pc_basic_device_init: drop has_pit arg
[qemu/ar7.git] / accel / kvm / kvm-all.c
blobd54a8701d8f87bebb29bacdbb8cfdc1c5cc78bee
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "sysemu/balloon.h"
44 #include "qapi/visitor.h"
45 #include "qapi/qapi-types-common.h"
46 #include "qapi/qapi-visit-common.h"
47 #include "sysemu/reset.h"
49 #include "hw/boards.h"
51 /* This check must be after config-host.h is included */
52 #ifdef CONFIG_EVENTFD
53 #include <sys/eventfd.h>
54 #endif
56 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
57 * need to use the real host PAGE_SIZE, as that's what KVM will use.
59 #define PAGE_SIZE qemu_real_host_page_size
61 //#define DEBUG_KVM
63 #ifdef DEBUG_KVM
64 #define DPRINTF(fmt, ...) \
65 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
66 #else
67 #define DPRINTF(fmt, ...) \
68 do { } while (0)
69 #endif
71 #define KVM_MSI_HASHTAB_SIZE 256
73 struct KVMParkedVcpu {
74 unsigned long vcpu_id;
75 int kvm_fd;
76 QLIST_ENTRY(KVMParkedVcpu) node;
79 struct KVMState
81 AccelState parent_obj;
83 int nr_slots;
84 int fd;
85 int vmfd;
86 int coalesced_mmio;
87 int coalesced_pio;
88 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
89 bool coalesced_flush_in_progress;
90 int vcpu_events;
91 int robust_singlestep;
92 int debugregs;
93 #ifdef KVM_CAP_SET_GUEST_DEBUG
94 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
95 #endif
96 int max_nested_state_len;
97 int many_ioeventfds;
98 int intx_set_mask;
99 int kvm_shadow_mem;
100 bool kernel_irqchip_allowed;
101 bool kernel_irqchip_required;
102 OnOffAuto kernel_irqchip_split;
103 bool sync_mmu;
104 uint64_t manual_dirty_log_protect;
105 /* The man page (and posix) say ioctl numbers are signed int, but
106 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
107 * unsigned, and treating them as signed here can break things */
108 unsigned irq_set_ioctl;
109 unsigned int sigmask_len;
110 GHashTable *gsimap;
111 #ifdef KVM_CAP_IRQ_ROUTING
112 struct kvm_irq_routing *irq_routes;
113 int nr_allocated_irq_routes;
114 unsigned long *used_gsi_bitmap;
115 unsigned int gsi_count;
116 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
117 #endif
118 KVMMemoryListener memory_listener;
119 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
121 /* memory encryption */
122 void *memcrypt_handle;
123 int (*memcrypt_encrypt_data)(void *handle, uint8_t *ptr, uint64_t len);
125 /* For "info mtree -f" to tell if an MR is registered in KVM */
126 int nr_as;
127 struct KVMAs {
128 KVMMemoryListener *ml;
129 AddressSpace *as;
130 } *as;
133 KVMState *kvm_state;
134 bool kvm_kernel_irqchip;
135 bool kvm_split_irqchip;
136 bool kvm_async_interrupts_allowed;
137 bool kvm_halt_in_kernel_allowed;
138 bool kvm_eventfds_allowed;
139 bool kvm_irqfds_allowed;
140 bool kvm_resamplefds_allowed;
141 bool kvm_msi_via_irqfd_allowed;
142 bool kvm_gsi_routing_allowed;
143 bool kvm_gsi_direct_mapping;
144 bool kvm_allowed;
145 bool kvm_readonly_mem_allowed;
146 bool kvm_vm_attributes_allowed;
147 bool kvm_direct_msi_allowed;
148 bool kvm_ioeventfd_any_length_allowed;
149 bool kvm_msi_use_devid;
150 static bool kvm_immediate_exit;
151 static hwaddr kvm_max_slot_size = ~0;
153 static const KVMCapabilityInfo kvm_required_capabilites[] = {
154 KVM_CAP_INFO(USER_MEMORY),
155 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
156 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
157 KVM_CAP_LAST_INFO
160 static NotifierList kvm_irqchip_change_notifiers =
161 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
163 struct KVMResampleFd {
164 int gsi;
165 EventNotifier *resample_event;
166 QLIST_ENTRY(KVMResampleFd) node;
168 typedef struct KVMResampleFd KVMResampleFd;
171 * Only used with split irqchip where we need to do the resample fd
172 * kick for the kernel from userspace.
174 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
175 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
177 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
178 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
180 static inline void kvm_resample_fd_remove(int gsi)
182 KVMResampleFd *rfd;
184 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
185 if (rfd->gsi == gsi) {
186 QLIST_REMOVE(rfd, node);
187 g_free(rfd);
188 break;
193 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
195 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
197 rfd->gsi = gsi;
198 rfd->resample_event = event;
200 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
203 void kvm_resample_fd_notify(int gsi)
205 KVMResampleFd *rfd;
207 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
208 if (rfd->gsi == gsi) {
209 event_notifier_set(rfd->resample_event);
210 trace_kvm_resample_fd_notify(gsi);
211 return;
216 int kvm_get_max_memslots(void)
218 KVMState *s = KVM_STATE(current_accel());
220 return s->nr_slots;
223 bool kvm_memcrypt_enabled(void)
225 if (kvm_state && kvm_state->memcrypt_handle) {
226 return true;
229 return false;
232 int kvm_memcrypt_encrypt_data(uint8_t *ptr, uint64_t len)
234 if (kvm_state->memcrypt_handle &&
235 kvm_state->memcrypt_encrypt_data) {
236 return kvm_state->memcrypt_encrypt_data(kvm_state->memcrypt_handle,
237 ptr, len);
240 return 1;
243 /* Called with KVMMemoryListener.slots_lock held */
244 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
246 KVMState *s = kvm_state;
247 int i;
249 for (i = 0; i < s->nr_slots; i++) {
250 if (kml->slots[i].memory_size == 0) {
251 return &kml->slots[i];
255 return NULL;
258 bool kvm_has_free_slot(MachineState *ms)
260 KVMState *s = KVM_STATE(ms->accelerator);
261 bool result;
262 KVMMemoryListener *kml = &s->memory_listener;
264 kvm_slots_lock(kml);
265 result = !!kvm_get_free_slot(kml);
266 kvm_slots_unlock(kml);
268 return result;
271 /* Called with KVMMemoryListener.slots_lock held */
272 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
274 KVMSlot *slot = kvm_get_free_slot(kml);
276 if (slot) {
277 return slot;
280 fprintf(stderr, "%s: no free slot available\n", __func__);
281 abort();
284 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
285 hwaddr start_addr,
286 hwaddr size)
288 KVMState *s = kvm_state;
289 int i;
291 for (i = 0; i < s->nr_slots; i++) {
292 KVMSlot *mem = &kml->slots[i];
294 if (start_addr == mem->start_addr && size == mem->memory_size) {
295 return mem;
299 return NULL;
303 * Calculate and align the start address and the size of the section.
304 * Return the size. If the size is 0, the aligned section is empty.
306 static hwaddr kvm_align_section(MemoryRegionSection *section,
307 hwaddr *start)
309 hwaddr size = int128_get64(section->size);
310 hwaddr delta, aligned;
312 /* kvm works in page size chunks, but the function may be called
313 with sub-page size and unaligned start address. Pad the start
314 address to next and truncate size to previous page boundary. */
315 aligned = ROUND_UP(section->offset_within_address_space,
316 qemu_real_host_page_size);
317 delta = aligned - section->offset_within_address_space;
318 *start = aligned;
319 if (delta > size) {
320 return 0;
323 return (size - delta) & qemu_real_host_page_mask;
326 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
327 hwaddr *phys_addr)
329 KVMMemoryListener *kml = &s->memory_listener;
330 int i, ret = 0;
332 kvm_slots_lock(kml);
333 for (i = 0; i < s->nr_slots; i++) {
334 KVMSlot *mem = &kml->slots[i];
336 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
337 *phys_addr = mem->start_addr + (ram - mem->ram);
338 ret = 1;
339 break;
342 kvm_slots_unlock(kml);
344 return ret;
347 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
349 KVMState *s = kvm_state;
350 struct kvm_userspace_memory_region mem;
351 int ret;
353 mem.slot = slot->slot | (kml->as_id << 16);
354 mem.guest_phys_addr = slot->start_addr;
355 mem.userspace_addr = (unsigned long)slot->ram;
356 mem.flags = slot->flags;
358 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
359 /* Set the slot size to 0 before setting the slot to the desired
360 * value. This is needed based on KVM commit 75d61fbc. */
361 mem.memory_size = 0;
362 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
363 if (ret < 0) {
364 goto err;
367 mem.memory_size = slot->memory_size;
368 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
369 slot->old_flags = mem.flags;
370 err:
371 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
372 mem.memory_size, mem.userspace_addr, ret);
373 if (ret < 0) {
374 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
375 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
376 __func__, mem.slot, slot->start_addr,
377 (uint64_t)mem.memory_size, strerror(errno));
379 return ret;
382 int kvm_destroy_vcpu(CPUState *cpu)
384 KVMState *s = kvm_state;
385 long mmap_size;
386 struct KVMParkedVcpu *vcpu = NULL;
387 int ret = 0;
389 DPRINTF("kvm_destroy_vcpu\n");
391 ret = kvm_arch_destroy_vcpu(cpu);
392 if (ret < 0) {
393 goto err;
396 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
397 if (mmap_size < 0) {
398 ret = mmap_size;
399 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
400 goto err;
403 ret = munmap(cpu->kvm_run, mmap_size);
404 if (ret < 0) {
405 goto err;
408 vcpu = g_malloc0(sizeof(*vcpu));
409 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
410 vcpu->kvm_fd = cpu->kvm_fd;
411 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
412 err:
413 return ret;
416 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
418 struct KVMParkedVcpu *cpu;
420 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
421 if (cpu->vcpu_id == vcpu_id) {
422 int kvm_fd;
424 QLIST_REMOVE(cpu, node);
425 kvm_fd = cpu->kvm_fd;
426 g_free(cpu);
427 return kvm_fd;
431 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
434 int kvm_init_vcpu(CPUState *cpu)
436 KVMState *s = kvm_state;
437 long mmap_size;
438 int ret;
440 DPRINTF("kvm_init_vcpu\n");
442 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
443 if (ret < 0) {
444 DPRINTF("kvm_create_vcpu failed\n");
445 goto err;
448 cpu->kvm_fd = ret;
449 cpu->kvm_state = s;
450 cpu->vcpu_dirty = true;
452 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
453 if (mmap_size < 0) {
454 ret = mmap_size;
455 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
456 goto err;
459 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
460 cpu->kvm_fd, 0);
461 if (cpu->kvm_run == MAP_FAILED) {
462 ret = -errno;
463 DPRINTF("mmap'ing vcpu state failed\n");
464 goto err;
467 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
468 s->coalesced_mmio_ring =
469 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
472 ret = kvm_arch_init_vcpu(cpu);
473 err:
474 return ret;
478 * dirty pages logging control
481 static int kvm_mem_flags(MemoryRegion *mr)
483 bool readonly = mr->readonly || memory_region_is_romd(mr);
484 int flags = 0;
486 if (memory_region_get_dirty_log_mask(mr) != 0) {
487 flags |= KVM_MEM_LOG_DIRTY_PAGES;
489 if (readonly && kvm_readonly_mem_allowed) {
490 flags |= KVM_MEM_READONLY;
492 return flags;
495 /* Called with KVMMemoryListener.slots_lock held */
496 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
497 MemoryRegion *mr)
499 mem->flags = kvm_mem_flags(mr);
501 /* If nothing changed effectively, no need to issue ioctl */
502 if (mem->flags == mem->old_flags) {
503 return 0;
506 return kvm_set_user_memory_region(kml, mem, false);
509 static int kvm_section_update_flags(KVMMemoryListener *kml,
510 MemoryRegionSection *section)
512 hwaddr start_addr, size, slot_size;
513 KVMSlot *mem;
514 int ret = 0;
516 size = kvm_align_section(section, &start_addr);
517 if (!size) {
518 return 0;
521 kvm_slots_lock(kml);
523 while (size && !ret) {
524 slot_size = MIN(kvm_max_slot_size, size);
525 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
526 if (!mem) {
527 /* We don't have a slot if we want to trap every access. */
528 goto out;
531 ret = kvm_slot_update_flags(kml, mem, section->mr);
532 start_addr += slot_size;
533 size -= slot_size;
536 out:
537 kvm_slots_unlock(kml);
538 return ret;
541 static void kvm_log_start(MemoryListener *listener,
542 MemoryRegionSection *section,
543 int old, int new)
545 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
546 int r;
548 if (old != 0) {
549 return;
552 r = kvm_section_update_flags(kml, section);
553 if (r < 0) {
554 abort();
558 static void kvm_log_stop(MemoryListener *listener,
559 MemoryRegionSection *section,
560 int old, int new)
562 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
563 int r;
565 if (new != 0) {
566 return;
569 r = kvm_section_update_flags(kml, section);
570 if (r < 0) {
571 abort();
575 /* get kvm's dirty pages bitmap and update qemu's */
576 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
577 unsigned long *bitmap)
579 ram_addr_t start = section->offset_within_region +
580 memory_region_get_ram_addr(section->mr);
581 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
583 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
584 return 0;
587 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
589 /* Allocate the dirty bitmap for a slot */
590 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
593 * XXX bad kernel interface alert
594 * For dirty bitmap, kernel allocates array of size aligned to
595 * bits-per-long. But for case when the kernel is 64bits and
596 * the userspace is 32bits, userspace can't align to the same
597 * bits-per-long, since sizeof(long) is different between kernel
598 * and user space. This way, userspace will provide buffer which
599 * may be 4 bytes less than the kernel will use, resulting in
600 * userspace memory corruption (which is not detectable by valgrind
601 * too, in most cases).
602 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
603 * a hope that sizeof(long) won't become >8 any time soon.
605 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
606 /*HOST_LONG_BITS*/ 64) / 8;
607 mem->dirty_bmap = g_malloc0(bitmap_size);
611 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
613 * This function will first try to fetch dirty bitmap from the kernel,
614 * and then updates qemu's dirty bitmap.
616 * NOTE: caller must be with kml->slots_lock held.
618 * @kml: the KVM memory listener object
619 * @section: the memory section to sync the dirty bitmap with
621 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
622 MemoryRegionSection *section)
624 KVMState *s = kvm_state;
625 struct kvm_dirty_log d = {};
626 KVMSlot *mem;
627 hwaddr start_addr, size;
628 hwaddr slot_size, slot_offset = 0;
629 int ret = 0;
631 size = kvm_align_section(section, &start_addr);
632 while (size) {
633 MemoryRegionSection subsection = *section;
635 slot_size = MIN(kvm_max_slot_size, size);
636 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
637 if (!mem) {
638 /* We don't have a slot if we want to trap every access. */
639 goto out;
642 if (!mem->dirty_bmap) {
643 /* Allocate on the first log_sync, once and for all */
644 kvm_memslot_init_dirty_bitmap(mem);
647 d.dirty_bitmap = mem->dirty_bmap;
648 d.slot = mem->slot | (kml->as_id << 16);
649 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
650 DPRINTF("ioctl failed %d\n", errno);
651 ret = -1;
652 goto out;
655 subsection.offset_within_region += slot_offset;
656 subsection.size = int128_make64(slot_size);
657 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
659 slot_offset += slot_size;
660 start_addr += slot_size;
661 size -= slot_size;
663 out:
664 return ret;
667 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
668 #define KVM_CLEAR_LOG_SHIFT 6
669 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
670 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
672 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
673 uint64_t size)
675 KVMState *s = kvm_state;
676 uint64_t end, bmap_start, start_delta, bmap_npages;
677 struct kvm_clear_dirty_log d;
678 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
679 int ret;
682 * We need to extend either the start or the size or both to
683 * satisfy the KVM interface requirement. Firstly, do the start
684 * page alignment on 64 host pages
686 bmap_start = start & KVM_CLEAR_LOG_MASK;
687 start_delta = start - bmap_start;
688 bmap_start /= psize;
691 * The kernel interface has restriction on the size too, that either:
693 * (1) the size is 64 host pages aligned (just like the start), or
694 * (2) the size fills up until the end of the KVM memslot.
696 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
697 << KVM_CLEAR_LOG_SHIFT;
698 end = mem->memory_size / psize;
699 if (bmap_npages > end - bmap_start) {
700 bmap_npages = end - bmap_start;
702 start_delta /= psize;
705 * Prepare the bitmap to clear dirty bits. Here we must guarantee
706 * that we won't clear any unknown dirty bits otherwise we might
707 * accidentally clear some set bits which are not yet synced from
708 * the kernel into QEMU's bitmap, then we'll lose track of the
709 * guest modifications upon those pages (which can directly lead
710 * to guest data loss or panic after migration).
712 * Layout of the KVMSlot.dirty_bmap:
714 * |<-------- bmap_npages -----------..>|
715 * [1]
716 * start_delta size
717 * |----------------|-------------|------------------|------------|
718 * ^ ^ ^ ^
719 * | | | |
720 * start bmap_start (start) end
721 * of memslot of memslot
723 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
726 assert(bmap_start % BITS_PER_LONG == 0);
727 /* We should never do log_clear before log_sync */
728 assert(mem->dirty_bmap);
729 if (start_delta) {
730 /* Slow path - we need to manipulate a temp bitmap */
731 bmap_clear = bitmap_new(bmap_npages);
732 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
733 bmap_start, start_delta + size / psize);
735 * We need to fill the holes at start because that was not
736 * specified by the caller and we extended the bitmap only for
737 * 64 pages alignment
739 bitmap_clear(bmap_clear, 0, start_delta);
740 d.dirty_bitmap = bmap_clear;
741 } else {
742 /* Fast path - start address aligns well with BITS_PER_LONG */
743 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
746 d.first_page = bmap_start;
747 /* It should never overflow. If it happens, say something */
748 assert(bmap_npages <= UINT32_MAX);
749 d.num_pages = bmap_npages;
750 d.slot = mem->slot | (as_id << 16);
752 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
753 ret = -errno;
754 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
755 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
756 __func__, d.slot, (uint64_t)d.first_page,
757 (uint32_t)d.num_pages, ret);
758 } else {
759 ret = 0;
760 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
764 * After we have updated the remote dirty bitmap, we update the
765 * cached bitmap as well for the memslot, then if another user
766 * clears the same region we know we shouldn't clear it again on
767 * the remote otherwise it's data loss as well.
769 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
770 size / psize);
771 /* This handles the NULL case well */
772 g_free(bmap_clear);
773 return ret;
778 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
780 * NOTE: this will be a no-op if we haven't enabled manual dirty log
781 * protection in the host kernel because in that case this operation
782 * will be done within log_sync().
784 * @kml: the kvm memory listener
785 * @section: the memory range to clear dirty bitmap
787 static int kvm_physical_log_clear(KVMMemoryListener *kml,
788 MemoryRegionSection *section)
790 KVMState *s = kvm_state;
791 uint64_t start, size, offset, count;
792 KVMSlot *mem;
793 int ret = 0, i;
795 if (!s->manual_dirty_log_protect) {
796 /* No need to do explicit clear */
797 return ret;
800 start = section->offset_within_address_space;
801 size = int128_get64(section->size);
803 if (!size) {
804 /* Nothing more we can do... */
805 return ret;
808 kvm_slots_lock(kml);
810 for (i = 0; i < s->nr_slots; i++) {
811 mem = &kml->slots[i];
812 /* Discard slots that are empty or do not overlap the section */
813 if (!mem->memory_size ||
814 mem->start_addr > start + size - 1 ||
815 start > mem->start_addr + mem->memory_size - 1) {
816 continue;
819 if (start >= mem->start_addr) {
820 /* The slot starts before section or is aligned to it. */
821 offset = start - mem->start_addr;
822 count = MIN(mem->memory_size - offset, size);
823 } else {
824 /* The slot starts after section. */
825 offset = 0;
826 count = MIN(mem->memory_size, size - (mem->start_addr - start));
828 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
829 if (ret < 0) {
830 break;
834 kvm_slots_unlock(kml);
836 return ret;
839 static void kvm_coalesce_mmio_region(MemoryListener *listener,
840 MemoryRegionSection *secion,
841 hwaddr start, hwaddr size)
843 KVMState *s = kvm_state;
845 if (s->coalesced_mmio) {
846 struct kvm_coalesced_mmio_zone zone;
848 zone.addr = start;
849 zone.size = size;
850 zone.pad = 0;
852 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
856 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
857 MemoryRegionSection *secion,
858 hwaddr start, hwaddr size)
860 KVMState *s = kvm_state;
862 if (s->coalesced_mmio) {
863 struct kvm_coalesced_mmio_zone zone;
865 zone.addr = start;
866 zone.size = size;
867 zone.pad = 0;
869 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
873 static void kvm_coalesce_pio_add(MemoryListener *listener,
874 MemoryRegionSection *section,
875 hwaddr start, hwaddr size)
877 KVMState *s = kvm_state;
879 if (s->coalesced_pio) {
880 struct kvm_coalesced_mmio_zone zone;
882 zone.addr = start;
883 zone.size = size;
884 zone.pio = 1;
886 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
890 static void kvm_coalesce_pio_del(MemoryListener *listener,
891 MemoryRegionSection *section,
892 hwaddr start, hwaddr size)
894 KVMState *s = kvm_state;
896 if (s->coalesced_pio) {
897 struct kvm_coalesced_mmio_zone zone;
899 zone.addr = start;
900 zone.size = size;
901 zone.pio = 1;
903 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
907 static MemoryListener kvm_coalesced_pio_listener = {
908 .coalesced_io_add = kvm_coalesce_pio_add,
909 .coalesced_io_del = kvm_coalesce_pio_del,
912 int kvm_check_extension(KVMState *s, unsigned int extension)
914 int ret;
916 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
917 if (ret < 0) {
918 ret = 0;
921 return ret;
924 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
926 int ret;
928 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
929 if (ret < 0) {
930 /* VM wide version not implemented, use global one instead */
931 ret = kvm_check_extension(s, extension);
934 return ret;
937 typedef struct HWPoisonPage {
938 ram_addr_t ram_addr;
939 QLIST_ENTRY(HWPoisonPage) list;
940 } HWPoisonPage;
942 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
943 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
945 static void kvm_unpoison_all(void *param)
947 HWPoisonPage *page, *next_page;
949 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
950 QLIST_REMOVE(page, list);
951 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
952 g_free(page);
956 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
958 HWPoisonPage *page;
960 QLIST_FOREACH(page, &hwpoison_page_list, list) {
961 if (page->ram_addr == ram_addr) {
962 return;
965 page = g_new(HWPoisonPage, 1);
966 page->ram_addr = ram_addr;
967 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
970 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
972 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
973 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
974 * endianness, but the memory core hands them in target endianness.
975 * For example, PPC is always treated as big-endian even if running
976 * on KVM and on PPC64LE. Correct here.
978 switch (size) {
979 case 2:
980 val = bswap16(val);
981 break;
982 case 4:
983 val = bswap32(val);
984 break;
986 #endif
987 return val;
990 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
991 bool assign, uint32_t size, bool datamatch)
993 int ret;
994 struct kvm_ioeventfd iofd = {
995 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
996 .addr = addr,
997 .len = size,
998 .flags = 0,
999 .fd = fd,
1002 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1003 datamatch);
1004 if (!kvm_enabled()) {
1005 return -ENOSYS;
1008 if (datamatch) {
1009 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1011 if (!assign) {
1012 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1015 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1017 if (ret < 0) {
1018 return -errno;
1021 return 0;
1024 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1025 bool assign, uint32_t size, bool datamatch)
1027 struct kvm_ioeventfd kick = {
1028 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1029 .addr = addr,
1030 .flags = KVM_IOEVENTFD_FLAG_PIO,
1031 .len = size,
1032 .fd = fd,
1034 int r;
1035 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1036 if (!kvm_enabled()) {
1037 return -ENOSYS;
1039 if (datamatch) {
1040 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1042 if (!assign) {
1043 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1045 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1046 if (r < 0) {
1047 return r;
1049 return 0;
1053 static int kvm_check_many_ioeventfds(void)
1055 /* Userspace can use ioeventfd for io notification. This requires a host
1056 * that supports eventfd(2) and an I/O thread; since eventfd does not
1057 * support SIGIO it cannot interrupt the vcpu.
1059 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1060 * can avoid creating too many ioeventfds.
1062 #if defined(CONFIG_EVENTFD)
1063 int ioeventfds[7];
1064 int i, ret = 0;
1065 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1066 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1067 if (ioeventfds[i] < 0) {
1068 break;
1070 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1071 if (ret < 0) {
1072 close(ioeventfds[i]);
1073 break;
1077 /* Decide whether many devices are supported or not */
1078 ret = i == ARRAY_SIZE(ioeventfds);
1080 while (i-- > 0) {
1081 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1082 close(ioeventfds[i]);
1084 return ret;
1085 #else
1086 return 0;
1087 #endif
1090 static const KVMCapabilityInfo *
1091 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1093 while (list->name) {
1094 if (!kvm_check_extension(s, list->value)) {
1095 return list;
1097 list++;
1099 return NULL;
1102 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1104 g_assert(
1105 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1107 kvm_max_slot_size = max_slot_size;
1110 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1111 MemoryRegionSection *section, bool add)
1113 KVMSlot *mem;
1114 int err;
1115 MemoryRegion *mr = section->mr;
1116 bool writeable = !mr->readonly && !mr->rom_device;
1117 hwaddr start_addr, size, slot_size;
1118 void *ram;
1120 if (!memory_region_is_ram(mr)) {
1121 if (writeable || !kvm_readonly_mem_allowed) {
1122 return;
1123 } else if (!mr->romd_mode) {
1124 /* If the memory device is not in romd_mode, then we actually want
1125 * to remove the kvm memory slot so all accesses will trap. */
1126 add = false;
1130 size = kvm_align_section(section, &start_addr);
1131 if (!size) {
1132 return;
1135 /* use aligned delta to align the ram address */
1136 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1137 (start_addr - section->offset_within_address_space);
1139 kvm_slots_lock(kml);
1141 if (!add) {
1142 do {
1143 slot_size = MIN(kvm_max_slot_size, size);
1144 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1145 if (!mem) {
1146 goto out;
1148 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1149 kvm_physical_sync_dirty_bitmap(kml, section);
1152 /* unregister the slot */
1153 g_free(mem->dirty_bmap);
1154 mem->dirty_bmap = NULL;
1155 mem->memory_size = 0;
1156 mem->flags = 0;
1157 err = kvm_set_user_memory_region(kml, mem, false);
1158 if (err) {
1159 fprintf(stderr, "%s: error unregistering slot: %s\n",
1160 __func__, strerror(-err));
1161 abort();
1163 start_addr += slot_size;
1164 size -= slot_size;
1165 } while (size);
1166 goto out;
1169 /* register the new slot */
1170 do {
1171 slot_size = MIN(kvm_max_slot_size, size);
1172 mem = kvm_alloc_slot(kml);
1173 mem->memory_size = slot_size;
1174 mem->start_addr = start_addr;
1175 mem->ram = ram;
1176 mem->flags = kvm_mem_flags(mr);
1178 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1180 * Reallocate the bmap; it means it doesn't disappear in
1181 * middle of a migrate.
1183 kvm_memslot_init_dirty_bitmap(mem);
1185 err = kvm_set_user_memory_region(kml, mem, true);
1186 if (err) {
1187 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1188 strerror(-err));
1189 abort();
1191 start_addr += slot_size;
1192 ram += slot_size;
1193 size -= slot_size;
1194 } while (size);
1196 out:
1197 kvm_slots_unlock(kml);
1200 static void kvm_region_add(MemoryListener *listener,
1201 MemoryRegionSection *section)
1203 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1205 memory_region_ref(section->mr);
1206 kvm_set_phys_mem(kml, section, true);
1209 static void kvm_region_del(MemoryListener *listener,
1210 MemoryRegionSection *section)
1212 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1214 kvm_set_phys_mem(kml, section, false);
1215 memory_region_unref(section->mr);
1218 static void kvm_log_sync(MemoryListener *listener,
1219 MemoryRegionSection *section)
1221 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1222 int r;
1224 kvm_slots_lock(kml);
1225 r = kvm_physical_sync_dirty_bitmap(kml, section);
1226 kvm_slots_unlock(kml);
1227 if (r < 0) {
1228 abort();
1232 static void kvm_log_clear(MemoryListener *listener,
1233 MemoryRegionSection *section)
1235 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1236 int r;
1238 r = kvm_physical_log_clear(kml, section);
1239 if (r < 0) {
1240 error_report_once("%s: kvm log clear failed: mr=%s "
1241 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1242 section->mr->name, section->offset_within_region,
1243 int128_get64(section->size));
1244 abort();
1248 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1249 MemoryRegionSection *section,
1250 bool match_data, uint64_t data,
1251 EventNotifier *e)
1253 int fd = event_notifier_get_fd(e);
1254 int r;
1256 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1257 data, true, int128_get64(section->size),
1258 match_data);
1259 if (r < 0) {
1260 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1261 __func__, strerror(-r), -r);
1262 abort();
1266 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1267 MemoryRegionSection *section,
1268 bool match_data, uint64_t data,
1269 EventNotifier *e)
1271 int fd = event_notifier_get_fd(e);
1272 int r;
1274 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1275 data, false, int128_get64(section->size),
1276 match_data);
1277 if (r < 0) {
1278 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1279 __func__, strerror(-r), -r);
1280 abort();
1284 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1285 MemoryRegionSection *section,
1286 bool match_data, uint64_t data,
1287 EventNotifier *e)
1289 int fd = event_notifier_get_fd(e);
1290 int r;
1292 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1293 data, true, int128_get64(section->size),
1294 match_data);
1295 if (r < 0) {
1296 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1297 __func__, strerror(-r), -r);
1298 abort();
1302 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1303 MemoryRegionSection *section,
1304 bool match_data, uint64_t data,
1305 EventNotifier *e)
1308 int fd = event_notifier_get_fd(e);
1309 int r;
1311 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1312 data, false, int128_get64(section->size),
1313 match_data);
1314 if (r < 0) {
1315 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1316 __func__, strerror(-r), -r);
1317 abort();
1321 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1322 AddressSpace *as, int as_id)
1324 int i;
1326 qemu_mutex_init(&kml->slots_lock);
1327 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1328 kml->as_id = as_id;
1330 for (i = 0; i < s->nr_slots; i++) {
1331 kml->slots[i].slot = i;
1334 kml->listener.region_add = kvm_region_add;
1335 kml->listener.region_del = kvm_region_del;
1336 kml->listener.log_start = kvm_log_start;
1337 kml->listener.log_stop = kvm_log_stop;
1338 kml->listener.log_sync = kvm_log_sync;
1339 kml->listener.log_clear = kvm_log_clear;
1340 kml->listener.priority = 10;
1342 memory_listener_register(&kml->listener, as);
1344 for (i = 0; i < s->nr_as; ++i) {
1345 if (!s->as[i].as) {
1346 s->as[i].as = as;
1347 s->as[i].ml = kml;
1348 break;
1353 static MemoryListener kvm_io_listener = {
1354 .eventfd_add = kvm_io_ioeventfd_add,
1355 .eventfd_del = kvm_io_ioeventfd_del,
1356 .priority = 10,
1359 int kvm_set_irq(KVMState *s, int irq, int level)
1361 struct kvm_irq_level event;
1362 int ret;
1364 assert(kvm_async_interrupts_enabled());
1366 event.level = level;
1367 event.irq = irq;
1368 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1369 if (ret < 0) {
1370 perror("kvm_set_irq");
1371 abort();
1374 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1377 #ifdef KVM_CAP_IRQ_ROUTING
1378 typedef struct KVMMSIRoute {
1379 struct kvm_irq_routing_entry kroute;
1380 QTAILQ_ENTRY(KVMMSIRoute) entry;
1381 } KVMMSIRoute;
1383 static void set_gsi(KVMState *s, unsigned int gsi)
1385 set_bit(gsi, s->used_gsi_bitmap);
1388 static void clear_gsi(KVMState *s, unsigned int gsi)
1390 clear_bit(gsi, s->used_gsi_bitmap);
1393 void kvm_init_irq_routing(KVMState *s)
1395 int gsi_count, i;
1397 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1398 if (gsi_count > 0) {
1399 /* Round up so we can search ints using ffs */
1400 s->used_gsi_bitmap = bitmap_new(gsi_count);
1401 s->gsi_count = gsi_count;
1404 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1405 s->nr_allocated_irq_routes = 0;
1407 if (!kvm_direct_msi_allowed) {
1408 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1409 QTAILQ_INIT(&s->msi_hashtab[i]);
1413 kvm_arch_init_irq_routing(s);
1416 void kvm_irqchip_commit_routes(KVMState *s)
1418 int ret;
1420 if (kvm_gsi_direct_mapping()) {
1421 return;
1424 if (!kvm_gsi_routing_enabled()) {
1425 return;
1428 s->irq_routes->flags = 0;
1429 trace_kvm_irqchip_commit_routes();
1430 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1431 assert(ret == 0);
1434 static void kvm_add_routing_entry(KVMState *s,
1435 struct kvm_irq_routing_entry *entry)
1437 struct kvm_irq_routing_entry *new;
1438 int n, size;
1440 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1441 n = s->nr_allocated_irq_routes * 2;
1442 if (n < 64) {
1443 n = 64;
1445 size = sizeof(struct kvm_irq_routing);
1446 size += n * sizeof(*new);
1447 s->irq_routes = g_realloc(s->irq_routes, size);
1448 s->nr_allocated_irq_routes = n;
1450 n = s->irq_routes->nr++;
1451 new = &s->irq_routes->entries[n];
1453 *new = *entry;
1455 set_gsi(s, entry->gsi);
1458 static int kvm_update_routing_entry(KVMState *s,
1459 struct kvm_irq_routing_entry *new_entry)
1461 struct kvm_irq_routing_entry *entry;
1462 int n;
1464 for (n = 0; n < s->irq_routes->nr; n++) {
1465 entry = &s->irq_routes->entries[n];
1466 if (entry->gsi != new_entry->gsi) {
1467 continue;
1470 if(!memcmp(entry, new_entry, sizeof *entry)) {
1471 return 0;
1474 *entry = *new_entry;
1476 return 0;
1479 return -ESRCH;
1482 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1484 struct kvm_irq_routing_entry e = {};
1486 assert(pin < s->gsi_count);
1488 e.gsi = irq;
1489 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1490 e.flags = 0;
1491 e.u.irqchip.irqchip = irqchip;
1492 e.u.irqchip.pin = pin;
1493 kvm_add_routing_entry(s, &e);
1496 void kvm_irqchip_release_virq(KVMState *s, int virq)
1498 struct kvm_irq_routing_entry *e;
1499 int i;
1501 if (kvm_gsi_direct_mapping()) {
1502 return;
1505 for (i = 0; i < s->irq_routes->nr; i++) {
1506 e = &s->irq_routes->entries[i];
1507 if (e->gsi == virq) {
1508 s->irq_routes->nr--;
1509 *e = s->irq_routes->entries[s->irq_routes->nr];
1512 clear_gsi(s, virq);
1513 kvm_arch_release_virq_post(virq);
1514 trace_kvm_irqchip_release_virq(virq);
1517 void kvm_irqchip_add_change_notifier(Notifier *n)
1519 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1522 void kvm_irqchip_remove_change_notifier(Notifier *n)
1524 notifier_remove(n);
1527 void kvm_irqchip_change_notify(void)
1529 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1532 static unsigned int kvm_hash_msi(uint32_t data)
1534 /* This is optimized for IA32 MSI layout. However, no other arch shall
1535 * repeat the mistake of not providing a direct MSI injection API. */
1536 return data & 0xff;
1539 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1541 KVMMSIRoute *route, *next;
1542 unsigned int hash;
1544 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1545 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1546 kvm_irqchip_release_virq(s, route->kroute.gsi);
1547 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1548 g_free(route);
1553 static int kvm_irqchip_get_virq(KVMState *s)
1555 int next_virq;
1558 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1559 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1560 * number can succeed even though a new route entry cannot be added.
1561 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1563 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1564 kvm_flush_dynamic_msi_routes(s);
1567 /* Return the lowest unused GSI in the bitmap */
1568 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1569 if (next_virq >= s->gsi_count) {
1570 return -ENOSPC;
1571 } else {
1572 return next_virq;
1576 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1578 unsigned int hash = kvm_hash_msi(msg.data);
1579 KVMMSIRoute *route;
1581 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1582 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1583 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1584 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1585 return route;
1588 return NULL;
1591 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1593 struct kvm_msi msi;
1594 KVMMSIRoute *route;
1596 if (kvm_direct_msi_allowed) {
1597 msi.address_lo = (uint32_t)msg.address;
1598 msi.address_hi = msg.address >> 32;
1599 msi.data = le32_to_cpu(msg.data);
1600 msi.flags = 0;
1601 memset(msi.pad, 0, sizeof(msi.pad));
1603 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1606 route = kvm_lookup_msi_route(s, msg);
1607 if (!route) {
1608 int virq;
1610 virq = kvm_irqchip_get_virq(s);
1611 if (virq < 0) {
1612 return virq;
1615 route = g_malloc0(sizeof(KVMMSIRoute));
1616 route->kroute.gsi = virq;
1617 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1618 route->kroute.flags = 0;
1619 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1620 route->kroute.u.msi.address_hi = msg.address >> 32;
1621 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1623 kvm_add_routing_entry(s, &route->kroute);
1624 kvm_irqchip_commit_routes(s);
1626 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1627 entry);
1630 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1632 return kvm_set_irq(s, route->kroute.gsi, 1);
1635 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1637 struct kvm_irq_routing_entry kroute = {};
1638 int virq;
1639 MSIMessage msg = {0, 0};
1641 if (pci_available && dev) {
1642 msg = pci_get_msi_message(dev, vector);
1645 if (kvm_gsi_direct_mapping()) {
1646 return kvm_arch_msi_data_to_gsi(msg.data);
1649 if (!kvm_gsi_routing_enabled()) {
1650 return -ENOSYS;
1653 virq = kvm_irqchip_get_virq(s);
1654 if (virq < 0) {
1655 return virq;
1658 kroute.gsi = virq;
1659 kroute.type = KVM_IRQ_ROUTING_MSI;
1660 kroute.flags = 0;
1661 kroute.u.msi.address_lo = (uint32_t)msg.address;
1662 kroute.u.msi.address_hi = msg.address >> 32;
1663 kroute.u.msi.data = le32_to_cpu(msg.data);
1664 if (pci_available && kvm_msi_devid_required()) {
1665 kroute.flags = KVM_MSI_VALID_DEVID;
1666 kroute.u.msi.devid = pci_requester_id(dev);
1668 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1669 kvm_irqchip_release_virq(s, virq);
1670 return -EINVAL;
1673 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1674 vector, virq);
1676 kvm_add_routing_entry(s, &kroute);
1677 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1678 kvm_irqchip_commit_routes(s);
1680 return virq;
1683 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1684 PCIDevice *dev)
1686 struct kvm_irq_routing_entry kroute = {};
1688 if (kvm_gsi_direct_mapping()) {
1689 return 0;
1692 if (!kvm_irqchip_in_kernel()) {
1693 return -ENOSYS;
1696 kroute.gsi = virq;
1697 kroute.type = KVM_IRQ_ROUTING_MSI;
1698 kroute.flags = 0;
1699 kroute.u.msi.address_lo = (uint32_t)msg.address;
1700 kroute.u.msi.address_hi = msg.address >> 32;
1701 kroute.u.msi.data = le32_to_cpu(msg.data);
1702 if (pci_available && kvm_msi_devid_required()) {
1703 kroute.flags = KVM_MSI_VALID_DEVID;
1704 kroute.u.msi.devid = pci_requester_id(dev);
1706 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1707 return -EINVAL;
1710 trace_kvm_irqchip_update_msi_route(virq);
1712 return kvm_update_routing_entry(s, &kroute);
1715 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1716 EventNotifier *resample, int virq,
1717 bool assign)
1719 int fd = event_notifier_get_fd(event);
1720 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1722 struct kvm_irqfd irqfd = {
1723 .fd = fd,
1724 .gsi = virq,
1725 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1728 if (rfd != -1) {
1729 assert(assign);
1730 if (kvm_irqchip_is_split()) {
1732 * When the slow irqchip (e.g. IOAPIC) is in the
1733 * userspace, KVM kernel resamplefd will not work because
1734 * the EOI of the interrupt will be delivered to userspace
1735 * instead, so the KVM kernel resamplefd kick will be
1736 * skipped. The userspace here mimics what the kernel
1737 * provides with resamplefd, remember the resamplefd and
1738 * kick it when we receive EOI of this IRQ.
1740 * This is hackery because IOAPIC is mostly bypassed
1741 * (except EOI broadcasts) when irqfd is used. However
1742 * this can bring much performance back for split irqchip
1743 * with INTx IRQs (for VFIO, this gives 93% perf of the
1744 * full fast path, which is 46% perf boost comparing to
1745 * the INTx slow path).
1747 kvm_resample_fd_insert(virq, resample);
1748 } else {
1749 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1750 irqfd.resamplefd = rfd;
1752 } else if (!assign) {
1753 if (kvm_irqchip_is_split()) {
1754 kvm_resample_fd_remove(virq);
1758 if (!kvm_irqfds_enabled()) {
1759 return -ENOSYS;
1762 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1765 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1767 struct kvm_irq_routing_entry kroute = {};
1768 int virq;
1770 if (!kvm_gsi_routing_enabled()) {
1771 return -ENOSYS;
1774 virq = kvm_irqchip_get_virq(s);
1775 if (virq < 0) {
1776 return virq;
1779 kroute.gsi = virq;
1780 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1781 kroute.flags = 0;
1782 kroute.u.adapter.summary_addr = adapter->summary_addr;
1783 kroute.u.adapter.ind_addr = adapter->ind_addr;
1784 kroute.u.adapter.summary_offset = adapter->summary_offset;
1785 kroute.u.adapter.ind_offset = adapter->ind_offset;
1786 kroute.u.adapter.adapter_id = adapter->adapter_id;
1788 kvm_add_routing_entry(s, &kroute);
1790 return virq;
1793 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1795 struct kvm_irq_routing_entry kroute = {};
1796 int virq;
1798 if (!kvm_gsi_routing_enabled()) {
1799 return -ENOSYS;
1801 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1802 return -ENOSYS;
1804 virq = kvm_irqchip_get_virq(s);
1805 if (virq < 0) {
1806 return virq;
1809 kroute.gsi = virq;
1810 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1811 kroute.flags = 0;
1812 kroute.u.hv_sint.vcpu = vcpu;
1813 kroute.u.hv_sint.sint = sint;
1815 kvm_add_routing_entry(s, &kroute);
1816 kvm_irqchip_commit_routes(s);
1818 return virq;
1821 #else /* !KVM_CAP_IRQ_ROUTING */
1823 void kvm_init_irq_routing(KVMState *s)
1827 void kvm_irqchip_release_virq(KVMState *s, int virq)
1831 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1833 abort();
1836 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1838 return -ENOSYS;
1841 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1843 return -ENOSYS;
1846 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1848 return -ENOSYS;
1851 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1852 EventNotifier *resample, int virq,
1853 bool assign)
1855 abort();
1858 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1860 return -ENOSYS;
1862 #endif /* !KVM_CAP_IRQ_ROUTING */
1864 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1865 EventNotifier *rn, int virq)
1867 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1870 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1871 int virq)
1873 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1876 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1877 EventNotifier *rn, qemu_irq irq)
1879 gpointer key, gsi;
1880 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1882 if (!found) {
1883 return -ENXIO;
1885 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1888 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1889 qemu_irq irq)
1891 gpointer key, gsi;
1892 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1894 if (!found) {
1895 return -ENXIO;
1897 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1900 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1902 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1905 static void kvm_irqchip_create(KVMState *s)
1907 int ret;
1909 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1910 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1912 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1913 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1914 if (ret < 0) {
1915 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1916 exit(1);
1918 } else {
1919 return;
1922 /* First probe and see if there's a arch-specific hook to create the
1923 * in-kernel irqchip for us */
1924 ret = kvm_arch_irqchip_create(s);
1925 if (ret == 0) {
1926 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1927 perror("Split IRQ chip mode not supported.");
1928 exit(1);
1929 } else {
1930 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1933 if (ret < 0) {
1934 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1935 exit(1);
1938 kvm_kernel_irqchip = true;
1939 /* If we have an in-kernel IRQ chip then we must have asynchronous
1940 * interrupt delivery (though the reverse is not necessarily true)
1942 kvm_async_interrupts_allowed = true;
1943 kvm_halt_in_kernel_allowed = true;
1945 kvm_init_irq_routing(s);
1947 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1950 /* Find number of supported CPUs using the recommended
1951 * procedure from the kernel API documentation to cope with
1952 * older kernels that may be missing capabilities.
1954 static int kvm_recommended_vcpus(KVMState *s)
1956 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1957 return (ret) ? ret : 4;
1960 static int kvm_max_vcpus(KVMState *s)
1962 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1963 return (ret) ? ret : kvm_recommended_vcpus(s);
1966 static int kvm_max_vcpu_id(KVMState *s)
1968 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1969 return (ret) ? ret : kvm_max_vcpus(s);
1972 bool kvm_vcpu_id_is_valid(int vcpu_id)
1974 KVMState *s = KVM_STATE(current_accel());
1975 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1978 static int kvm_init(MachineState *ms)
1980 MachineClass *mc = MACHINE_GET_CLASS(ms);
1981 static const char upgrade_note[] =
1982 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1983 "(see http://sourceforge.net/projects/kvm).\n";
1984 struct {
1985 const char *name;
1986 int num;
1987 } num_cpus[] = {
1988 { "SMP", ms->smp.cpus },
1989 { "hotpluggable", ms->smp.max_cpus },
1990 { NULL, }
1991 }, *nc = num_cpus;
1992 int soft_vcpus_limit, hard_vcpus_limit;
1993 KVMState *s;
1994 const KVMCapabilityInfo *missing_cap;
1995 int ret;
1996 int type = 0;
1997 const char *kvm_type;
1998 uint64_t dirty_log_manual_caps;
2000 s = KVM_STATE(ms->accelerator);
2003 * On systems where the kernel can support different base page
2004 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2005 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2006 * page size for the system though.
2008 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2010 s->sigmask_len = 8;
2012 #ifdef KVM_CAP_SET_GUEST_DEBUG
2013 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2014 #endif
2015 QLIST_INIT(&s->kvm_parked_vcpus);
2016 s->vmfd = -1;
2017 s->fd = qemu_open("/dev/kvm", O_RDWR);
2018 if (s->fd == -1) {
2019 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2020 ret = -errno;
2021 goto err;
2024 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2025 if (ret < KVM_API_VERSION) {
2026 if (ret >= 0) {
2027 ret = -EINVAL;
2029 fprintf(stderr, "kvm version too old\n");
2030 goto err;
2033 if (ret > KVM_API_VERSION) {
2034 ret = -EINVAL;
2035 fprintf(stderr, "kvm version not supported\n");
2036 goto err;
2039 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2040 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2042 /* If unspecified, use the default value */
2043 if (!s->nr_slots) {
2044 s->nr_slots = 32;
2047 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2048 if (s->nr_as <= 1) {
2049 s->nr_as = 1;
2051 s->as = g_new0(struct KVMAs, s->nr_as);
2053 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
2054 if (mc->kvm_type) {
2055 type = mc->kvm_type(ms, kvm_type);
2056 } else if (kvm_type) {
2057 ret = -EINVAL;
2058 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
2059 goto err;
2062 do {
2063 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2064 } while (ret == -EINTR);
2066 if (ret < 0) {
2067 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2068 strerror(-ret));
2070 #ifdef TARGET_S390X
2071 if (ret == -EINVAL) {
2072 fprintf(stderr,
2073 "Host kernel setup problem detected. Please verify:\n");
2074 fprintf(stderr, "- for kernels supporting the switch_amode or"
2075 " user_mode parameters, whether\n");
2076 fprintf(stderr,
2077 " user space is running in primary address space\n");
2078 fprintf(stderr,
2079 "- for kernels supporting the vm.allocate_pgste sysctl, "
2080 "whether it is enabled\n");
2082 #endif
2083 goto err;
2086 s->vmfd = ret;
2088 /* check the vcpu limits */
2089 soft_vcpus_limit = kvm_recommended_vcpus(s);
2090 hard_vcpus_limit = kvm_max_vcpus(s);
2092 while (nc->name) {
2093 if (nc->num > soft_vcpus_limit) {
2094 warn_report("Number of %s cpus requested (%d) exceeds "
2095 "the recommended cpus supported by KVM (%d)",
2096 nc->name, nc->num, soft_vcpus_limit);
2098 if (nc->num > hard_vcpus_limit) {
2099 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2100 "the maximum cpus supported by KVM (%d)\n",
2101 nc->name, nc->num, hard_vcpus_limit);
2102 exit(1);
2105 nc++;
2108 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2109 if (!missing_cap) {
2110 missing_cap =
2111 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2113 if (missing_cap) {
2114 ret = -EINVAL;
2115 fprintf(stderr, "kvm does not support %s\n%s",
2116 missing_cap->name, upgrade_note);
2117 goto err;
2120 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2121 s->coalesced_pio = s->coalesced_mmio &&
2122 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2124 dirty_log_manual_caps =
2125 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2126 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2127 KVM_DIRTY_LOG_INITIALLY_SET);
2128 s->manual_dirty_log_protect = dirty_log_manual_caps;
2129 if (dirty_log_manual_caps) {
2130 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2131 dirty_log_manual_caps);
2132 if (ret) {
2133 warn_report("Trying to enable capability %"PRIu64" of "
2134 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2135 "Falling back to the legacy mode. ",
2136 dirty_log_manual_caps);
2137 s->manual_dirty_log_protect = 0;
2141 #ifdef KVM_CAP_VCPU_EVENTS
2142 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2143 #endif
2145 s->robust_singlestep =
2146 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2148 #ifdef KVM_CAP_DEBUGREGS
2149 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2150 #endif
2152 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2154 #ifdef KVM_CAP_IRQ_ROUTING
2155 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2156 #endif
2158 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2160 s->irq_set_ioctl = KVM_IRQ_LINE;
2161 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2162 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2165 kvm_readonly_mem_allowed =
2166 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2168 kvm_eventfds_allowed =
2169 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2171 kvm_irqfds_allowed =
2172 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2174 kvm_resamplefds_allowed =
2175 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2177 kvm_vm_attributes_allowed =
2178 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2180 kvm_ioeventfd_any_length_allowed =
2181 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2183 kvm_state = s;
2186 * if memory encryption object is specified then initialize the memory
2187 * encryption context.
2189 if (ms->memory_encryption) {
2190 kvm_state->memcrypt_handle = sev_guest_init(ms->memory_encryption);
2191 if (!kvm_state->memcrypt_handle) {
2192 ret = -1;
2193 goto err;
2196 kvm_state->memcrypt_encrypt_data = sev_encrypt_data;
2199 ret = kvm_arch_init(ms, s);
2200 if (ret < 0) {
2201 goto err;
2204 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2205 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2208 qemu_register_reset(kvm_unpoison_all, NULL);
2210 if (s->kernel_irqchip_allowed) {
2211 kvm_irqchip_create(s);
2214 if (kvm_eventfds_allowed) {
2215 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2216 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2218 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2219 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2221 kvm_memory_listener_register(s, &s->memory_listener,
2222 &address_space_memory, 0);
2223 memory_listener_register(&kvm_io_listener,
2224 &address_space_io);
2225 memory_listener_register(&kvm_coalesced_pio_listener,
2226 &address_space_io);
2228 s->many_ioeventfds = kvm_check_many_ioeventfds();
2230 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2231 if (!s->sync_mmu) {
2232 qemu_balloon_inhibit(true);
2235 return 0;
2237 err:
2238 assert(ret < 0);
2239 if (s->vmfd >= 0) {
2240 close(s->vmfd);
2242 if (s->fd != -1) {
2243 close(s->fd);
2245 g_free(s->memory_listener.slots);
2247 return ret;
2250 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2252 s->sigmask_len = sigmask_len;
2255 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2256 int size, uint32_t count)
2258 int i;
2259 uint8_t *ptr = data;
2261 for (i = 0; i < count; i++) {
2262 address_space_rw(&address_space_io, port, attrs,
2263 ptr, size,
2264 direction == KVM_EXIT_IO_OUT);
2265 ptr += size;
2269 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2271 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2272 run->internal.suberror);
2274 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2275 int i;
2277 for (i = 0; i < run->internal.ndata; ++i) {
2278 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2279 i, (uint64_t)run->internal.data[i]);
2282 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2283 fprintf(stderr, "emulation failure\n");
2284 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2285 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2286 return EXCP_INTERRUPT;
2289 /* FIXME: Should trigger a qmp message to let management know
2290 * something went wrong.
2292 return -1;
2295 void kvm_flush_coalesced_mmio_buffer(void)
2297 KVMState *s = kvm_state;
2299 if (s->coalesced_flush_in_progress) {
2300 return;
2303 s->coalesced_flush_in_progress = true;
2305 if (s->coalesced_mmio_ring) {
2306 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2307 while (ring->first != ring->last) {
2308 struct kvm_coalesced_mmio *ent;
2310 ent = &ring->coalesced_mmio[ring->first];
2312 if (ent->pio == 1) {
2313 address_space_write(&address_space_io, ent->phys_addr,
2314 MEMTXATTRS_UNSPECIFIED, ent->data,
2315 ent->len);
2316 } else {
2317 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2319 smp_wmb();
2320 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2324 s->coalesced_flush_in_progress = false;
2327 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2329 if (!cpu->vcpu_dirty) {
2330 kvm_arch_get_registers(cpu);
2331 cpu->vcpu_dirty = true;
2335 void kvm_cpu_synchronize_state(CPUState *cpu)
2337 if (!cpu->vcpu_dirty) {
2338 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2342 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2344 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2345 cpu->vcpu_dirty = false;
2348 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2350 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2353 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2355 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2356 cpu->vcpu_dirty = false;
2359 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2361 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2364 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2366 cpu->vcpu_dirty = true;
2369 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2371 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2374 #ifdef KVM_HAVE_MCE_INJECTION
2375 static __thread void *pending_sigbus_addr;
2376 static __thread int pending_sigbus_code;
2377 static __thread bool have_sigbus_pending;
2378 #endif
2380 static void kvm_cpu_kick(CPUState *cpu)
2382 atomic_set(&cpu->kvm_run->immediate_exit, 1);
2385 static void kvm_cpu_kick_self(void)
2387 if (kvm_immediate_exit) {
2388 kvm_cpu_kick(current_cpu);
2389 } else {
2390 qemu_cpu_kick_self();
2394 static void kvm_eat_signals(CPUState *cpu)
2396 struct timespec ts = { 0, 0 };
2397 siginfo_t siginfo;
2398 sigset_t waitset;
2399 sigset_t chkset;
2400 int r;
2402 if (kvm_immediate_exit) {
2403 atomic_set(&cpu->kvm_run->immediate_exit, 0);
2404 /* Write kvm_run->immediate_exit before the cpu->exit_request
2405 * write in kvm_cpu_exec.
2407 smp_wmb();
2408 return;
2411 sigemptyset(&waitset);
2412 sigaddset(&waitset, SIG_IPI);
2414 do {
2415 r = sigtimedwait(&waitset, &siginfo, &ts);
2416 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2417 perror("sigtimedwait");
2418 exit(1);
2421 r = sigpending(&chkset);
2422 if (r == -1) {
2423 perror("sigpending");
2424 exit(1);
2426 } while (sigismember(&chkset, SIG_IPI));
2429 int kvm_cpu_exec(CPUState *cpu)
2431 struct kvm_run *run = cpu->kvm_run;
2432 int ret, run_ret;
2434 DPRINTF("kvm_cpu_exec()\n");
2436 if (kvm_arch_process_async_events(cpu)) {
2437 atomic_set(&cpu->exit_request, 0);
2438 return EXCP_HLT;
2441 qemu_mutex_unlock_iothread();
2442 cpu_exec_start(cpu);
2444 do {
2445 MemTxAttrs attrs;
2447 if (cpu->vcpu_dirty) {
2448 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2449 cpu->vcpu_dirty = false;
2452 kvm_arch_pre_run(cpu, run);
2453 if (atomic_read(&cpu->exit_request)) {
2454 DPRINTF("interrupt exit requested\n");
2456 * KVM requires us to reenter the kernel after IO exits to complete
2457 * instruction emulation. This self-signal will ensure that we
2458 * leave ASAP again.
2460 kvm_cpu_kick_self();
2463 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2464 * Matching barrier in kvm_eat_signals.
2466 smp_rmb();
2468 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2470 attrs = kvm_arch_post_run(cpu, run);
2472 #ifdef KVM_HAVE_MCE_INJECTION
2473 if (unlikely(have_sigbus_pending)) {
2474 qemu_mutex_lock_iothread();
2475 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2476 pending_sigbus_addr);
2477 have_sigbus_pending = false;
2478 qemu_mutex_unlock_iothread();
2480 #endif
2482 if (run_ret < 0) {
2483 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2484 DPRINTF("io window exit\n");
2485 kvm_eat_signals(cpu);
2486 ret = EXCP_INTERRUPT;
2487 break;
2489 fprintf(stderr, "error: kvm run failed %s\n",
2490 strerror(-run_ret));
2491 #ifdef TARGET_PPC
2492 if (run_ret == -EBUSY) {
2493 fprintf(stderr,
2494 "This is probably because your SMT is enabled.\n"
2495 "VCPU can only run on primary threads with all "
2496 "secondary threads offline.\n");
2498 #endif
2499 ret = -1;
2500 break;
2503 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2504 switch (run->exit_reason) {
2505 case KVM_EXIT_IO:
2506 DPRINTF("handle_io\n");
2507 /* Called outside BQL */
2508 kvm_handle_io(run->io.port, attrs,
2509 (uint8_t *)run + run->io.data_offset,
2510 run->io.direction,
2511 run->io.size,
2512 run->io.count);
2513 ret = 0;
2514 break;
2515 case KVM_EXIT_MMIO:
2516 DPRINTF("handle_mmio\n");
2517 /* Called outside BQL */
2518 address_space_rw(&address_space_memory,
2519 run->mmio.phys_addr, attrs,
2520 run->mmio.data,
2521 run->mmio.len,
2522 run->mmio.is_write);
2523 ret = 0;
2524 break;
2525 case KVM_EXIT_IRQ_WINDOW_OPEN:
2526 DPRINTF("irq_window_open\n");
2527 ret = EXCP_INTERRUPT;
2528 break;
2529 case KVM_EXIT_SHUTDOWN:
2530 DPRINTF("shutdown\n");
2531 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2532 ret = EXCP_INTERRUPT;
2533 break;
2534 case KVM_EXIT_UNKNOWN:
2535 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2536 (uint64_t)run->hw.hardware_exit_reason);
2537 ret = -1;
2538 break;
2539 case KVM_EXIT_INTERNAL_ERROR:
2540 ret = kvm_handle_internal_error(cpu, run);
2541 break;
2542 case KVM_EXIT_SYSTEM_EVENT:
2543 switch (run->system_event.type) {
2544 case KVM_SYSTEM_EVENT_SHUTDOWN:
2545 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2546 ret = EXCP_INTERRUPT;
2547 break;
2548 case KVM_SYSTEM_EVENT_RESET:
2549 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2550 ret = EXCP_INTERRUPT;
2551 break;
2552 case KVM_SYSTEM_EVENT_CRASH:
2553 kvm_cpu_synchronize_state(cpu);
2554 qemu_mutex_lock_iothread();
2555 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2556 qemu_mutex_unlock_iothread();
2557 ret = 0;
2558 break;
2559 default:
2560 DPRINTF("kvm_arch_handle_exit\n");
2561 ret = kvm_arch_handle_exit(cpu, run);
2562 break;
2564 break;
2565 default:
2566 DPRINTF("kvm_arch_handle_exit\n");
2567 ret = kvm_arch_handle_exit(cpu, run);
2568 break;
2570 } while (ret == 0);
2572 cpu_exec_end(cpu);
2573 qemu_mutex_lock_iothread();
2575 if (ret < 0) {
2576 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2577 vm_stop(RUN_STATE_INTERNAL_ERROR);
2580 atomic_set(&cpu->exit_request, 0);
2581 return ret;
2584 int kvm_ioctl(KVMState *s, int type, ...)
2586 int ret;
2587 void *arg;
2588 va_list ap;
2590 va_start(ap, type);
2591 arg = va_arg(ap, void *);
2592 va_end(ap);
2594 trace_kvm_ioctl(type, arg);
2595 ret = ioctl(s->fd, type, arg);
2596 if (ret == -1) {
2597 ret = -errno;
2599 return ret;
2602 int kvm_vm_ioctl(KVMState *s, int type, ...)
2604 int ret;
2605 void *arg;
2606 va_list ap;
2608 va_start(ap, type);
2609 arg = va_arg(ap, void *);
2610 va_end(ap);
2612 trace_kvm_vm_ioctl(type, arg);
2613 ret = ioctl(s->vmfd, type, arg);
2614 if (ret == -1) {
2615 ret = -errno;
2617 return ret;
2620 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2622 int ret;
2623 void *arg;
2624 va_list ap;
2626 va_start(ap, type);
2627 arg = va_arg(ap, void *);
2628 va_end(ap);
2630 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2631 ret = ioctl(cpu->kvm_fd, type, arg);
2632 if (ret == -1) {
2633 ret = -errno;
2635 return ret;
2638 int kvm_device_ioctl(int fd, int type, ...)
2640 int ret;
2641 void *arg;
2642 va_list ap;
2644 va_start(ap, type);
2645 arg = va_arg(ap, void *);
2646 va_end(ap);
2648 trace_kvm_device_ioctl(fd, type, arg);
2649 ret = ioctl(fd, type, arg);
2650 if (ret == -1) {
2651 ret = -errno;
2653 return ret;
2656 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2658 int ret;
2659 struct kvm_device_attr attribute = {
2660 .group = group,
2661 .attr = attr,
2664 if (!kvm_vm_attributes_allowed) {
2665 return 0;
2668 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2669 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2670 return ret ? 0 : 1;
2673 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2675 struct kvm_device_attr attribute = {
2676 .group = group,
2677 .attr = attr,
2678 .flags = 0,
2681 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2684 int kvm_device_access(int fd, int group, uint64_t attr,
2685 void *val, bool write, Error **errp)
2687 struct kvm_device_attr kvmattr;
2688 int err;
2690 kvmattr.flags = 0;
2691 kvmattr.group = group;
2692 kvmattr.attr = attr;
2693 kvmattr.addr = (uintptr_t)val;
2695 err = kvm_device_ioctl(fd,
2696 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2697 &kvmattr);
2698 if (err < 0) {
2699 error_setg_errno(errp, -err,
2700 "KVM_%s_DEVICE_ATTR failed: Group %d "
2701 "attr 0x%016" PRIx64,
2702 write ? "SET" : "GET", group, attr);
2704 return err;
2707 bool kvm_has_sync_mmu(void)
2709 return kvm_state->sync_mmu;
2712 int kvm_has_vcpu_events(void)
2714 return kvm_state->vcpu_events;
2717 int kvm_has_robust_singlestep(void)
2719 return kvm_state->robust_singlestep;
2722 int kvm_has_debugregs(void)
2724 return kvm_state->debugregs;
2727 int kvm_max_nested_state_length(void)
2729 return kvm_state->max_nested_state_len;
2732 int kvm_has_many_ioeventfds(void)
2734 if (!kvm_enabled()) {
2735 return 0;
2737 return kvm_state->many_ioeventfds;
2740 int kvm_has_gsi_routing(void)
2742 #ifdef KVM_CAP_IRQ_ROUTING
2743 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2744 #else
2745 return false;
2746 #endif
2749 int kvm_has_intx_set_mask(void)
2751 return kvm_state->intx_set_mask;
2754 bool kvm_arm_supports_user_irq(void)
2756 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2759 #ifdef KVM_CAP_SET_GUEST_DEBUG
2760 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2761 target_ulong pc)
2763 struct kvm_sw_breakpoint *bp;
2765 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2766 if (bp->pc == pc) {
2767 return bp;
2770 return NULL;
2773 int kvm_sw_breakpoints_active(CPUState *cpu)
2775 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2778 struct kvm_set_guest_debug_data {
2779 struct kvm_guest_debug dbg;
2780 int err;
2783 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2785 struct kvm_set_guest_debug_data *dbg_data =
2786 (struct kvm_set_guest_debug_data *) data.host_ptr;
2788 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2789 &dbg_data->dbg);
2792 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2794 struct kvm_set_guest_debug_data data;
2796 data.dbg.control = reinject_trap;
2798 if (cpu->singlestep_enabled) {
2799 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2801 kvm_arch_update_guest_debug(cpu, &data.dbg);
2803 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2804 RUN_ON_CPU_HOST_PTR(&data));
2805 return data.err;
2808 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2809 target_ulong len, int type)
2811 struct kvm_sw_breakpoint *bp;
2812 int err;
2814 if (type == GDB_BREAKPOINT_SW) {
2815 bp = kvm_find_sw_breakpoint(cpu, addr);
2816 if (bp) {
2817 bp->use_count++;
2818 return 0;
2821 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2822 bp->pc = addr;
2823 bp->use_count = 1;
2824 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2825 if (err) {
2826 g_free(bp);
2827 return err;
2830 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2831 } else {
2832 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2833 if (err) {
2834 return err;
2838 CPU_FOREACH(cpu) {
2839 err = kvm_update_guest_debug(cpu, 0);
2840 if (err) {
2841 return err;
2844 return 0;
2847 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2848 target_ulong len, int type)
2850 struct kvm_sw_breakpoint *bp;
2851 int err;
2853 if (type == GDB_BREAKPOINT_SW) {
2854 bp = kvm_find_sw_breakpoint(cpu, addr);
2855 if (!bp) {
2856 return -ENOENT;
2859 if (bp->use_count > 1) {
2860 bp->use_count--;
2861 return 0;
2864 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2865 if (err) {
2866 return err;
2869 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2870 g_free(bp);
2871 } else {
2872 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2873 if (err) {
2874 return err;
2878 CPU_FOREACH(cpu) {
2879 err = kvm_update_guest_debug(cpu, 0);
2880 if (err) {
2881 return err;
2884 return 0;
2887 void kvm_remove_all_breakpoints(CPUState *cpu)
2889 struct kvm_sw_breakpoint *bp, *next;
2890 KVMState *s = cpu->kvm_state;
2891 CPUState *tmpcpu;
2893 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2894 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2895 /* Try harder to find a CPU that currently sees the breakpoint. */
2896 CPU_FOREACH(tmpcpu) {
2897 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2898 break;
2902 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2903 g_free(bp);
2905 kvm_arch_remove_all_hw_breakpoints();
2907 CPU_FOREACH(cpu) {
2908 kvm_update_guest_debug(cpu, 0);
2912 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2914 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2916 return -EINVAL;
2919 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2920 target_ulong len, int type)
2922 return -EINVAL;
2925 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2926 target_ulong len, int type)
2928 return -EINVAL;
2931 void kvm_remove_all_breakpoints(CPUState *cpu)
2934 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2936 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2938 KVMState *s = kvm_state;
2939 struct kvm_signal_mask *sigmask;
2940 int r;
2942 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2944 sigmask->len = s->sigmask_len;
2945 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2946 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2947 g_free(sigmask);
2949 return r;
2952 static void kvm_ipi_signal(int sig)
2954 if (current_cpu) {
2955 assert(kvm_immediate_exit);
2956 kvm_cpu_kick(current_cpu);
2960 void kvm_init_cpu_signals(CPUState *cpu)
2962 int r;
2963 sigset_t set;
2964 struct sigaction sigact;
2966 memset(&sigact, 0, sizeof(sigact));
2967 sigact.sa_handler = kvm_ipi_signal;
2968 sigaction(SIG_IPI, &sigact, NULL);
2970 pthread_sigmask(SIG_BLOCK, NULL, &set);
2971 #if defined KVM_HAVE_MCE_INJECTION
2972 sigdelset(&set, SIGBUS);
2973 pthread_sigmask(SIG_SETMASK, &set, NULL);
2974 #endif
2975 sigdelset(&set, SIG_IPI);
2976 if (kvm_immediate_exit) {
2977 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2978 } else {
2979 r = kvm_set_signal_mask(cpu, &set);
2981 if (r) {
2982 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2983 exit(1);
2987 /* Called asynchronously in VCPU thread. */
2988 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2990 #ifdef KVM_HAVE_MCE_INJECTION
2991 if (have_sigbus_pending) {
2992 return 1;
2994 have_sigbus_pending = true;
2995 pending_sigbus_addr = addr;
2996 pending_sigbus_code = code;
2997 atomic_set(&cpu->exit_request, 1);
2998 return 0;
2999 #else
3000 return 1;
3001 #endif
3004 /* Called synchronously (via signalfd) in main thread. */
3005 int kvm_on_sigbus(int code, void *addr)
3007 #ifdef KVM_HAVE_MCE_INJECTION
3008 /* Action required MCE kills the process if SIGBUS is blocked. Because
3009 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3010 * we can only get action optional here.
3012 assert(code != BUS_MCEERR_AR);
3013 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3014 return 0;
3015 #else
3016 return 1;
3017 #endif
3020 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3022 int ret;
3023 struct kvm_create_device create_dev;
3025 create_dev.type = type;
3026 create_dev.fd = -1;
3027 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3029 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3030 return -ENOTSUP;
3033 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3034 if (ret) {
3035 return ret;
3038 return test ? 0 : create_dev.fd;
3041 bool kvm_device_supported(int vmfd, uint64_t type)
3043 struct kvm_create_device create_dev = {
3044 .type = type,
3045 .fd = -1,
3046 .flags = KVM_CREATE_DEVICE_TEST,
3049 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3050 return false;
3053 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3056 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3058 struct kvm_one_reg reg;
3059 int r;
3061 reg.id = id;
3062 reg.addr = (uintptr_t) source;
3063 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3064 if (r) {
3065 trace_kvm_failed_reg_set(id, strerror(-r));
3067 return r;
3070 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3072 struct kvm_one_reg reg;
3073 int r;
3075 reg.id = id;
3076 reg.addr = (uintptr_t) target;
3077 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3078 if (r) {
3079 trace_kvm_failed_reg_get(id, strerror(-r));
3081 return r;
3084 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3085 hwaddr start_addr, hwaddr size)
3087 KVMState *kvm = KVM_STATE(ms->accelerator);
3088 int i;
3090 for (i = 0; i < kvm->nr_as; ++i) {
3091 if (kvm->as[i].as == as && kvm->as[i].ml) {
3092 size = MIN(kvm_max_slot_size, size);
3093 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3094 start_addr, size);
3098 return false;
3101 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3102 const char *name, void *opaque,
3103 Error **errp)
3105 KVMState *s = KVM_STATE(obj);
3106 int64_t value = s->kvm_shadow_mem;
3108 visit_type_int(v, name, &value, errp);
3111 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3112 const char *name, void *opaque,
3113 Error **errp)
3115 KVMState *s = KVM_STATE(obj);
3116 Error *error = NULL;
3117 int64_t value;
3119 visit_type_int(v, name, &value, &error);
3120 if (error) {
3121 error_propagate(errp, error);
3122 return;
3125 s->kvm_shadow_mem = value;
3128 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3129 const char *name, void *opaque,
3130 Error **errp)
3132 Error *err = NULL;
3133 KVMState *s = KVM_STATE(obj);
3134 OnOffSplit mode;
3136 visit_type_OnOffSplit(v, name, &mode, &err);
3137 if (err) {
3138 error_propagate(errp, err);
3139 return;
3140 } else {
3141 switch (mode) {
3142 case ON_OFF_SPLIT_ON:
3143 s->kernel_irqchip_allowed = true;
3144 s->kernel_irqchip_required = true;
3145 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3146 break;
3147 case ON_OFF_SPLIT_OFF:
3148 s->kernel_irqchip_allowed = false;
3149 s->kernel_irqchip_required = false;
3150 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3151 break;
3152 case ON_OFF_SPLIT_SPLIT:
3153 s->kernel_irqchip_allowed = true;
3154 s->kernel_irqchip_required = true;
3155 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3156 break;
3157 default:
3158 /* The value was checked in visit_type_OnOffSplit() above. If
3159 * we get here, then something is wrong in QEMU.
3161 abort();
3166 bool kvm_kernel_irqchip_allowed(void)
3168 return kvm_state->kernel_irqchip_allowed;
3171 bool kvm_kernel_irqchip_required(void)
3173 return kvm_state->kernel_irqchip_required;
3176 bool kvm_kernel_irqchip_split(void)
3178 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3181 static void kvm_accel_instance_init(Object *obj)
3183 KVMState *s = KVM_STATE(obj);
3185 s->kvm_shadow_mem = -1;
3186 s->kernel_irqchip_allowed = true;
3187 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3190 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3192 AccelClass *ac = ACCEL_CLASS(oc);
3193 ac->name = "KVM";
3194 ac->init_machine = kvm_init;
3195 ac->has_memory = kvm_accel_has_memory;
3196 ac->allowed = &kvm_allowed;
3198 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3199 NULL, kvm_set_kernel_irqchip,
3200 NULL, NULL);
3201 object_class_property_set_description(oc, "kernel-irqchip",
3202 "Configure KVM in-kernel irqchip");
3204 object_class_property_add(oc, "kvm-shadow-mem", "int",
3205 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3206 NULL, NULL);
3207 object_class_property_set_description(oc, "kvm-shadow-mem",
3208 "KVM shadow MMU size");
3211 static const TypeInfo kvm_accel_type = {
3212 .name = TYPE_KVM_ACCEL,
3213 .parent = TYPE_ACCEL,
3214 .instance_init = kvm_accel_instance_init,
3215 .class_init = kvm_accel_class_init,
3216 .instance_size = sizeof(KVMState),
3219 static void kvm_type_init(void)
3221 type_register_static(&kvm_accel_type);
3224 type_init(kvm_type_init);