vl: extract softmmu/globals.c
[qemu/ar7.git] / target / riscv / cpu_helper.c
bloba2787b1d4875e774d95c3040ec919bed995f6b7f
1 /*
2 * RISC-V CPU helpers for qemu.
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
26 #include "trace.h"
28 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
30 #ifdef CONFIG_USER_ONLY
31 return 0;
32 #else
33 return env->priv;
34 #endif
37 #ifndef CONFIG_USER_ONLY
38 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
40 target_ulong irqs;
42 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
43 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
44 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
46 target_ulong pending = env->mip & env->mie &
47 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
48 target_ulong vspending = (env->mip & env->mie &
49 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
51 target_ulong mie = env->priv < PRV_M ||
52 (env->priv == PRV_M && mstatus_mie);
53 target_ulong sie = env->priv < PRV_S ||
54 (env->priv == PRV_S && mstatus_sie);
55 target_ulong hs_sie = env->priv < PRV_S ||
56 (env->priv == PRV_S && hs_mstatus_sie);
58 if (riscv_cpu_virt_enabled(env)) {
59 target_ulong pending_hs_irq = pending & -hs_sie;
61 if (pending_hs_irq) {
62 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
63 return ctz64(pending_hs_irq);
66 pending = vspending;
69 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
71 if (irqs) {
72 return ctz64(irqs); /* since non-zero */
73 } else {
74 return EXCP_NONE; /* indicates no pending interrupt */
77 #endif
79 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
81 #if !defined(CONFIG_USER_ONLY)
82 if (interrupt_request & CPU_INTERRUPT_HARD) {
83 RISCVCPU *cpu = RISCV_CPU(cs);
84 CPURISCVState *env = &cpu->env;
85 int interruptno = riscv_cpu_local_irq_pending(env);
86 if (interruptno >= 0) {
87 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
88 riscv_cpu_do_interrupt(cs);
89 return true;
92 #endif
93 return false;
96 #if !defined(CONFIG_USER_ONLY)
98 /* Return true is floating point support is currently enabled */
99 bool riscv_cpu_fp_enabled(CPURISCVState *env)
101 if (env->mstatus & MSTATUS_FS) {
102 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
103 return false;
105 return true;
108 return false;
111 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
113 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
114 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
115 MSTATUS64_UXL;
116 bool current_virt = riscv_cpu_virt_enabled(env);
118 g_assert(riscv_has_ext(env, RVH));
120 if (current_virt) {
121 /* Current V=1 and we are about to change to V=0 */
122 env->vsstatus = env->mstatus & mstatus_mask;
123 env->mstatus &= ~mstatus_mask;
124 env->mstatus |= env->mstatus_hs;
126 env->vstvec = env->stvec;
127 env->stvec = env->stvec_hs;
129 env->vsscratch = env->sscratch;
130 env->sscratch = env->sscratch_hs;
132 env->vsepc = env->sepc;
133 env->sepc = env->sepc_hs;
135 env->vscause = env->scause;
136 env->scause = env->scause_hs;
138 env->vstval = env->sbadaddr;
139 env->sbadaddr = env->stval_hs;
141 env->vsatp = env->satp;
142 env->satp = env->satp_hs;
143 } else {
144 /* Current V=0 and we are about to change to V=1 */
145 env->mstatus_hs = env->mstatus & mstatus_mask;
146 env->mstatus &= ~mstatus_mask;
147 env->mstatus |= env->vsstatus;
149 env->stvec_hs = env->stvec;
150 env->stvec = env->vstvec;
152 env->sscratch_hs = env->sscratch;
153 env->sscratch = env->vsscratch;
155 env->sepc_hs = env->sepc;
156 env->sepc = env->vsepc;
158 env->scause_hs = env->scause;
159 env->scause = env->vscause;
161 env->stval_hs = env->sbadaddr;
162 env->sbadaddr = env->vstval;
164 env->satp_hs = env->satp;
165 env->satp = env->vsatp;
169 bool riscv_cpu_virt_enabled(CPURISCVState *env)
171 if (!riscv_has_ext(env, RVH)) {
172 return false;
175 return get_field(env->virt, VIRT_ONOFF);
178 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
180 if (!riscv_has_ext(env, RVH)) {
181 return;
184 /* Flush the TLB on all virt mode changes. */
185 if (get_field(env->virt, VIRT_ONOFF) != enable) {
186 tlb_flush(env_cpu(env));
189 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
192 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
194 if (!riscv_has_ext(env, RVH)) {
195 return false;
198 return get_field(env->virt, FORCE_HS_EXCEP);
201 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
203 if (!riscv_has_ext(env, RVH)) {
204 return;
207 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
210 bool riscv_cpu_two_stage_lookup(int mmu_idx)
212 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
215 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
217 CPURISCVState *env = &cpu->env;
218 if (env->miclaim & interrupts) {
219 return -1;
220 } else {
221 env->miclaim |= interrupts;
222 return 0;
226 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
228 CPURISCVState *env = &cpu->env;
229 CPUState *cs = CPU(cpu);
230 uint32_t old = env->mip;
231 bool locked = false;
233 if (!qemu_mutex_iothread_locked()) {
234 locked = true;
235 qemu_mutex_lock_iothread();
238 env->mip = (env->mip & ~mask) | (value & mask);
240 if (env->mip) {
241 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
242 } else {
243 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
246 if (locked) {
247 qemu_mutex_unlock_iothread();
250 return old;
253 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
254 uint32_t arg)
256 env->rdtime_fn = fn;
257 env->rdtime_fn_arg = arg;
260 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
262 if (newpriv > PRV_M) {
263 g_assert_not_reached();
265 if (newpriv == PRV_H) {
266 newpriv = PRV_U;
268 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
269 env->priv = newpriv;
272 * Clear the load reservation - otherwise a reservation placed in one
273 * context/process can be used by another, resulting in an SC succeeding
274 * incorrectly. Version 2.2 of the ISA specification explicitly requires
275 * this behaviour, while later revisions say that the kernel "should" use
276 * an SC instruction to force the yielding of a load reservation on a
277 * preemptive context switch. As a result, do both.
279 env->load_res = -1;
282 /* get_physical_address - get the physical address for this virtual address
284 * Do a page table walk to obtain the physical address corresponding to a
285 * virtual address. Returns 0 if the translation was successful
287 * Adapted from Spike's mmu_t::translate and mmu_t::walk
289 * @env: CPURISCVState
290 * @physical: This will be set to the calculated physical address
291 * @prot: The returned protection attributes
292 * @addr: The virtual address to be translated
293 * @fault_pte_addr: If not NULL, this will be set to fault pte address
294 * when a error occurs on pte address translation.
295 * This will already be shifted to match htval.
296 * @access_type: The type of MMU access
297 * @mmu_idx: Indicates current privilege level
298 * @first_stage: Are we in first stage translation?
299 * Second stage is used for hypervisor guest translation
300 * @two_stage: Are we going to perform two stage translation
302 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
303 int *prot, target_ulong addr,
304 target_ulong *fault_pte_addr,
305 int access_type, int mmu_idx,
306 bool first_stage, bool two_stage)
308 /* NOTE: the env->pc value visible here will not be
309 * correct, but the value visible to the exception handler
310 * (riscv_cpu_do_interrupt) is correct */
311 MemTxResult res;
312 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
313 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
314 bool use_background = false;
317 * Check if we should use the background registers for the two
318 * stage translation. We don't need to check if we actually need
319 * two stage translation as that happened before this function
320 * was called. Background registers will be used if the guest has
321 * forced a two stage translation to be on (in HS or M mode).
323 if (!riscv_cpu_virt_enabled(env) && riscv_cpu_two_stage_lookup(mmu_idx)) {
324 use_background = true;
327 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
328 if (get_field(env->mstatus, MSTATUS_MPRV)) {
329 mode = get_field(env->mstatus, MSTATUS_MPP);
333 if (first_stage == false) {
334 /* We are in stage 2 translation, this is similar to stage 1. */
335 /* Stage 2 is always taken as U-mode */
336 mode = PRV_U;
339 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
340 *physical = addr;
341 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
342 return TRANSLATE_SUCCESS;
345 *prot = 0;
347 hwaddr base;
348 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
350 if (first_stage == true) {
351 mxr = get_field(env->mstatus, MSTATUS_MXR);
352 } else {
353 mxr = get_field(env->vsstatus, MSTATUS_MXR);
356 if (first_stage == true) {
357 if (use_background) {
358 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
359 vm = get_field(env->vsatp, SATP_MODE);
360 } else {
361 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
362 vm = get_field(env->satp, SATP_MODE);
364 widened = 0;
365 } else {
366 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
367 vm = get_field(env->hgatp, HGATP_MODE);
368 widened = 2;
370 sum = get_field(env->mstatus, MSTATUS_SUM);
371 switch (vm) {
372 case VM_1_10_SV32:
373 levels = 2; ptidxbits = 10; ptesize = 4; break;
374 case VM_1_10_SV39:
375 levels = 3; ptidxbits = 9; ptesize = 8; break;
376 case VM_1_10_SV48:
377 levels = 4; ptidxbits = 9; ptesize = 8; break;
378 case VM_1_10_SV57:
379 levels = 5; ptidxbits = 9; ptesize = 8; break;
380 case VM_1_10_MBARE:
381 *physical = addr;
382 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
383 return TRANSLATE_SUCCESS;
384 default:
385 g_assert_not_reached();
388 CPUState *cs = env_cpu(env);
389 int va_bits = PGSHIFT + levels * ptidxbits + widened;
390 target_ulong mask, masked_msbs;
392 if (TARGET_LONG_BITS > (va_bits - 1)) {
393 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
394 } else {
395 mask = 0;
397 masked_msbs = (addr >> (va_bits - 1)) & mask;
399 if (masked_msbs != 0 && masked_msbs != mask) {
400 return TRANSLATE_FAIL;
403 int ptshift = (levels - 1) * ptidxbits;
404 int i;
406 #if !TCG_OVERSIZED_GUEST
407 restart:
408 #endif
409 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
410 target_ulong idx;
411 if (i == 0) {
412 idx = (addr >> (PGSHIFT + ptshift)) &
413 ((1 << (ptidxbits + widened)) - 1);
414 } else {
415 idx = (addr >> (PGSHIFT + ptshift)) &
416 ((1 << ptidxbits) - 1);
419 /* check that physical address of PTE is legal */
420 hwaddr pte_addr;
422 if (two_stage && first_stage) {
423 int vbase_prot;
424 hwaddr vbase;
426 /* Do the second stage translation on the base PTE address. */
427 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
428 base, NULL, MMU_DATA_LOAD,
429 mmu_idx, false, true);
431 if (vbase_ret != TRANSLATE_SUCCESS) {
432 if (fault_pte_addr) {
433 *fault_pte_addr = (base + idx * ptesize) >> 2;
435 return TRANSLATE_G_STAGE_FAIL;
438 pte_addr = vbase + idx * ptesize;
439 } else {
440 pte_addr = base + idx * ptesize;
443 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
444 !pmp_hart_has_privs(env, pte_addr, sizeof(target_ulong),
445 1 << MMU_DATA_LOAD, PRV_S)) {
446 return TRANSLATE_PMP_FAIL;
449 #if defined(TARGET_RISCV32)
450 target_ulong pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
451 #elif defined(TARGET_RISCV64)
452 target_ulong pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
453 #endif
454 if (res != MEMTX_OK) {
455 return TRANSLATE_FAIL;
458 hwaddr ppn = pte >> PTE_PPN_SHIFT;
460 if (!(pte & PTE_V)) {
461 /* Invalid PTE */
462 return TRANSLATE_FAIL;
463 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
464 /* Inner PTE, continue walking */
465 base = ppn << PGSHIFT;
466 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
467 /* Reserved leaf PTE flags: PTE_W */
468 return TRANSLATE_FAIL;
469 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
470 /* Reserved leaf PTE flags: PTE_W + PTE_X */
471 return TRANSLATE_FAIL;
472 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
473 (!sum || access_type == MMU_INST_FETCH))) {
474 /* User PTE flags when not U mode and mstatus.SUM is not set,
475 or the access type is an instruction fetch */
476 return TRANSLATE_FAIL;
477 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
478 /* Supervisor PTE flags when not S mode */
479 return TRANSLATE_FAIL;
480 } else if (ppn & ((1ULL << ptshift) - 1)) {
481 /* Misaligned PPN */
482 return TRANSLATE_FAIL;
483 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
484 ((pte & PTE_X) && mxr))) {
485 /* Read access check failed */
486 return TRANSLATE_FAIL;
487 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
488 /* Write access check failed */
489 return TRANSLATE_FAIL;
490 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
491 /* Fetch access check failed */
492 return TRANSLATE_FAIL;
493 } else {
494 /* if necessary, set accessed and dirty bits. */
495 target_ulong updated_pte = pte | PTE_A |
496 (access_type == MMU_DATA_STORE ? PTE_D : 0);
498 /* Page table updates need to be atomic with MTTCG enabled */
499 if (updated_pte != pte) {
501 * - if accessed or dirty bits need updating, and the PTE is
502 * in RAM, then we do so atomically with a compare and swap.
503 * - if the PTE is in IO space or ROM, then it can't be updated
504 * and we return TRANSLATE_FAIL.
505 * - if the PTE changed by the time we went to update it, then
506 * it is no longer valid and we must re-walk the page table.
508 MemoryRegion *mr;
509 hwaddr l = sizeof(target_ulong), addr1;
510 mr = address_space_translate(cs->as, pte_addr,
511 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
512 if (memory_region_is_ram(mr)) {
513 target_ulong *pte_pa =
514 qemu_map_ram_ptr(mr->ram_block, addr1);
515 #if TCG_OVERSIZED_GUEST
516 /* MTTCG is not enabled on oversized TCG guests so
517 * page table updates do not need to be atomic */
518 *pte_pa = pte = updated_pte;
519 #else
520 target_ulong old_pte =
521 qatomic_cmpxchg(pte_pa, pte, updated_pte);
522 if (old_pte != pte) {
523 goto restart;
524 } else {
525 pte = updated_pte;
527 #endif
528 } else {
529 /* misconfigured PTE in ROM (AD bits are not preset) or
530 * PTE is in IO space and can't be updated atomically */
531 return TRANSLATE_FAIL;
535 /* for superpage mappings, make a fake leaf PTE for the TLB's
536 benefit. */
537 target_ulong vpn = addr >> PGSHIFT;
538 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
539 (addr & ~TARGET_PAGE_MASK);
541 /* set permissions on the TLB entry */
542 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
543 *prot |= PAGE_READ;
545 if ((pte & PTE_X)) {
546 *prot |= PAGE_EXEC;
548 /* add write permission on stores or if the page is already dirty,
549 so that we TLB miss on later writes to update the dirty bit */
550 if ((pte & PTE_W) &&
551 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
552 *prot |= PAGE_WRITE;
554 return TRANSLATE_SUCCESS;
557 return TRANSLATE_FAIL;
560 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
561 MMUAccessType access_type, bool pmp_violation,
562 bool first_stage, bool two_stage)
564 CPUState *cs = env_cpu(env);
565 int page_fault_exceptions;
566 if (first_stage) {
567 page_fault_exceptions =
568 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
569 !pmp_violation;
570 } else {
571 page_fault_exceptions =
572 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
573 !pmp_violation;
575 switch (access_type) {
576 case MMU_INST_FETCH:
577 if (riscv_cpu_virt_enabled(env) && !first_stage) {
578 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
579 } else {
580 cs->exception_index = page_fault_exceptions ?
581 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
583 break;
584 case MMU_DATA_LOAD:
585 if (two_stage && !first_stage) {
586 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
587 } else {
588 cs->exception_index = page_fault_exceptions ?
589 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
591 break;
592 case MMU_DATA_STORE:
593 if (two_stage && !first_stage) {
594 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
595 } else {
596 cs->exception_index = page_fault_exceptions ?
597 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
599 break;
600 default:
601 g_assert_not_reached();
603 env->badaddr = address;
606 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
608 RISCVCPU *cpu = RISCV_CPU(cs);
609 CPURISCVState *env = &cpu->env;
610 hwaddr phys_addr;
611 int prot;
612 int mmu_idx = cpu_mmu_index(&cpu->env, false);
614 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
615 true, riscv_cpu_virt_enabled(env))) {
616 return -1;
619 if (riscv_cpu_virt_enabled(env)) {
620 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
621 0, mmu_idx, false, true)) {
622 return -1;
626 return phys_addr & TARGET_PAGE_MASK;
629 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
630 vaddr addr, unsigned size,
631 MMUAccessType access_type,
632 int mmu_idx, MemTxAttrs attrs,
633 MemTxResult response, uintptr_t retaddr)
635 RISCVCPU *cpu = RISCV_CPU(cs);
636 CPURISCVState *env = &cpu->env;
638 if (access_type == MMU_DATA_STORE) {
639 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
640 } else {
641 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
644 env->badaddr = addr;
645 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
648 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
649 MMUAccessType access_type, int mmu_idx,
650 uintptr_t retaddr)
652 RISCVCPU *cpu = RISCV_CPU(cs);
653 CPURISCVState *env = &cpu->env;
654 switch (access_type) {
655 case MMU_INST_FETCH:
656 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
657 break;
658 case MMU_DATA_LOAD:
659 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
660 break;
661 case MMU_DATA_STORE:
662 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
663 break;
664 default:
665 g_assert_not_reached();
667 env->badaddr = addr;
668 riscv_raise_exception(env, cs->exception_index, retaddr);
670 #endif
672 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
673 MMUAccessType access_type, int mmu_idx,
674 bool probe, uintptr_t retaddr)
676 RISCVCPU *cpu = RISCV_CPU(cs);
677 CPURISCVState *env = &cpu->env;
678 #ifndef CONFIG_USER_ONLY
679 vaddr im_address;
680 hwaddr pa = 0;
681 int prot, prot2;
682 bool pmp_violation = false;
683 bool first_stage_error = true;
684 bool two_stage_lookup = false;
685 int ret = TRANSLATE_FAIL;
686 int mode = mmu_idx;
687 target_ulong tlb_size = 0;
689 env->guest_phys_fault_addr = 0;
691 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
692 __func__, address, access_type, mmu_idx);
694 if (mode == PRV_M && access_type != MMU_INST_FETCH) {
695 if (get_field(env->mstatus, MSTATUS_MPRV)) {
696 mode = get_field(env->mstatus, MSTATUS_MPP);
700 if (riscv_has_ext(env, RVH) && env->priv == PRV_M &&
701 access_type != MMU_INST_FETCH &&
702 get_field(env->mstatus, MSTATUS_MPRV) &&
703 get_field(env->mstatus, MSTATUS_MPV)) {
704 two_stage_lookup = true;
707 if (riscv_cpu_virt_enabled(env) ||
708 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
709 access_type != MMU_INST_FETCH)) {
710 /* Two stage lookup */
711 ret = get_physical_address(env, &pa, &prot, address,
712 &env->guest_phys_fault_addr, access_type,
713 mmu_idx, true, true);
716 * A G-stage exception may be triggered during two state lookup.
717 * And the env->guest_phys_fault_addr has already been set in
718 * get_physical_address().
720 if (ret == TRANSLATE_G_STAGE_FAIL) {
721 first_stage_error = false;
722 access_type = MMU_DATA_LOAD;
725 qemu_log_mask(CPU_LOG_MMU,
726 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
727 TARGET_FMT_plx " prot %d\n",
728 __func__, address, ret, pa, prot);
730 if (ret == TRANSLATE_SUCCESS) {
731 /* Second stage lookup */
732 im_address = pa;
734 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
735 access_type, mmu_idx, false, true);
737 qemu_log_mask(CPU_LOG_MMU,
738 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
739 TARGET_FMT_plx " prot %d\n",
740 __func__, im_address, ret, pa, prot2);
742 prot &= prot2;
744 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
745 (ret == TRANSLATE_SUCCESS) &&
746 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
747 ret = TRANSLATE_PMP_FAIL;
750 if (ret != TRANSLATE_SUCCESS) {
752 * Guest physical address translation failed, this is a HS
753 * level exception
755 first_stage_error = false;
756 env->guest_phys_fault_addr = (im_address |
757 (address &
758 (TARGET_PAGE_SIZE - 1))) >> 2;
761 } else {
762 /* Single stage lookup */
763 ret = get_physical_address(env, &pa, &prot, address, NULL,
764 access_type, mmu_idx, true, false);
766 qemu_log_mask(CPU_LOG_MMU,
767 "%s address=%" VADDR_PRIx " ret %d physical "
768 TARGET_FMT_plx " prot %d\n",
769 __func__, address, ret, pa, prot);
772 if (riscv_feature(env, RISCV_FEATURE_PMP) &&
773 (ret == TRANSLATE_SUCCESS) &&
774 !pmp_hart_has_privs(env, pa, size, 1 << access_type, mode)) {
775 ret = TRANSLATE_PMP_FAIL;
777 if (ret == TRANSLATE_PMP_FAIL) {
778 pmp_violation = true;
781 if (ret == TRANSLATE_SUCCESS) {
782 if (pmp_is_range_in_tlb(env, pa & TARGET_PAGE_MASK, &tlb_size)) {
783 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
784 prot, mmu_idx, tlb_size);
785 } else {
786 tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
787 prot, mmu_idx, TARGET_PAGE_SIZE);
789 return true;
790 } else if (probe) {
791 return false;
792 } else {
793 raise_mmu_exception(env, address, access_type, pmp_violation,
794 first_stage_error,
795 riscv_cpu_virt_enabled(env) ||
796 riscv_cpu_two_stage_lookup(mmu_idx));
797 riscv_raise_exception(env, cs->exception_index, retaddr);
800 return true;
802 #else
803 switch (access_type) {
804 case MMU_INST_FETCH:
805 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
806 break;
807 case MMU_DATA_LOAD:
808 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
809 break;
810 case MMU_DATA_STORE:
811 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
812 break;
813 default:
814 g_assert_not_reached();
816 env->badaddr = address;
817 cpu_loop_exit_restore(cs, retaddr);
818 #endif
822 * Handle Traps
824 * Adapted from Spike's processor_t::take_trap.
827 void riscv_cpu_do_interrupt(CPUState *cs)
829 #if !defined(CONFIG_USER_ONLY)
831 RISCVCPU *cpu = RISCV_CPU(cs);
832 CPURISCVState *env = &cpu->env;
833 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
834 uint64_t s;
836 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
837 * so we mask off the MSB and separate into trap type and cause.
839 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
840 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
841 target_ulong deleg = async ? env->mideleg : env->medeleg;
842 bool write_tval = false;
843 target_ulong tval = 0;
844 target_ulong htval = 0;
845 target_ulong mtval2 = 0;
847 if (!async) {
848 /* set tval to badaddr for traps with address information */
849 switch (cause) {
850 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
851 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
852 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
853 force_hs_execp = true;
854 /* fallthrough */
855 case RISCV_EXCP_INST_ADDR_MIS:
856 case RISCV_EXCP_INST_ACCESS_FAULT:
857 case RISCV_EXCP_LOAD_ADDR_MIS:
858 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
859 case RISCV_EXCP_LOAD_ACCESS_FAULT:
860 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
861 case RISCV_EXCP_INST_PAGE_FAULT:
862 case RISCV_EXCP_LOAD_PAGE_FAULT:
863 case RISCV_EXCP_STORE_PAGE_FAULT:
864 write_tval = true;
865 tval = env->badaddr;
866 break;
867 default:
868 break;
870 /* ecall is dispatched as one cause so translate based on mode */
871 if (cause == RISCV_EXCP_U_ECALL) {
872 assert(env->priv <= 3);
874 if (env->priv == PRV_M) {
875 cause = RISCV_EXCP_M_ECALL;
876 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
877 cause = RISCV_EXCP_VS_ECALL;
878 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
879 cause = RISCV_EXCP_S_ECALL;
880 } else if (env->priv == PRV_U) {
881 cause = RISCV_EXCP_U_ECALL;
886 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
887 riscv_cpu_get_trap_name(cause, async));
889 qemu_log_mask(CPU_LOG_INT,
890 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
891 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
892 __func__, env->mhartid, async, cause, env->pc, tval,
893 riscv_cpu_get_trap_name(cause, async));
895 if (env->priv <= PRV_S &&
896 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
897 /* handle the trap in S-mode */
898 if (riscv_has_ext(env, RVH)) {
899 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
900 bool two_stage_lookup = false;
902 if (env->priv == PRV_M ||
903 (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
904 (env->priv == PRV_U && !riscv_cpu_virt_enabled(env) &&
905 get_field(env->hstatus, HSTATUS_HU))) {
906 two_stage_lookup = true;
909 if ((riscv_cpu_virt_enabled(env) || two_stage_lookup) && write_tval) {
911 * If we are writing a guest virtual address to stval, set
912 * this to 1. If we are trapping to VS we will set this to 0
913 * later.
915 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
916 } else {
917 /* For other HS-mode traps, we set this to 0. */
918 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
921 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
922 !force_hs_execp) {
923 /* Trap to VS mode */
925 * See if we need to adjust cause. Yes if its VS mode interrupt
926 * no if hypervisor has delegated one of hs mode's interrupt
928 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
929 cause == IRQ_VS_EXT) {
930 cause = cause - 1;
932 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
933 } else if (riscv_cpu_virt_enabled(env)) {
934 /* Trap into HS mode, from virt */
935 riscv_cpu_swap_hypervisor_regs(env);
936 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
937 env->priv);
938 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
939 riscv_cpu_virt_enabled(env));
941 htval = env->guest_phys_fault_addr;
943 riscv_cpu_set_virt_enabled(env, 0);
944 riscv_cpu_set_force_hs_excep(env, 0);
945 } else {
946 /* Trap into HS mode */
947 if (!two_stage_lookup) {
948 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
949 riscv_cpu_virt_enabled(env));
951 htval = env->guest_phys_fault_addr;
955 s = env->mstatus;
956 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
957 s = set_field(s, MSTATUS_SPP, env->priv);
958 s = set_field(s, MSTATUS_SIE, 0);
959 env->mstatus = s;
960 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
961 env->sepc = env->pc;
962 env->sbadaddr = tval;
963 env->htval = htval;
964 env->pc = (env->stvec >> 2 << 2) +
965 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
966 riscv_cpu_set_mode(env, PRV_S);
967 } else {
968 /* handle the trap in M-mode */
969 if (riscv_has_ext(env, RVH)) {
970 if (riscv_cpu_virt_enabled(env)) {
971 riscv_cpu_swap_hypervisor_regs(env);
973 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
974 riscv_cpu_virt_enabled(env));
975 if (riscv_cpu_virt_enabled(env) && tval) {
976 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
979 mtval2 = env->guest_phys_fault_addr;
981 /* Trapping to M mode, virt is disabled */
982 riscv_cpu_set_virt_enabled(env, 0);
983 riscv_cpu_set_force_hs_excep(env, 0);
986 s = env->mstatus;
987 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
988 s = set_field(s, MSTATUS_MPP, env->priv);
989 s = set_field(s, MSTATUS_MIE, 0);
990 env->mstatus = s;
991 env->mcause = cause | ~(((target_ulong)-1) >> async);
992 env->mepc = env->pc;
993 env->mbadaddr = tval;
994 env->mtval2 = mtval2;
995 env->pc = (env->mtvec >> 2 << 2) +
996 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
997 riscv_cpu_set_mode(env, PRV_M);
1000 /* NOTE: it is not necessary to yield load reservations here. It is only
1001 * necessary for an SC from "another hart" to cause a load reservation
1002 * to be yielded. Refer to the memory consistency model section of the
1003 * RISC-V ISA Specification.
1006 #endif
1007 cs->exception_index = EXCP_NONE; /* mark handled to qemu */