target-i386: Fix eflags.TF/#DB handling of syscall/sysret insns
[qemu/ar7.git] / hw / ppc / spapr_pci.c
blobfd6fc1d9534459a151fd33b383e3baa4f06a1888
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/hw.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
39 #include <libfdt.h>
40 #include "trace.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/ppc/spapr_drc.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/numa.h"
52 #include "hw/vfio/vfio.h"
54 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
55 #define RTAS_QUERY_FN 0
56 #define RTAS_CHANGE_FN 1
57 #define RTAS_RESET_FN 2
58 #define RTAS_CHANGE_MSI_FN 3
59 #define RTAS_CHANGE_MSIX_FN 4
61 /* Interrupt types to return on RTAS_CHANGE_* */
62 #define RTAS_TYPE_MSI 1
63 #define RTAS_TYPE_MSIX 2
65 #define FDT_NAME_MAX 128
67 #define _FDT(exp) \
68 do { \
69 int ret = (exp); \
70 if (ret < 0) { \
71 return ret; \
72 } \
73 } while (0)
75 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
77 sPAPRPHBState *sphb;
79 QLIST_FOREACH(sphb, &spapr->phbs, list) {
80 if (sphb->buid != buid) {
81 continue;
83 return sphb;
86 return NULL;
89 PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
90 uint32_t config_addr)
92 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
93 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
94 int bus_num = (config_addr >> 16) & 0xFF;
95 int devfn = (config_addr >> 8) & 0xFF;
97 if (!phb) {
98 return NULL;
101 return pci_find_device(phb->bus, bus_num, devfn);
104 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
106 /* This handles the encoding of extended config space addresses */
107 return ((arg >> 20) & 0xf00) | (arg & 0xff);
110 static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
111 uint32_t addr, uint32_t size,
112 target_ulong rets)
114 PCIDevice *pci_dev;
115 uint32_t val;
117 if ((size != 1) && (size != 2) && (size != 4)) {
118 /* access must be 1, 2 or 4 bytes */
119 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
120 return;
123 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
124 addr = rtas_pci_cfgaddr(addr);
126 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
127 /* Access must be to a valid device, within bounds and
128 * naturally aligned */
129 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
130 return;
133 val = pci_host_config_read_common(pci_dev, addr,
134 pci_config_size(pci_dev), size);
136 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
137 rtas_st(rets, 1, val);
140 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
141 uint32_t token, uint32_t nargs,
142 target_ulong args,
143 uint32_t nret, target_ulong rets)
145 uint64_t buid;
146 uint32_t size, addr;
148 if ((nargs != 4) || (nret != 2)) {
149 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
150 return;
153 buid = rtas_ldq(args, 1);
154 size = rtas_ld(args, 3);
155 addr = rtas_ld(args, 0);
157 finish_read_pci_config(spapr, buid, addr, size, rets);
160 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
161 uint32_t token, uint32_t nargs,
162 target_ulong args,
163 uint32_t nret, target_ulong rets)
165 uint32_t size, addr;
167 if ((nargs != 2) || (nret != 2)) {
168 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
169 return;
172 size = rtas_ld(args, 1);
173 addr = rtas_ld(args, 0);
175 finish_read_pci_config(spapr, 0, addr, size, rets);
178 static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
179 uint32_t addr, uint32_t size,
180 uint32_t val, target_ulong rets)
182 PCIDevice *pci_dev;
184 if ((size != 1) && (size != 2) && (size != 4)) {
185 /* access must be 1, 2 or 4 bytes */
186 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
187 return;
190 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
191 addr = rtas_pci_cfgaddr(addr);
193 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
194 /* Access must be to a valid device, within bounds and
195 * naturally aligned */
196 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
197 return;
200 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
201 val, size);
203 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
206 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
207 uint32_t token, uint32_t nargs,
208 target_ulong args,
209 uint32_t nret, target_ulong rets)
211 uint64_t buid;
212 uint32_t val, size, addr;
214 if ((nargs != 5) || (nret != 1)) {
215 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
216 return;
219 buid = rtas_ldq(args, 1);
220 val = rtas_ld(args, 4);
221 size = rtas_ld(args, 3);
222 addr = rtas_ld(args, 0);
224 finish_write_pci_config(spapr, buid, addr, size, val, rets);
227 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
228 uint32_t token, uint32_t nargs,
229 target_ulong args,
230 uint32_t nret, target_ulong rets)
232 uint32_t val, size, addr;
234 if ((nargs != 3) || (nret != 1)) {
235 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
236 return;
240 val = rtas_ld(args, 2);
241 size = rtas_ld(args, 1);
242 addr = rtas_ld(args, 0);
244 finish_write_pci_config(spapr, 0, addr, size, val, rets);
248 * Set MSI/MSIX message data.
249 * This is required for msi_notify()/msix_notify() which
250 * will write at the addresses via spapr_msi_write().
252 * If hwaddr == 0, all entries will have .data == first_irq i.e.
253 * table will be reset.
255 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
256 unsigned first_irq, unsigned req_num)
258 unsigned i;
259 MSIMessage msg = { .address = addr, .data = first_irq };
261 if (!msix) {
262 msi_set_message(pdev, msg);
263 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
264 return;
267 for (i = 0; i < req_num; ++i) {
268 msix_set_message(pdev, i, msg);
269 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
270 if (addr) {
271 ++msg.data;
276 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
277 uint32_t token, uint32_t nargs,
278 target_ulong args, uint32_t nret,
279 target_ulong rets)
281 uint32_t config_addr = rtas_ld(args, 0);
282 uint64_t buid = rtas_ldq(args, 1);
283 unsigned int func = rtas_ld(args, 3);
284 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
285 unsigned int seq_num = rtas_ld(args, 5);
286 unsigned int ret_intr_type;
287 unsigned int irq, max_irqs = 0;
288 sPAPRPHBState *phb = NULL;
289 PCIDevice *pdev = NULL;
290 spapr_pci_msi *msi;
291 int *config_addr_key;
292 Error *err = NULL;
294 switch (func) {
295 case RTAS_CHANGE_MSI_FN:
296 case RTAS_CHANGE_FN:
297 ret_intr_type = RTAS_TYPE_MSI;
298 break;
299 case RTAS_CHANGE_MSIX_FN:
300 ret_intr_type = RTAS_TYPE_MSIX;
301 break;
302 default:
303 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
304 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
305 return;
308 /* Fins sPAPRPHBState */
309 phb = spapr_pci_find_phb(spapr, buid);
310 if (phb) {
311 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
313 if (!phb || !pdev) {
314 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
315 return;
318 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
320 /* Releasing MSIs */
321 if (!req_num) {
322 if (!msi) {
323 trace_spapr_pci_msi("Releasing wrong config", config_addr);
324 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
325 return;
328 xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
329 if (msi_present(pdev)) {
330 spapr_msi_setmsg(pdev, 0, false, 0, 0);
332 if (msix_present(pdev)) {
333 spapr_msi_setmsg(pdev, 0, true, 0, 0);
335 g_hash_table_remove(phb->msi, &config_addr);
337 trace_spapr_pci_msi("Released MSIs", config_addr);
338 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
339 rtas_st(rets, 1, 0);
340 return;
343 /* Enabling MSI */
345 /* Check if the device supports as many IRQs as requested */
346 if (ret_intr_type == RTAS_TYPE_MSI) {
347 max_irqs = msi_nr_vectors_allocated(pdev);
348 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
349 max_irqs = pdev->msix_entries_nr;
351 if (!max_irqs) {
352 error_report("Requested interrupt type %d is not enabled for device %x",
353 ret_intr_type, config_addr);
354 rtas_st(rets, 0, -1); /* Hardware error */
355 return;
357 /* Correct the number if the guest asked for too many */
358 if (req_num > max_irqs) {
359 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
360 req_num = max_irqs;
361 irq = 0; /* to avoid misleading trace */
362 goto out;
365 /* Allocate MSIs */
366 irq = xics_spapr_alloc_block(spapr->xics, req_num, false,
367 ret_intr_type == RTAS_TYPE_MSI, &err);
368 if (err) {
369 error_reportf_err(err, "Can't allocate MSIs for device %x: ",
370 config_addr);
371 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
372 return;
375 /* Release previous MSIs */
376 if (msi) {
377 xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
378 g_hash_table_remove(phb->msi, &config_addr);
381 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
382 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
383 irq, req_num);
385 /* Add MSI device to cache */
386 msi = g_new(spapr_pci_msi, 1);
387 msi->first_irq = irq;
388 msi->num = req_num;
389 config_addr_key = g_new(int, 1);
390 *config_addr_key = config_addr;
391 g_hash_table_insert(phb->msi, config_addr_key, msi);
393 out:
394 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
395 rtas_st(rets, 1, req_num);
396 rtas_st(rets, 2, ++seq_num);
397 if (nret > 3) {
398 rtas_st(rets, 3, ret_intr_type);
401 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
404 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
405 sPAPRMachineState *spapr,
406 uint32_t token,
407 uint32_t nargs,
408 target_ulong args,
409 uint32_t nret,
410 target_ulong rets)
412 uint32_t config_addr = rtas_ld(args, 0);
413 uint64_t buid = rtas_ldq(args, 1);
414 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
415 sPAPRPHBState *phb = NULL;
416 PCIDevice *pdev = NULL;
417 spapr_pci_msi *msi;
419 /* Find sPAPRPHBState */
420 phb = spapr_pci_find_phb(spapr, buid);
421 if (phb) {
422 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
424 if (!phb || !pdev) {
425 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
426 return;
429 /* Find device descriptor and start IRQ */
430 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
431 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
432 trace_spapr_pci_msi("Failed to return vector", config_addr);
433 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
434 return;
436 intr_src_num = msi->first_irq + ioa_intr_num;
437 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
438 intr_src_num);
440 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
441 rtas_st(rets, 1, intr_src_num);
442 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
445 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
446 sPAPRMachineState *spapr,
447 uint32_t token, uint32_t nargs,
448 target_ulong args, uint32_t nret,
449 target_ulong rets)
451 sPAPRPHBState *sphb;
452 uint32_t addr, option;
453 uint64_t buid;
454 int ret;
456 if ((nargs != 4) || (nret != 1)) {
457 goto param_error_exit;
460 buid = rtas_ldq(args, 1);
461 addr = rtas_ld(args, 0);
462 option = rtas_ld(args, 3);
464 sphb = spapr_pci_find_phb(spapr, buid);
465 if (!sphb) {
466 goto param_error_exit;
469 if (!spapr_phb_eeh_available(sphb)) {
470 goto param_error_exit;
473 ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
474 rtas_st(rets, 0, ret);
475 return;
477 param_error_exit:
478 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
481 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
482 sPAPRMachineState *spapr,
483 uint32_t token, uint32_t nargs,
484 target_ulong args, uint32_t nret,
485 target_ulong rets)
487 sPAPRPHBState *sphb;
488 PCIDevice *pdev;
489 uint32_t addr, option;
490 uint64_t buid;
492 if ((nargs != 4) || (nret != 2)) {
493 goto param_error_exit;
496 buid = rtas_ldq(args, 1);
497 sphb = spapr_pci_find_phb(spapr, buid);
498 if (!sphb) {
499 goto param_error_exit;
502 if (!spapr_phb_eeh_available(sphb)) {
503 goto param_error_exit;
507 * We always have PE address of form "00BB0001". "BB"
508 * represents the bus number of PE's primary bus.
510 option = rtas_ld(args, 3);
511 switch (option) {
512 case RTAS_GET_PE_ADDR:
513 addr = rtas_ld(args, 0);
514 pdev = spapr_pci_find_dev(spapr, buid, addr);
515 if (!pdev) {
516 goto param_error_exit;
519 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
520 break;
521 case RTAS_GET_PE_MODE:
522 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
523 break;
524 default:
525 goto param_error_exit;
528 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
529 return;
531 param_error_exit:
532 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
535 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
536 sPAPRMachineState *spapr,
537 uint32_t token, uint32_t nargs,
538 target_ulong args, uint32_t nret,
539 target_ulong rets)
541 sPAPRPHBState *sphb;
542 uint64_t buid;
543 int state, ret;
545 if ((nargs != 3) || (nret != 4 && nret != 5)) {
546 goto param_error_exit;
549 buid = rtas_ldq(args, 1);
550 sphb = spapr_pci_find_phb(spapr, buid);
551 if (!sphb) {
552 goto param_error_exit;
555 if (!spapr_phb_eeh_available(sphb)) {
556 goto param_error_exit;
559 ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
560 rtas_st(rets, 0, ret);
561 if (ret != RTAS_OUT_SUCCESS) {
562 return;
565 rtas_st(rets, 1, state);
566 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
567 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
568 if (nret >= 5) {
569 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
571 return;
573 param_error_exit:
574 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
577 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
578 sPAPRMachineState *spapr,
579 uint32_t token, uint32_t nargs,
580 target_ulong args, uint32_t nret,
581 target_ulong rets)
583 sPAPRPHBState *sphb;
584 uint32_t option;
585 uint64_t buid;
586 int ret;
588 if ((nargs != 4) || (nret != 1)) {
589 goto param_error_exit;
592 buid = rtas_ldq(args, 1);
593 option = rtas_ld(args, 3);
594 sphb = spapr_pci_find_phb(spapr, buid);
595 if (!sphb) {
596 goto param_error_exit;
599 if (!spapr_phb_eeh_available(sphb)) {
600 goto param_error_exit;
603 ret = spapr_phb_vfio_eeh_reset(sphb, option);
604 rtas_st(rets, 0, ret);
605 return;
607 param_error_exit:
608 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
611 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
612 sPAPRMachineState *spapr,
613 uint32_t token, uint32_t nargs,
614 target_ulong args, uint32_t nret,
615 target_ulong rets)
617 sPAPRPHBState *sphb;
618 uint64_t buid;
619 int ret;
621 if ((nargs != 3) || (nret != 1)) {
622 goto param_error_exit;
625 buid = rtas_ldq(args, 1);
626 sphb = spapr_pci_find_phb(spapr, buid);
627 if (!sphb) {
628 goto param_error_exit;
631 if (!spapr_phb_eeh_available(sphb)) {
632 goto param_error_exit;
635 ret = spapr_phb_vfio_eeh_configure(sphb);
636 rtas_st(rets, 0, ret);
637 return;
639 param_error_exit:
640 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
643 /* To support it later */
644 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
645 sPAPRMachineState *spapr,
646 uint32_t token, uint32_t nargs,
647 target_ulong args, uint32_t nret,
648 target_ulong rets)
650 sPAPRPHBState *sphb;
651 int option;
652 uint64_t buid;
654 if ((nargs != 8) || (nret != 1)) {
655 goto param_error_exit;
658 buid = rtas_ldq(args, 1);
659 sphb = spapr_pci_find_phb(spapr, buid);
660 if (!sphb) {
661 goto param_error_exit;
664 if (!spapr_phb_eeh_available(sphb)) {
665 goto param_error_exit;
668 option = rtas_ld(args, 7);
669 switch (option) {
670 case RTAS_SLOT_TEMP_ERR_LOG:
671 case RTAS_SLOT_PERM_ERR_LOG:
672 break;
673 default:
674 goto param_error_exit;
677 /* We don't have error log yet */
678 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
679 return;
681 param_error_exit:
682 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
685 static int pci_spapr_swizzle(int slot, int pin)
687 return (slot + pin) % PCI_NUM_PINS;
690 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
693 * Here we need to convert pci_dev + irq_num to some unique value
694 * which is less than number of IRQs on the specific bus (4). We
695 * use standard PCI swizzling, that is (slot number + pin number)
696 * % 4.
698 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
701 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
704 * Here we use the number returned by pci_spapr_map_irq to find a
705 * corresponding qemu_irq.
707 sPAPRPHBState *phb = opaque;
709 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
710 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
713 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
715 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
716 PCIINTxRoute route;
718 route.mode = PCI_INTX_ENABLED;
719 route.irq = sphb->lsi_table[pin].irq;
721 return route;
725 * MSI/MSIX memory region implementation.
726 * The handler handles both MSI and MSIX.
727 * For MSI-X, the vector number is encoded as a part of the address,
728 * data is set to 0.
729 * For MSI, the vector number is encoded in least bits in data.
731 static void spapr_msi_write(void *opaque, hwaddr addr,
732 uint64_t data, unsigned size)
734 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
735 uint32_t irq = data;
737 trace_spapr_pci_msi_write(addr, data, irq);
739 qemu_irq_pulse(xics_get_qirq(spapr->xics, irq));
742 static const MemoryRegionOps spapr_msi_ops = {
743 /* There is no .read as the read result is undefined by PCI spec */
744 .read = NULL,
745 .write = spapr_msi_write,
746 .endianness = DEVICE_LITTLE_ENDIAN
750 * PHB PCI device
752 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
754 sPAPRPHBState *phb = opaque;
756 return &phb->iommu_as;
759 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
761 char *path = NULL, *buf = NULL, *host = NULL;
763 /* Get the PCI VFIO host id */
764 host = object_property_get_str(OBJECT(pdev), "host", NULL);
765 if (!host) {
766 goto err_out;
769 /* Construct the path of the file that will give us the DT location */
770 path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
771 g_free(host);
772 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
773 goto err_out;
775 g_free(path);
777 /* Construct and read from host device tree the loc-code */
778 path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
779 g_free(buf);
780 if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
781 goto err_out;
783 return buf;
785 err_out:
786 g_free(path);
787 return NULL;
790 static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
792 char *buf;
793 const char *devtype = "qemu";
794 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
796 if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
797 buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
798 if (buf) {
799 return buf;
801 devtype = "vfio";
804 * For emulated devices and VFIO-failure case, make up
805 * the loc-code.
807 buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
808 devtype, pdev->name, sphb->index, busnr,
809 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
810 return buf;
813 /* Macros to operate with address in OF binding to PCI */
814 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
815 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
816 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
817 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
818 #define b_ss(x) b_x((x), 24, 2) /* the space code */
819 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
820 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
821 #define b_fff(x) b_x((x), 8, 3) /* function number */
822 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
824 /* for 'reg'/'assigned-addresses' OF properties */
825 #define RESOURCE_CELLS_SIZE 2
826 #define RESOURCE_CELLS_ADDRESS 3
828 typedef struct ResourceFields {
829 uint32_t phys_hi;
830 uint32_t phys_mid;
831 uint32_t phys_lo;
832 uint32_t size_hi;
833 uint32_t size_lo;
834 } QEMU_PACKED ResourceFields;
836 typedef struct ResourceProps {
837 ResourceFields reg[8];
838 ResourceFields assigned[7];
839 uint32_t reg_len;
840 uint32_t assigned_len;
841 } ResourceProps;
843 /* fill in the 'reg'/'assigned-resources' OF properties for
844 * a PCI device. 'reg' describes resource requirements for a
845 * device's IO/MEM regions, 'assigned-addresses' describes the
846 * actual resource assignments.
848 * the properties are arrays of ('phys-addr', 'size') pairs describing
849 * the addressable regions of the PCI device, where 'phys-addr' is a
850 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
851 * (phys.hi, phys.mid, phys.lo), and 'size' is a
852 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
854 * phys.hi = 0xYYXXXXZZ, where:
855 * 0xYY = npt000ss
856 * ||| |
857 * ||| +-- space code
858 * ||| |
859 * ||| + 00 if configuration space
860 * ||| + 01 if IO region,
861 * ||| + 10 if 32-bit MEM region
862 * ||| + 11 if 64-bit MEM region
863 * |||
864 * ||+------ for non-relocatable IO: 1 if aliased
865 * || for relocatable IO: 1 if below 64KB
866 * || for MEM: 1 if below 1MB
867 * |+------- 1 if region is prefetchable
868 * +-------- 1 if region is non-relocatable
869 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
870 * bits respectively
871 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
872 * to the region
874 * phys.mid and phys.lo correspond respectively to the hi/lo portions
875 * of the actual address of the region.
877 * how the phys-addr/size values are used differ slightly between
878 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
879 * an additional description for the config space region of the
880 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
881 * to describe the region as relocatable, with an address-mapping
882 * that corresponds directly to the PHB's address space for the
883 * resource. 'assigned-addresses' always has n=1 set with an absolute
884 * address assigned for the resource. in general, 'assigned-addresses'
885 * won't be populated, since addresses for PCI devices are generally
886 * unmapped initially and left to the guest to assign.
888 * note also that addresses defined in these properties are, at least
889 * for PAPR guests, relative to the PHBs IO/MEM windows, and
890 * correspond directly to the addresses in the BARs.
892 * in accordance with PCI Bus Binding to Open Firmware,
893 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
894 * Appendix C.
896 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
898 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
899 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
900 b_ddddd(PCI_SLOT(d->devfn)) |
901 b_fff(PCI_FUNC(d->devfn)));
902 ResourceFields *reg, *assigned;
903 int i, reg_idx = 0, assigned_idx = 0;
905 /* config space region */
906 reg = &rp->reg[reg_idx++];
907 reg->phys_hi = cpu_to_be32(dev_id);
908 reg->phys_mid = 0;
909 reg->phys_lo = 0;
910 reg->size_hi = 0;
911 reg->size_lo = 0;
913 for (i = 0; i < PCI_NUM_REGIONS; i++) {
914 if (!d->io_regions[i].size) {
915 continue;
918 reg = &rp->reg[reg_idx++];
920 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
921 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
922 reg->phys_hi |= cpu_to_be32(b_ss(1));
923 } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
924 reg->phys_hi |= cpu_to_be32(b_ss(3));
925 } else {
926 reg->phys_hi |= cpu_to_be32(b_ss(2));
928 reg->phys_mid = 0;
929 reg->phys_lo = 0;
930 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
931 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
933 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
934 continue;
937 assigned = &rp->assigned[assigned_idx++];
938 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
939 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
940 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
941 assigned->size_hi = reg->size_hi;
942 assigned->size_lo = reg->size_lo;
945 rp->reg_len = reg_idx * sizeof(ResourceFields);
946 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
949 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
950 PCIDevice *pdev);
952 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
953 sPAPRPHBState *sphb)
955 ResourceProps rp;
956 bool is_bridge = false;
957 int pci_status, err;
958 char *buf = NULL;
959 uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
960 uint32_t max_msi, max_msix;
962 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
963 PCI_HEADER_TYPE_BRIDGE) {
964 is_bridge = true;
967 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
968 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
969 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
970 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
971 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
972 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
973 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
974 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
975 pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
976 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
977 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
978 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
981 if (!is_bridge) {
982 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
983 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
984 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
985 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
988 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
989 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
990 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
993 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
994 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
995 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
998 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
999 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
1001 /* the following fdt cells are masked off the pci status register */
1002 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
1003 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
1004 PCI_STATUS_DEVSEL_MASK & pci_status));
1006 if (pci_status & PCI_STATUS_FAST_BACK) {
1007 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
1009 if (pci_status & PCI_STATUS_66MHZ) {
1010 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
1012 if (pci_status & PCI_STATUS_UDF) {
1013 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
1016 /* NOTE: this is normally generated by firmware via path/unit name,
1017 * but in our case we must set it manually since it does not get
1018 * processed by OF beforehand
1020 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
1021 buf = spapr_phb_get_loc_code(sphb, dev);
1022 if (!buf) {
1023 error_report("Failed setting the ibm,loc-code");
1024 return -1;
1027 err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
1028 g_free(buf);
1029 if (err < 0) {
1030 return err;
1033 if (drc_index) {
1034 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
1037 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
1038 RESOURCE_CELLS_ADDRESS));
1039 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
1040 RESOURCE_CELLS_SIZE));
1042 max_msi = msi_nr_vectors_allocated(dev);
1043 if (max_msi) {
1044 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
1046 max_msix = dev->msix_entries_nr;
1047 if (max_msix) {
1048 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
1051 populate_resource_props(dev, &rp);
1052 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
1053 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
1054 (uint8_t *)rp.assigned, rp.assigned_len));
1056 return 0;
1059 /* create OF node for pci device and required OF DT properties */
1060 static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
1061 void *fdt, int node_offset)
1063 int offset, ret;
1064 int slot = PCI_SLOT(dev->devfn);
1065 int func = PCI_FUNC(dev->devfn);
1066 char nodename[FDT_NAME_MAX];
1068 if (func != 0) {
1069 snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
1070 } else {
1071 snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
1073 offset = fdt_add_subnode(fdt, node_offset, nodename);
1074 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
1076 g_assert(!ret);
1077 if (ret) {
1078 return 0;
1080 return offset;
1083 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
1084 sPAPRPHBState *phb,
1085 PCIDevice *pdev,
1086 Error **errp)
1088 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1089 DeviceState *dev = DEVICE(pdev);
1090 void *fdt = NULL;
1091 int fdt_start_offset = 0, fdt_size;
1093 fdt = create_device_tree(&fdt_size);
1094 fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
1095 if (!fdt_start_offset) {
1096 error_setg(errp, "Failed to create pci child device tree node");
1097 goto out;
1100 drck->attach(drc, DEVICE(pdev),
1101 fdt, fdt_start_offset, !dev->hotplugged, errp);
1102 out:
1103 if (*errp) {
1104 g_free(fdt);
1108 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1110 /* some version guests do not wait for completion of a device
1111 * cleanup (generally done asynchronously by the kernel) before
1112 * signaling to QEMU that the device is safe, but instead sleep
1113 * for some 'safe' period of time. unfortunately on a busy host
1114 * this sleep isn't guaranteed to be long enough, resulting in
1115 * bad things like IRQ lines being left asserted during final
1116 * device removal. to deal with this we call reset just prior
1117 * to finalizing the device, which will put the device back into
1118 * an 'idle' state, as the device cleanup code expects.
1120 pci_device_reset(PCI_DEVICE(dev));
1121 object_unparent(OBJECT(dev));
1124 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1125 sPAPRPHBState *phb,
1126 PCIDevice *pdev,
1127 Error **errp)
1129 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1131 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1134 static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
1135 uint32_t busnr,
1136 int32_t devfn)
1138 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1139 (phb->index << 16) |
1140 (busnr << 8) |
1141 devfn);
1144 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1145 PCIDevice *pdev)
1147 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1148 return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
1151 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
1152 PCIDevice *pdev)
1154 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1155 sPAPRDRConnectorClass *drck;
1157 if (!drc) {
1158 return 0;
1161 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1162 return drck->get_index(drc);
1165 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1166 DeviceState *plugged_dev, Error **errp)
1168 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1169 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1170 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1171 Error *local_err = NULL;
1172 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1173 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1175 /* if DR is disabled we don't need to do anything in the case of
1176 * hotplug or coldplug callbacks
1178 if (!phb->dr_enabled) {
1179 /* if this is a hotplug operation initiated by the user
1180 * we need to let them know it's not enabled
1182 if (plugged_dev->hotplugged) {
1183 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1184 object_get_typename(OBJECT(phb)));
1186 return;
1189 g_assert(drc);
1191 /* Following the QEMU convention used for PCIe multifunction
1192 * hotplug, we do not allow functions to be hotplugged to a
1193 * slot that already has function 0 present
1195 if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
1196 PCI_FUNC(pdev->devfn) != 0) {
1197 error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
1198 " additional functions can no longer be exposed to guest.",
1199 slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
1200 return;
1203 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1204 if (local_err) {
1205 error_propagate(errp, local_err);
1206 return;
1209 /* If this is function 0, signal hotplug for all the device functions.
1210 * Otherwise defer sending the hotplug event.
1212 if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
1213 int i;
1215 for (i = 0; i < 8; i++) {
1216 sPAPRDRConnector *func_drc;
1217 sPAPRDRConnectorClass *func_drck;
1218 sPAPRDREntitySense state;
1220 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1221 PCI_DEVFN(slotnr, i));
1222 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1223 func_drck->entity_sense(func_drc, &state);
1225 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1226 spapr_hotplug_req_add_by_index(func_drc);
1232 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1233 DeviceState *plugged_dev, Error **errp)
1235 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1236 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1237 sPAPRDRConnectorClass *drck;
1238 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1239 Error *local_err = NULL;
1241 if (!phb->dr_enabled) {
1242 error_setg(errp, QERR_BUS_NO_HOTPLUG,
1243 object_get_typename(OBJECT(phb)));
1244 return;
1247 g_assert(drc);
1249 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1250 if (!drck->release_pending(drc)) {
1251 PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
1252 uint32_t slotnr = PCI_SLOT(pdev->devfn);
1253 sPAPRDRConnector *func_drc;
1254 sPAPRDRConnectorClass *func_drck;
1255 sPAPRDREntitySense state;
1256 int i;
1258 /* ensure any other present functions are pending unplug */
1259 if (PCI_FUNC(pdev->devfn) == 0) {
1260 for (i = 1; i < 8; i++) {
1261 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1262 PCI_DEVFN(slotnr, i));
1263 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1264 func_drck->entity_sense(func_drc, &state);
1265 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
1266 && !func_drck->release_pending(func_drc)) {
1267 error_setg(errp,
1268 "PCI: slot %d, function %d still present. "
1269 "Must unplug all non-0 functions first.",
1270 slotnr, i);
1271 return;
1276 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1277 if (local_err) {
1278 error_propagate(errp, local_err);
1279 return;
1282 /* if this isn't func 0, defer unplug event. otherwise signal removal
1283 * for all present functions
1285 if (PCI_FUNC(pdev->devfn) == 0) {
1286 for (i = 7; i >= 0; i--) {
1287 func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
1288 PCI_DEVFN(slotnr, i));
1289 func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
1290 func_drck->entity_sense(func_drc, &state);
1291 if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
1292 spapr_hotplug_req_remove_by_index(func_drc);
1299 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1301 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1302 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1303 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1304 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1305 char *namebuf;
1306 int i;
1307 PCIBus *bus;
1308 uint64_t msi_window_size = 4096;
1309 sPAPRTCETable *tcet;
1310 const unsigned windows_supported =
1311 sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
1313 if (sphb->index != (uint32_t)-1) {
1314 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1315 Error *local_err = NULL;
1317 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1)
1318 || (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2)
1319 || (sphb->mem_win_addr != (hwaddr)-1)
1320 || (sphb->mem64_win_addr != (hwaddr)-1)
1321 || (sphb->io_win_addr != (hwaddr)-1)) {
1322 error_setg(errp, "Either \"index\" or other parameters must"
1323 " be specified for PAPR PHB, not both");
1324 return;
1327 smc->phb_placement(spapr, sphb->index,
1328 &sphb->buid, &sphb->io_win_addr,
1329 &sphb->mem_win_addr, &sphb->mem64_win_addr,
1330 windows_supported, sphb->dma_liobn, &local_err);
1331 if (local_err) {
1332 error_propagate(errp, local_err);
1333 return;
1337 if (sphb->buid == (uint64_t)-1) {
1338 error_setg(errp, "BUID not specified for PHB");
1339 return;
1342 if ((sphb->dma_liobn[0] == (uint32_t)-1) ||
1343 ((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) {
1344 error_setg(errp, "LIOBN(s) not specified for PHB");
1345 return;
1348 if (sphb->mem_win_addr == (hwaddr)-1) {
1349 error_setg(errp, "Memory window address not specified for PHB");
1350 return;
1353 if (sphb->io_win_addr == (hwaddr)-1) {
1354 error_setg(errp, "IO window address not specified for PHB");
1355 return;
1358 if (sphb->mem64_win_size != 0) {
1359 if (sphb->mem64_win_addr == (hwaddr)-1) {
1360 error_setg(errp,
1361 "64-bit memory window address not specified for PHB");
1362 return;
1365 if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1366 error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
1367 " (max 2 GiB)", sphb->mem_win_size);
1368 return;
1371 if (sphb->mem64_win_pciaddr == (hwaddr)-1) {
1372 /* 64-bit window defaults to identity mapping */
1373 sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
1375 } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
1377 * For compatibility with old configuration, if no 64-bit MMIO
1378 * window is specified, but the ordinary (32-bit) memory
1379 * window is specified as > 2GiB, we treat it as a 2GiB 32-bit
1380 * window, with a 64-bit MMIO window following on immediately
1381 * afterwards
1383 sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
1384 sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
1385 sphb->mem64_win_pciaddr =
1386 SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
1387 sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
1390 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1391 error_setg(errp, "PCI host bridges must have unique BUIDs");
1392 return;
1395 if (sphb->numa_node != -1 &&
1396 (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
1397 error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
1398 return;
1401 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1403 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1405 /* Initialize memory regions */
1406 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1407 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1409 sprintf(namebuf, "%s.mmio32-alias", sphb->dtbusname);
1410 memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
1411 namebuf, &sphb->memspace,
1412 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1413 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1414 &sphb->mem32window);
1416 sprintf(namebuf, "%s.mmio64-alias", sphb->dtbusname);
1417 memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
1418 namebuf, &sphb->memspace,
1419 sphb->mem64_win_pciaddr, sphb->mem64_win_size);
1420 memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr,
1421 &sphb->mem64window);
1423 /* Initialize IO regions */
1424 sprintf(namebuf, "%s.io", sphb->dtbusname);
1425 memory_region_init(&sphb->iospace, OBJECT(sphb),
1426 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1428 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1429 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1430 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1431 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1432 &sphb->iowindow);
1434 bus = pci_register_bus(dev, NULL,
1435 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1436 &sphb->memspace, &sphb->iospace,
1437 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1438 phb->bus = bus;
1439 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1442 * Initialize PHB address space.
1443 * By default there will be at least one subregion for default
1444 * 32bit DMA window.
1445 * Later the guest might want to create another DMA window
1446 * which will become another memory subregion.
1448 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1450 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1451 namebuf, UINT64_MAX);
1452 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1453 sphb->dtbusname);
1456 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1457 * we need to allocate some memory to catch those writes coming
1458 * from msi_notify()/msix_notify().
1459 * As MSIMessage:addr is going to be the same and MSIMessage:data
1460 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1461 * be used.
1463 * For KVM we want to ensure that this memory is a full page so that
1464 * our memory slot is of page size granularity.
1466 #ifdef CONFIG_KVM
1467 if (kvm_enabled()) {
1468 msi_window_size = getpagesize();
1470 #endif
1472 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1473 "msi", msi_window_size);
1474 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1475 &sphb->msiwindow);
1477 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1479 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1481 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1483 /* Initialize the LSI table */
1484 for (i = 0; i < PCI_NUM_PINS; i++) {
1485 uint32_t irq;
1486 Error *local_err = NULL;
1488 irq = xics_spapr_alloc_block(spapr->xics, 1, true, false, &local_err);
1489 if (local_err) {
1490 error_propagate(errp, local_err);
1491 error_prepend(errp, "can't allocate LSIs: ");
1492 return;
1495 sphb->lsi_table[i].irq = irq;
1498 /* allocate connectors for child PCI devices */
1499 if (sphb->dr_enabled) {
1500 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1501 spapr_dr_connector_new(OBJECT(phb),
1502 SPAPR_DR_CONNECTOR_TYPE_PCI,
1503 (sphb->index << 16) | i);
1507 /* DMA setup */
1508 for (i = 0; i < windows_supported; ++i) {
1509 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
1510 if (!tcet) {
1511 error_setg(errp, "Creating window#%d failed for %s",
1512 i, sphb->dtbusname);
1513 return;
1515 memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
1516 spapr_tce_get_iommu(tcet), 0);
1519 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1522 static int spapr_phb_children_reset(Object *child, void *opaque)
1524 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1526 if (dev) {
1527 device_reset(dev);
1530 return 0;
1533 void spapr_phb_dma_reset(sPAPRPHBState *sphb)
1535 int i;
1536 sPAPRTCETable *tcet;
1538 for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
1539 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
1541 if (tcet && tcet->nb_table) {
1542 spapr_tce_table_disable(tcet);
1546 /* Register default 32bit DMA window */
1547 tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
1548 spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
1549 sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
1552 static void spapr_phb_reset(DeviceState *qdev)
1554 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
1556 spapr_phb_dma_reset(sphb);
1558 /* Reset the IOMMU state */
1559 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1561 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
1562 spapr_phb_vfio_reset(qdev);
1566 static Property spapr_phb_properties[] = {
1567 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1568 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1569 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1),
1570 DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1),
1571 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1572 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1573 SPAPR_PCI_MEM32_WIN_SIZE),
1574 DEFINE_PROP_UINT64("mem64_win_addr", sPAPRPHBState, mem64_win_addr, -1),
1575 DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
1576 SPAPR_PCI_MEM64_WIN_SIZE),
1577 DEFINE_PROP_UINT64("mem64_win_pciaddr", sPAPRPHBState, mem64_win_pciaddr,
1578 -1),
1579 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1580 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1581 SPAPR_PCI_IO_WIN_SIZE),
1582 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1583 true),
1584 /* Default DMA window is 0..1GB */
1585 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
1586 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
1587 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
1588 0x800000000000000ULL),
1589 DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
1590 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
1591 (1ULL << 12) | (1ULL << 16)),
1592 DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
1593 DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
1594 pre_2_8_migration, false),
1595 DEFINE_PROP_END_OF_LIST(),
1598 static const VMStateDescription vmstate_spapr_pci_lsi = {
1599 .name = "spapr_pci/lsi",
1600 .version_id = 1,
1601 .minimum_version_id = 1,
1602 .fields = (VMStateField[]) {
1603 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1605 VMSTATE_END_OF_LIST()
1609 static const VMStateDescription vmstate_spapr_pci_msi = {
1610 .name = "spapr_pci/msi",
1611 .version_id = 1,
1612 .minimum_version_id = 1,
1613 .fields = (VMStateField []) {
1614 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1615 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1616 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1617 VMSTATE_END_OF_LIST()
1621 static void spapr_pci_pre_save(void *opaque)
1623 sPAPRPHBState *sphb = opaque;
1624 GHashTableIter iter;
1625 gpointer key, value;
1626 int i;
1628 g_free(sphb->msi_devs);
1629 sphb->msi_devs = NULL;
1630 sphb->msi_devs_num = g_hash_table_size(sphb->msi);
1631 if (!sphb->msi_devs_num) {
1632 return;
1634 sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
1636 g_hash_table_iter_init(&iter, sphb->msi);
1637 for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
1638 sphb->msi_devs[i].key = *(uint32_t *) key;
1639 sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
1642 if (sphb->pre_2_8_migration) {
1643 sphb->mig_liobn = sphb->dma_liobn[0];
1644 sphb->mig_mem_win_addr = sphb->mem_win_addr;
1645 sphb->mig_mem_win_size = sphb->mem_win_size;
1646 sphb->mig_io_win_addr = sphb->io_win_addr;
1647 sphb->mig_io_win_size = sphb->io_win_size;
1649 if ((sphb->mem64_win_size != 0)
1650 && (sphb->mem64_win_addr
1651 == (sphb->mem_win_addr + sphb->mem_win_size))) {
1652 sphb->mig_mem_win_size += sphb->mem64_win_size;
1657 static int spapr_pci_post_load(void *opaque, int version_id)
1659 sPAPRPHBState *sphb = opaque;
1660 gpointer key, value;
1661 int i;
1663 for (i = 0; i < sphb->msi_devs_num; ++i) {
1664 key = g_memdup(&sphb->msi_devs[i].key,
1665 sizeof(sphb->msi_devs[i].key));
1666 value = g_memdup(&sphb->msi_devs[i].value,
1667 sizeof(sphb->msi_devs[i].value));
1668 g_hash_table_insert(sphb->msi, key, value);
1670 g_free(sphb->msi_devs);
1671 sphb->msi_devs = NULL;
1672 sphb->msi_devs_num = 0;
1674 return 0;
1677 static bool pre_2_8_migration(void *opaque, int version_id)
1679 sPAPRPHBState *sphb = opaque;
1681 return sphb->pre_2_8_migration;
1684 static const VMStateDescription vmstate_spapr_pci = {
1685 .name = "spapr_pci",
1686 .version_id = 2,
1687 .minimum_version_id = 2,
1688 .pre_save = spapr_pci_pre_save,
1689 .post_load = spapr_pci_post_load,
1690 .fields = (VMStateField[]) {
1691 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1692 VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
1693 VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
1694 VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
1695 VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
1696 VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
1697 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1698 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1699 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1700 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1701 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1702 VMSTATE_END_OF_LIST()
1706 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1707 PCIBus *rootbus)
1709 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1711 return sphb->dtbusname;
1714 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1716 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1717 DeviceClass *dc = DEVICE_CLASS(klass);
1718 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1720 hc->root_bus_path = spapr_phb_root_bus_path;
1721 dc->realize = spapr_phb_realize;
1722 dc->props = spapr_phb_properties;
1723 dc->reset = spapr_phb_reset;
1724 dc->vmsd = &vmstate_spapr_pci;
1725 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1726 hp->plug = spapr_phb_hot_plug_child;
1727 hp->unplug = spapr_phb_hot_unplug_child;
1730 static const TypeInfo spapr_phb_info = {
1731 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1732 .parent = TYPE_PCI_HOST_BRIDGE,
1733 .instance_size = sizeof(sPAPRPHBState),
1734 .class_init = spapr_phb_class_init,
1735 .interfaces = (InterfaceInfo[]) {
1736 { TYPE_HOTPLUG_HANDLER },
1741 PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
1743 DeviceState *dev;
1745 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1746 qdev_prop_set_uint32(dev, "index", index);
1747 qdev_init_nofail(dev);
1749 return PCI_HOST_BRIDGE(dev);
1752 typedef struct sPAPRFDT {
1753 void *fdt;
1754 int node_off;
1755 sPAPRPHBState *sphb;
1756 } sPAPRFDT;
1758 static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
1759 void *opaque)
1761 PCIBus *sec_bus;
1762 sPAPRFDT *p = opaque;
1763 int offset;
1764 sPAPRFDT s_fdt;
1766 offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
1767 if (!offset) {
1768 error_report("Failed to create pci child device tree node");
1769 return;
1772 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1773 PCI_HEADER_TYPE_BRIDGE)) {
1774 return;
1777 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1778 if (!sec_bus) {
1779 return;
1782 s_fdt.fdt = p->fdt;
1783 s_fdt.node_off = offset;
1784 s_fdt.sphb = p->sphb;
1785 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1786 spapr_populate_pci_devices_dt,
1787 &s_fdt);
1790 static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
1791 void *opaque)
1793 unsigned int *bus_no = opaque;
1794 unsigned int primary = *bus_no;
1795 unsigned int subordinate = 0xff;
1796 PCIBus *sec_bus = NULL;
1798 if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
1799 PCI_HEADER_TYPE_BRIDGE)) {
1800 return;
1803 (*bus_no)++;
1804 pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
1805 pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
1806 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1808 sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
1809 if (!sec_bus) {
1810 return;
1813 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
1814 pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
1815 spapr_phb_pci_enumerate_bridge, bus_no);
1816 pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
1819 static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
1821 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1822 unsigned int bus_no = 0;
1824 pci_for_each_device(bus, pci_bus_num(bus),
1825 spapr_phb_pci_enumerate_bridge,
1826 &bus_no);
1830 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1831 uint32_t xics_phandle,
1832 void *fdt)
1834 int bus_off, i, j, ret;
1835 char nodename[FDT_NAME_MAX];
1836 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1837 struct {
1838 uint32_t hi;
1839 uint64_t child;
1840 uint64_t parent;
1841 uint64_t size;
1842 } QEMU_PACKED ranges[] = {
1844 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1845 cpu_to_be64(phb->io_win_addr),
1846 cpu_to_be64(memory_region_size(&phb->iospace)),
1849 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1850 cpu_to_be64(phb->mem_win_addr),
1851 cpu_to_be64(phb->mem_win_size),
1854 cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
1855 cpu_to_be64(phb->mem64_win_addr),
1856 cpu_to_be64(phb->mem64_win_size),
1859 const unsigned sizeof_ranges =
1860 (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
1861 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1862 uint32_t interrupt_map_mask[] = {
1863 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1864 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1865 uint32_t ddw_applicable[] = {
1866 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
1867 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
1868 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
1870 uint32_t ddw_extensions[] = {
1871 cpu_to_be32(1),
1872 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
1874 uint32_t associativity[] = {cpu_to_be32(0x4),
1875 cpu_to_be32(0x0),
1876 cpu_to_be32(0x0),
1877 cpu_to_be32(0x0),
1878 cpu_to_be32(phb->numa_node)};
1879 sPAPRTCETable *tcet;
1880 PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
1881 sPAPRFDT s_fdt;
1883 /* Start populating the FDT */
1884 snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
1885 bus_off = fdt_add_subnode(fdt, 0, nodename);
1886 if (bus_off < 0) {
1887 return bus_off;
1890 /* Write PHB properties */
1891 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1892 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1893 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1894 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1895 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1896 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1897 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1898 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1899 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1900 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1901 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
1903 /* Dynamic DMA window */
1904 if (phb->ddw_enabled) {
1905 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
1906 sizeof(ddw_applicable)));
1907 _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
1908 &ddw_extensions, sizeof(ddw_extensions)));
1911 /* Advertise NUMA via ibm,associativity */
1912 if (phb->numa_node != -1) {
1913 _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
1914 sizeof(associativity)));
1917 /* Build the interrupt-map, this must matches what is done
1918 * in pci_spapr_map_irq
1920 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1921 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1922 for (i = 0; i < PCI_SLOT_MAX; i++) {
1923 for (j = 0; j < PCI_NUM_PINS; j++) {
1924 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1925 int lsi_num = pci_spapr_swizzle(i, j);
1927 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1928 irqmap[1] = 0;
1929 irqmap[2] = 0;
1930 irqmap[3] = cpu_to_be32(j+1);
1931 irqmap[4] = cpu_to_be32(xics_phandle);
1932 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1933 irqmap[6] = cpu_to_be32(0x8);
1936 /* Write interrupt map */
1937 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1938 sizeof(interrupt_map)));
1940 tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
1941 if (!tcet) {
1942 return -1;
1944 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1945 tcet->liobn, tcet->bus_offset,
1946 tcet->nb_table << tcet->page_shift);
1948 /* Walk the bridges and program the bus numbers*/
1949 spapr_phb_pci_enumerate(phb);
1950 _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
1952 /* Populate tree nodes with PCI devices attached */
1953 s_fdt.fdt = fdt;
1954 s_fdt.node_off = bus_off;
1955 s_fdt.sphb = phb;
1956 pci_for_each_device(bus, pci_bus_num(bus),
1957 spapr_populate_pci_devices_dt,
1958 &s_fdt);
1960 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1961 SPAPR_DR_CONNECTOR_TYPE_PCI);
1962 if (ret) {
1963 return ret;
1966 return 0;
1969 void spapr_pci_rtas_init(void)
1971 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1972 rtas_read_pci_config);
1973 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1974 rtas_write_pci_config);
1975 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1976 rtas_ibm_read_pci_config);
1977 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1978 rtas_ibm_write_pci_config);
1979 if (msi_nonbroken) {
1980 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1981 "ibm,query-interrupt-source-number",
1982 rtas_ibm_query_interrupt_source_number);
1983 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1984 rtas_ibm_change_msi);
1987 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1988 "ibm,set-eeh-option",
1989 rtas_ibm_set_eeh_option);
1990 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1991 "ibm,get-config-addr-info2",
1992 rtas_ibm_get_config_addr_info2);
1993 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1994 "ibm,read-slot-reset-state2",
1995 rtas_ibm_read_slot_reset_state2);
1996 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1997 "ibm,set-slot-reset",
1998 rtas_ibm_set_slot_reset);
1999 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
2000 "ibm,configure-pe",
2001 rtas_ibm_configure_pe);
2002 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
2003 "ibm,slot-error-detail",
2004 rtas_ibm_slot_error_detail);
2007 static void spapr_pci_register_types(void)
2009 type_register_static(&spapr_phb_info);
2012 type_init(spapr_pci_register_types)
2014 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
2016 bool be = *(bool *)opaque;
2018 if (object_dynamic_cast(OBJECT(dev), "VGA")
2019 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
2020 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
2021 &error_abort);
2023 return 0;
2026 void spapr_pci_switch_vga(bool big_endian)
2028 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
2029 sPAPRPHBState *sphb;
2032 * For backward compatibility with existing guests, we switch
2033 * the endianness of the VGA controller when changing the guest
2034 * interrupt mode
2036 QLIST_FOREACH(sphb, &spapr->phbs, list) {
2037 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
2038 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
2039 &big_endian);