2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
39 #include "hw/fw-path-provider.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
88 #include "monitor/monitor.h"
92 /* SLOF memory layout:
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
100 * We load our kernel at 4M, leaving space for SLOF initial image
102 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_OVERHEAD 0x2800000
106 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
108 #define MIN_RMA_SLOF (128 * MiB)
110 #define PHANDLE_INTC 0x00001111
112 /* These two functions implement the VCPU id numbering: one to compute them
113 * all and one to identify thread 0 of a VCORE. Any change to the first one
114 * is likely to have an impact on the second one, so let's keep them close.
116 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
118 MachineState
*ms
= MACHINE(spapr
);
119 unsigned int smp_threads
= ms
->smp
.threads
;
123 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
129 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
134 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135 * and newer QEMUs don't even have them. In both cases, we don't want
136 * to send anything on the wire.
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
142 .name
= "icp/server",
144 .minimum_version_id
= 1,
145 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
146 .fields
= (VMStateField
[]) {
147 VMSTATE_UNUSED(4), /* uint32_t xirr */
148 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149 VMSTATE_UNUSED(1), /* uint8_t mfrr */
150 VMSTATE_END_OF_LIST()
154 static void pre_2_10_vmstate_register_dummy_icp(int i
)
156 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
157 (void *)(uintptr_t) i
);
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
162 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
163 (void *)(uintptr_t) i
);
166 int spapr_max_server_number(SpaprMachineState
*spapr
)
168 MachineState
*ms
= MACHINE(spapr
);
171 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
174 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
178 uint32_t servers_prop
[smt_threads
];
179 uint32_t gservers_prop
[smt_threads
* 2];
180 int index
= spapr_get_vcpu_id(cpu
);
182 if (cpu
->compat_pvr
) {
183 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
189 /* Build interrupt servers and gservers properties */
190 for (i
= 0; i
< smt_threads
; i
++) {
191 servers_prop
[i
] = cpu_to_be32(index
+ i
);
192 /* Hack, direct the group queues back to cpu 0 */
193 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
194 gservers_prop
[i
*2 + 1] = 0;
196 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
197 servers_prop
, sizeof(servers_prop
));
201 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
202 gservers_prop
, sizeof(gservers_prop
));
207 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
209 void *fdt
, int offset
)
211 uint8_t pa_features_206
[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207
[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 uint8_t pa_features_300
[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 uint8_t *pa_features
= NULL
;
246 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
247 pa_features
= pa_features_206
;
248 pa_size
= sizeof(pa_features_206
);
250 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
251 pa_features
= pa_features_207
;
252 pa_size
= sizeof(pa_features_207
);
254 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
255 pa_features
= pa_features_300
;
256 pa_size
= sizeof(pa_features_300
);
262 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
264 * Note: we keep CI large pages off by default because a 64K capable
265 * guest provisioned with large pages might otherwise try to map a qemu
266 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267 * even if that qemu runs on a 4k host.
268 * We dd this bit back here if we are confident this is not an issue
270 pa_features
[3] |= 0x20;
272 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
273 pa_features
[24] |= 0x80; /* Transactional memory support */
275 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
276 /* Workaround for broken kernels that attempt (guest) radix
277 * mode when they can't handle it, if they see the radix bit set
278 * in pa-features. So hide it from them. */
279 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
282 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
285 static hwaddr
spapr_node0_size(MachineState
*machine
)
287 if (machine
->numa_state
->num_nodes
) {
289 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
290 if (machine
->numa_state
->nodes
[i
].node_mem
) {
291 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
296 return machine
->ram_size
;
299 static void add_str(GString
*s
, const gchar
*s1
)
301 g_string_append_len(s
, s1
, strlen(s1
) + 1);
304 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
305 hwaddr start
, hwaddr size
)
308 uint64_t mem_reg_property
[2];
311 mem_reg_property
[0] = cpu_to_be64(start
);
312 mem_reg_property
[1] = cpu_to_be64(size
);
314 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
315 off
= fdt_add_subnode(fdt
, 0, mem_name
);
317 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
318 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
319 sizeof(mem_reg_property
))));
320 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
324 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
326 MemoryDeviceInfoList
*info
;
328 for (info
= list
; info
; info
= info
->next
) {
329 MemoryDeviceInfo
*value
= info
->value
;
331 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
332 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
334 if (addr
>= pcdimm_info
->addr
&&
335 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
336 return pcdimm_info
->node
;
344 struct sPAPRDrconfCellV2
{
352 typedef struct DrconfCellQueue
{
353 struct sPAPRDrconfCellV2 cell
;
354 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
357 static DrconfCellQueue
*
358 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
359 uint32_t drc_index
, uint32_t aa_index
,
362 DrconfCellQueue
*elem
;
364 elem
= g_malloc0(sizeof(*elem
));
365 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
366 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
367 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
368 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
369 elem
->cell
.flags
= cpu_to_be32(flags
);
374 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
375 int offset
, MemoryDeviceInfoList
*dimms
)
377 MachineState
*machine
= MACHINE(spapr
);
378 uint8_t *int_buf
, *cur_index
;
380 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
381 uint64_t addr
, cur_addr
, size
;
382 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
383 uint64_t mem_end
= machine
->device_memory
->base
+
384 memory_region_size(&machine
->device_memory
->mr
);
385 uint32_t node
, buf_len
, nr_entries
= 0;
387 DrconfCellQueue
*elem
, *next
;
388 MemoryDeviceInfoList
*info
;
389 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
390 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
392 /* Entry to cover RAM and the gap area */
393 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
394 SPAPR_LMB_FLAGS_RESERVED
|
395 SPAPR_LMB_FLAGS_DRC_INVALID
);
396 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
399 cur_addr
= machine
->device_memory
->base
;
400 for (info
= dimms
; info
; info
= info
->next
) {
401 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
408 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409 * area is marked hotpluggable in the next iteration for the bigger
410 * chunk including the NVDIMM occupied area.
412 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
415 /* Entry for hot-pluggable area */
416 if (cur_addr
< addr
) {
417 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
419 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
420 cur_addr
, spapr_drc_index(drc
), -1, 0);
421 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
426 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
428 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
429 spapr_drc_index(drc
), node
,
430 (SPAPR_LMB_FLAGS_ASSIGNED
|
431 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
432 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
434 cur_addr
= addr
+ size
;
437 /* Entry for remaining hotpluggable area */
438 if (cur_addr
< mem_end
) {
439 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
441 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
442 cur_addr
, spapr_drc_index(drc
), -1, 0);
443 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
447 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
448 int_buf
= cur_index
= g_malloc0(buf_len
);
449 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
450 cur_index
+= sizeof(nr_entries
);
452 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
453 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
454 cur_index
+= sizeof(elem
->cell
);
455 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
459 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
467 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
468 int offset
, MemoryDeviceInfoList
*dimms
)
470 MachineState
*machine
= MACHINE(spapr
);
472 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
473 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
474 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
475 memory_region_size(&machine
->device_memory
->mr
)) /
477 uint32_t *int_buf
, *cur_index
, buf_len
;
480 * Allocate enough buffer size to fit in ibm,dynamic-memory
482 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
483 cur_index
= int_buf
= g_malloc0(buf_len
);
484 int_buf
[0] = cpu_to_be32(nr_lmbs
);
486 for (i
= 0; i
< nr_lmbs
; i
++) {
487 uint64_t addr
= i
* lmb_size
;
488 uint32_t *dynamic_memory
= cur_index
;
490 if (i
>= device_lmb_start
) {
493 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
496 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
497 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
498 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
499 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
500 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
501 if (memory_region_present(get_system_memory(), addr
)) {
502 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
504 dynamic_memory
[5] = cpu_to_be32(0);
508 * LMB information for RMA, boot time RAM and gap b/n RAM and
509 * device memory region -- all these are marked as reserved
510 * and as having no valid DRC.
512 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
513 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
514 dynamic_memory
[2] = cpu_to_be32(0);
515 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
516 dynamic_memory
[4] = cpu_to_be32(-1);
517 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
518 SPAPR_LMB_FLAGS_DRC_INVALID
);
521 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
523 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
532 * Adds ibm,dynamic-reconfiguration-memory node.
533 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534 * of this device tree node.
536 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
539 MachineState
*machine
= MACHINE(spapr
);
541 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
542 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
543 cpu_to_be32(lmb_size
& 0xffffffff)};
544 MemoryDeviceInfoList
*dimms
= NULL
;
547 * Don't create the node if there is no device memory
549 if (machine
->ram_size
== machine
->maxram_size
) {
553 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
555 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
556 sizeof(prop_lmb_size
));
561 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
566 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
571 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572 dimms
= qmp_memory_device_list();
573 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
574 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
576 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
578 qapi_free_MemoryDeviceInfoList(dimms
);
584 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
589 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
591 MachineState
*machine
= MACHINE(spapr
);
592 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
593 hwaddr mem_start
, node_size
;
594 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
595 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
597 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
598 if (!nodes
[i
].node_mem
) {
601 if (mem_start
>= machine
->ram_size
) {
604 node_size
= nodes
[i
].node_mem
;
605 if (node_size
> machine
->ram_size
- mem_start
) {
606 node_size
= machine
->ram_size
- mem_start
;
610 /* spapr_machine_init() checks for rma_size <= node0_size
612 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
613 mem_start
+= spapr
->rma_size
;
614 node_size
-= spapr
->rma_size
;
616 for ( ; node_size
; ) {
617 hwaddr sizetmp
= pow2floor(node_size
);
619 /* mem_start != 0 here */
620 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
621 sizetmp
= 1ULL << ctzl(mem_start
);
624 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
625 node_size
-= sizetmp
;
626 mem_start
+= sizetmp
;
630 /* Generate ibm,dynamic-reconfiguration-memory node if required */
631 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
634 g_assert(smc
->dr_lmb_enabled
);
635 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
644 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
645 SpaprMachineState
*spapr
)
647 MachineState
*ms
= MACHINE(spapr
);
648 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
649 CPUPPCState
*env
= &cpu
->env
;
650 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
651 int index
= spapr_get_vcpu_id(cpu
);
652 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
653 0xffffffff, 0xffffffff};
654 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
655 : SPAPR_TIMEBASE_FREQ
;
656 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657 uint32_t page_sizes_prop
[64];
658 size_t page_sizes_prop_size
;
659 unsigned int smp_threads
= ms
->smp
.threads
;
660 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
661 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
662 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
665 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
668 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
670 drc_index
= spapr_drc_index(drc
);
671 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
674 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
675 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
677 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
678 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
679 env
->dcache_line_size
)));
680 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
681 env
->dcache_line_size
)));
682 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
683 env
->icache_line_size
)));
684 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
685 env
->icache_line_size
)));
687 if (pcc
->l1_dcache_size
) {
688 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
689 pcc
->l1_dcache_size
)));
691 warn_report("Unknown L1 dcache size for cpu");
693 if (pcc
->l1_icache_size
) {
694 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
695 pcc
->l1_icache_size
)));
697 warn_report("Unknown L1 icache size for cpu");
700 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
701 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
702 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
703 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
704 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
705 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
707 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
708 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
710 if (env
->spr_cb
[SPR_SPURR
].oea_read
) {
711 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
714 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
715 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
716 segs
, sizeof(segs
))));
719 /* Advertise VSX (vector extensions) if available
720 * 1 == VMX / Altivec available
723 * Only CPUs for which we create core types in spapr_cpu_core.c
724 * are possible, and all of those have VMX */
725 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
726 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
728 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
731 /* Advertise DFP (Decimal Floating Point) if available
732 * 0 / no property == no DFP
733 * 1 == DFP available */
734 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
735 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
738 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
739 sizeof(page_sizes_prop
));
740 if (page_sizes_prop_size
) {
741 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
742 page_sizes_prop
, page_sizes_prop_size
)));
745 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
747 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
748 cs
->cpu_index
/ vcpus_per_socket
)));
750 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
751 pft_size_prop
, sizeof(pft_size_prop
))));
753 if (ms
->numa_state
->num_nodes
> 1) {
754 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
757 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
759 if (pcc
->radix_page_info
) {
760 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
761 radix_AP_encodings
[i
] =
762 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
764 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
766 pcc
->radix_page_info
->count
*
767 sizeof(radix_AP_encodings
[0]))));
771 * We set this property to let the guest know that it can use the large
772 * decrementer and its width in bits.
774 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
775 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
776 pcc
->lrg_decr_bits
)));
779 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
787 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
789 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
790 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
793 * We walk the CPUs in reverse order to ensure that CPU DT nodes
794 * created by fdt_add_subnode() end up in the right order in FDT
795 * for the guest kernel the enumerate the CPUs correctly.
797 * The CPU list cannot be traversed in reverse order, so we need
803 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
807 for (i
= n_cpus
- 1; i
>= 0; i
--) {
808 CPUState
*cs
= rev
[i
];
809 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
810 int index
= spapr_get_vcpu_id(cpu
);
811 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
812 g_autofree
char *nodename
= NULL
;
815 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
819 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
820 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
822 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
828 static int spapr_dt_rng(void *fdt
)
833 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
837 ret
= fdt_setprop_string(fdt
, node
, "device_type",
838 "ibm,platform-facilities");
839 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
840 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
842 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
846 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
851 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
853 MachineState
*ms
= MACHINE(spapr
);
855 GString
*hypertas
= g_string_sized_new(256);
856 GString
*qemu_hypertas
= g_string_sized_new(256);
857 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
858 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
859 uint32_t lrdr_capacity
[] = {
860 cpu_to_be32(max_device_addr
>> 32),
861 cpu_to_be32(max_device_addr
& 0xffffffff),
862 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
863 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
864 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
867 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
870 add_str(hypertas
, "hcall-pft");
871 add_str(hypertas
, "hcall-term");
872 add_str(hypertas
, "hcall-dabr");
873 add_str(hypertas
, "hcall-interrupt");
874 add_str(hypertas
, "hcall-tce");
875 add_str(hypertas
, "hcall-vio");
876 add_str(hypertas
, "hcall-splpar");
877 add_str(hypertas
, "hcall-join");
878 add_str(hypertas
, "hcall-bulk");
879 add_str(hypertas
, "hcall-set-mode");
880 add_str(hypertas
, "hcall-sprg0");
881 add_str(hypertas
, "hcall-copy");
882 add_str(hypertas
, "hcall-debug");
883 add_str(hypertas
, "hcall-vphn");
884 add_str(qemu_hypertas
, "hcall-memop1");
886 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
887 add_str(hypertas
, "hcall-multi-tce");
890 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
891 add_str(hypertas
, "hcall-hpt-resize");
894 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
895 hypertas
->str
, hypertas
->len
));
896 g_string_free(hypertas
, TRUE
);
897 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
898 qemu_hypertas
->str
, qemu_hypertas
->len
));
899 g_string_free(qemu_hypertas
, TRUE
);
901 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
904 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
905 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
907 * The system reset requirements are driven by existing Linux and PowerVM
908 * implementation which (contrary to PAPR) saves r3 in the error log
909 * structure like machine check, so Linux expects to find the saved r3
910 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
911 * does not look at the error value).
913 * System reset interrupts are not subject to interlock like machine
914 * check, so this memory area could be corrupted if the sreset is
915 * interrupted by a machine check (or vice versa) if it was shared. To
916 * prevent this, system reset uses per-CPU areas for the sreset save
917 * area. A system reset that interrupts a system reset handler could
918 * still overwrite this area, but Linux doesn't try to recover in that
921 * The extra 8 bytes is required because Linux's FWNMI error log check
924 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_ERROR_LOG_MAX
+
925 ms
->smp
.max_cpus
* sizeof(uint64_t)*2 + sizeof(uint64_t)));
926 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
927 RTAS_ERROR_LOG_MAX
));
928 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
929 RTAS_EVENT_SCAN_RATE
));
931 g_assert(msi_nonbroken
);
932 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
935 * According to PAPR, rtas ibm,os-term does not guarantee a return
936 * back to the guest cpu.
938 * While an additional ibm,extended-os-term property indicates
939 * that rtas call return will always occur. Set this property.
941 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
943 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
944 lrdr_capacity
, sizeof(lrdr_capacity
)));
946 spapr_dt_rtas_tokens(fdt
, rtas
);
950 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
951 * and the XIVE features that the guest may request and thus the valid
952 * values for bytes 23..26 of option vector 5:
954 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
957 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
960 23, 0x00, /* XICS / XIVE mode */
961 24, 0x00, /* Hash/Radix, filled in below. */
962 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
963 26, 0x40, /* Radix options: GTSE == yes. */
966 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
967 val
[1] = SPAPR_OV5_XIVE_BOTH
;
968 } else if (spapr
->irq
->xive
) {
969 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
971 assert(spapr
->irq
->xics
);
972 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
975 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
976 first_ppc_cpu
->compat_pvr
)) {
978 * If we're in a pre POWER9 compat mode then the guest should
979 * do hash and use the legacy interrupt mode
981 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
982 val
[3] = 0x00; /* Hash */
983 } else if (kvm_enabled()) {
984 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
985 val
[3] = 0x80; /* OV5_MMU_BOTH */
986 } else if (kvmppc_has_cap_mmu_radix()) {
987 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
989 val
[3] = 0x00; /* Hash */
992 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
995 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
999 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1001 MachineState
*machine
= MACHINE(spapr
);
1002 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1005 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1008 const char *boot_device
= machine
->boot_order
;
1009 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1011 char *bootlist
= get_boot_devices_list(&cb
);
1013 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1014 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1015 machine
->kernel_cmdline
));
1018 if (spapr
->initrd_size
) {
1019 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1020 spapr
->initrd_base
));
1021 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1022 spapr
->initrd_base
+ spapr
->initrd_size
));
1025 if (spapr
->kernel_size
) {
1026 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1027 cpu_to_be64(spapr
->kernel_size
) };
1029 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1030 &kprop
, sizeof(kprop
)));
1031 if (spapr
->kernel_le
) {
1032 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1036 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1038 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1039 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1040 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1042 if (cb
&& bootlist
) {
1045 for (i
= 0; i
< cb
; i
++) {
1046 if (bootlist
[i
] == '\n') {
1050 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1053 if (boot_device
&& strlen(boot_device
)) {
1054 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1057 if (!spapr
->has_graphics
&& stdout_path
) {
1059 * "linux,stdout-path" and "stdout" properties are
1060 * deprecated by linux kernel. New platforms should only
1061 * use the "stdout-path" property. Set the new property
1062 * and continue using older property to remain compatible
1063 * with the existing firmware.
1065 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1066 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1070 * We can deal with BAR reallocation just fine, advertise it
1073 if (smc
->linux_pci_probe
) {
1074 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1077 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1079 g_free(stdout_path
);
1083 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1086 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1088 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1089 * KVM to work under pHyp with some guest co-operation */
1091 uint8_t hypercall
[16];
1093 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1094 /* indicate KVM hypercall interface */
1095 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1096 if (kvmppc_has_cap_fixup_hcalls()) {
1098 * Older KVM versions with older guest kernels were broken
1099 * with the magic page, don't allow the guest to map it.
1101 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1102 sizeof(hypercall
))) {
1103 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1104 hypercall
, sizeof(hypercall
)));
1109 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1111 MachineState
*machine
= MACHINE(spapr
);
1112 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1113 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1114 uint32_t root_drc_type_mask
= 0;
1120 fdt
= g_malloc0(space
);
1121 _FDT((fdt_create_empty_tree(fdt
, space
)));
1124 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1125 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1126 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1128 /* Guest UUID & Name*/
1129 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1130 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1131 if (qemu_uuid_set
) {
1132 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1136 if (qemu_get_vm_name()) {
1137 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1138 qemu_get_vm_name()));
1141 /* Host Model & Serial Number */
1142 if (spapr
->host_model
) {
1143 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1144 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1145 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1149 if (spapr
->host_serial
) {
1150 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1151 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1152 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1156 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1157 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1159 /* /interrupt controller */
1160 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1162 ret
= spapr_dt_memory(spapr
, fdt
);
1164 error_report("couldn't setup memory nodes in fdt");
1169 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1171 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1172 ret
= spapr_dt_rng(fdt
);
1174 error_report("could not set up rng device in the fdt");
1179 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1180 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1182 error_report("couldn't setup PCI devices in fdt");
1187 spapr_dt_cpus(fdt
, spapr
);
1189 /* ibm,drc-indexes and friends */
1190 if (smc
->dr_lmb_enabled
) {
1191 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1193 if (smc
->dr_phb_enabled
) {
1194 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1196 if (mc
->nvdimm_supported
) {
1197 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1199 if (root_drc_type_mask
) {
1200 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1203 if (mc
->has_hotpluggable_cpus
) {
1204 int offset
= fdt_path_offset(fdt
, "/cpus");
1205 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1207 error_report("Couldn't set up CPU DR device tree properties");
1212 /* /event-sources */
1213 spapr_dt_events(spapr
, fdt
);
1216 spapr_dt_rtas(spapr
, fdt
);
1219 spapr_dt_chosen(spapr
, fdt
, reset
);
1222 if (kvm_enabled()) {
1223 spapr_dt_hypervisor(spapr
, fdt
);
1226 /* Build memory reserve map */
1228 if (spapr
->kernel_size
) {
1229 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1230 spapr
->kernel_size
)));
1232 if (spapr
->initrd_size
) {
1233 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1234 spapr
->initrd_size
)));
1238 /* NVDIMM devices */
1239 if (mc
->nvdimm_supported
) {
1240 spapr_dt_persistent_memory(spapr
, fdt
);
1246 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1248 SpaprMachineState
*spapr
= opaque
;
1250 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1253 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1256 CPUPPCState
*env
= &cpu
->env
;
1258 /* The TCG path should also be holding the BQL at this point */
1259 g_assert(qemu_mutex_iothread_locked());
1262 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1263 env
->gpr
[3] = H_PRIVILEGE
;
1265 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1269 struct LPCRSyncState
{
1274 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1276 struct LPCRSyncState
*s
= arg
.host_ptr
;
1277 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1278 CPUPPCState
*env
= &cpu
->env
;
1281 cpu_synchronize_state(cs
);
1282 lpcr
= env
->spr
[SPR_LPCR
];
1285 ppc_store_lpcr(cpu
, lpcr
);
1288 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1291 struct LPCRSyncState s
= {
1296 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1300 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1302 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1304 /* Copy PATE1:GR into PATE0:HR */
1305 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1306 entry
->dw1
= spapr
->patb_entry
;
1309 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1310 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1311 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1312 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1313 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1316 * Get the fd to access the kernel htab, re-opening it if necessary
1318 static int get_htab_fd(SpaprMachineState
*spapr
)
1320 Error
*local_err
= NULL
;
1322 if (spapr
->htab_fd
>= 0) {
1323 return spapr
->htab_fd
;
1326 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1327 if (spapr
->htab_fd
< 0) {
1328 error_report_err(local_err
);
1331 return spapr
->htab_fd
;
1334 void close_htab_fd(SpaprMachineState
*spapr
)
1336 if (spapr
->htab_fd
>= 0) {
1337 close(spapr
->htab_fd
);
1339 spapr
->htab_fd
= -1;
1342 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1344 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1346 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1349 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1351 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1353 assert(kvm_enabled());
1359 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1362 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1365 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1366 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1370 * HTAB is controlled by KVM. Fetch into temporary buffer
1372 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1373 kvmppc_read_hptes(hptes
, ptex
, n
);
1378 * HTAB is controlled by QEMU. Just point to the internally
1381 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1384 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1385 const ppc_hash_pte64_t
*hptes
,
1388 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1391 g_free((void *)hptes
);
1394 /* Nothing to do for qemu managed HPT */
1397 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1398 uint64_t pte0
, uint64_t pte1
)
1400 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1401 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1404 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1406 if (pte0
& HPTE64_V_VALID
) {
1407 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1409 * When setting valid, we write PTE1 first. This ensures
1410 * proper synchronization with the reading code in
1411 * ppc_hash64_pteg_search()
1414 stq_p(spapr
->htab
+ offset
, pte0
);
1416 stq_p(spapr
->htab
+ offset
, pte0
);
1418 * When clearing it we set PTE0 first. This ensures proper
1419 * synchronization with the reading code in
1420 * ppc_hash64_pteg_search()
1423 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1428 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1431 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1432 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1435 /* There should always be a hash table when this is called */
1436 error_report("spapr_hpte_set_c called with no hash table !");
1440 /* The HW performs a non-atomic byte update */
1441 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1444 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1447 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1448 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1451 /* There should always be a hash table when this is called */
1452 error_report("spapr_hpte_set_r called with no hash table !");
1456 /* The HW performs a non-atomic byte update */
1457 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1460 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1464 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1465 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1466 * that's much more than is needed for Linux guests */
1467 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1468 shift
= MAX(shift
, 18); /* Minimum architected size */
1469 shift
= MIN(shift
, 46); /* Maximum architected size */
1473 void spapr_free_hpt(SpaprMachineState
*spapr
)
1475 g_free(spapr
->htab
);
1477 spapr
->htab_shift
= 0;
1478 close_htab_fd(spapr
);
1481 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1486 /* Clean up any HPT info from a previous boot */
1487 spapr_free_hpt(spapr
);
1489 rc
= kvmppc_reset_htab(shift
);
1491 if (rc
== -EOPNOTSUPP
) {
1492 error_setg(errp
, "HPT not supported in nested guests");
1497 /* kernel-side HPT needed, but couldn't allocate one */
1498 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1500 error_append_hint(errp
, "Try smaller maxmem?\n");
1502 } else if (rc
> 0) {
1503 /* kernel-side HPT allocated */
1506 "Requested order %d HPT, but kernel allocated order %ld",
1508 error_append_hint(errp
, "Try smaller maxmem?\n");
1512 spapr
->htab_shift
= shift
;
1515 /* kernel-side HPT not needed, allocate in userspace instead */
1516 size_t size
= 1ULL << shift
;
1519 spapr
->htab
= qemu_memalign(size
, size
);
1520 memset(spapr
->htab
, 0, size
);
1521 spapr
->htab_shift
= shift
;
1523 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1524 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1527 /* We're setting up a hash table, so that means we're not radix */
1528 spapr
->patb_entry
= 0;
1529 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1533 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1537 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1538 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1540 uint64_t current_ram_size
;
1542 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1543 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1545 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1547 if (kvm_enabled()) {
1548 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1550 /* Check our RMA fits in the possible VRMA */
1551 if (vrma_limit
< spapr
->rma_size
) {
1552 error_report("Unable to create %" HWADDR_PRIu
1553 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1554 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1560 static void spapr_machine_reset(MachineState
*machine
)
1562 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1563 PowerPCCPU
*first_ppc_cpu
;
1568 pef_kvm_reset(machine
->cgs
, &error_fatal
);
1569 spapr_caps_apply(spapr
);
1571 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1572 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1573 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1574 spapr
->max_compat_pvr
)) {
1576 * If using KVM with radix mode available, VCPUs can be started
1577 * without a HPT because KVM will start them in radix mode.
1578 * Set the GR bit in PATE so that we know there is no HPT.
1580 spapr
->patb_entry
= PATE1_GR
;
1581 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1583 spapr_setup_hpt(spapr
);
1586 qemu_devices_reset();
1588 spapr_ovec_cleanup(spapr
->ov5_cas
);
1589 spapr
->ov5_cas
= spapr_ovec_new();
1591 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1594 * This is fixing some of the default configuration of the XIVE
1595 * devices. To be called after the reset of the machine devices.
1597 spapr_irq_reset(spapr
, &error_fatal
);
1600 * There is no CAS under qtest. Simulate one to please the code that
1601 * depends on spapr->ov5_cas. This is especially needed to test device
1602 * unplug, so we do that before resetting the DRCs.
1604 if (qtest_enabled()) {
1605 spapr_ovec_cleanup(spapr
->ov5_cas
);
1606 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1609 /* DRC reset may cause a device to be unplugged. This will cause troubles
1610 * if this device is used by another device (eg, a running vhost backend
1611 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1612 * situations, we reset DRCs after all devices have been reset.
1614 spapr_drc_reset_all(spapr
);
1616 spapr_clear_pending_events(spapr
);
1619 * We place the device tree and RTAS just below either the top of the RMA,
1620 * or just below 2GB, whichever is lower, so that it can be
1621 * processed with 32-bit real mode code if necessary
1623 fdt_addr
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FDT_MAX_SIZE
;
1625 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1629 /* Should only fail if we've built a corrupted tree */
1633 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1634 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1635 g_free(spapr
->fdt_blob
);
1636 spapr
->fdt_size
= fdt_totalsize(fdt
);
1637 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1638 spapr
->fdt_blob
= fdt
;
1640 /* Set up the entry state */
1641 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
, 0, fdt_addr
, 0);
1642 first_ppc_cpu
->env
.gpr
[5] = 0;
1644 spapr
->fwnmi_system_reset_addr
= -1;
1645 spapr
->fwnmi_machine_check_addr
= -1;
1646 spapr
->fwnmi_machine_check_interlock
= -1;
1648 /* Signal all vCPUs waiting on this condition */
1649 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1651 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1654 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1656 DeviceState
*dev
= qdev_new("spapr-nvram");
1657 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1660 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1664 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1666 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1669 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1671 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1672 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1673 &error_fatal
, NULL
);
1674 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1675 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1679 /* Returns whether we want to use VGA or not */
1680 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1682 switch (vga_interface_type
) {
1690 return pci_vga_init(pci_bus
) != NULL
;
1693 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1698 static int spapr_pre_load(void *opaque
)
1702 rc
= spapr_caps_pre_load(opaque
);
1710 static int spapr_post_load(void *opaque
, int version_id
)
1712 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1715 err
= spapr_caps_post_migration(spapr
);
1721 * In earlier versions, there was no separate qdev for the PAPR
1722 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1723 * So when migrating from those versions, poke the incoming offset
1724 * value into the RTC device
1726 if (version_id
< 3) {
1727 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1733 if (kvm_enabled() && spapr
->patb_entry
) {
1734 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1735 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1736 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1739 * Update LPCR:HR and UPRT as they may not be set properly in
1742 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1743 LPCR_HR
| LPCR_UPRT
);
1745 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1747 error_report("Process table config unsupported by the host");
1752 err
= spapr_irq_post_load(spapr
, version_id
);
1760 static int spapr_pre_save(void *opaque
)
1764 rc
= spapr_caps_pre_save(opaque
);
1772 static bool version_before_3(void *opaque
, int version_id
)
1774 return version_id
< 3;
1777 static bool spapr_pending_events_needed(void *opaque
)
1779 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1780 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1783 static const VMStateDescription vmstate_spapr_event_entry
= {
1784 .name
= "spapr_event_log_entry",
1786 .minimum_version_id
= 1,
1787 .fields
= (VMStateField
[]) {
1788 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1789 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1790 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1791 NULL
, extended_length
),
1792 VMSTATE_END_OF_LIST()
1796 static const VMStateDescription vmstate_spapr_pending_events
= {
1797 .name
= "spapr_pending_events",
1799 .minimum_version_id
= 1,
1800 .needed
= spapr_pending_events_needed
,
1801 .fields
= (VMStateField
[]) {
1802 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1803 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1804 VMSTATE_END_OF_LIST()
1808 static bool spapr_ov5_cas_needed(void *opaque
)
1810 SpaprMachineState
*spapr
= opaque
;
1811 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1814 /* Prior to the introduction of SpaprOptionVector, we had two option
1815 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1816 * Both of these options encode machine topology into the device-tree
1817 * in such a way that the now-booted OS should still be able to interact
1818 * appropriately with QEMU regardless of what options were actually
1819 * negotiatied on the source side.
1821 * As such, we can avoid migrating the CAS-negotiated options if these
1822 * are the only options available on the current machine/platform.
1823 * Since these are the only options available for pseries-2.7 and
1824 * earlier, this allows us to maintain old->new/new->old migration
1827 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1828 * via default pseries-2.8 machines and explicit command-line parameters.
1829 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1830 * of the actual CAS-negotiated values to continue working properly. For
1831 * example, availability of memory unplug depends on knowing whether
1832 * OV5_HP_EVT was negotiated via CAS.
1834 * Thus, for any cases where the set of available CAS-negotiatable
1835 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1836 * include the CAS-negotiated options in the migration stream, unless
1837 * if they affect boot time behaviour only.
1839 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1840 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1841 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1843 /* We need extra information if we have any bits outside the mask
1845 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1847 spapr_ovec_cleanup(ov5_mask
);
1852 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1853 .name
= "spapr_option_vector_ov5_cas",
1855 .minimum_version_id
= 1,
1856 .needed
= spapr_ov5_cas_needed
,
1857 .fields
= (VMStateField
[]) {
1858 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1859 vmstate_spapr_ovec
, SpaprOptionVector
),
1860 VMSTATE_END_OF_LIST()
1864 static bool spapr_patb_entry_needed(void *opaque
)
1866 SpaprMachineState
*spapr
= opaque
;
1868 return !!spapr
->patb_entry
;
1871 static const VMStateDescription vmstate_spapr_patb_entry
= {
1872 .name
= "spapr_patb_entry",
1874 .minimum_version_id
= 1,
1875 .needed
= spapr_patb_entry_needed
,
1876 .fields
= (VMStateField
[]) {
1877 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1878 VMSTATE_END_OF_LIST()
1882 static bool spapr_irq_map_needed(void *opaque
)
1884 SpaprMachineState
*spapr
= opaque
;
1886 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1889 static const VMStateDescription vmstate_spapr_irq_map
= {
1890 .name
= "spapr_irq_map",
1892 .minimum_version_id
= 1,
1893 .needed
= spapr_irq_map_needed
,
1894 .fields
= (VMStateField
[]) {
1895 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1896 VMSTATE_END_OF_LIST()
1900 static bool spapr_dtb_needed(void *opaque
)
1902 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1904 return smc
->update_dt_enabled
;
1907 static int spapr_dtb_pre_load(void *opaque
)
1909 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1911 g_free(spapr
->fdt_blob
);
1912 spapr
->fdt_blob
= NULL
;
1913 spapr
->fdt_size
= 0;
1918 static const VMStateDescription vmstate_spapr_dtb
= {
1919 .name
= "spapr_dtb",
1921 .minimum_version_id
= 1,
1922 .needed
= spapr_dtb_needed
,
1923 .pre_load
= spapr_dtb_pre_load
,
1924 .fields
= (VMStateField
[]) {
1925 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1926 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1927 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1929 VMSTATE_END_OF_LIST()
1933 static bool spapr_fwnmi_needed(void *opaque
)
1935 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1937 return spapr
->fwnmi_machine_check_addr
!= -1;
1940 static int spapr_fwnmi_pre_save(void *opaque
)
1942 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1945 * Check if machine check handling is in progress and print a
1948 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
1949 warn_report("A machine check is being handled during migration. The"
1950 "handler may run and log hardware error on the destination");
1956 static const VMStateDescription vmstate_spapr_fwnmi
= {
1957 .name
= "spapr_fwnmi",
1959 .minimum_version_id
= 1,
1960 .needed
= spapr_fwnmi_needed
,
1961 .pre_save
= spapr_fwnmi_pre_save
,
1962 .fields
= (VMStateField
[]) {
1963 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
1964 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
1965 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
1966 VMSTATE_END_OF_LIST()
1970 static const VMStateDescription vmstate_spapr
= {
1973 .minimum_version_id
= 1,
1974 .pre_load
= spapr_pre_load
,
1975 .post_load
= spapr_post_load
,
1976 .pre_save
= spapr_pre_save
,
1977 .fields
= (VMStateField
[]) {
1978 /* used to be @next_irq */
1979 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1982 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
1984 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
1985 VMSTATE_END_OF_LIST()
1987 .subsections
= (const VMStateDescription
*[]) {
1988 &vmstate_spapr_ov5_cas
,
1989 &vmstate_spapr_patb_entry
,
1990 &vmstate_spapr_pending_events
,
1991 &vmstate_spapr_cap_htm
,
1992 &vmstate_spapr_cap_vsx
,
1993 &vmstate_spapr_cap_dfp
,
1994 &vmstate_spapr_cap_cfpc
,
1995 &vmstate_spapr_cap_sbbc
,
1996 &vmstate_spapr_cap_ibs
,
1997 &vmstate_spapr_cap_hpt_maxpagesize
,
1998 &vmstate_spapr_irq_map
,
1999 &vmstate_spapr_cap_nested_kvm_hv
,
2001 &vmstate_spapr_cap_large_decr
,
2002 &vmstate_spapr_cap_ccf_assist
,
2003 &vmstate_spapr_cap_fwnmi
,
2004 &vmstate_spapr_fwnmi
,
2009 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2011 SpaprMachineState
*spapr
= opaque
;
2013 /* "Iteration" header */
2014 if (!spapr
->htab_shift
) {
2015 qemu_put_be32(f
, -1);
2017 qemu_put_be32(f
, spapr
->htab_shift
);
2021 spapr
->htab_save_index
= 0;
2022 spapr
->htab_first_pass
= true;
2024 if (spapr
->htab_shift
) {
2025 assert(kvm_enabled());
2033 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2034 int chunkstart
, int n_valid
, int n_invalid
)
2036 qemu_put_be32(f
, chunkstart
);
2037 qemu_put_be16(f
, n_valid
);
2038 qemu_put_be16(f
, n_invalid
);
2039 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2040 HASH_PTE_SIZE_64
* n_valid
);
2043 static void htab_save_end_marker(QEMUFile
*f
)
2045 qemu_put_be32(f
, 0);
2046 qemu_put_be16(f
, 0);
2047 qemu_put_be16(f
, 0);
2050 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2053 bool has_timeout
= max_ns
!= -1;
2054 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2055 int index
= spapr
->htab_save_index
;
2056 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2058 assert(spapr
->htab_first_pass
);
2063 /* Consume invalid HPTEs */
2064 while ((index
< htabslots
)
2065 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2066 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2070 /* Consume valid HPTEs */
2072 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2073 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2074 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2078 if (index
> chunkstart
) {
2079 int n_valid
= index
- chunkstart
;
2081 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2084 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2088 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2090 if (index
>= htabslots
) {
2091 assert(index
== htabslots
);
2093 spapr
->htab_first_pass
= false;
2095 spapr
->htab_save_index
= index
;
2098 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2101 bool final
= max_ns
< 0;
2102 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2103 int examined
= 0, sent
= 0;
2104 int index
= spapr
->htab_save_index
;
2105 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2107 assert(!spapr
->htab_first_pass
);
2110 int chunkstart
, invalidstart
;
2112 /* Consume non-dirty HPTEs */
2113 while ((index
< htabslots
)
2114 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2120 /* Consume valid dirty HPTEs */
2121 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2122 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2123 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2124 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2129 invalidstart
= index
;
2130 /* Consume invalid dirty HPTEs */
2131 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2132 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2133 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2134 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2139 if (index
> chunkstart
) {
2140 int n_valid
= invalidstart
- chunkstart
;
2141 int n_invalid
= index
- invalidstart
;
2143 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2144 sent
+= index
- chunkstart
;
2146 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2151 if (examined
>= htabslots
) {
2155 if (index
>= htabslots
) {
2156 assert(index
== htabslots
);
2159 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2161 if (index
>= htabslots
) {
2162 assert(index
== htabslots
);
2166 spapr
->htab_save_index
= index
;
2168 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2171 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2172 #define MAX_KVM_BUF_SIZE 2048
2174 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2176 SpaprMachineState
*spapr
= opaque
;
2180 /* Iteration header */
2181 if (!spapr
->htab_shift
) {
2182 qemu_put_be32(f
, -1);
2185 qemu_put_be32(f
, 0);
2189 assert(kvm_enabled());
2191 fd
= get_htab_fd(spapr
);
2196 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2200 } else if (spapr
->htab_first_pass
) {
2201 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2203 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2206 htab_save_end_marker(f
);
2211 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2213 SpaprMachineState
*spapr
= opaque
;
2216 /* Iteration header */
2217 if (!spapr
->htab_shift
) {
2218 qemu_put_be32(f
, -1);
2221 qemu_put_be32(f
, 0);
2227 assert(kvm_enabled());
2229 fd
= get_htab_fd(spapr
);
2234 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2239 if (spapr
->htab_first_pass
) {
2240 htab_save_first_pass(f
, spapr
, -1);
2242 htab_save_later_pass(f
, spapr
, -1);
2246 htab_save_end_marker(f
);
2251 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2253 SpaprMachineState
*spapr
= opaque
;
2254 uint32_t section_hdr
;
2256 Error
*local_err
= NULL
;
2258 if (version_id
< 1 || version_id
> 1) {
2259 error_report("htab_load() bad version");
2263 section_hdr
= qemu_get_be32(f
);
2265 if (section_hdr
== -1) {
2266 spapr_free_hpt(spapr
);
2273 /* First section gives the htab size */
2274 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2276 error_report_err(local_err
);
2283 assert(kvm_enabled());
2285 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2287 error_report_err(local_err
);
2294 uint16_t n_valid
, n_invalid
;
2296 index
= qemu_get_be32(f
);
2297 n_valid
= qemu_get_be16(f
);
2298 n_invalid
= qemu_get_be16(f
);
2300 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2305 if ((index
+ n_valid
+ n_invalid
) >
2306 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2307 /* Bad index in stream */
2309 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2310 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2316 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2317 HASH_PTE_SIZE_64
* n_valid
);
2320 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2321 HASH_PTE_SIZE_64
* n_invalid
);
2328 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2331 error_report_err(local_err
);
2345 static void htab_save_cleanup(void *opaque
)
2347 SpaprMachineState
*spapr
= opaque
;
2349 close_htab_fd(spapr
);
2352 static SaveVMHandlers savevm_htab_handlers
= {
2353 .save_setup
= htab_save_setup
,
2354 .save_live_iterate
= htab_save_iterate
,
2355 .save_live_complete_precopy
= htab_save_complete
,
2356 .save_cleanup
= htab_save_cleanup
,
2357 .load_state
= htab_load
,
2360 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2363 MachineState
*machine
= MACHINE(opaque
);
2364 machine
->boot_order
= g_strdup(boot_device
);
2367 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2369 MachineState
*machine
= MACHINE(spapr
);
2370 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2371 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2374 for (i
= 0; i
< nr_lmbs
; i
++) {
2377 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2378 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2384 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2385 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2386 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2388 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2392 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2393 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2394 " is not aligned to %" PRIu64
" MiB",
2396 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2400 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2401 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2402 " is not aligned to %" PRIu64
" MiB",
2404 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2408 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2409 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2411 "Node %d memory size 0x%" PRIx64
2412 " is not aligned to %" PRIu64
" MiB",
2413 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2414 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2420 /* find cpu slot in machine->possible_cpus by core_id */
2421 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2423 int index
= id
/ ms
->smp
.threads
;
2425 if (index
>= ms
->possible_cpus
->len
) {
2431 return &ms
->possible_cpus
->cpus
[index
];
2434 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2436 MachineState
*ms
= MACHINE(spapr
);
2437 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2438 Error
*local_err
= NULL
;
2439 bool vsmt_user
= !!spapr
->vsmt
;
2440 int kvm_smt
= kvmppc_smt_threads();
2442 unsigned int smp_threads
= ms
->smp
.threads
;
2444 if (!kvm_enabled() && (smp_threads
> 1)) {
2445 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2446 "on a pseries machine");
2449 if (!is_power_of_2(smp_threads
)) {
2450 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2451 "machine because it must be a power of 2", smp_threads
);
2455 /* Detemine the VSMT mode to use: */
2457 if (spapr
->vsmt
< smp_threads
) {
2458 error_setg(errp
, "Cannot support VSMT mode %d"
2459 " because it must be >= threads/core (%d)",
2460 spapr
->vsmt
, smp_threads
);
2463 /* In this case, spapr->vsmt has been set by the command line */
2464 } else if (!smc
->smp_threads_vsmt
) {
2466 * Default VSMT value is tricky, because we need it to be as
2467 * consistent as possible (for migration), but this requires
2468 * changing it for at least some existing cases. We pick 8 as
2469 * the value that we'd get with KVM on POWER8, the
2470 * overwhelmingly common case in production systems.
2472 spapr
->vsmt
= MAX(8, smp_threads
);
2474 spapr
->vsmt
= smp_threads
;
2477 /* KVM: If necessary, set the SMT mode: */
2478 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2479 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2481 /* Looks like KVM isn't able to change VSMT mode */
2482 error_setg(&local_err
,
2483 "Failed to set KVM's VSMT mode to %d (errno %d)",
2485 /* We can live with that if the default one is big enough
2486 * for the number of threads, and a submultiple of the one
2487 * we want. In this case we'll waste some vcpu ids, but
2488 * behaviour will be correct */
2489 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2490 warn_report_err(local_err
);
2493 error_append_hint(&local_err
,
2494 "On PPC, a VM with %d threads/core"
2495 " on a host with %d threads/core"
2496 " requires the use of VSMT mode %d.\n",
2497 smp_threads
, kvm_smt
, spapr
->vsmt
);
2499 kvmppc_error_append_smt_possible_hint(&local_err
);
2500 error_propagate(errp
, local_err
);
2504 /* else TCG: nothing to do currently */
2507 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2509 MachineState
*machine
= MACHINE(spapr
);
2510 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2511 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2512 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2513 const CPUArchIdList
*possible_cpus
;
2514 unsigned int smp_cpus
= machine
->smp
.cpus
;
2515 unsigned int smp_threads
= machine
->smp
.threads
;
2516 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2517 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2520 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2521 if (mc
->has_hotpluggable_cpus
) {
2522 if (smp_cpus
% smp_threads
) {
2523 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2524 smp_cpus
, smp_threads
);
2527 if (max_cpus
% smp_threads
) {
2528 error_report("max_cpus (%u) must be multiple of threads (%u)",
2529 max_cpus
, smp_threads
);
2533 if (max_cpus
!= smp_cpus
) {
2534 error_report("This machine version does not support CPU hotplug");
2537 boot_cores_nr
= possible_cpus
->len
;
2540 if (smc
->pre_2_10_has_unused_icps
) {
2543 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2544 /* Dummy entries get deregistered when real ICPState objects
2545 * are registered during CPU core hotplug.
2547 pre_2_10_vmstate_register_dummy_icp(i
);
2551 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2552 int core_id
= i
* smp_threads
;
2554 if (mc
->has_hotpluggable_cpus
) {
2555 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2556 spapr_vcpu_id(spapr
, core_id
));
2559 if (i
< boot_cores_nr
) {
2560 Object
*core
= object_new(type
);
2561 int nr_threads
= smp_threads
;
2563 /* Handle the partially filled core for older machine types */
2564 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2565 nr_threads
= smp_cpus
- i
* smp_threads
;
2568 object_property_set_int(core
, "nr-threads", nr_threads
,
2570 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2572 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2579 static PCIHostState
*spapr_create_default_phb(void)
2583 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2584 qdev_prop_set_uint32(dev
, "index", 0);
2585 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2587 return PCI_HOST_BRIDGE(dev
);
2590 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2592 MachineState
*machine
= MACHINE(spapr
);
2593 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2594 hwaddr rma_size
= machine
->ram_size
;
2595 hwaddr node0_size
= spapr_node0_size(machine
);
2597 /* RMA has to fit in the first NUMA node */
2598 rma_size
= MIN(rma_size
, node0_size
);
2601 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2604 rma_size
= MIN(rma_size
, 1 * TiB
);
2607 * Clamp the RMA size based on machine type. This is for
2608 * migration compatibility with older qemu versions, which limited
2609 * the RMA size for complicated and mostly bad reasons.
2611 if (smc
->rma_limit
) {
2612 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2615 if (rma_size
< MIN_RMA_SLOF
) {
2617 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2618 "ldMiB guest RMA (Real Mode Area memory)",
2619 MIN_RMA_SLOF
/ MiB
);
2626 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2628 MachineState
*machine
= MACHINE(spapr
);
2631 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2632 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2636 /* pSeries LPAR / sPAPR hardware init */
2637 static void spapr_machine_init(MachineState
*machine
)
2639 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2640 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2641 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2642 const char *bios_name
= machine
->firmware
?: FW_FILE_NAME
;
2643 const char *kernel_filename
= machine
->kernel_filename
;
2644 const char *initrd_filename
= machine
->initrd_filename
;
2647 MemoryRegion
*sysmem
= get_system_memory();
2648 long load_limit
, fw_size
;
2650 Error
*resize_hpt_err
= NULL
;
2653 * if Secure VM (PEF) support is configured, then initialize it
2655 pef_kvm_init(machine
->cgs
, &error_fatal
);
2657 msi_nonbroken
= true;
2659 QLIST_INIT(&spapr
->phbs
);
2660 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2662 /* Determine capabilities to run with */
2663 spapr_caps_init(spapr
);
2665 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2666 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2668 * If the user explicitly requested a mode we should either
2669 * supply it, or fail completely (which we do below). But if
2670 * it's not set explicitly, we reset our mode to something
2673 if (resize_hpt_err
) {
2674 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2675 error_free(resize_hpt_err
);
2676 resize_hpt_err
= NULL
;
2678 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2682 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2684 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2686 * User requested HPT resize, but this host can't supply it. Bail out
2688 error_report_err(resize_hpt_err
);
2691 error_free(resize_hpt_err
);
2693 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2695 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2696 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
2699 * VSMT must be set in order to be able to compute VCPU ids, ie to
2700 * call spapr_max_server_number() or spapr_vcpu_id().
2702 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2704 /* Set up Interrupt Controller before we create the VCPUs */
2705 spapr_irq_init(spapr
, &error_fatal
);
2707 /* Set up containers for ibm,client-architecture-support negotiated options
2709 spapr
->ov5
= spapr_ovec_new();
2710 spapr
->ov5_cas
= spapr_ovec_new();
2712 if (smc
->dr_lmb_enabled
) {
2713 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2714 spapr_validate_node_memory(machine
, &error_fatal
);
2717 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2719 /* advertise support for dedicated HP event source to guests */
2720 if (spapr
->use_hotplug_event_source
) {
2721 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2724 /* advertise support for HPT resizing */
2725 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2726 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2729 /* advertise support for ibm,dyamic-memory-v2 */
2730 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2732 /* advertise XIVE on POWER9 machines */
2733 if (spapr
->irq
->xive
) {
2734 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2738 spapr_init_cpus(spapr
);
2741 * check we don't have a memory-less/cpu-less NUMA node
2742 * Firmware relies on the existing memory/cpu topology to provide the
2743 * NUMA topology to the kernel.
2744 * And the linux kernel needs to know the NUMA topology at start
2745 * to be able to hotplug CPUs later.
2747 if (machine
->numa_state
->num_nodes
) {
2748 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
2749 /* check for memory-less node */
2750 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
2753 /* check for cpu-less node */
2755 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
2756 if (cpu
->node_id
== i
) {
2761 /* memory-less and cpu-less node */
2764 "Memory-less/cpu-less nodes are not supported (node %d)",
2773 spapr
->gpu_numa_id
= spapr_numa_initial_nvgpu_numa_id(machine
);
2775 /* Init numa_assoc_array */
2776 spapr_numa_associativity_init(spapr
, machine
);
2778 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2779 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2780 spapr
->max_compat_pvr
)) {
2781 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2782 /* KVM and TCG always allow GTSE with radix... */
2783 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2785 /* ... but not with hash (currently). */
2787 if (kvm_enabled()) {
2788 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2789 kvmppc_enable_logical_ci_hcalls();
2790 kvmppc_enable_set_mode_hcall();
2792 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2793 kvmppc_enable_clear_ref_mod_hcalls();
2795 /* Enable H_PAGE_INIT */
2796 kvmppc_enable_h_page_init();
2800 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2802 /* always allocate the device memory information */
2803 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2805 /* initialize hotplug memory address space */
2806 if (machine
->ram_size
< machine
->maxram_size
) {
2807 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2809 * Limit the number of hotpluggable memory slots to half the number
2810 * slots that KVM supports, leaving the other half for PCI and other
2811 * devices. However ensure that number of slots doesn't drop below 32.
2813 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2814 SPAPR_MAX_RAM_SLOTS
;
2816 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2817 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2819 if (machine
->ram_slots
> max_memslots
) {
2820 error_report("Specified number of memory slots %"
2821 PRIu64
" exceeds max supported %d",
2822 machine
->ram_slots
, max_memslots
);
2826 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2827 SPAPR_DEVICE_MEM_ALIGN
);
2828 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2829 "device-memory", device_mem_size
);
2830 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2831 &machine
->device_memory
->mr
);
2834 if (smc
->dr_lmb_enabled
) {
2835 spapr_create_lmb_dr_connectors(spapr
);
2838 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2839 /* Create the error string for live migration blocker */
2840 error_setg(&spapr
->fwnmi_migration_blocker
,
2841 "A machine check is being handled during migration. The handler"
2842 "may run and log hardware error on the destination");
2845 if (mc
->nvdimm_supported
) {
2846 spapr_create_nvdimm_dr_connectors(spapr
);
2849 /* Set up RTAS event infrastructure */
2850 spapr_events_init(spapr
);
2852 /* Set up the RTC RTAS interfaces */
2853 spapr_rtc_create(spapr
);
2855 /* Set up VIO bus */
2856 spapr
->vio_bus
= spapr_vio_bus_init();
2858 for (i
= 0; serial_hd(i
); i
++) {
2859 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2862 /* We always have at least the nvram device on VIO */
2863 spapr_create_nvram(spapr
);
2866 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2867 * connectors (described in root DT node's "ibm,drc-types" property)
2868 * are pre-initialized here. additional child connectors (such as
2869 * connectors for a PHBs PCI slots) are added as needed during their
2870 * parent's realization.
2872 if (smc
->dr_phb_enabled
) {
2873 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2874 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2879 spapr_pci_rtas_init();
2881 phb
= spapr_create_default_phb();
2883 for (i
= 0; i
< nb_nics
; i
++) {
2884 NICInfo
*nd
= &nd_table
[i
];
2887 nd
->model
= g_strdup("spapr-vlan");
2890 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2891 g_str_equal(nd
->model
, "ibmveth")) {
2892 spapr_vlan_create(spapr
->vio_bus
, nd
);
2894 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2898 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2899 spapr_vscsi_create(spapr
->vio_bus
);
2903 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2904 spapr
->has_graphics
= true;
2905 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2909 if (smc
->use_ohci_by_default
) {
2910 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2912 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2915 if (spapr
->has_graphics
) {
2916 USBBus
*usb_bus
= usb_bus_find(-1);
2918 usb_create_simple(usb_bus
, "usb-kbd");
2919 usb_create_simple(usb_bus
, "usb-mouse");
2923 if (kernel_filename
) {
2924 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2925 translate_kernel_address
, spapr
,
2926 NULL
, NULL
, NULL
, NULL
, 1,
2927 PPC_ELF_MACHINE
, 0, 0);
2928 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2929 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2930 translate_kernel_address
, spapr
,
2931 NULL
, NULL
, NULL
, NULL
, 0,
2932 PPC_ELF_MACHINE
, 0, 0);
2933 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2935 if (spapr
->kernel_size
< 0) {
2936 error_report("error loading %s: %s", kernel_filename
,
2937 load_elf_strerror(spapr
->kernel_size
));
2942 if (initrd_filename
) {
2943 /* Try to locate the initrd in the gap between the kernel
2944 * and the firmware. Add a bit of space just in case
2946 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
2947 + 0x1ffff) & ~0xffff;
2948 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2951 - spapr
->initrd_base
);
2952 if (spapr
->initrd_size
< 0) {
2953 error_report("could not load initial ram disk '%s'",
2960 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2962 error_report("Could not find LPAR firmware '%s'", bios_name
);
2965 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2967 error_report("Could not load LPAR firmware '%s'", filename
);
2972 /* FIXME: Should register things through the MachineState's qdev
2973 * interface, this is a legacy from the sPAPREnvironment structure
2974 * which predated MachineState but had a similar function */
2975 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2976 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
2977 &savevm_htab_handlers
, spapr
);
2979 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
2981 qemu_register_boot_set(spapr_boot_set
, spapr
);
2984 * Nothing needs to be done to resume a suspended guest because
2985 * suspending does not change the machine state, so no need for
2986 * a ->wakeup method.
2988 qemu_register_wakeup_support();
2990 if (kvm_enabled()) {
2991 /* to stop and start vmclock */
2992 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
2995 kvmppc_spapr_enable_inkernel_multitce();
2998 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3001 #define DEFAULT_KVM_TYPE "auto"
3002 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3005 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3006 * accomodate the 'HV' and 'PV' formats that exists in the
3007 * wild. The 'auto' mode is being introduced already as
3008 * lower-case, thus we don't need to bother checking for
3011 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3015 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3019 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3023 error_report("Unknown kvm-type specified '%s'", vm_type
);
3028 * Implementation of an interface to adjust firmware path
3029 * for the bootindex property handling.
3031 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3034 #define CAST(type, obj, name) \
3035 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3036 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3037 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3038 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3039 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3042 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3043 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3044 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3048 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3049 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3050 * 0x8000 | (target << 8) | (bus << 5) | lun
3051 * (see the "Logical unit addressing format" table in SAM5)
3053 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3054 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3055 (uint64_t)id
<< 48);
3056 } else if (virtio
) {
3058 * We use SRP luns of the form 01000000 | (target << 8) | lun
3059 * in the top 32 bits of the 64-bit LUN
3060 * Note: the quote above is from SLOF and it is wrong,
3061 * the actual binding is:
3062 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3064 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3065 if (d
->lun
>= 256) {
3066 /* Use the LUN "flat space addressing method" */
3069 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3070 (uint64_t)id
<< 32);
3073 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3074 * in the top 32 bits of the 64-bit LUN
3076 unsigned usb_port
= atoi(usb
->port
->path
);
3077 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3078 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3079 (uint64_t)id
<< 32);
3084 * SLOF probes the USB devices, and if it recognizes that the device is a
3085 * storage device, it changes its name to "storage" instead of "usb-host",
3086 * and additionally adds a child node for the SCSI LUN, so the correct
3087 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3089 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3090 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3091 if (usb_host_dev_is_scsi_storage(usbdev
)) {
3092 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3097 /* Replace "pci" with "pci@800000020000000" */
3098 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3102 /* Same logic as virtio above */
3103 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3104 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3107 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3108 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3109 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3110 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3114 return spapr_pci_fw_dev_name(pcidev
);
3120 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3122 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3124 return g_strdup(spapr
->kvm_type
);
3127 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3129 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3131 g_free(spapr
->kvm_type
);
3132 spapr
->kvm_type
= g_strdup(value
);
3135 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3137 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3139 return spapr
->use_hotplug_event_source
;
3142 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3145 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3147 spapr
->use_hotplug_event_source
= value
;
3150 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3155 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3157 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3159 switch (spapr
->resize_hpt
) {
3160 case SPAPR_RESIZE_HPT_DEFAULT
:
3161 return g_strdup("default");
3162 case SPAPR_RESIZE_HPT_DISABLED
:
3163 return g_strdup("disabled");
3164 case SPAPR_RESIZE_HPT_ENABLED
:
3165 return g_strdup("enabled");
3166 case SPAPR_RESIZE_HPT_REQUIRED
:
3167 return g_strdup("required");
3169 g_assert_not_reached();
3172 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3174 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3176 if (strcmp(value
, "default") == 0) {
3177 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3178 } else if (strcmp(value
, "disabled") == 0) {
3179 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3180 } else if (strcmp(value
, "enabled") == 0) {
3181 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3182 } else if (strcmp(value
, "required") == 0) {
3183 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3185 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3189 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3191 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3193 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3194 return g_strdup("legacy");
3195 } else if (spapr
->irq
== &spapr_irq_xics
) {
3196 return g_strdup("xics");
3197 } else if (spapr
->irq
== &spapr_irq_xive
) {
3198 return g_strdup("xive");
3199 } else if (spapr
->irq
== &spapr_irq_dual
) {
3200 return g_strdup("dual");
3202 g_assert_not_reached();
3205 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3207 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3209 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3210 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3214 /* The legacy IRQ backend can not be set */
3215 if (strcmp(value
, "xics") == 0) {
3216 spapr
->irq
= &spapr_irq_xics
;
3217 } else if (strcmp(value
, "xive") == 0) {
3218 spapr
->irq
= &spapr_irq_xive
;
3219 } else if (strcmp(value
, "dual") == 0) {
3220 spapr
->irq
= &spapr_irq_dual
;
3222 error_setg(errp
, "Bad value for \"ic-mode\" property");
3226 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3228 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3230 return g_strdup(spapr
->host_model
);
3233 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3235 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3237 g_free(spapr
->host_model
);
3238 spapr
->host_model
= g_strdup(value
);
3241 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3243 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3245 return g_strdup(spapr
->host_serial
);
3248 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3250 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3252 g_free(spapr
->host_serial
);
3253 spapr
->host_serial
= g_strdup(value
);
3256 static void spapr_instance_init(Object
*obj
)
3258 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3259 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3260 MachineState
*ms
= MACHINE(spapr
);
3261 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3264 * NVDIMM support went live in 5.1 without considering that, in
3265 * other archs, the user needs to enable NVDIMM support with the
3266 * 'nvdimm' machine option and the default behavior is NVDIMM
3267 * support disabled. It is too late to roll back to the standard
3268 * behavior without breaking 5.1 guests.
3270 if (mc
->nvdimm_supported
) {
3271 ms
->nvdimms_state
->is_enabled
= true;
3274 spapr
->htab_fd
= -1;
3275 spapr
->use_hotplug_event_source
= true;
3276 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3277 object_property_add_str(obj
, "kvm-type",
3278 spapr_get_kvm_type
, spapr_set_kvm_type
);
3279 object_property_set_description(obj
, "kvm-type",
3280 "Specifies the KVM virtualization mode (auto,"
3281 " hv, pr). Defaults to 'auto'. This mode will use"
3282 " any available KVM module loaded in the host,"
3283 " where kvm_hv takes precedence if both kvm_hv and"
3284 " kvm_pr are loaded.");
3285 object_property_add_bool(obj
, "modern-hotplug-events",
3286 spapr_get_modern_hotplug_events
,
3287 spapr_set_modern_hotplug_events
);
3288 object_property_set_description(obj
, "modern-hotplug-events",
3289 "Use dedicated hotplug event mechanism in"
3290 " place of standard EPOW events when possible"
3291 " (required for memory hot-unplug support)");
3292 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3293 "Maximum permitted CPU compatibility mode");
3295 object_property_add_str(obj
, "resize-hpt",
3296 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3297 object_property_set_description(obj
, "resize-hpt",
3298 "Resizing of the Hash Page Table (enabled, disabled, required)");
3299 object_property_add_uint32_ptr(obj
, "vsmt",
3300 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3301 object_property_set_description(obj
, "vsmt",
3302 "Virtual SMT: KVM behaves as if this were"
3303 " the host's SMT mode");
3305 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3306 spapr_get_msix_emulation
, NULL
);
3308 object_property_add_uint64_ptr(obj
, "kernel-addr",
3309 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3310 object_property_set_description(obj
, "kernel-addr",
3311 stringify(KERNEL_LOAD_ADDR
)
3312 " for -kernel is the default");
3313 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3314 /* The machine class defines the default interrupt controller mode */
3315 spapr
->irq
= smc
->irq
;
3316 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3318 object_property_set_description(obj
, "ic-mode",
3319 "Specifies the interrupt controller mode (xics, xive, dual)");
3321 object_property_add_str(obj
, "host-model",
3322 spapr_get_host_model
, spapr_set_host_model
);
3323 object_property_set_description(obj
, "host-model",
3324 "Host model to advertise in guest device tree");
3325 object_property_add_str(obj
, "host-serial",
3326 spapr_get_host_serial
, spapr_set_host_serial
);
3327 object_property_set_description(obj
, "host-serial",
3328 "Host serial number to advertise in guest device tree");
3331 static void spapr_machine_finalizefn(Object
*obj
)
3333 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3335 g_free(spapr
->kvm_type
);
3338 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3340 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3341 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3342 CPUPPCState
*env
= &cpu
->env
;
3344 cpu_synchronize_state(cs
);
3345 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3346 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3347 uint64_t rtas_addr
, addr
;
3349 /* get rtas addr from fdt */
3350 rtas_addr
= spapr_get_rtas_addr();
3352 qemu_system_guest_panicked(NULL
);
3356 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3357 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3358 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3361 ppc_cpu_do_system_reset(cs
);
3362 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3363 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3367 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3372 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3376 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3377 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3382 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3383 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3385 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3386 SPAPR_MEMORY_BLOCK_SIZE
);
3390 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3391 bool dedicated_hp_event_source
)
3394 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3396 uint64_t addr
= addr_start
;
3397 bool hotplugged
= spapr_drc_hotplugged(dev
);
3399 for (i
= 0; i
< nr_lmbs
; i
++) {
3400 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3401 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3405 * memory_device_get_free_addr() provided a range of free addresses
3406 * that doesn't overlap with any existing mapping at pre-plug. The
3407 * corresponding LMB DRCs are thus assumed to be all attachable.
3409 spapr_drc_attach(drc
, dev
);
3411 spapr_drc_reset(drc
);
3413 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3415 /* send hotplug notification to the
3416 * guest only in case of hotplugged memory
3419 if (dedicated_hp_event_source
) {
3420 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3421 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3423 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3425 spapr_drc_index(drc
));
3427 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3433 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3435 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3436 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3437 uint64_t size
, addr
;
3439 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3441 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3443 pc_dimm_plug(dimm
, MACHINE(ms
));
3446 addr
= object_property_get_uint(OBJECT(dimm
),
3447 PC_DIMM_ADDR_PROP
, &error_abort
);
3448 spapr_add_lmbs(dev
, addr
, size
,
3449 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3451 slot
= object_property_get_int(OBJECT(dimm
),
3452 PC_DIMM_SLOT_PROP
, &error_abort
);
3453 /* We should have valid slot number at this point */
3454 g_assert(slot
>= 0);
3455 spapr_add_nvdimm(dev
, slot
);
3459 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3462 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3463 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3464 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3465 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3466 Error
*local_err
= NULL
;
3471 if (!smc
->dr_lmb_enabled
) {
3472 error_setg(errp
, "Memory hotplug not supported for this machine");
3476 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3478 error_propagate(errp
, local_err
);
3483 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3486 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3487 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3488 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3492 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3494 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3495 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3499 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3502 struct SpaprDimmState
{
3505 QTAILQ_ENTRY(SpaprDimmState
) next
;
3508 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3511 SpaprDimmState
*dimm_state
= NULL
;
3513 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3514 if (dimm_state
->dimm
== dimm
) {
3521 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3525 SpaprDimmState
*ds
= NULL
;
3528 * If this request is for a DIMM whose removal had failed earlier
3529 * (due to guest's refusal to remove the LMBs), we would have this
3530 * dimm already in the pending_dimm_unplugs list. In that
3531 * case don't add again.
3533 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3535 ds
= g_malloc0(sizeof(SpaprDimmState
));
3536 ds
->nr_lmbs
= nr_lmbs
;
3538 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3543 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3544 SpaprDimmState
*dimm_state
)
3546 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3550 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3554 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3556 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3557 uint32_t avail_lmbs
= 0;
3558 uint64_t addr_start
, addr
;
3561 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3565 for (i
= 0; i
< nr_lmbs
; i
++) {
3566 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3567 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3572 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3575 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3578 /* Callback to be called during DRC release. */
3579 void spapr_lmb_release(DeviceState
*dev
)
3581 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3582 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3583 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3585 /* This information will get lost if a migration occurs
3586 * during the unplug process. In this case recover it. */
3588 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3590 /* The DRC being examined by the caller at least must be counted */
3591 g_assert(ds
->nr_lmbs
);
3594 if (--ds
->nr_lmbs
) {
3599 * Now that all the LMBs have been removed by the guest, call the
3600 * unplug handler chain. This can never fail.
3602 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3603 object_unparent(OBJECT(dev
));
3606 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3608 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3609 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3611 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3612 qdev_unrealize(dev
);
3613 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3616 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3617 DeviceState
*dev
, Error
**errp
)
3619 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3620 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3622 uint64_t size
, addr_start
, addr
;
3626 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3627 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3631 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3632 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3634 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3638 * An existing pending dimm state for this DIMM means that there is an
3639 * unplug operation in progress, waiting for the spapr_lmb_release
3640 * callback to complete the job (BQL can't cover that far). In this case,
3641 * bail out to avoid detaching DRCs that were already released.
3643 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3644 error_setg(errp
, "Memory unplug already in progress for device %s",
3649 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3652 for (i
= 0; i
< nr_lmbs
; i
++) {
3653 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3654 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3657 spapr_drc_detach(drc
);
3658 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3661 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3662 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3664 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3665 nr_lmbs
, spapr_drc_index(drc
));
3668 /* Callback to be called during DRC release. */
3669 void spapr_core_release(DeviceState
*dev
)
3671 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3673 /* Call the unplug handler chain. This can never fail. */
3674 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3675 object_unparent(OBJECT(dev
));
3678 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3680 MachineState
*ms
= MACHINE(hotplug_dev
);
3681 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3682 CPUCore
*cc
= CPU_CORE(dev
);
3683 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3685 if (smc
->pre_2_10_has_unused_icps
) {
3686 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3689 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3690 CPUState
*cs
= CPU(sc
->threads
[i
]);
3692 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3697 core_slot
->cpu
= NULL
;
3698 qdev_unrealize(dev
);
3702 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3705 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3708 CPUCore
*cc
= CPU_CORE(dev
);
3710 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3711 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3716 error_setg(errp
, "Boot CPU core may not be unplugged");
3720 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3721 spapr_vcpu_id(spapr
, cc
->core_id
));
3724 if (!spapr_drc_unplug_requested(drc
)) {
3725 spapr_drc_detach(drc
);
3726 spapr_hotplug_req_remove_by_index(drc
);
3730 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3731 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3733 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3734 CPUState
*cs
= CPU(core
->threads
[0]);
3735 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3736 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3737 int id
= spapr_get_vcpu_id(cpu
);
3738 g_autofree
char *nodename
= NULL
;
3741 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3742 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3744 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3747 * spapr_dt_cpu() does not fill the 'name' property in the
3748 * CPU node. The function is called during boot process, before
3749 * and after CAS, and overwriting the 'name' property written
3750 * by SLOF is not allowed.
3752 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3753 * CPUs more compatible with the coldplugged ones, which have
3754 * the 'name' property. Linux Kernel also relies on this
3755 * property to identify CPU nodes.
3757 _FDT((fdt_setprop_string(fdt
, offset
, "name", nodename
)));
3759 *fdt_start_offset
= offset
;
3763 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3765 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3766 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3767 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3768 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3769 CPUCore
*cc
= CPU_CORE(dev
);
3772 CPUArchId
*core_slot
;
3774 bool hotplugged
= spapr_drc_hotplugged(dev
);
3777 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3778 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3780 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3781 spapr_vcpu_id(spapr
, cc
->core_id
));
3783 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3787 * spapr_core_pre_plug() already buys us this is a brand new
3788 * core being plugged into a free slot. Nothing should already
3789 * be attached to the corresponding DRC.
3791 spapr_drc_attach(drc
, dev
);
3795 * Send hotplug notification interrupt to the guest only
3796 * in case of hotplugged CPUs.
3798 spapr_hotplug_req_add_by_index(drc
);
3800 spapr_drc_reset(drc
);
3804 core_slot
->cpu
= OBJECT(dev
);
3807 * Set compatibility mode to match the boot CPU, which was either set
3808 * by the machine reset code or by CAS. This really shouldn't fail at
3812 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3813 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3818 if (smc
->pre_2_10_has_unused_icps
) {
3819 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3820 cs
= CPU(core
->threads
[i
]);
3821 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3826 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3829 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3830 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3831 CPUCore
*cc
= CPU_CORE(dev
);
3832 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3833 const char *type
= object_get_typename(OBJECT(dev
));
3834 CPUArchId
*core_slot
;
3836 unsigned int smp_threads
= machine
->smp
.threads
;
3838 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3839 error_setg(errp
, "CPU hotplug not supported for this machine");
3843 if (strcmp(base_core_type
, type
)) {
3844 error_setg(errp
, "CPU core type should be %s", base_core_type
);
3848 if (cc
->core_id
% smp_threads
) {
3849 error_setg(errp
, "invalid core id %d", cc
->core_id
);
3854 * In general we should have homogeneous threads-per-core, but old
3855 * (pre hotplug support) machine types allow the last core to have
3856 * reduced threads as a compatibility hack for when we allowed
3857 * total vcpus not a multiple of threads-per-core.
3859 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3860 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
3865 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3867 error_setg(errp
, "core id %d out of range", cc
->core_id
);
3871 if (core_slot
->cpu
) {
3872 error_setg(errp
, "core %d already populated", cc
->core_id
);
3876 numa_cpu_pre_plug(core_slot
, dev
, errp
);
3879 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3880 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3882 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3885 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3886 if (intc_phandle
<= 0) {
3890 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
3891 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
3895 /* generally SLOF creates these, for hotplug it's up to QEMU */
3896 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
3901 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3904 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3905 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3906 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3907 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
3910 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
3911 error_setg(errp
, "PHB hotplug not supported for this machine");
3915 if (sphb
->index
== (uint32_t)-1) {
3916 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
3920 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3921 if (drc
&& drc
->dev
) {
3922 error_setg(errp
, "PHB %d already attached", sphb
->index
);
3927 * This will check that sphb->index doesn't exceed the maximum number of
3928 * PHBs for the current machine type.
3931 smc
->phb_placement(spapr
, sphb
->index
,
3932 &sphb
->buid
, &sphb
->io_win_addr
,
3933 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
3934 windows_supported
, sphb
->dma_liobn
,
3935 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
3939 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3941 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3942 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3943 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3945 bool hotplugged
= spapr_drc_hotplugged(dev
);
3947 if (!smc
->dr_phb_enabled
) {
3951 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3952 /* hotplug hooks should check it's enabled before getting this far */
3955 /* spapr_phb_pre_plug() already checked the DRC is attachable */
3956 spapr_drc_attach(drc
, dev
);
3959 spapr_hotplug_req_add_by_index(drc
);
3961 spapr_drc_reset(drc
);
3965 void spapr_phb_release(DeviceState
*dev
)
3967 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3969 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3970 object_unparent(OBJECT(dev
));
3973 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3975 qdev_unrealize(dev
);
3978 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
3979 DeviceState
*dev
, Error
**errp
)
3981 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
3984 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
3987 if (!spapr_drc_unplug_requested(drc
)) {
3988 spapr_drc_detach(drc
);
3989 spapr_hotplug_req_remove_by_index(drc
);
3994 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3997 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3999 if (spapr
->tpm_proxy
!= NULL
) {
4000 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4007 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4009 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4010 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4012 /* Already checked in spapr_tpm_proxy_pre_plug() */
4013 g_assert(spapr
->tpm_proxy
== NULL
);
4015 spapr
->tpm_proxy
= tpm_proxy
;
4018 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4020 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4022 qdev_unrealize(dev
);
4023 object_unparent(OBJECT(dev
));
4024 spapr
->tpm_proxy
= NULL
;
4027 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4028 DeviceState
*dev
, Error
**errp
)
4030 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4031 spapr_memory_plug(hotplug_dev
, dev
);
4032 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4033 spapr_core_plug(hotplug_dev
, dev
);
4034 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4035 spapr_phb_plug(hotplug_dev
, dev
);
4036 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4037 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4041 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4042 DeviceState
*dev
, Error
**errp
)
4044 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4045 spapr_memory_unplug(hotplug_dev
, dev
);
4046 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4047 spapr_core_unplug(hotplug_dev
, dev
);
4048 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4049 spapr_phb_unplug(hotplug_dev
, dev
);
4050 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4051 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4055 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4057 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4059 * CAS will process all pending unplug requests.
4061 * HACK: a guest could theoretically have cleared all bits in OV5,
4062 * but none of the guests we care for do.
4064 spapr_ovec_empty(spapr
->ov5_cas
);
4067 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4068 DeviceState
*dev
, Error
**errp
)
4070 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4071 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4072 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4074 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4075 if (spapr_memory_hot_unplug_supported(sms
)) {
4076 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4078 error_setg(errp
, "Memory hot unplug not supported for this guest");
4080 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4081 if (!mc
->has_hotpluggable_cpus
) {
4082 error_setg(errp
, "CPU hot unplug not supported on this machine");
4085 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4086 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4087 if (!smc
->dr_phb_enabled
) {
4088 error_setg(errp
, "PHB hot unplug not supported on this machine");
4091 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4092 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4093 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4097 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4098 DeviceState
*dev
, Error
**errp
)
4100 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4101 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4102 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4103 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4104 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4105 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4106 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4107 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4111 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4114 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4115 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4116 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4117 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4118 return HOTPLUG_HANDLER(machine
);
4120 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4121 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4122 PCIBus
*root
= pci_device_root_bus(pcidev
);
4123 SpaprPhbState
*phb
=
4124 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4125 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4128 return HOTPLUG_HANDLER(phb
);
4134 static CpuInstanceProperties
4135 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4137 CPUArchId
*core_slot
;
4138 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4140 /* make sure possible_cpu are intialized */
4141 mc
->possible_cpu_arch_ids(machine
);
4142 /* get CPU core slot containing thread that matches cpu_index */
4143 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4145 return core_slot
->props
;
4148 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4150 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4153 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4156 unsigned int smp_threads
= machine
->smp
.threads
;
4157 unsigned int smp_cpus
= machine
->smp
.cpus
;
4158 const char *core_type
;
4159 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4160 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4162 if (!mc
->has_hotpluggable_cpus
) {
4163 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4165 if (machine
->possible_cpus
) {
4166 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4167 return machine
->possible_cpus
;
4170 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4172 error_report("Unable to find sPAPR CPU Core definition");
4176 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4177 sizeof(CPUArchId
) * spapr_max_cores
);
4178 machine
->possible_cpus
->len
= spapr_max_cores
;
4179 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4180 int core_id
= i
* smp_threads
;
4182 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4183 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4184 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4185 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4186 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4188 return machine
->possible_cpus
;
4191 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4192 uint64_t *buid
, hwaddr
*pio
,
4193 hwaddr
*mmio32
, hwaddr
*mmio64
,
4194 unsigned n_dma
, uint32_t *liobns
,
4195 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4198 * New-style PHB window placement.
4200 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4201 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4204 * Some guest kernels can't work with MMIO windows above 1<<46
4205 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4207 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4208 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4209 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4210 * 1TiB 64-bit MMIO windows for each PHB.
4212 const uint64_t base_buid
= 0x800000020000000ULL
;
4215 /* Sanity check natural alignments */
4216 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4217 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4218 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4219 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4220 /* Sanity check bounds */
4221 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4222 SPAPR_PCI_MEM32_WIN_SIZE
);
4223 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4224 SPAPR_PCI_MEM64_WIN_SIZE
);
4226 if (index
>= SPAPR_MAX_PHBS
) {
4227 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4228 SPAPR_MAX_PHBS
- 1);
4232 *buid
= base_buid
+ index
;
4233 for (i
= 0; i
< n_dma
; ++i
) {
4234 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4237 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4238 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4239 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4241 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4242 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4246 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4248 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4250 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4253 static void spapr_ics_resend(XICSFabric
*dev
)
4255 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4257 ics_resend(spapr
->ics
);
4260 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4262 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4264 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4267 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4270 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4272 spapr_irq_print_info(spapr
, mon
);
4273 monitor_printf(mon
, "irqchip: %s\n",
4274 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4278 * This is a XIVE only operation
4280 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4281 uint8_t nvt_blk
, uint32_t nvt_idx
,
4282 bool cam_ignore
, uint8_t priority
,
4283 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4285 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4286 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4287 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4290 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4291 priority
, logic_serv
, match
);
4297 * When we implement the save and restore of the thread interrupt
4298 * contexts in the enter/exit CPU handlers of the machine and the
4299 * escalations in QEMU, we should be able to handle non dispatched
4302 * Until this is done, the sPAPR machine should find at least one
4303 * matching context always.
4306 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4313 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4315 return cpu
->vcpu_id
;
4318 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4320 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4321 MachineState
*ms
= MACHINE(spapr
);
4324 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4326 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4327 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4328 error_append_hint(errp
, "Adjust the number of cpus to %d "
4329 "or try to raise the number of threads per core\n",
4330 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4334 cpu
->vcpu_id
= vcpu_id
;
4338 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4343 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4345 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4353 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4355 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4357 /* These are only called by TCG, KVM maintains dispatch state */
4359 spapr_cpu
->prod
= false;
4360 if (spapr_cpu
->vpa_addr
) {
4361 CPUState
*cs
= CPU(cpu
);
4364 dispatch
= ldl_be_phys(cs
->as
,
4365 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4367 if ((dispatch
& 1) != 0) {
4368 qemu_log_mask(LOG_GUEST_ERROR
,
4369 "VPA: incorrect dispatch counter value for "
4370 "dispatched partition %u, correcting.\n", dispatch
);
4374 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4378 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4380 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4382 if (spapr_cpu
->vpa_addr
) {
4383 CPUState
*cs
= CPU(cpu
);
4386 dispatch
= ldl_be_phys(cs
->as
,
4387 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4389 if ((dispatch
& 1) != 1) {
4390 qemu_log_mask(LOG_GUEST_ERROR
,
4391 "VPA: incorrect dispatch counter value for "
4392 "preempted partition %u, correcting.\n", dispatch
);
4396 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4400 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4402 MachineClass
*mc
= MACHINE_CLASS(oc
);
4403 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4404 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4405 NMIClass
*nc
= NMI_CLASS(oc
);
4406 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4407 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4408 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4409 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4410 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4412 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4413 mc
->ignore_boot_device_suffixes
= true;
4416 * We set up the default / latest behaviour here. The class_init
4417 * functions for the specific versioned machine types can override
4418 * these details for backwards compatibility
4420 mc
->init
= spapr_machine_init
;
4421 mc
->reset
= spapr_machine_reset
;
4422 mc
->block_default_type
= IF_SCSI
;
4423 mc
->max_cpus
= 1024;
4424 mc
->no_parallel
= 1;
4425 mc
->default_boot_order
= "";
4426 mc
->default_ram_size
= 512 * MiB
;
4427 mc
->default_ram_id
= "ppc_spapr.ram";
4428 mc
->default_display
= "std";
4429 mc
->kvm_type
= spapr_kvm_type
;
4430 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4431 mc
->pci_allow_0_address
= true;
4432 assert(!mc
->get_hotplug_handler
);
4433 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4434 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4435 hc
->plug
= spapr_machine_device_plug
;
4436 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4437 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4438 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4439 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4440 hc
->unplug
= spapr_machine_device_unplug
;
4442 smc
->dr_lmb_enabled
= true;
4443 smc
->update_dt_enabled
= true;
4444 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4445 mc
->has_hotpluggable_cpus
= true;
4446 mc
->nvdimm_supported
= true;
4447 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4448 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4449 nc
->nmi_monitor_handler
= spapr_nmi
;
4450 smc
->phb_placement
= spapr_phb_placement
;
4451 vhc
->hypercall
= emulate_spapr_hypercall
;
4452 vhc
->hpt_mask
= spapr_hpt_mask
;
4453 vhc
->map_hptes
= spapr_map_hptes
;
4454 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4455 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4456 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4457 vhc
->get_pate
= spapr_get_pate
;
4458 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4459 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4460 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4461 xic
->ics_get
= spapr_ics_get
;
4462 xic
->ics_resend
= spapr_ics_resend
;
4463 xic
->icp_get
= spapr_icp_get
;
4464 ispc
->print_info
= spapr_pic_print_info
;
4465 /* Force NUMA node memory size to be a multiple of
4466 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4467 * in which LMBs are represented and hot-added
4469 mc
->numa_mem_align_shift
= 28;
4470 mc
->auto_enable_numa
= true;
4472 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4473 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4474 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4475 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4476 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4477 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4478 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4479 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4480 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4481 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4482 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4483 spapr_caps_add_properties(smc
);
4484 smc
->irq
= &spapr_irq_dual
;
4485 smc
->dr_phb_enabled
= true;
4486 smc
->linux_pci_probe
= true;
4487 smc
->smp_threads_vsmt
= true;
4488 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4489 xfc
->match_nvt
= spapr_match_nvt
;
4492 static const TypeInfo spapr_machine_info
= {
4493 .name
= TYPE_SPAPR_MACHINE
,
4494 .parent
= TYPE_MACHINE
,
4496 .instance_size
= sizeof(SpaprMachineState
),
4497 .instance_init
= spapr_instance_init
,
4498 .instance_finalize
= spapr_machine_finalizefn
,
4499 .class_size
= sizeof(SpaprMachineClass
),
4500 .class_init
= spapr_machine_class_init
,
4501 .interfaces
= (InterfaceInfo
[]) {
4502 { TYPE_FW_PATH_PROVIDER
},
4504 { TYPE_HOTPLUG_HANDLER
},
4505 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4506 { TYPE_XICS_FABRIC
},
4507 { TYPE_INTERRUPT_STATS_PROVIDER
},
4508 { TYPE_XIVE_FABRIC
},
4513 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4515 mc
->alias
= "pseries";
4516 mc
->is_default
= true;
4519 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4520 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4523 MachineClass *mc = MACHINE_CLASS(oc); \
4524 spapr_machine_##suffix##_class_options(mc); \
4526 spapr_machine_latest_class_options(mc); \
4529 static const TypeInfo spapr_machine_##suffix##_info = { \
4530 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4531 .parent = TYPE_SPAPR_MACHINE, \
4532 .class_init = spapr_machine_##suffix##_class_init, \
4534 static void spapr_machine_register_##suffix(void) \
4536 type_register(&spapr_machine_##suffix##_info); \
4538 type_init(spapr_machine_register_##suffix)
4543 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4545 /* Defaults for the latest behaviour inherited from the base class */
4548 DEFINE_SPAPR_MACHINE(6_0
, "6.0", true);
4553 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4555 spapr_machine_6_0_class_options(mc
);
4556 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4559 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4564 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4566 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4568 spapr_machine_5_2_class_options(mc
);
4569 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4570 smc
->pre_5_2_numa_associativity
= true;
4573 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4578 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4580 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4581 static GlobalProperty compat
[] = {
4582 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4585 spapr_machine_5_1_class_options(mc
);
4586 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4587 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4588 mc
->numa_mem_supported
= true;
4589 smc
->pre_5_1_assoc_refpoints
= true;
4592 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4597 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4599 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4601 spapr_machine_5_0_class_options(mc
);
4602 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4603 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4604 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4605 smc
->rma_limit
= 16 * GiB
;
4606 mc
->nvdimm_supported
= false;
4609 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4614 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4616 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4617 static GlobalProperty compat
[] = {
4618 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4619 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4622 spapr_machine_4_2_class_options(mc
);
4623 smc
->linux_pci_probe
= false;
4624 smc
->smp_threads_vsmt
= false;
4625 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4626 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4629 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4634 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4635 uint64_t *buid
, hwaddr
*pio
,
4636 hwaddr
*mmio32
, hwaddr
*mmio64
,
4637 unsigned n_dma
, uint32_t *liobns
,
4638 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4640 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4641 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4649 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4651 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4653 spapr_machine_4_1_class_options(mc
);
4654 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4655 smc
->phb_placement
= phb_placement_4_0
;
4656 smc
->irq
= &spapr_irq_xics
;
4657 smc
->pre_4_1_migration
= true;
4660 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4665 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4667 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4669 spapr_machine_4_0_class_options(mc
);
4670 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4672 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4673 smc
->update_dt_enabled
= false;
4674 smc
->dr_phb_enabled
= false;
4675 smc
->broken_host_serial_model
= true;
4676 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4677 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4678 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4679 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4682 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4688 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4690 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4692 spapr_machine_3_1_class_options(mc
);
4693 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4695 smc
->legacy_irq_allocation
= true;
4696 smc
->nr_xirqs
= 0x400;
4697 smc
->irq
= &spapr_irq_xics_legacy
;
4700 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4705 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4707 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4708 static GlobalProperty compat
[] = {
4709 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4710 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4713 spapr_machine_3_0_class_options(mc
);
4714 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4715 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4717 /* We depend on kvm_enabled() to choose a default value for the
4718 * hpt-max-page-size capability. Of course we can't do it here
4719 * because this is too early and the HW accelerator isn't initialzed
4720 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4722 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4725 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4727 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4729 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4731 spapr_machine_2_12_class_options(mc
);
4732 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4733 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4734 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4737 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4743 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4745 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4747 spapr_machine_2_12_class_options(mc
);
4748 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4749 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4752 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4758 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4760 spapr_machine_2_11_class_options(mc
);
4761 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4764 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4770 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4772 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4773 static GlobalProperty compat
[] = {
4774 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4777 spapr_machine_2_10_class_options(mc
);
4778 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4779 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4780 smc
->pre_2_10_has_unused_icps
= true;
4781 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4784 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4790 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4792 static GlobalProperty compat
[] = {
4793 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4796 spapr_machine_2_9_class_options(mc
);
4797 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4798 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4799 mc
->numa_mem_align_shift
= 23;
4802 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4808 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4809 uint64_t *buid
, hwaddr
*pio
,
4810 hwaddr
*mmio32
, hwaddr
*mmio64
,
4811 unsigned n_dma
, uint32_t *liobns
,
4812 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4814 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4815 const uint64_t base_buid
= 0x800000020000000ULL
;
4816 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4817 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4818 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4819 const uint32_t max_index
= 255;
4820 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4822 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4823 hwaddr phb0_base
, phb_base
;
4826 /* Do we have device memory? */
4827 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4828 /* Can't just use maxram_size, because there may be an
4829 * alignment gap between normal and device memory regions
4831 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4832 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4835 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4837 if (index
> max_index
) {
4838 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4843 *buid
= base_buid
+ index
;
4844 for (i
= 0; i
< n_dma
; ++i
) {
4845 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4848 phb_base
= phb0_base
+ index
* phb_spacing
;
4849 *pio
= phb_base
+ pio_offset
;
4850 *mmio32
= phb_base
+ mmio_offset
;
4852 * We don't set the 64-bit MMIO window, relying on the PHB's
4853 * fallback behaviour of automatically splitting a large "32-bit"
4854 * window into contiguous 32-bit and 64-bit windows
4862 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
4864 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4865 static GlobalProperty compat
[] = {
4866 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
4867 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
4868 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
4869 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
4872 spapr_machine_2_8_class_options(mc
);
4873 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
4874 mc
->default_machine_opts
= "modern-hotplug-events=off";
4875 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
4876 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4877 smc
->phb_placement
= phb_placement_2_7
;
4880 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
4886 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
4888 static GlobalProperty compat
[] = {
4889 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
4892 spapr_machine_2_7_class_options(mc
);
4893 mc
->has_hotpluggable_cpus
= false;
4894 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
4895 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4898 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
4904 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
4906 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4907 static GlobalProperty compat
[] = {
4908 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4911 spapr_machine_2_6_class_options(mc
);
4912 smc
->use_ohci_by_default
= true;
4913 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
4914 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4917 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
4923 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
4925 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4927 spapr_machine_2_5_class_options(mc
);
4928 smc
->dr_lmb_enabled
= false;
4929 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
4932 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
4938 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
4940 static GlobalProperty compat
[] = {
4941 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4943 spapr_machine_2_4_class_options(mc
);
4944 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
4945 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4947 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
4953 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
4955 static GlobalProperty compat
[] = {
4956 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
4959 spapr_machine_2_3_class_options(mc
);
4960 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
4961 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4962 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
4964 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
4970 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
4972 spapr_machine_2_2_class_options(mc
);
4973 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
4975 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
4977 static void spapr_machine_register_types(void)
4979 type_register_static(&spapr_machine_info
);
4982 type_init(spapr_machine_register_types
)