highbank: validate register offset before access
[qemu/ar7.git] / target / s390x / mmu_helper.c
blob31e3f3f4158b50ebf3c6b1a9325a6ba5b9bbbb5c
1 /*
2 * S390x MMU related functions
4 * Copyright (c) 2011 Alexander Graf
5 * Copyright (c) 2015 Thomas Huth, IBM Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include "qemu/osdep.h"
19 #include "qemu/error-report.h"
20 #include "exec/address-spaces.h"
21 #include "cpu.h"
22 #include "internal.h"
23 #include "kvm_s390x.h"
24 #include "sysemu/kvm.h"
25 #include "trace.h"
26 #include "hw/s390x/storage-keys.h"
28 /* #define DEBUG_S390 */
29 /* #define DEBUG_S390_PTE */
30 /* #define DEBUG_S390_STDOUT */
32 #ifdef DEBUG_S390
33 #ifdef DEBUG_S390_STDOUT
34 #define DPRINTF(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); \
36 if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { qemu_log(fmt, ## __VA_ARGS__); } while (0)
40 #endif
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #ifdef DEBUG_S390_PTE
47 #define PTE_DPRINTF DPRINTF
48 #else
49 #define PTE_DPRINTF(fmt, ...) \
50 do { } while (0)
51 #endif
53 /* Fetch/store bits in the translation exception code: */
54 #define FS_READ 0x800
55 #define FS_WRITE 0x400
57 static void trigger_access_exception(CPUS390XState *env, uint32_t type,
58 uint32_t ilen, uint64_t tec)
60 S390CPU *cpu = s390_env_get_cpu(env);
62 if (kvm_enabled()) {
63 kvm_s390_access_exception(cpu, type, tec);
64 } else {
65 CPUState *cs = CPU(cpu);
66 stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec);
67 trigger_pgm_exception(env, type, ilen);
71 static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr,
72 uint64_t asc, int rw, bool exc)
74 uint64_t tec;
76 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46;
78 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
80 if (!exc) {
81 return;
84 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, tec);
87 static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr,
88 uint32_t type, uint64_t asc, int rw, bool exc)
90 int ilen = ILEN_AUTO;
91 uint64_t tec;
93 tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46;
95 DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec);
97 if (!exc) {
98 return;
101 /* Code accesses have an undefined ilc. */
102 if (rw == MMU_INST_FETCH) {
103 ilen = 2;
106 trigger_access_exception(env, type, ilen, tec);
109 /* check whether the address would be proteted by Low-Address Protection */
110 static bool is_low_address(uint64_t addr)
112 return addr <= 511 || (addr >= 4096 && addr <= 4607);
115 /* check whether Low-Address Protection is enabled for mmu_translate() */
116 static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc)
118 if (!(env->cregs[0] & CR0_LOWPROT)) {
119 return false;
121 if (!(env->psw.mask & PSW_MASK_DAT)) {
122 return true;
125 /* Check the private-space control bit */
126 switch (asc) {
127 case PSW_ASC_PRIMARY:
128 return !(env->cregs[1] & _ASCE_PRIVATE_SPACE);
129 case PSW_ASC_SECONDARY:
130 return !(env->cregs[7] & _ASCE_PRIVATE_SPACE);
131 case PSW_ASC_HOME:
132 return !(env->cregs[13] & _ASCE_PRIVATE_SPACE);
133 default:
134 /* We don't support access register mode */
135 error_report("unsupported addressing mode");
136 exit(1);
141 * Translate real address to absolute (= physical)
142 * address by taking care of the prefix mapping.
144 target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr)
146 if (raddr < 0x2000) {
147 return raddr + env->psa; /* Map the lowcore. */
148 } else if (raddr >= env->psa && raddr < env->psa + 0x2000) {
149 return raddr - env->psa; /* Map the 0 page. */
151 return raddr;
154 /* Decode page table entry (normal 4KB page) */
155 static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr,
156 uint64_t asc, uint64_t pt_entry,
157 target_ulong *raddr, int *flags, int rw, bool exc)
159 if (pt_entry & _PAGE_INVALID) {
160 DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry);
161 trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc);
162 return -1;
164 if (pt_entry & _PAGE_RES0) {
165 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
166 return -1;
168 if (pt_entry & _PAGE_RO) {
169 *flags &= ~PAGE_WRITE;
172 *raddr = pt_entry & _ASCE_ORIGIN;
174 PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry);
176 return 0;
179 /* Decode segment table entry */
180 static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr,
181 uint64_t asc, uint64_t st_entry,
182 target_ulong *raddr, int *flags, int rw,
183 bool exc)
185 CPUState *cs = CPU(s390_env_get_cpu(env));
186 uint64_t origin, offs, pt_entry;
188 if (st_entry & _SEGMENT_ENTRY_RO) {
189 *flags &= ~PAGE_WRITE;
192 if ((st_entry & _SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) {
193 /* Decode EDAT1 segment frame absolute address (1MB page) */
194 *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff);
195 PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry);
196 return 0;
199 /* Look up 4KB page entry */
200 origin = st_entry & _SEGMENT_ENTRY_ORIGIN;
201 offs = (vaddr & VADDR_PX) >> 9;
202 pt_entry = ldq_phys(cs->as, origin + offs);
203 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
204 __func__, origin, offs, pt_entry);
205 return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc);
208 /* Decode region table entries */
209 static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr,
210 uint64_t asc, uint64_t entry, int level,
211 target_ulong *raddr, int *flags, int rw,
212 bool exc)
214 CPUState *cs = CPU(s390_env_get_cpu(env));
215 uint64_t origin, offs, new_entry;
216 const int pchks[4] = {
217 PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS,
218 PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS
221 PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry);
223 origin = entry & _REGION_ENTRY_ORIGIN;
224 offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8;
226 new_entry = ldq_phys(cs->as, origin + offs);
227 PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n",
228 __func__, origin, offs, new_entry);
230 if ((new_entry & _REGION_ENTRY_INV) != 0) {
231 DPRINTF("%s: invalid region\n", __func__);
232 trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc);
233 return -1;
236 if ((new_entry & _REGION_ENTRY_TYPE_MASK) != level) {
237 trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc);
238 return -1;
241 if (level == _ASCE_TYPE_SEGMENT) {
242 return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags,
243 rw, exc);
246 /* Check region table offset and length */
247 offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3;
248 if (offs < ((new_entry & _REGION_ENTRY_TF) >> 6)
249 || offs > (new_entry & _REGION_ENTRY_LENGTH)) {
250 DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry);
251 trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc);
252 return -1;
255 if ((env->cregs[0] & CR0_EDAT) && (new_entry & _REGION_ENTRY_RO)) {
256 *flags &= ~PAGE_WRITE;
259 /* yet another region */
260 return mmu_translate_region(env, vaddr, asc, new_entry, level - 4,
261 raddr, flags, rw, exc);
264 static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr,
265 uint64_t asc, uint64_t asce, target_ulong *raddr,
266 int *flags, int rw, bool exc)
268 int level;
269 int r;
271 if (asce & _ASCE_REAL_SPACE) {
272 /* direct mapping */
273 *raddr = vaddr;
274 return 0;
277 level = asce & _ASCE_TYPE_MASK;
278 switch (level) {
279 case _ASCE_TYPE_REGION1:
280 if ((vaddr >> 62) > (asce & _ASCE_TABLE_LENGTH)) {
281 trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc);
282 return -1;
284 break;
285 case _ASCE_TYPE_REGION2:
286 if (vaddr & 0xffe0000000000000ULL) {
287 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
288 " 0xffe0000000000000ULL\n", __func__, vaddr);
289 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
290 return -1;
292 if ((vaddr >> 51 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
293 trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc);
294 return -1;
296 break;
297 case _ASCE_TYPE_REGION3:
298 if (vaddr & 0xfffffc0000000000ULL) {
299 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
300 " 0xfffffc0000000000ULL\n", __func__, vaddr);
301 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
302 return -1;
304 if ((vaddr >> 40 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
305 trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc);
306 return -1;
308 break;
309 case _ASCE_TYPE_SEGMENT:
310 if (vaddr & 0xffffffff80000000ULL) {
311 DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64
312 " 0xffffffff80000000ULL\n", __func__, vaddr);
313 trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc);
314 return -1;
316 if ((vaddr >> 29 & 3) > (asce & _ASCE_TABLE_LENGTH)) {
317 trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc);
318 return -1;
320 break;
323 r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw,
324 exc);
325 if (rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) {
326 trigger_prot_fault(env, vaddr, asc, rw, exc);
327 return -1;
330 return r;
334 * Translate a virtual (logical) address into a physical (absolute) address.
335 * @param vaddr the virtual address
336 * @param rw 0 = read, 1 = write, 2 = code fetch
337 * @param asc address space control (one of the PSW_ASC_* modes)
338 * @param raddr the translated address is stored to this pointer
339 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
340 * @param exc true = inject a program check if a fault occurred
341 * @return 0 if the translation was successful, -1 if a fault occurred
343 int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
344 target_ulong *raddr, int *flags, bool exc)
346 static S390SKeysState *ss;
347 static S390SKeysClass *skeyclass;
348 int r = -1;
349 uint8_t key;
351 if (unlikely(!ss)) {
352 ss = s390_get_skeys_device();
353 skeyclass = S390_SKEYS_GET_CLASS(ss);
356 *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
357 if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) {
359 * If any part of this page is currently protected, make sure the
360 * TLB entry will not be reused.
362 * As the protected range is always the first 512 bytes of the
363 * two first pages, we are able to catch all writes to these areas
364 * just by looking at the start address (triggering the tlb miss).
366 *flags |= PAGE_WRITE_INV;
367 if (is_low_address(vaddr) && rw == MMU_DATA_STORE) {
368 if (exc) {
369 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
371 return -EACCES;
375 vaddr &= TARGET_PAGE_MASK;
377 if (!(env->psw.mask & PSW_MASK_DAT)) {
378 *raddr = vaddr;
379 r = 0;
380 goto out;
383 switch (asc) {
384 case PSW_ASC_PRIMARY:
385 PTE_DPRINTF("%s: asc=primary\n", __func__);
386 r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags,
387 rw, exc);
388 break;
389 case PSW_ASC_HOME:
390 PTE_DPRINTF("%s: asc=home\n", __func__);
391 r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags,
392 rw, exc);
393 break;
394 case PSW_ASC_SECONDARY:
395 PTE_DPRINTF("%s: asc=secondary\n", __func__);
397 * Instruction: Primary
398 * Data: Secondary
400 if (rw == MMU_INST_FETCH) {
401 r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1],
402 raddr, flags, rw, exc);
403 *flags &= ~(PAGE_READ | PAGE_WRITE);
404 } else {
405 r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7],
406 raddr, flags, rw, exc);
407 *flags &= ~(PAGE_EXEC);
409 break;
410 case PSW_ASC_ACCREG:
411 default:
412 hw_error("guest switched to unknown asc mode\n");
413 break;
416 out:
417 /* Convert real address -> absolute address */
418 *raddr = mmu_real2abs(env, *raddr);
420 if (r == 0 && *raddr < ram_size) {
421 if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
422 trace_get_skeys_nonzero(r);
423 return 0;
426 if (*flags & PAGE_READ) {
427 key |= SK_R;
430 if (*flags & PAGE_WRITE) {
431 key |= SK_C;
434 if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) {
435 trace_set_skeys_nonzero(r);
436 return 0;
440 return r;
444 * translate_pages: Translate a set of consecutive logical page addresses
445 * to absolute addresses
447 static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages,
448 target_ulong *pages, bool is_write)
450 uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC;
451 CPUS390XState *env = &cpu->env;
452 int ret, i, pflags;
454 for (i = 0; i < nr_pages; i++) {
455 ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true);
456 if (ret) {
457 return ret;
459 if (!address_space_access_valid(&address_space_memory, pages[i],
460 TARGET_PAGE_SIZE, is_write)) {
461 program_interrupt(env, PGM_ADDRESSING, ILEN_AUTO);
462 return -EFAULT;
464 addr += TARGET_PAGE_SIZE;
467 return 0;
471 * s390_cpu_virt_mem_rw:
472 * @laddr: the logical start address
473 * @ar: the access register number
474 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
475 * @len: length that should be transferred
476 * @is_write: true = write, false = read
477 * Returns: 0 on success, non-zero if an exception occurred
479 * Copy from/to guest memory using logical addresses. Note that we inject a
480 * program interrupt in case there is an error while accessing the memory.
482 int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
483 int len, bool is_write)
485 int currlen, nr_pages, i;
486 target_ulong *pages;
487 int ret;
489 if (kvm_enabled()) {
490 ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write);
491 if (ret >= 0) {
492 return ret;
496 nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS)
497 + 1;
498 pages = g_malloc(nr_pages * sizeof(*pages));
500 ret = translate_pages(cpu, laddr, nr_pages, pages, is_write);
501 if (ret == 0 && hostbuf != NULL) {
502 /* Copy data by stepping through the area page by page */
503 for (i = 0; i < nr_pages; i++) {
504 currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE));
505 cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK),
506 hostbuf, currlen, is_write);
507 laddr += currlen;
508 hostbuf += currlen;
509 len -= currlen;
513 g_free(pages);
514 return ret;
518 * Translate a real address into a physical (absolute) address.
519 * @param raddr the real address
520 * @param rw 0 = read, 1 = write, 2 = code fetch
521 * @param addr the translated address is stored to this pointer
522 * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer
523 * @return 0 if the translation was successful, < 0 if a fault occurred
525 int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw,
526 target_ulong *addr, int *flags)
528 const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT;
530 *flags = PAGE_READ | PAGE_WRITE;
531 if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) {
532 /* see comment in mmu_translate() how this works */
533 *flags |= PAGE_WRITE_INV;
534 if (is_low_address(raddr) && rw == MMU_DATA_STORE) {
535 trigger_access_exception(env, PGM_PROTECTION, ILEN_AUTO, 0);
536 return -EACCES;
540 *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK);
542 /* TODO: storage key handling */
543 return 0;