cpus: Drop declaration of cpu_remove()
[qemu/ar7.git] / include / hw / core / cpu.h
blob3d92c967fffaf348bec0e267398f3cf929744306
1 /*
2 * QEMU CPU model
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36 void *opaque);
38 /**
39 * vaddr:
40 * Type wide enough to contain any #target_ulong virtual address.
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
50 /**
51 * SECTION:cpu
52 * @section_id: QEMU-cpu
53 * @title: CPU Class
54 * @short_description: Base class for all CPUs
57 #define TYPE_CPU "cpu"
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61 * an unchecked cast.
63 #define CPU(obj) ((CPUState *)(obj))
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67 TYPE_CPU)
69 typedef enum MMUAccessType {
70 MMU_DATA_LOAD = 0,
71 MMU_DATA_STORE = 1,
72 MMU_INST_FETCH = 2
73 } MMUAccessType;
75 typedef struct CPUWatchpoint CPUWatchpoint;
77 struct TranslationBlock;
79 /**
80 * CPUClass:
81 * @class_by_name: Callback to map -cpu command line model name to an
82 * instantiatable CPU type.
83 * @parse_features: Callback to parse command line arguments.
84 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
85 * @has_work: Callback for checking if there is work to do.
86 * @do_interrupt: Callback for interrupt handling.
87 * @do_unaligned_access: Callback for unaligned access handling, if
88 * the target defines #TARGET_ALIGNED_ONLY.
89 * @do_transaction_failed: Callback for handling failed memory transactions
90 * (ie bus faults or external aborts; not MMU faults)
91 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
92 * runtime configurable endianness is currently big-endian. Non-configurable
93 * CPUs can use the default implementation of this method. This method should
94 * not be used by any callers other than the pre-1.0 virtio devices.
95 * @memory_rw_debug: Callback for GDB memory access.
96 * @dump_state: Callback for dumping state.
97 * @dump_statistics: Callback for dumping statistics.
98 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
99 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
100 * @get_memory_mapping: Callback for obtaining the memory mappings.
101 * @set_pc: Callback for setting the Program Counter register. This
102 * should have the semantics used by the target architecture when
103 * setting the PC from a source such as an ELF file entry point;
104 * for example on Arm it will also set the Thumb mode bit based
105 * on the least significant bit of the new PC value.
106 * If the target behaviour here is anything other than "set
107 * the PC register to the value passed in" then the target must
108 * also implement the synchronize_from_tb hook.
109 * @synchronize_from_tb: Callback for synchronizing state from a TCG
110 * #TranslationBlock. This is called when we abandon execution
111 * of a TB before starting it, and must set all parts of the CPU
112 * state which the previous TB in the chain may not have updated.
113 * This always includes at least the program counter; some targets
114 * will need to do more. If this hook is not implemented then the
115 * default is to call @set_pc(tb->pc).
116 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
117 * address fault. For system mode, if the access is valid, call
118 * tlb_set_page and return true; if the access is invalid, and
119 * probe is true, return false; otherwise raise an exception and
120 * do not return. For user-only mode, always raise an exception
121 * and do not return.
122 * @get_phys_page_debug: Callback for obtaining a physical address.
123 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
124 * associated memory transaction attributes to use for the access.
125 * CPUs which use memory transaction attributes should implement this
126 * instead of get_phys_page_debug.
127 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
128 * a memory access with the specified memory transaction attributes.
129 * @gdb_read_register: Callback for letting GDB read a register.
130 * @gdb_write_register: Callback for letting GDB write a register.
131 * @debug_check_watchpoint: Callback: return true if the architectural
132 * watchpoint whose address has matched should really fire.
133 * @debug_excp_handler: Callback for handling debug exceptions.
134 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
135 * 64-bit VM coredump.
136 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
137 * note to a 32-bit VM coredump.
138 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
139 * 32-bit VM coredump.
140 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
141 * note to a 32-bit VM coredump.
142 * @vmsd: State description for migration.
143 * @gdb_num_core_regs: Number of core registers accessible to GDB.
144 * @gdb_core_xml_file: File name for core registers GDB XML description.
145 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
146 * before the insn which triggers a watchpoint rather than after it.
147 * @gdb_arch_name: Optional callback that returns the architecture name known
148 * to GDB. The caller must free the returned string with g_free.
149 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
150 * gdb stub. Returns a pointer to the XML contents for the specified XML file
151 * or NULL if the CPU doesn't have a dynamically generated content for it.
152 * @cpu_exec_enter: Callback for cpu_exec preparation.
153 * @cpu_exec_exit: Callback for cpu_exec cleanup.
154 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
155 * @disas_set_info: Setup architecture specific components of disassembly info
156 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
157 * address before attempting to match it against watchpoints.
158 * @deprecation_note: If this CPUClass is deprecated, this field provides
159 * related information.
161 * Represents a CPU family or model.
163 struct CPUClass {
164 /*< private >*/
165 DeviceClass parent_class;
166 /*< public >*/
168 ObjectClass *(*class_by_name)(const char *cpu_model);
169 void (*parse_features)(const char *typename, char *str, Error **errp);
171 int reset_dump_flags;
172 bool (*has_work)(CPUState *cpu);
173 void (*do_interrupt)(CPUState *cpu);
174 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
175 MMUAccessType access_type,
176 int mmu_idx, uintptr_t retaddr);
177 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
178 unsigned size, MMUAccessType access_type,
179 int mmu_idx, MemTxAttrs attrs,
180 MemTxResult response, uintptr_t retaddr);
181 bool (*virtio_is_big_endian)(CPUState *cpu);
182 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
183 uint8_t *buf, int len, bool is_write);
184 void (*dump_state)(CPUState *cpu, FILE *, int flags);
185 GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
186 void (*dump_statistics)(CPUState *cpu, int flags);
187 int64_t (*get_arch_id)(CPUState *cpu);
188 bool (*get_paging_enabled)(const CPUState *cpu);
189 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
190 Error **errp);
191 void (*set_pc)(CPUState *cpu, vaddr value);
192 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
193 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
194 MMUAccessType access_type, int mmu_idx,
195 bool probe, uintptr_t retaddr);
196 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
197 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
198 MemTxAttrs *attrs);
199 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
200 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
201 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
202 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
203 void (*debug_excp_handler)(CPUState *cpu);
205 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
206 int cpuid, void *opaque);
207 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
208 void *opaque);
209 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
210 int cpuid, void *opaque);
211 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
212 void *opaque);
214 const VMStateDescription *vmsd;
215 const char *gdb_core_xml_file;
216 gchar * (*gdb_arch_name)(CPUState *cpu);
217 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
218 void (*cpu_exec_enter)(CPUState *cpu);
219 void (*cpu_exec_exit)(CPUState *cpu);
220 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
222 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
223 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
224 void (*tcg_initialize)(void);
226 const char *deprecation_note;
227 /* Keep non-pointer data at the end to minimize holes. */
228 int gdb_num_core_regs;
229 bool gdb_stop_before_watchpoint;
233 * Low 16 bits: number of cycles left, used only in icount mode.
234 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
235 * for this CPU and return to its top level loop (even in non-icount mode).
236 * This allows a single read-compare-cbranch-write sequence to test
237 * for both decrementer underflow and exceptions.
239 typedef union IcountDecr {
240 uint32_t u32;
241 struct {
242 #ifdef HOST_WORDS_BIGENDIAN
243 uint16_t high;
244 uint16_t low;
245 #else
246 uint16_t low;
247 uint16_t high;
248 #endif
249 } u16;
250 } IcountDecr;
252 typedef struct CPUBreakpoint {
253 vaddr pc;
254 int flags; /* BP_* */
255 QTAILQ_ENTRY(CPUBreakpoint) entry;
256 } CPUBreakpoint;
258 struct CPUWatchpoint {
259 vaddr vaddr;
260 vaddr len;
261 vaddr hitaddr;
262 MemTxAttrs hitattrs;
263 int flags; /* BP_* */
264 QTAILQ_ENTRY(CPUWatchpoint) entry;
267 #ifdef CONFIG_PLUGIN
269 * For plugins we sometime need to save the resolved iotlb data before
270 * the memory regions get moved around by io_writex.
272 typedef struct SavedIOTLB {
273 hwaddr addr;
274 MemoryRegionSection *section;
275 hwaddr mr_offset;
276 } SavedIOTLB;
277 #endif
279 struct KVMState;
280 struct kvm_run;
282 struct hax_vcpu_state;
284 #define TB_JMP_CACHE_BITS 12
285 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
287 /* work queue */
289 /* The union type allows passing of 64 bit target pointers on 32 bit
290 * hosts in a single parameter
292 typedef union {
293 int host_int;
294 unsigned long host_ulong;
295 void *host_ptr;
296 vaddr target_ptr;
297 } run_on_cpu_data;
299 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
300 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
301 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
302 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
303 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
305 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
307 struct qemu_work_item;
309 #define CPU_UNSET_NUMA_NODE_ID -1
310 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
313 * CPUState:
314 * @cpu_index: CPU index (informative).
315 * @cluster_index: Identifies which cluster this CPU is in.
316 * For boards which don't define clusters or for "loose" CPUs not assigned
317 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
318 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
319 * QOM parent.
320 * @nr_cores: Number of cores within this CPU package.
321 * @nr_threads: Number of threads within this CPU.
322 * @running: #true if CPU is currently running (lockless).
323 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
324 * valid under cpu_list_lock.
325 * @created: Indicates whether the CPU thread has been successfully created.
326 * @interrupt_request: Indicates a pending interrupt request.
327 * @halted: Nonzero if the CPU is in suspended state.
328 * @stop: Indicates a pending stop request.
329 * @stopped: Indicates the CPU has been artificially stopped.
330 * @unplug: Indicates a pending CPU unplug request.
331 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
332 * @singlestep_enabled: Flags for single-stepping.
333 * @icount_extra: Instructions until next timer event.
334 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
335 * requires that IO only be performed on the last instruction of a TB
336 * so that interrupts take effect immediately.
337 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
338 * AddressSpaces this CPU has)
339 * @num_ases: number of CPUAddressSpaces in @cpu_ases
340 * @as: Pointer to the first AddressSpace, for the convenience of targets which
341 * only have a single AddressSpace
342 * @env_ptr: Pointer to subclass-specific CPUArchState field.
343 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
344 * @gdb_regs: Additional GDB registers.
345 * @gdb_num_regs: Number of total registers accessible to GDB.
346 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
347 * @next_cpu: Next CPU sharing TB cache.
348 * @opaque: User data.
349 * @mem_io_pc: Host Program Counter at which the memory was accessed.
350 * @kvm_fd: vCPU file descriptor for KVM.
351 * @work_mutex: Lock to prevent multiple access to @work_list.
352 * @work_list: List of pending asynchronous work.
353 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
354 * to @trace_dstate).
355 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
356 * @plugin_mask: Plugin event bitmap. Modified only via async work.
357 * @ignore_memory_transaction_failures: Cached copy of the MachineState
358 * flag of the same name: allows the board to suppress calling of the
359 * CPU do_transaction_failed hook function.
361 * State of one CPU core or thread.
363 struct CPUState {
364 /*< private >*/
365 DeviceState parent_obj;
366 /*< public >*/
368 int nr_cores;
369 int nr_threads;
371 struct QemuThread *thread;
372 #ifdef _WIN32
373 HANDLE hThread;
374 #endif
375 int thread_id;
376 bool running, has_waiter;
377 struct QemuCond *halt_cond;
378 bool thread_kicked;
379 bool created;
380 bool stop;
381 bool stopped;
383 /* Should CPU start in powered-off state? */
384 bool start_powered_off;
386 bool unplug;
387 bool crash_occurred;
388 bool exit_request;
389 bool in_exclusive_context;
390 uint32_t cflags_next_tb;
391 /* updates protected by BQL */
392 uint32_t interrupt_request;
393 int singlestep_enabled;
394 int64_t icount_budget;
395 int64_t icount_extra;
396 uint64_t random_seed;
397 sigjmp_buf jmp_env;
399 QemuMutex work_mutex;
400 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
402 CPUAddressSpace *cpu_ases;
403 int num_ases;
404 AddressSpace *as;
405 MemoryRegion *memory;
407 void *env_ptr; /* CPUArchState */
408 IcountDecr *icount_decr_ptr;
410 /* Accessed in parallel; all accesses must be atomic */
411 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
413 struct GDBRegisterState *gdb_regs;
414 int gdb_num_regs;
415 int gdb_num_g_regs;
416 QTAILQ_ENTRY(CPUState) node;
418 /* ice debug support */
419 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
421 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
422 CPUWatchpoint *watchpoint_hit;
424 void *opaque;
426 /* In order to avoid passing too many arguments to the MMIO helpers,
427 * we store some rarely used information in the CPU context.
429 uintptr_t mem_io_pc;
431 int kvm_fd;
432 struct KVMState *kvm_state;
433 struct kvm_run *kvm_run;
435 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
436 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
437 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
439 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
441 #ifdef CONFIG_PLUGIN
442 GArray *plugin_mem_cbs;
443 /* saved iotlb data from io_writex */
444 SavedIOTLB saved_iotlb;
445 #endif
447 /* TODO Move common fields from CPUArchState here. */
448 int cpu_index;
449 int cluster_index;
450 uint32_t halted;
451 uint32_t can_do_io;
452 int32_t exception_index;
454 /* shared by kvm, hax and hvf */
455 bool vcpu_dirty;
457 /* Used to keep track of an outstanding cpu throttle thread for migration
458 * autoconverge
460 bool throttle_thread_scheduled;
462 bool ignore_memory_transaction_failures;
464 struct hax_vcpu_state *hax_vcpu;
466 int hvf_fd;
468 /* track IOMMUs whose translations we've cached in the TCG TLB */
469 GArray *iommu_notifiers;
472 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
473 extern CPUTailQ cpus;
475 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
476 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
477 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
478 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
479 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
481 extern __thread CPUState *current_cpu;
483 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
485 unsigned int i;
487 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
488 qatomic_set(&cpu->tb_jmp_cache[i], NULL);
493 * qemu_tcg_mttcg_enabled:
494 * Check whether we are running MultiThread TCG or not.
496 * Returns: %true if we are in MTTCG mode %false otherwise.
498 extern bool mttcg_enabled;
499 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
502 * cpu_paging_enabled:
503 * @cpu: The CPU whose state is to be inspected.
505 * Returns: %true if paging is enabled, %false otherwise.
507 bool cpu_paging_enabled(const CPUState *cpu);
510 * cpu_get_memory_mapping:
511 * @cpu: The CPU whose memory mappings are to be obtained.
512 * @list: Where to write the memory mappings to.
513 * @errp: Pointer for reporting an #Error.
515 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
516 Error **errp);
518 #if !defined(CONFIG_USER_ONLY)
521 * cpu_write_elf64_note:
522 * @f: pointer to a function that writes memory to a file
523 * @cpu: The CPU whose memory is to be dumped
524 * @cpuid: ID number of the CPU
525 * @opaque: pointer to the CPUState struct
527 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
528 int cpuid, void *opaque);
531 * cpu_write_elf64_qemunote:
532 * @f: pointer to a function that writes memory to a file
533 * @cpu: The CPU whose memory is to be dumped
534 * @cpuid: ID number of the CPU
535 * @opaque: pointer to the CPUState struct
537 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
538 void *opaque);
541 * cpu_write_elf32_note:
542 * @f: pointer to a function that writes memory to a file
543 * @cpu: The CPU whose memory is to be dumped
544 * @cpuid: ID number of the CPU
545 * @opaque: pointer to the CPUState struct
547 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
548 int cpuid, void *opaque);
551 * cpu_write_elf32_qemunote:
552 * @f: pointer to a function that writes memory to a file
553 * @cpu: The CPU whose memory is to be dumped
554 * @cpuid: ID number of the CPU
555 * @opaque: pointer to the CPUState struct
557 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
558 void *opaque);
561 * cpu_get_crash_info:
562 * @cpu: The CPU to get crash information for
564 * Gets the previously saved crash information.
565 * Caller is responsible for freeing the data.
567 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
569 #endif /* !CONFIG_USER_ONLY */
572 * CPUDumpFlags:
573 * @CPU_DUMP_CODE:
574 * @CPU_DUMP_FPU: dump FPU register state, not just integer
575 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
577 enum CPUDumpFlags {
578 CPU_DUMP_CODE = 0x00010000,
579 CPU_DUMP_FPU = 0x00020000,
580 CPU_DUMP_CCOP = 0x00040000,
584 * cpu_dump_state:
585 * @cpu: The CPU whose state is to be dumped.
586 * @f: If non-null, dump to this stream, else to current print sink.
588 * Dumps CPU state.
590 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
593 * cpu_dump_statistics:
594 * @cpu: The CPU whose state is to be dumped.
595 * @flags: Flags what to dump.
597 * Dump CPU statistics to the current monitor if we have one, else to
598 * stdout.
600 void cpu_dump_statistics(CPUState *cpu, int flags);
602 #ifndef CONFIG_USER_ONLY
604 * cpu_get_phys_page_attrs_debug:
605 * @cpu: The CPU to obtain the physical page address for.
606 * @addr: The virtual address.
607 * @attrs: Updated on return with the memory transaction attributes to use
608 * for this access.
610 * Obtains the physical page corresponding to a virtual one, together
611 * with the corresponding memory transaction attributes to use for the access.
612 * Use it only for debugging because no protection checks are done.
614 * Returns: Corresponding physical page address or -1 if no page found.
616 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
617 MemTxAttrs *attrs)
619 CPUClass *cc = CPU_GET_CLASS(cpu);
621 if (cc->get_phys_page_attrs_debug) {
622 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
624 /* Fallback for CPUs which don't implement the _attrs_ hook */
625 *attrs = MEMTXATTRS_UNSPECIFIED;
626 return cc->get_phys_page_debug(cpu, addr);
630 * cpu_get_phys_page_debug:
631 * @cpu: The CPU to obtain the physical page address for.
632 * @addr: The virtual address.
634 * Obtains the physical page corresponding to a virtual one.
635 * Use it only for debugging because no protection checks are done.
637 * Returns: Corresponding physical page address or -1 if no page found.
639 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
641 MemTxAttrs attrs = {};
643 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
646 /** cpu_asidx_from_attrs:
647 * @cpu: CPU
648 * @attrs: memory transaction attributes
650 * Returns the address space index specifying the CPU AddressSpace
651 * to use for a memory access with the given transaction attributes.
653 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
655 CPUClass *cc = CPU_GET_CLASS(cpu);
656 int ret = 0;
658 if (cc->asidx_from_attrs) {
659 ret = cc->asidx_from_attrs(cpu, attrs);
660 assert(ret < cpu->num_ases && ret >= 0);
662 return ret;
665 #endif /* CONFIG_USER_ONLY */
668 * cpu_list_add:
669 * @cpu: The CPU to be added to the list of CPUs.
671 void cpu_list_add(CPUState *cpu);
674 * cpu_list_remove:
675 * @cpu: The CPU to be removed from the list of CPUs.
677 void cpu_list_remove(CPUState *cpu);
680 * cpu_reset:
681 * @cpu: The CPU whose state is to be reset.
683 void cpu_reset(CPUState *cpu);
686 * cpu_class_by_name:
687 * @typename: The CPU base type.
688 * @cpu_model: The model string without any parameters.
690 * Looks up a CPU #ObjectClass matching name @cpu_model.
692 * Returns: A #CPUClass or %NULL if not matching class is found.
694 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
697 * cpu_create:
698 * @typename: The CPU type.
700 * Instantiates a CPU and realizes the CPU.
702 * Returns: A #CPUState or %NULL if an error occurred.
704 CPUState *cpu_create(const char *typename);
707 * parse_cpu_option:
708 * @cpu_option: The -cpu option including optional parameters.
710 * processes optional parameters and registers them as global properties
712 * Returns: type of CPU to create or prints error and terminates process
713 * if an error occurred.
715 const char *parse_cpu_option(const char *cpu_option);
718 * cpu_has_work:
719 * @cpu: The vCPU to check.
721 * Checks whether the CPU has work to do.
723 * Returns: %true if the CPU has work, %false otherwise.
725 static inline bool cpu_has_work(CPUState *cpu)
727 CPUClass *cc = CPU_GET_CLASS(cpu);
729 g_assert(cc->has_work);
730 return cc->has_work(cpu);
734 * qemu_cpu_is_self:
735 * @cpu: The vCPU to check against.
737 * Checks whether the caller is executing on the vCPU thread.
739 * Returns: %true if called from @cpu's thread, %false otherwise.
741 bool qemu_cpu_is_self(CPUState *cpu);
744 * qemu_cpu_kick:
745 * @cpu: The vCPU to kick.
747 * Kicks @cpu's thread.
749 void qemu_cpu_kick(CPUState *cpu);
752 * cpu_is_stopped:
753 * @cpu: The CPU to check.
755 * Checks whether the CPU is stopped.
757 * Returns: %true if run state is not running or if artificially stopped;
758 * %false otherwise.
760 bool cpu_is_stopped(CPUState *cpu);
763 * do_run_on_cpu:
764 * @cpu: The vCPU to run on.
765 * @func: The function to be executed.
766 * @data: Data to pass to the function.
767 * @mutex: Mutex to release while waiting for @func to run.
769 * Used internally in the implementation of run_on_cpu.
771 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
772 QemuMutex *mutex);
775 * run_on_cpu:
776 * @cpu: The vCPU to run on.
777 * @func: The function to be executed.
778 * @data: Data to pass to the function.
780 * Schedules the function @func for execution on the vCPU @cpu.
782 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
785 * async_run_on_cpu:
786 * @cpu: The vCPU to run on.
787 * @func: The function to be executed.
788 * @data: Data to pass to the function.
790 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
792 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
795 * async_safe_run_on_cpu:
796 * @cpu: The vCPU to run on.
797 * @func: The function to be executed.
798 * @data: Data to pass to the function.
800 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
801 * while all other vCPUs are sleeping.
803 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
804 * BQL.
806 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
809 * cpu_in_exclusive_context()
810 * @cpu: The vCPU to check
812 * Returns true if @cpu is an exclusive context, for example running
813 * something which has previously been queued via async_safe_run_on_cpu().
815 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
817 return cpu->in_exclusive_context;
821 * qemu_get_cpu:
822 * @index: The CPUState@cpu_index value of the CPU to obtain.
824 * Gets a CPU matching @index.
826 * Returns: The CPU or %NULL if there is no matching CPU.
828 CPUState *qemu_get_cpu(int index);
831 * cpu_exists:
832 * @id: Guest-exposed CPU ID to lookup.
834 * Search for CPU with specified ID.
836 * Returns: %true - CPU is found, %false - CPU isn't found.
838 bool cpu_exists(int64_t id);
841 * cpu_by_arch_id:
842 * @id: Guest-exposed CPU ID of the CPU to obtain.
844 * Get a CPU with matching @id.
846 * Returns: The CPU or %NULL if there is no matching CPU.
848 CPUState *cpu_by_arch_id(int64_t id);
851 * cpu_interrupt:
852 * @cpu: The CPU to set an interrupt on.
853 * @mask: The interrupts to set.
855 * Invokes the interrupt handler.
858 void cpu_interrupt(CPUState *cpu, int mask);
860 #ifdef NEED_CPU_H
862 #ifdef CONFIG_SOFTMMU
863 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
864 MMUAccessType access_type,
865 int mmu_idx, uintptr_t retaddr)
867 CPUClass *cc = CPU_GET_CLASS(cpu);
869 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
872 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
873 vaddr addr, unsigned size,
874 MMUAccessType access_type,
875 int mmu_idx, MemTxAttrs attrs,
876 MemTxResult response,
877 uintptr_t retaddr)
879 CPUClass *cc = CPU_GET_CLASS(cpu);
881 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
882 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
883 mmu_idx, attrs, response, retaddr);
886 #endif
888 #endif /* NEED_CPU_H */
891 * cpu_set_pc:
892 * @cpu: The CPU to set the program counter for.
893 * @addr: Program counter value.
895 * Sets the program counter for a CPU.
897 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
899 CPUClass *cc = CPU_GET_CLASS(cpu);
901 cc->set_pc(cpu, addr);
905 * cpu_reset_interrupt:
906 * @cpu: The CPU to clear the interrupt on.
907 * @mask: The interrupt mask to clear.
909 * Resets interrupts on the vCPU @cpu.
911 void cpu_reset_interrupt(CPUState *cpu, int mask);
914 * cpu_exit:
915 * @cpu: The CPU to exit.
917 * Requests the CPU @cpu to exit execution.
919 void cpu_exit(CPUState *cpu);
922 * cpu_resume:
923 * @cpu: The CPU to resume.
925 * Resumes CPU, i.e. puts CPU into runnable state.
927 void cpu_resume(CPUState *cpu);
930 * cpu_remove_sync:
931 * @cpu: The CPU to remove.
933 * Requests the CPU to be removed and waits till it is removed.
935 void cpu_remove_sync(CPUState *cpu);
938 * process_queued_cpu_work() - process all items on CPU work queue
939 * @cpu: The CPU which work queue to process.
941 void process_queued_cpu_work(CPUState *cpu);
944 * cpu_exec_start:
945 * @cpu: The CPU for the current thread.
947 * Record that a CPU has started execution and can be interrupted with
948 * cpu_exit.
950 void cpu_exec_start(CPUState *cpu);
953 * cpu_exec_end:
954 * @cpu: The CPU for the current thread.
956 * Record that a CPU has stopped execution and exclusive sections
957 * can be executed without interrupting it.
959 void cpu_exec_end(CPUState *cpu);
962 * start_exclusive:
964 * Wait for a concurrent exclusive section to end, and then start
965 * a section of work that is run while other CPUs are not running
966 * between cpu_exec_start and cpu_exec_end. CPUs that are running
967 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
968 * during the exclusive section go to sleep until this CPU calls
969 * end_exclusive.
971 void start_exclusive(void);
974 * end_exclusive:
976 * Concludes an exclusive execution section started by start_exclusive.
978 void end_exclusive(void);
981 * qemu_init_vcpu:
982 * @cpu: The vCPU to initialize.
984 * Initializes a vCPU.
986 void qemu_init_vcpu(CPUState *cpu);
988 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
989 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
990 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
993 * cpu_single_step:
994 * @cpu: CPU to the flags for.
995 * @enabled: Flags to enable.
997 * Enables or disables single-stepping for @cpu.
999 void cpu_single_step(CPUState *cpu, int enabled);
1001 /* Breakpoint/watchpoint flags */
1002 #define BP_MEM_READ 0x01
1003 #define BP_MEM_WRITE 0x02
1004 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1005 #define BP_STOP_BEFORE_ACCESS 0x04
1006 /* 0x08 currently unused */
1007 #define BP_GDB 0x10
1008 #define BP_CPU 0x20
1009 #define BP_ANY (BP_GDB | BP_CPU)
1010 #define BP_WATCHPOINT_HIT_READ 0x40
1011 #define BP_WATCHPOINT_HIT_WRITE 0x80
1012 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1014 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1015 CPUBreakpoint **breakpoint);
1016 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1017 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1018 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1020 /* Return true if PC matches an installed breakpoint. */
1021 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1023 CPUBreakpoint *bp;
1025 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1026 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1027 if (bp->pc == pc && (bp->flags & mask)) {
1028 return true;
1032 return false;
1035 #ifdef CONFIG_USER_ONLY
1036 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1037 int flags, CPUWatchpoint **watchpoint)
1039 return -ENOSYS;
1042 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1043 vaddr len, int flags)
1045 return -ENOSYS;
1048 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1049 CPUWatchpoint *wp)
1053 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1057 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1058 MemTxAttrs atr, int fl, uintptr_t ra)
1062 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1063 vaddr addr, vaddr len)
1065 return 0;
1067 #else
1068 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1069 int flags, CPUWatchpoint **watchpoint);
1070 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1071 vaddr len, int flags);
1072 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1073 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1076 * cpu_check_watchpoint:
1077 * @cpu: cpu context
1078 * @addr: guest virtual address
1079 * @len: access length
1080 * @attrs: memory access attributes
1081 * @flags: watchpoint access type
1082 * @ra: unwind return address
1084 * Check for a watchpoint hit in [addr, addr+len) of the type
1085 * specified by @flags. Exit via exception with a hit.
1087 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1088 MemTxAttrs attrs, int flags, uintptr_t ra);
1091 * cpu_watchpoint_address_matches:
1092 * @cpu: cpu context
1093 * @addr: guest virtual address
1094 * @len: access length
1096 * Return the watchpoint flags that apply to [addr, addr+len).
1097 * If no watchpoint is registered for the range, the result is 0.
1099 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1100 #endif
1103 * cpu_get_address_space:
1104 * @cpu: CPU to get address space from
1105 * @asidx: index identifying which address space to get
1107 * Return the requested address space of this CPU. @asidx
1108 * specifies which address space to read.
1110 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1112 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1113 GCC_FMT_ATTR(2, 3);
1114 extern Property cpu_common_props[];
1115 void cpu_exec_initfn(CPUState *cpu);
1116 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1117 void cpu_exec_unrealizefn(CPUState *cpu);
1120 * target_words_bigendian:
1121 * Returns true if the (default) endianness of the target is big endian,
1122 * false otherwise. Note that in target-specific code, you can use
1123 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1124 * code should normally never need to know about the endianness of the
1125 * target, so please do *not* use this function unless you know very well
1126 * what you are doing!
1128 bool target_words_bigendian(void);
1130 #ifdef NEED_CPU_H
1132 #ifdef CONFIG_SOFTMMU
1133 extern const VMStateDescription vmstate_cpu_common;
1134 #else
1135 #define vmstate_cpu_common vmstate_dummy
1136 #endif
1138 #define VMSTATE_CPU() { \
1139 .name = "parent_obj", \
1140 .size = sizeof(CPUState), \
1141 .vmsd = &vmstate_cpu_common, \
1142 .flags = VMS_STRUCT, \
1143 .offset = 0, \
1146 #endif /* NEED_CPU_H */
1148 #define UNASSIGNED_CPU_INDEX -1
1149 #define UNASSIGNED_CLUSTER_INDEX -1
1151 #endif