANS_ERROR;
653 goto epilogue;
656 page_mask = (1ULL << (tt->granule_sz)) - 1;
657 aligned_addr = addr & ~page_mask;
659 key.asid = cfg->asid;
660 key.iova = aligned_addr;
662 cached_entry = g_hash_table_lookup(bs->iotlb, &key);
663 if (cached_entry) {
664 cfg->iotlb_hits++;
665 trace_smmu_iotlb_cache_hit(cfg->asid, aligned_addr,
666 cfg->iotlb_hits, cfg->iotlb_misses,
667 100 * cfg->iotlb_hits /
668 (cfg->iotlb_hits + cfg->iotlb_misses));
669 if ((flag & IOMMU_WO) && !(cached_entry->perm & IOMMU_WO)) {
670 status = SMMU_TRANS_ERROR;
671 if (event.record_trans_faults) {
672 event.type = SMMU_EVT_F_PERMISSION;
673 event.u.f_permission.addr = addr;
674 event.u.f_permission.rnw = flag & 0x1;
676 } else {
677 status = SMMU_TRANS_SUCCESS;
679 goto epilogue;
682 cfg->iotlb_misses++;
683 trace_smmu_iotlb_cache_miss(cfg->asid, addr & ~page_mask,
684 cfg->iotlb_hits, cfg->iotlb_misses,
685 100 * cfg->iotlb_hits /
686 (cfg->iotlb_hits + cfg->iotlb_misses));
688 if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
689 smmu_iotlb_inv_all(bs);
692 cached_entry = g_new0(IOMMUTLBEntry, 1);
694 if (smmu_ptw(cfg, aligned_addr, flag, cached_entry, &ptw_info)) {
695 g_free(cached_entry);
696 switch (ptw_info.type) {
697 case SMMU_PTW_ERR_WALK_EABT:
698 event.type = SMMU_EVT_F_WALK_EABT;
699 event.u.f_walk_eabt.addr = addr;
700 event.u.f_walk_eabt.rnw = flag & 0x1;
701 event.u.f_walk_eabt.class = 0x1;
702 event.u.f_walk_eabt.addr2 = ptw_info.addr;
703 break;
704 case SMMU_PTW_ERR_TRANSLATION:
705 if (event.record_trans_faults) {
706 event.type = SMMU_EVT_F_TRANSLATION;
707 event.u.f_translation.addr = addr;
708 event.u.f_translation.rnw = flag & 0x1;
710 break;
711 case SMMU_PTW_ERR_ADDR_SIZE:
712 if (event.record_trans_faults) {
713 event.type = SMMU_EVT_F_ADDR_SIZE;
714 event.u.f_addr_size.addr = addr;
715 event.u.f_addr_size.rnw = flag & 0x1;
717 break;
718 case SMMU_PTW_ERR_ACCESS:
719 if (event.record_trans_faults) {
720 event.type = SMMU_EVT_F_ACCESS;
721 event.u.f_access.addr = addr;
722 event.u.f_access.rnw = flag & 0x1;
724 break;
725 case SMMU_PTW_ERR_PERMISSION:
726 if (event.record_trans_faults) {
727 event.type = SMMU_EVT_F_PERMISSION;
728 event.u.f_permission.addr = addr;
729 event.u.f_permission.rnw = flag & 0x1;
731 break;
732 default:
733 g_assert_not_reached();
735 status = SMMU_TRANS_ERROR;
736 } else {
737 new_key = g_new0(SMMUIOTLBKey, 1);
738 new_key->asid = cfg->asid;
739 new_key->iova = aligned_addr;
740 g_hash_table_insert(bs->iotlb, new_key, cached_entry);
741 status = SMMU_TRANS_SUCCESS;
744 epilogue:
745 qemu_mutex_unlock(&s->mutex);
746 switch (status) {
747 case SMMU_TRANS_SUCCESS:
748 entry.perm = flag;
749 entry.translated_addr = cached_entry->translated_addr +
750 (addr & page_mask);
751 entry.addr_mask = cached_entry->addr_mask;
752 trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
753 entry.translated_addr, entry.perm);
754 break;
755 case SMMU_TRANS_DISABLE:
756 entry.perm = flag;
757 entry.addr_mask = ~TARGET_PAGE_MASK;
758 trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
759 entry.perm);
760 break;
761 case SMMU_TRANS_BYPASS:
762 entry.perm = flag;
763 entry.addr_mask = ~TARGET_PAGE_MASK;
764 trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
765 entry.perm);
766 break;
767 case SMMU_TRANS_ABORT:
768 /* no event is recorded on abort */
769 trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
770 entry.perm);
771 break;
772 case SMMU_TRANS_ERROR:
773 qemu_log_mask(LOG_GUEST_ERROR,
774 "%s translation failed for iova=0x%"PRIx64"(%s)\n",
775 mr->parent_obj.name, addr, smmu_event_string(event.type));
776 smmuv3_record_event(s, &event);
777 break;
780 return entry;
784 * smmuv3_notify_iova - call the notifier @n for a given
785 * @asid and @iova tuple.
787 * @mr: IOMMU mr region handle
788 * @n: notifier to be called
789 * @asid: address space ID or negative value if we don't care
790 * @iova: iova
792 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
793 IOMMUNotifier *n,
794 int asid,
795 dma_addr_t iova)
797 SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
798 SMMUEventInfo event = {};
799 SMMUTransTableInfo *tt;
800 SMMUTransCfg *cfg;
801 IOMMUTLBEntry entry;
803 cfg = smmuv3_get_config(sdev, &event);
804 if (!cfg) {
805 qemu_log_mask(LOG_GUEST_ERROR,
806 "%s error decoding the configuration for iommu mr=%s\n",
807 __func__, mr->parent_obj.name);
808 return;
811 if (asid >= 0 && cfg->asid != asid) {
812 return;
815 tt = select_tt(cfg, iova);
816 if (!tt) {
817 return;
820 entry.target_as = &address_space_memory;
821 entry.iova = iova;
822 entry.addr_mask = (1 << tt->granule_sz) - 1;
823 entry.perm = IOMMU_NONE;
825 memory_region_notify_one(n, &entry);
828 /* invalidate an asid/iova tuple in all mr's */
829 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, dma_addr_t iova)
831 SMMUDevice *sdev;
833 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
834 IOMMUMemoryRegion *mr = &sdev->iommu;
835 IOMMUNotifier *n;
837 trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, iova);
839 IOMMU_NOTIFIER_FOREACH(n, mr) {
840 smmuv3_notify_iova(mr, n, asid, iova);
845 static int smmuv3_cmdq_consume(SMMUv3State *s)
847 SMMUState *bs = ARM_SMMU(s);
848 SMMUCmdError cmd_error = SMMU_CERROR_NONE;
849 SMMUQueue *q = &s->cmdq;
850 SMMUCommandType type = 0;
852 if (!smmuv3_cmdq_enabled(s)) {
853 return 0;
856 * some commands depend on register values, typically CR0. In case those
857 * register values change while handling the command, spec says it
858 * is UNPREDICTABLE whether the command is interpreted under the new
859 * or old value.
862 while (!smmuv3_q_empty(q)) {
863 uint32_t pending = s->gerror ^ s->gerrorn;
864 Cmd cmd;
866 trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
867 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
869 if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
870 break;
873 if (queue_read(q, &cmd) != MEMTX_OK) {
874 cmd_error = SMMU_CERROR_ABT;
875 break;
878 type = CMD_TYPE(&cmd);
880 trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
882 qemu_mutex_lock(&s->mutex);
883 switch (type) {
884 case SMMU_CMD_SYNC:
885 if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
886 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
888 break;
889 case SMMU_CMD_PREFETCH_CONFIG:
890 case SMMU_CMD_PREFETCH_ADDR:
891 break;
892 case SMMU_CMD_CFGI_STE:
894 uint32_t sid = CMD_SID(&cmd);
895 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
896 SMMUDevice *sdev;
898 if (CMD_SSEC(&cmd)) {
899 cmd_error = SMMU_CERROR_ILL;
900 break;
903 if (!mr) {
904 break;
907 trace_smmuv3_cmdq_cfgi_ste(sid);
908 sdev = container_of(mr, SMMUDevice, iommu);
909 smmuv3_flush_config(sdev);
911 break;
913 case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
915 uint32_t start = CMD_SID(&cmd), end, i;
916 uint8_t range = CMD_STE_RANGE(&cmd);
918 if (CMD_SSEC(&cmd)) {
919 cmd_error = SMMU_CERROR_ILL;
920 break;
923 end = start + (1 << (range + 1)) - 1;
924 trace_smmuv3_cmdq_cfgi_ste_range(start, end);
926 for (i = start; i <= end; i++) {
927 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, i);
928 SMMUDevice *sdev;
930 if (!mr) {
931 continue;
933 sdev = container_of(mr, SMMUDevice, iommu);
934 smmuv3_flush_config(sdev);
936 break;
938 case SMMU_CMD_CFGI_CD:
939 case SMMU_CMD_CFGI_CD_ALL:
941 uint32_t sid = CMD_SID(&cmd);
942 IOMMUMemoryRegion *mr = smmu_iommu_mr(bs, sid);
943 SMMUDevice *sdev;
945 if (CMD_SSEC(&cmd)) {
946 cmd_error = SMMU_CERROR_ILL;
947 break;
950 if (!mr) {
951 break;
954 trace_smmuv3_cmdq_cfgi_cd(sid);
955 sdev = container_of(mr, SMMUDevice, iommu);
956 smmuv3_flush_config(sdev);
957 break;
959 case SMMU_CMD_TLBI_NH_ASID:
961 uint16_t asid = CMD_ASID(&cmd);
963 trace_smmuv3_cmdq_tlbi_nh_asid(asid);
964 smmu_inv_notifiers_all(&s->smmu_state);
965 smmu_iotlb_inv_asid(bs, asid);
966 break;
968 case SMMU_CMD_TLBI_NH_ALL:
969 case SMMU_CMD_TLBI_NSNH_ALL:
970 trace_smmuv3_cmdq_tlbi_nh();
971 smmu_inv_notifiers_all(&s->smmu_state);
972 smmu_iotlb_inv_all(bs);
973 break;
974 case SMMU_CMD_TLBI_NH_VAA:
976 dma_addr_t addr = CMD_ADDR(&cmd);
977 uint16_t vmid = CMD_VMID(&cmd);
979 trace_smmuv3_cmdq_tlbi_nh_vaa(vmid, addr);
980 smmuv3_inv_notifiers_iova(bs, -1, addr);
981 smmu_iotlb_inv_all(bs);
982 break;
984 case SMMU_CMD_TLBI_NH_VA:
986 uint16_t asid = CMD_ASID(&cmd);
987 uint16_t vmid = CMD_VMID(&cmd);
988 dma_addr_t addr = CMD_ADDR(&cmd);
989 bool leaf = CMD_LEAF(&cmd);
991 trace_smmuv3_cmdq_tlbi_nh_va(vmid, asid, addr, leaf);
992 smmuv3_inv_notifiers_iova(bs, asid, addr);
993 smmu_iotlb_inv_iova(bs, asid, addr);
994 break;
996 case SMMU_CMD_TLBI_EL3_ALL:
997 case SMMU_CMD_TLBI_EL3_VA:
998 case SMMU_CMD_TLBI_EL2_ALL:
999 case SMMU_CMD_TLBI_EL2_ASID:
1000 case SMMU_CMD_TLBI_EL2_VA:
1001 case SMMU_CMD_TLBI_EL2_VAA:
1002 case SMMU_CMD_TLBI_S12_VMALL:
1003 case SMMU_CMD_TLBI_S2_IPA:
1004 case SMMU_CMD_ATC_INV:
1005 case SMMU_CMD_PRI_RESP:
1006 case SMMU_CMD_RESUME:
1007 case SMMU_CMD_STALL_TERM:
1008 trace_smmuv3_unhandled_cmd(type);
1009 break;
1010 default:
1011 cmd_error = SMMU_CERROR_ILL;
1012 qemu_log_mask(LOG_GUEST_ERROR,
1013 "Illegal command type: %d\n", CMD_TYPE(&cmd));
1014 break;
1016 qemu_mutex_unlock(&s->mutex);
1017 if (cmd_error) {
1018 break;
1021 * We only increment the cons index after the completion of
1022 * the command. We do that because the SYNC returns immediately
1023 * and does not check the completion of previous commands
1025 queue_cons_incr(q);
1028 if (cmd_error) {
1029 trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1030 smmu_write_cmdq_err(s, cmd_error);
1031 smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1034 trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1035 Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1037 return 0;
1040 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1041 uint64_t data, MemTxAttrs attrs)
1043 switch (offset) {
1044 case A_GERROR_IRQ_CFG0:
1045 s->gerror_irq_cfg0 = data;
1046 return MEMTX_OK;
1047 case A_STRTAB_BASE:
1048 s->strtab_base = data;
1049 return MEMTX_OK;
1050 case A_CMDQ_BASE:
1051 s->cmdq.base = data;
1052 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1053 if (s->cmdq.log2size > SMMU_CMDQS) {
1054 s->cmdq.log2size = SMMU_CMDQS;
1056 return MEMTX_OK;
1057 case A_EVENTQ_BASE:
1058 s->eventq.base = data;
1059 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1060 if (s->eventq.log2size > SMMU_EVENTQS) {
1061 s->eventq.log2size = SMMU_EVENTQS;
1063 return MEMTX_OK;
1064 case A_EVENTQ_IRQ_CFG0:
1065 s->eventq_irq_cfg0 = data;
1066 return MEMTX_OK;
1067 default:
1068 qemu_log_mask(LOG_UNIMP,
1069 "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1070 __func__, offset);
1071 return MEMTX_OK;
1075 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1076 uint64_t data, MemTxAttrs attrs)
1078 switch (offset) {
1079 case A_CR0:
1080 s->cr[0] = data;
1081 s->cr0ack = data & ~SMMU_CR0_RESERVED;
1082 /* in case the command queue has been enabled */
1083 smmuv3_cmdq_consume(s);
1084 return MEMTX_OK;
1085 case A_CR1:
1086 s->cr[1] = data;
1087 return MEMTX_OK;
1088 case A_CR2:
1089 s->cr[2] = data;
1090 return MEMTX_OK;
1091 case A_IRQ_CTRL:
1092 s->irq_ctrl = data;
1093 return MEMTX_OK;
1094 case A_GERRORN:
1095 smmuv3_write_gerrorn(s, data);
1097 * By acknowledging the CMDQ_ERR, SW may notify cmds can
1098 * be processed again
1100 smmuv3_cmdq_consume(s);
1101 return MEMTX_OK;
1102 case A_GERROR_IRQ_CFG0: /* 64b */
1103 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1104 return MEMTX_OK;
1105 case A_GERROR_IRQ_CFG0 + 4:
1106 s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1107 return MEMTX_OK;
1108 case A_GERROR_IRQ_CFG1:
1109 s->gerror_irq_cfg1 = data;
1110 return MEMTX_OK;
1111 case A_GERROR_IRQ_CFG2:
1112 s->gerror_irq_cfg2 = data;
1113 return MEMTX_OK;
1114 case A_STRTAB_BASE: /* 64b */
1115 s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1116 return MEMTX_OK;
1117 case A_STRTAB_BASE + 4:
1118 s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1119 return MEMTX_OK;
1120 case A_STRTAB_BASE_CFG:
1121 s->strtab_base_cfg = data;
1122 if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1123 s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1124 s->features |= SMMU_FEATURE_2LVL_STE;
1126 return MEMTX_OK;
1127 case A_CMDQ_BASE: /* 64b */
1128 s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1129 s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1130 if (s->cmdq.log2size > SMMU_CMDQS) {
1131 s->cmdq.log2size = SMMU_CMDQS;
1133 return MEMTX_OK;
1134 case A_CMDQ_BASE + 4: /* 64b */
1135 s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1136 return MEMTX_OK;
1137 case A_CMDQ_PROD:
1138 s->cmdq.prod = data;
1139 smmuv3_cmdq_consume(s);
1140 return MEMTX_OK;
1141 case A_CMDQ_CONS:
1142 s->cmdq.cons = data;
1143 return MEMTX_OK;
1144 case A_EVENTQ_BASE: /* 64b */
1145 s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1146 s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1147 if (s->eventq.log2size > SMMU_EVENTQS) {
1148 s->eventq.log2size = SMMU_EVENTQS;
1150 return MEMTX_OK;
1151 case A_EVENTQ_BASE + 4:
1152 s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1153 return MEMTX_OK;
1154 case A_EVENTQ_PROD:
1155 s->eventq.prod = data;
1156 return MEMTX_OK;
1157 case A_EVENTQ_CONS:
1158 s->eventq.cons = data;
1159 return MEMTX_OK;
1160 case A_EVENTQ_IRQ_CFG0: /* 64b */
1161 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1162 return MEMTX_OK;
1163 case A_EVENTQ_IRQ_CFG0 + 4:
1164 s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1165 return MEMTX_OK;
1166 case A_EVENTQ_IRQ_CFG1:
1167 s->eventq_irq_cfg1 = data;
1168 return MEMTX_OK;
1169 case A_EVENTQ_IRQ_CFG2:
1170 s->eventq_irq_cfg2 = data;
1171 return MEMTX_OK;
1172 default:
1173 qemu_log_mask(LOG_UNIMP,
1174 "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1175 __func__, offset);
1176 return MEMTX_OK;
1180 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1181 unsigned size, MemTxAttrs attrs)
1183 SMMUState *sys = opaque;
1184 SMMUv3State *s = ARM_SMMUV3(sys);
1185 MemTxResult r;
1187 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1188 offset &= ~0x10000;
1190 switch (size) {
1191 case 8:
1192 r = smmu_writell(s, offset, data, attrs);
1193 break;
1194 case 4:
1195 r = smmu_writel(s, offset, data, attrs);
1196 break;
1197 default:
1198 r = MEMTX_ERROR;
1199 break;
1202 trace_smmuv3_write_mmio(offset, data, size, r);
1203 return r;
1206 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1207 uint64_t *data, MemTxAttrs attrs)
1209 switch (offset) {
1210 case A_GERROR_IRQ_CFG0:
1211 *data = s->gerror_irq_cfg0;
1212 return MEMTX_OK;
1213 case A_STRTAB_BASE:
1214 *data = s->strtab_base;
1215 return MEMTX_OK;
1216 case A_CMDQ_BASE:
1217 *data = s->cmdq.base;
1218 return MEMTX_OK;
1219 case A_EVENTQ_BASE:
1220 *data = s->eventq.base;
1221 return MEMTX_OK;
1222 default:
1223 *data = 0;
1224 qemu_log_mask(LOG_UNIMP,
1225 "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1226 __func__, offset);
1227 return MEMTX_OK;
1231 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1232 uint64_t *data, MemTxAttrs attrs)
1234 switch (offset) {
1235 case A_IDREGS ... A_IDREGS + 0x1f:
1236 *data = smmuv3_idreg(offset - A_IDREGS);
1237 return MEMTX_OK;
1238 case A_IDR0 ... A_IDR5:
1239 *data = s->idr[(offset - A_IDR0) / 4];
1240 return MEMTX_OK;
1241 case A_IIDR:
1242 *data = s->iidr;
1243 return MEMTX_OK;
1244 case A_CR0:
1245 *data = s->cr[0];
1246 return MEMTX_OK;
1247 case A_CR0ACK:
1248 *data = s->cr0ack;
1249 return MEMTX_OK;
1250 case A_CR1:
1251 *data = s->cr[1];
1252 return MEMTX_OK;
1253 case A_CR2:
1254 *data = s->cr[2];
1255 return MEMTX_OK;
1256 case A_STATUSR:
1257 *data = s->statusr;
1258 return MEMTX_OK;
1259 case A_IRQ_CTRL:
1260 case A_IRQ_CTRL_ACK:
1261 *data = s->irq_ctrl;
1262 return MEMTX_OK;
1263 case A_GERROR:
1264 *data = s->gerror;
1265 return MEMTX_OK;
1266 case A_GERRORN:
1267 *data = s->gerrorn;
1268 return MEMTX_OK;
1269 case A_GERROR_IRQ_CFG0: /* 64b */
1270 *data = extract64(s->gerror_irq_cfg0, 0, 32);
1271 return MEMTX_OK;
1272 case A_GERROR_IRQ_CFG0 + 4:
1273 *data = extract64(s->gerror_irq_cfg0, 32, 32);
1274 return MEMTX_OK;
1275 case A_GERROR_IRQ_CFG1:
1276 *data = s->gerror_irq_cfg1;
1277 return MEMTX_OK;
1278 case A_GERROR_IRQ_CFG2:
1279 *data = s->gerror_irq_cfg2;
1280 return MEMTX_OK;
1281 case A_STRTAB_BASE: /* 64b */
1282 *data = extract64(s->strtab_base, 0, 32);
1283 return MEMTX_OK;
1284 case A_STRTAB_BASE + 4: /* 64b */
1285 *data = extract64(s->strtab_base, 32, 32);
1286 return MEMTX_OK;
1287 case A_STRTAB_BASE_CFG:
1288 *data = s->strtab_base_cfg;
1289 return MEMTX_OK;
1290 case A_CMDQ_BASE: /* 64b */
1291 *data = extract64(s->cmdq.base, 0, 32);
1292 return MEMTX_OK;
1293 case A_CMDQ_BASE + 4:
1294 *data = extract64(s->cmdq.base, 32, 32);
1295 return MEMTX_OK;
1296 case A_CMDQ_PROD:
1297 *data = s->cmdq.prod;
1298 return MEMTX_OK;
1299 case A_CMDQ_CONS:
1300 *data = s->cmdq.cons;
1301 return MEMTX_OK;
1302 case A_EVENTQ_BASE: /* 64b */
1303 *data = extract64(s->eventq.base, 0, 32);
1304 return MEMTX_OK;
1305 case A_EVENTQ_BASE + 4: /* 64b */
1306 *data = extract64(s->eventq.base, 32, 32);
1307 return MEMTX_OK;
1308 case A_EVENTQ_PROD:
1309 *data = s->eventq.prod;
1310 return MEMTX_OK;
1311 case A_EVENTQ_CONS:
1312 *data = s->eventq.cons;
1313 return MEMTX_OK;
1314 default:
1315 *data = 0;
1316 qemu_log_mask(LOG_UNIMP,
1317 "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1318 __func__, offset);
1319 return MEMTX_OK;
1323 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1324 unsigned size, MemTxAttrs attrs)
1326 SMMUState *sys = opaque;
1327 SMMUv3State *s = ARM_SMMUV3(sys);
1328 MemTxResult r;
1330 /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1331 offset &= ~0x10000;
1333 switch (size) {
1334 case 8:
1335 r = smmu_readll(s, offset, data, attrs);
1336 break;
1337 case 4:
1338 r = smmu_readl(s, offset, data, attrs);
1339 break;
1340 default:
1341 r = MEMTX_ERROR;
1342 break;
1345 trace_smmuv3_read_mmio(offset, *data, size, r);
1346 return r;
1349 static const MemoryRegionOps smmu_mem_ops = {
1350 .read_with_attrs = smmu_read_mmio,
1351 .write_with_attrs = smmu_write_mmio,
1352 .endianness = DEVICE_LITTLE_ENDIAN,
1353 .valid = {
1354 .min_access_size = 4,
1355 .max_access_size = 8,
1357 .impl = {
1358 .min_access_size = 4,
1359 .max_access_size = 8,
1363 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1365 int i;
1367 for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1368 sysbus_init_irq(dev, &s->irq[i]);
1372 static void smmu_reset(DeviceState *dev)
1374 SMMUv3State *s = ARM_SMMUV3(dev);
1375 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1377 c->parent_reset(dev);
1379 smmuv3_init_regs(s);
1382 static void smmu_realize(DeviceState *d, Error **errp)
1384 SMMUState *sys = ARM_SMMU(d);
1385 SMMUv3State *s = ARM_SMMUV3(sys);
1386 SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1387 SysBusDevice *dev = SYS_BUS_DEVICE(d);
1388 Error *local_err = NULL;
1390 c->parent_realize(d, &local_err);
1391 if (local_err) {
1392 error_propagate(errp, local_err);
1393 return;
1396 qemu_mutex_init(&s->mutex);
1398 memory_region_init_io(&sys->iomem, OBJECT(s),
1399 &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1401 sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1403 sysbus_init_mmio(dev, &sys->iomem);
1405 smmu_init_irq(s, dev);
1408 static const VMStateDescription vmstate_smmuv3_queue = {
1409 .name = "smmuv3_queue",
1410 .version_id = 1,
1411 .minimum_version_id = 1,
1412 .fields = (VMStateField[]) {
1413 VMSTATE_UINT64(base, SMMUQueue),
1414 VMSTATE_UINT32(prod, SMMUQueue),
1415 VMSTATE_UINT32(cons, SMMUQueue),
1416 VMSTATE_UINT8(log2size, SMMUQueue),
1417 VMSTATE_END_OF_LIST(),
1421 static const VMStateDescription vmstate_smmuv3 = {
1422 .name = "smmuv3",
1423 .version_id = 1,
1424 .minimum_version_id = 1,
1425 .fields = (VMStateField[]) {
1426 VMSTATE_UINT32(features, SMMUv3State),
1427 VMSTATE_UINT8(sid_size, SMMUv3State),
1428 VMSTATE_UINT8(sid_split, SMMUv3State),
1430 VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1431 VMSTATE_UINT32(cr0ack, SMMUv3State),
1432 VMSTATE_UINT32(statusr, SMMUv3State),
1433 VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1434 VMSTATE_UINT32(gerror, SMMUv3State),
1435 VMSTATE_UINT32(gerrorn, SMMUv3State),
1436 VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1437 VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1438 VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1439 VMSTATE_UINT64(strtab_base, SMMUv3State),
1440 VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1441 VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1442 VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1443 VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1445 VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1446 VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1448 VMSTATE_END_OF_LIST(),
1452 static void smmuv3_instance_init(Object *obj)
1454 /* Nothing much to do here as of now */
1457 static void smmuv3_class_init(ObjectClass *klass, void *data)
1459 DeviceClass *dc = DEVICE_CLASS(klass);
1460 SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1462 dc->vmsd = &vmstate_smmuv3;
1463 device_class_set_parent_reset(dc, smmu_reset, &c->parent_reset);
1464 c->parent_realize = dc->realize;
1465 dc->realize = smmu_realize;
1468 static void smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
1469 IOMMUNotifierFlag old,
1470 IOMMUNotifierFlag new)
1472 SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
1473 SMMUv3State *s3 = sdev->smmu;
1474 SMMUState *s = &(s3->smmu_state);
1476 if (new & IOMMU_NOTIFIER_MAP) {
1477 int bus_num = pci_bus_num(sdev->bus);
1478 PCIDevice *pcidev = pci_find_device(sdev->bus, bus_num, sdev->devfn);
1480 warn_report("SMMUv3 does not support notification on MAP: "
1481 "device %s will not function properly", pcidev->name);
1484 if (old == IOMMU_NOTIFIER_NONE) {
1485 trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
1486 QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
1487 } else if (new == IOMMU_NOTIFIER_NONE) {
1488 trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
1489 QLIST_REMOVE(sdev, next);
1493 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
1494 void *data)
1496 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1498 imrc->translate = smmuv3_translate;
1499 imrc->notify_flag_changed = smmuv3_notify_flag_changed;
1502 static const TypeInfo smmuv3_type_info = {
1503 .name = TYPE_ARM_SMMUV3,
1504 .parent = TYPE_ARM_SMMU,
1505 .instance_size = sizeof(SMMUv3State),
1506 .instance_init = smmuv3_instance_init,
1507 .class_size = sizeof(SMMUv3Class),
1508 .class_init = smmuv3_class_init,
1511 static const TypeInfo smmuv3_iommu_memory_region_info = {
1512 .parent = TYPE_IOMMU_MEMORY_REGION,
1513 .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
1514 .class_init = smmuv3_iommu_memory_region_class_init,
1517 static void smmuv3_register_types(void)
1519 type_register(&smmuv3_type_info);
1520 type_register(&smmuv3_iommu_memory_region_info);
1523 type_init(smmuv3_register_types)