4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "qemu/qemu-print.h"
26 /* Sparc MMU emulation */
28 #if defined(CONFIG_USER_ONLY)
30 bool sparc_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
31 MMUAccessType access_type
, int mmu_idx
,
32 bool probe
, uintptr_t retaddr
)
34 SPARCCPU
*cpu
= SPARC_CPU(cs
);
35 CPUSPARCState
*env
= &cpu
->env
;
37 if (access_type
== MMU_INST_FETCH
) {
38 cs
->exception_index
= TT_TFAULT
;
40 cs
->exception_index
= TT_DFAULT
;
42 env
->dmmu
.mmuregs
[4] = address
;
44 env
->mmuregs
[4] = address
;
47 cpu_loop_exit_restore(cs
, retaddr
);
52 #ifndef TARGET_SPARC64
54 * Sparc V8 Reference MMU (SRMMU)
56 static const int access_table
[8][8] = {
57 { 0, 0, 0, 0, 8, 0, 12, 12 },
58 { 0, 0, 0, 0, 8, 0, 0, 0 },
59 { 8, 8, 0, 0, 0, 8, 12, 12 },
60 { 8, 8, 0, 0, 0, 8, 0, 0 },
61 { 8, 0, 8, 0, 8, 8, 12, 12 },
62 { 8, 0, 8, 0, 8, 0, 8, 0 },
63 { 8, 8, 8, 0, 8, 8, 12, 12 },
64 { 8, 8, 8, 0, 8, 8, 8, 0 }
67 static const int perm_table
[2][8] = {
70 PAGE_READ
| PAGE_WRITE
,
71 PAGE_READ
| PAGE_EXEC
,
72 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
,
74 PAGE_READ
| PAGE_WRITE
,
75 PAGE_READ
| PAGE_EXEC
,
76 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
80 PAGE_READ
| PAGE_WRITE
,
81 PAGE_READ
| PAGE_EXEC
,
82 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
,
90 static int get_physical_address(CPUSPARCState
*env
, hwaddr
*physical
,
91 int *prot
, int *access_index
, MemTxAttrs
*attrs
,
92 target_ulong address
, int rw
, int mmu_idx
,
93 target_ulong
*page_size
)
98 int error_code
= 0, is_dirty
, is_user
;
99 unsigned long page_offset
;
100 CPUState
*cs
= env_cpu(env
);
103 is_user
= mmu_idx
== MMU_USER_IDX
;
105 if (mmu_idx
== MMU_PHYS_IDX
) {
106 *page_size
= TARGET_PAGE_SIZE
;
107 /* Boot mode: instruction fetches are taken from PROM */
108 if (rw
== 2 && (env
->mmuregs
[0] & env
->def
.mmu_bm
)) {
109 *physical
= env
->prom_addr
| (address
& 0x7ffffULL
);
110 *prot
= PAGE_READ
| PAGE_EXEC
;
114 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
118 *access_index
= ((rw
& 1) << 2) | (rw
& 2) | (is_user
? 0 : 1);
119 *physical
= 0xffffffffffff0000ULL
;
121 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
122 /* Context base + context number */
123 pde_ptr
= (env
->mmuregs
[1] << 4) + (env
->mmuregs
[2] << 2);
124 pde
= address_space_ldl(cs
->as
, pde_ptr
, MEMTXATTRS_UNSPECIFIED
, &result
);
125 if (result
!= MEMTX_OK
) {
126 return 4 << 2; /* Translation fault, L = 0 */
130 switch (pde
& PTE_ENTRYTYPE_MASK
) {
132 case 0: /* Invalid */
134 case 2: /* L0 PTE, maybe should not happen? */
135 case 3: /* Reserved */
138 pde_ptr
= ((address
>> 22) & ~3) + ((pde
& ~3) << 4);
139 pde
= address_space_ldl(cs
->as
, pde_ptr
,
140 MEMTXATTRS_UNSPECIFIED
, &result
);
141 if (result
!= MEMTX_OK
) {
142 return (1 << 8) | (4 << 2); /* Translation fault, L = 1 */
145 switch (pde
& PTE_ENTRYTYPE_MASK
) {
147 case 0: /* Invalid */
148 return (1 << 8) | (1 << 2);
149 case 3: /* Reserved */
150 return (1 << 8) | (4 << 2);
152 pde_ptr
= ((address
& 0xfc0000) >> 16) + ((pde
& ~3) << 4);
153 pde
= address_space_ldl(cs
->as
, pde_ptr
,
154 MEMTXATTRS_UNSPECIFIED
, &result
);
155 if (result
!= MEMTX_OK
) {
156 return (2 << 8) | (4 << 2); /* Translation fault, L = 2 */
159 switch (pde
& PTE_ENTRYTYPE_MASK
) {
161 case 0: /* Invalid */
162 return (2 << 8) | (1 << 2);
163 case 3: /* Reserved */
164 return (2 << 8) | (4 << 2);
166 pde_ptr
= ((address
& 0x3f000) >> 10) + ((pde
& ~3) << 4);
167 pde
= address_space_ldl(cs
->as
, pde_ptr
,
168 MEMTXATTRS_UNSPECIFIED
, &result
);
169 if (result
!= MEMTX_OK
) {
170 return (3 << 8) | (4 << 2); /* Translation fault, L = 3 */
173 switch (pde
& PTE_ENTRYTYPE_MASK
) {
175 case 0: /* Invalid */
176 return (3 << 8) | (1 << 2);
177 case 1: /* PDE, should not happen */
178 case 3: /* Reserved */
179 return (3 << 8) | (4 << 2);
183 *page_size
= TARGET_PAGE_SIZE
;
186 page_offset
= address
& 0x3f000;
187 *page_size
= 0x40000;
191 page_offset
= address
& 0xfff000;
192 *page_size
= 0x1000000;
197 access_perms
= (pde
& PTE_ACCESS_MASK
) >> PTE_ACCESS_SHIFT
;
198 error_code
= access_table
[*access_index
][access_perms
];
199 if (error_code
&& !((env
->mmuregs
[0] & MMU_NF
) && is_user
)) {
203 /* update page modified and dirty bits */
204 is_dirty
= (rw
& 1) && !(pde
& PG_MODIFIED_MASK
);
205 if (!(pde
& PG_ACCESSED_MASK
) || is_dirty
) {
206 pde
|= PG_ACCESSED_MASK
;
208 pde
|= PG_MODIFIED_MASK
;
210 stl_phys_notdirty(cs
->as
, pde_ptr
, pde
);
213 /* the page can be put in the TLB */
214 *prot
= perm_table
[is_user
][access_perms
];
215 if (!(pde
& PG_MODIFIED_MASK
)) {
216 /* only set write access if already dirty... otherwise wait
218 *prot
&= ~PAGE_WRITE
;
221 /* Even if large ptes, we map only one 4KB page in the cache to
222 avoid filling it too fast */
223 *physical
= ((hwaddr
)(pde
& PTE_ADDR_MASK
) << 4) + page_offset
;
227 /* Perform address translation */
228 bool sparc_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
229 MMUAccessType access_type
, int mmu_idx
,
230 bool probe
, uintptr_t retaddr
)
232 SPARCCPU
*cpu
= SPARC_CPU(cs
);
233 CPUSPARCState
*env
= &cpu
->env
;
236 target_ulong page_size
;
237 int error_code
= 0, prot
, access_index
;
238 MemTxAttrs attrs
= {};
241 * TODO: If we ever need tlb_vaddr_to_host for this target,
242 * then we must figure out how to manipulate FSR and FAR
243 * when both MMU_NF and probe are set. In the meantime,
244 * do not support this use case.
248 address
&= TARGET_PAGE_MASK
;
249 error_code
= get_physical_address(env
, &paddr
, &prot
, &access_index
, &attrs
,
250 address
, access_type
,
251 mmu_idx
, &page_size
);
253 if (likely(error_code
== 0)) {
254 qemu_log_mask(CPU_LOG_MMU
,
255 "Translate at %" VADDR_PRIx
" -> "
256 TARGET_FMT_plx
", vaddr " TARGET_FMT_lx
"\n",
257 address
, paddr
, vaddr
);
258 tlb_set_page(cs
, vaddr
, paddr
, prot
, mmu_idx
, page_size
);
262 if (env
->mmuregs
[3]) { /* Fault status register */
263 env
->mmuregs
[3] = 1; /* overflow (not read before another fault) */
265 env
->mmuregs
[3] |= (access_index
<< 5) | error_code
| 2;
266 env
->mmuregs
[4] = address
; /* Fault address register */
268 if ((env
->mmuregs
[0] & MMU_NF
) || env
->psret
== 0) {
269 /* No fault mode: if a mapping is available, just override
270 permissions. If no mapping is available, redirect accesses to
271 neverland. Fake/overridden mappings will be flushed when
272 switching to normal mode. */
273 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
274 tlb_set_page(cs
, vaddr
, paddr
, prot
, mmu_idx
, TARGET_PAGE_SIZE
);
277 if (access_type
== MMU_INST_FETCH
) {
278 cs
->exception_index
= TT_TFAULT
;
280 cs
->exception_index
= TT_DFAULT
;
282 cpu_loop_exit_restore(cs
, retaddr
);
286 target_ulong
mmu_probe(CPUSPARCState
*env
, target_ulong address
, int mmulev
)
288 CPUState
*cs
= env_cpu(env
);
294 * TODO: MMU probe operations are supposed to set the fault
295 * status registers, but we don't do this.
298 /* Context base + context number */
299 pde_ptr
= (hwaddr
)(env
->mmuregs
[1] << 4) +
300 (env
->mmuregs
[2] << 2);
301 pde
= address_space_ldl(cs
->as
, pde_ptr
, MEMTXATTRS_UNSPECIFIED
, &result
);
302 if (result
!= MEMTX_OK
) {
306 switch (pde
& PTE_ENTRYTYPE_MASK
) {
308 case 0: /* Invalid */
309 case 2: /* PTE, maybe should not happen? */
310 case 3: /* Reserved */
316 pde_ptr
= ((address
>> 22) & ~3) + ((pde
& ~3) << 4);
317 pde
= address_space_ldl(cs
->as
, pde_ptr
,
318 MEMTXATTRS_UNSPECIFIED
, &result
);
319 if (result
!= MEMTX_OK
) {
323 switch (pde
& PTE_ENTRYTYPE_MASK
) {
325 case 0: /* Invalid */
326 case 3: /* Reserved */
334 pde_ptr
= ((address
& 0xfc0000) >> 16) + ((pde
& ~3) << 4);
335 pde
= address_space_ldl(cs
->as
, pde_ptr
,
336 MEMTXATTRS_UNSPECIFIED
, &result
);
337 if (result
!= MEMTX_OK
) {
341 switch (pde
& PTE_ENTRYTYPE_MASK
) {
343 case 0: /* Invalid */
344 case 3: /* Reserved */
352 pde_ptr
= ((address
& 0x3f000) >> 10) + ((pde
& ~3) << 4);
353 pde
= address_space_ldl(cs
->as
, pde_ptr
,
354 MEMTXATTRS_UNSPECIFIED
, &result
);
355 if (result
!= MEMTX_OK
) {
359 switch (pde
& PTE_ENTRYTYPE_MASK
) {
361 case 0: /* Invalid */
362 case 1: /* PDE, should not happen */
363 case 3: /* Reserved */
374 void dump_mmu(CPUSPARCState
*env
)
376 CPUState
*cs
= env_cpu(env
);
377 target_ulong va
, va1
, va2
;
378 unsigned int n
, m
, o
;
382 qemu_printf("Root ptr: " TARGET_FMT_plx
", ctx: %d\n",
383 (hwaddr
)env
->mmuregs
[1] << 4, env
->mmuregs
[2]);
384 for (n
= 0, va
= 0; n
< 256; n
++, va
+= 16 * 1024 * 1024) {
385 pde
= mmu_probe(env
, va
, 2);
387 pa
= cpu_get_phys_page_debug(cs
, va
);
388 qemu_printf("VA: " TARGET_FMT_lx
", PA: " TARGET_FMT_plx
389 " PDE: " TARGET_FMT_lx
"\n", va
, pa
, pde
);
390 for (m
= 0, va1
= va
; m
< 64; m
++, va1
+= 256 * 1024) {
391 pde
= mmu_probe(env
, va1
, 1);
393 pa
= cpu_get_phys_page_debug(cs
, va1
);
394 qemu_printf(" VA: " TARGET_FMT_lx
", PA: "
395 TARGET_FMT_plx
" PDE: " TARGET_FMT_lx
"\n",
397 for (o
= 0, va2
= va1
; o
< 64; o
++, va2
+= 4 * 1024) {
398 pde
= mmu_probe(env
, va2
, 0);
400 pa
= cpu_get_phys_page_debug(cs
, va2
);
401 qemu_printf(" VA: " TARGET_FMT_lx
", PA: "
402 TARGET_FMT_plx
" PTE: "
413 /* Gdb expects all registers windows to be flushed in ram. This function handles
414 * reads (and only reads) in stack frames as if windows were flushed. We assume
415 * that the sparc ABI is followed.
417 int sparc_cpu_memory_rw_debug(CPUState
*cs
, vaddr address
,
418 uint8_t *buf
, int len
, bool is_write
)
420 SPARCCPU
*cpu
= SPARC_CPU(cs
);
421 CPUSPARCState
*env
= &cpu
->env
;
422 target_ulong addr
= address
;
428 for (i
= 0; i
< env
->nwindows
; i
++) {
430 target_ulong fp
= env
->regbase
[cwp
* 16 + 22];
432 /* Assume fp == 0 means end of frame. */
437 cwp
= cpu_cwp_inc(env
, cwp
+ 1);
439 /* Invalid window ? */
440 if (env
->wim
& (1 << cwp
)) {
444 /* According to the ABI, the stack is growing downward. */
445 if (addr
+ len
< fp
) {
449 /* Not in this frame. */
450 if (addr
> fp
+ 64) {
454 /* Handle access before this window. */
457 if (cpu_memory_rw_debug(cs
, addr
, buf
, len1
, is_write
) != 0) {
465 /* Access byte per byte to registers. Not very efficient but speed
475 for (; len1
; len1
--) {
476 int reg
= cwp
* 16 + 8 + (off
>> 2);
481 u
.v
= cpu_to_be32(env
->regbase
[reg
]);
482 *buf
++ = u
.c
[off
& 3];
493 return cpu_memory_rw_debug(cs
, addr
, buf
, len
, is_write
);
496 #else /* !TARGET_SPARC64 */
498 /* 41 bit physical address space */
499 static inline hwaddr
ultrasparc_truncate_physical(uint64_t x
)
501 return x
& 0x1ffffffffffULL
;
505 * UltraSparc IIi I/DMMUs
508 /* Returns true if TTE tag is valid and matches virtual address value
509 in context requires virtual address mask value calculated from TTE
511 static inline int ultrasparc_tag_match(SparcTLBEntry
*tlb
,
512 uint64_t address
, uint64_t context
,
515 uint64_t mask
= -(8192ULL << 3 * TTE_PGSIZE(tlb
->tte
));
517 /* valid, context match, virtual address match? */
518 if (TTE_IS_VALID(tlb
->tte
) &&
519 (TTE_IS_GLOBAL(tlb
->tte
) || tlb_compare_context(tlb
, context
))
520 && compare_masked(address
, tlb
->tag
, mask
)) {
521 /* decode physical address */
522 *physical
= ((tlb
->tte
& mask
) | (address
& ~mask
)) & 0x1ffffffe000ULL
;
529 static int get_physical_address_data(CPUSPARCState
*env
, hwaddr
*physical
,
530 int *prot
, MemTxAttrs
*attrs
,
531 target_ulong address
, int rw
, int mmu_idx
)
533 CPUState
*cs
= env_cpu(env
);
537 bool is_user
= false;
541 g_assert_not_reached();
546 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
547 sfsr
|= SFSR_CT_PRIMARY
;
549 case MMU_USER_SECONDARY_IDX
:
552 case MMU_KERNEL_SECONDARY_IDX
:
553 context
= env
->dmmu
.mmu_secondary_context
& 0x1fff;
554 sfsr
|= SFSR_CT_SECONDARY
;
556 case MMU_NUCLEUS_IDX
:
557 sfsr
|= SFSR_CT_NUCLEUS
;
565 sfsr
|= SFSR_WRITE_BIT
;
566 } else if (rw
== 4) {
570 for (i
= 0; i
< 64; i
++) {
571 /* ctx match, vaddr match, valid? */
572 if (ultrasparc_tag_match(&env
->dtlb
[i
], address
, context
, physical
)) {
575 if (TTE_IS_IE(env
->dtlb
[i
].tte
)) {
576 attrs
->byte_swap
= true;
580 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
581 if (TTE_IS_PRIV(env
->dtlb
[i
].tte
) && is_user
) {
583 sfsr
|= SFSR_FT_PRIV_BIT
; /* privilege violation */
584 trace_mmu_helper_dfault(address
, context
, mmu_idx
, env
->tl
);
587 if (TTE_IS_SIDEEFFECT(env
->dtlb
[i
].tte
)) {
589 sfsr
|= SFSR_FT_NF_E_BIT
;
592 if (TTE_IS_NFO(env
->dtlb
[i
].tte
)) {
594 sfsr
|= SFSR_FT_NFO_BIT
;
599 /* faults above are reported with TT_DFAULT. */
600 cs
->exception_index
= TT_DFAULT
;
601 } else if (!TTE_IS_W_OK(env
->dtlb
[i
].tte
) && (rw
== 1)) {
603 cs
->exception_index
= TT_DPROT
;
605 trace_mmu_helper_dprot(address
, context
, mmu_idx
, env
->tl
);
610 if (TTE_IS_W_OK(env
->dtlb
[i
].tte
)) {
614 TTE_SET_USED(env
->dtlb
[i
].tte
);
619 if (env
->dmmu
.sfsr
& SFSR_VALID_BIT
) { /* Fault status register */
620 sfsr
|= SFSR_OW_BIT
; /* overflow (not read before
624 if (env
->pstate
& PS_PRIV
) {
628 /* FIXME: ASI field in SFSR must be set */
629 env
->dmmu
.sfsr
= sfsr
| SFSR_VALID_BIT
;
631 env
->dmmu
.sfar
= address
; /* Fault address register */
633 env
->dmmu
.tag_access
= (address
& ~0x1fffULL
) | context
;
639 trace_mmu_helper_dmiss(address
, context
);
643 * - UltraSPARC IIi: SFSR and SFAR unmodified
644 * - JPS1: SFAR updated and some fields of SFSR updated
646 env
->dmmu
.tag_access
= (address
& ~0x1fffULL
) | context
;
647 cs
->exception_index
= TT_DMISS
;
651 static int get_physical_address_code(CPUSPARCState
*env
, hwaddr
*physical
,
652 int *prot
, MemTxAttrs
*attrs
,
653 target_ulong address
, int mmu_idx
)
655 CPUState
*cs
= env_cpu(env
);
658 bool is_user
= false;
662 case MMU_USER_SECONDARY_IDX
:
663 case MMU_KERNEL_SECONDARY_IDX
:
664 g_assert_not_reached();
669 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
677 /* PRIMARY context */
678 context
= env
->dmmu
.mmu_primary_context
& 0x1fff;
680 /* NUCLEUS context */
684 for (i
= 0; i
< 64; i
++) {
685 /* ctx match, vaddr match, valid? */
686 if (ultrasparc_tag_match(&env
->itlb
[i
],
687 address
, context
, physical
)) {
689 if (TTE_IS_PRIV(env
->itlb
[i
].tte
) && is_user
) {
690 /* Fault status register */
691 if (env
->immu
.sfsr
& SFSR_VALID_BIT
) {
692 env
->immu
.sfsr
= SFSR_OW_BIT
; /* overflow (not read before
697 if (env
->pstate
& PS_PRIV
) {
698 env
->immu
.sfsr
|= SFSR_PR_BIT
;
701 env
->immu
.sfsr
|= SFSR_CT_NUCLEUS
;
704 /* FIXME: ASI field in SFSR must be set */
705 env
->immu
.sfsr
|= SFSR_FT_PRIV_BIT
| SFSR_VALID_BIT
;
706 cs
->exception_index
= TT_TFAULT
;
708 env
->immu
.tag_access
= (address
& ~0x1fffULL
) | context
;
710 trace_mmu_helper_tfault(address
, context
);
715 TTE_SET_USED(env
->itlb
[i
].tte
);
720 trace_mmu_helper_tmiss(address
, context
);
722 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
723 env
->immu
.tag_access
= (address
& ~0x1fffULL
) | context
;
724 cs
->exception_index
= TT_TMISS
;
728 static int get_physical_address(CPUSPARCState
*env
, hwaddr
*physical
,
729 int *prot
, int *access_index
, MemTxAttrs
*attrs
,
730 target_ulong address
, int rw
, int mmu_idx
,
731 target_ulong
*page_size
)
733 /* ??? We treat everything as a small page, then explicitly flush
734 everything when an entry is evicted. */
735 *page_size
= TARGET_PAGE_SIZE
;
737 /* safety net to catch wrong softmmu index use from dynamic code */
738 if (env
->tl
> 0 && mmu_idx
!= MMU_NUCLEUS_IDX
) {
740 trace_mmu_helper_get_phys_addr_code(env
->tl
, mmu_idx
,
741 env
->dmmu
.mmu_primary_context
,
742 env
->dmmu
.mmu_secondary_context
,
745 trace_mmu_helper_get_phys_addr_data(env
->tl
, mmu_idx
,
746 env
->dmmu
.mmu_primary_context
,
747 env
->dmmu
.mmu_secondary_context
,
752 if (mmu_idx
== MMU_PHYS_IDX
) {
753 *physical
= ultrasparc_truncate_physical(address
);
754 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
759 return get_physical_address_code(env
, physical
, prot
, attrs
, address
,
762 return get_physical_address_data(env
, physical
, prot
, attrs
, address
,
767 /* Perform address translation */
768 bool sparc_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
769 MMUAccessType access_type
, int mmu_idx
,
770 bool probe
, uintptr_t retaddr
)
772 SPARCCPU
*cpu
= SPARC_CPU(cs
);
773 CPUSPARCState
*env
= &cpu
->env
;
776 target_ulong page_size
;
777 MemTxAttrs attrs
= {};
778 int error_code
= 0, prot
, access_index
;
780 address
&= TARGET_PAGE_MASK
;
781 error_code
= get_physical_address(env
, &paddr
, &prot
, &access_index
, &attrs
,
782 address
, access_type
,
783 mmu_idx
, &page_size
);
784 if (likely(error_code
== 0)) {
787 trace_mmu_helper_mmu_fault(address
, paddr
, mmu_idx
, env
->tl
,
788 env
->dmmu
.mmu_primary_context
,
789 env
->dmmu
.mmu_secondary_context
);
791 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, attrs
, prot
, mmu_idx
,
798 cpu_loop_exit_restore(cs
, retaddr
);
801 void dump_mmu(CPUSPARCState
*env
)
806 qemu_printf("MMU contexts: Primary: %" PRId64
", Secondary: %"
808 env
->dmmu
.mmu_primary_context
,
809 env
->dmmu
.mmu_secondary_context
);
810 qemu_printf("DMMU Tag Access: %" PRIx64
", TSB Tag Target: %" PRIx64
811 "\n", env
->dmmu
.tag_access
, env
->dmmu
.tsb_tag_target
);
812 if ((env
->lsu
& DMMU_E
) == 0) {
813 qemu_printf("DMMU disabled\n");
815 qemu_printf("DMMU dump\n");
816 for (i
= 0; i
< 64; i
++) {
817 switch (TTE_PGSIZE(env
->dtlb
[i
].tte
)) {
832 if (TTE_IS_VALID(env
->dtlb
[i
].tte
)) {
833 qemu_printf("[%02u] VA: %" PRIx64
", PA: %llx"
834 ", %s, %s, %s, %s, ie %s, ctx %" PRId64
" %s\n",
836 env
->dtlb
[i
].tag
& (uint64_t)~0x1fffULL
,
837 TTE_PA(env
->dtlb
[i
].tte
),
839 TTE_IS_PRIV(env
->dtlb
[i
].tte
) ? "priv" : "user",
840 TTE_IS_W_OK(env
->dtlb
[i
].tte
) ? "RW" : "RO",
841 TTE_IS_LOCKED(env
->dtlb
[i
].tte
) ?
842 "locked" : "unlocked",
843 TTE_IS_IE(env
->dtlb
[i
].tte
) ?
845 env
->dtlb
[i
].tag
& (uint64_t)0x1fffULL
,
846 TTE_IS_GLOBAL(env
->dtlb
[i
].tte
) ?
851 if ((env
->lsu
& IMMU_E
) == 0) {
852 qemu_printf("IMMU disabled\n");
854 qemu_printf("IMMU dump\n");
855 for (i
= 0; i
< 64; i
++) {
856 switch (TTE_PGSIZE(env
->itlb
[i
].tte
)) {
871 if (TTE_IS_VALID(env
->itlb
[i
].tte
)) {
872 qemu_printf("[%02u] VA: %" PRIx64
", PA: %llx"
873 ", %s, %s, %s, ctx %" PRId64
" %s\n",
875 env
->itlb
[i
].tag
& (uint64_t)~0x1fffULL
,
876 TTE_PA(env
->itlb
[i
].tte
),
878 TTE_IS_PRIV(env
->itlb
[i
].tte
) ? "priv" : "user",
879 TTE_IS_LOCKED(env
->itlb
[i
].tte
) ?
880 "locked" : "unlocked",
881 env
->itlb
[i
].tag
& (uint64_t)0x1fffULL
,
882 TTE_IS_GLOBAL(env
->itlb
[i
].tte
) ?
889 #endif /* TARGET_SPARC64 */
891 static int cpu_sparc_get_phys_page(CPUSPARCState
*env
, hwaddr
*phys
,
892 target_ulong addr
, int rw
, int mmu_idx
)
894 target_ulong page_size
;
895 int prot
, access_index
;
896 MemTxAttrs attrs
= {};
898 return get_physical_address(env
, phys
, &prot
, &access_index
, &attrs
, addr
,
899 rw
, mmu_idx
, &page_size
);
902 #if defined(TARGET_SPARC64)
903 hwaddr
cpu_get_phys_page_nofault(CPUSPARCState
*env
, target_ulong addr
,
908 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 4, mmu_idx
) != 0) {
915 hwaddr
sparc_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
917 SPARCCPU
*cpu
= SPARC_CPU(cs
);
918 CPUSPARCState
*env
= &cpu
->env
;
920 int mmu_idx
= cpu_mmu_index(env
, false);
922 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 2, mmu_idx
) != 0) {
923 if (cpu_sparc_get_phys_page(env
, &phys_addr
, addr
, 0, mmu_idx
) != 0) {