target-i386: Fix eflags.TF/#DB handling of syscall/sysret insns
[qemu/ar7.git] / hw / net / cadence_gem.c
blob7915732f74cf61744e21cd2de185b661c69bca2d
1 /*
2 * QEMU Cadence GEM emulation
4 * Copyright (c) 2011 Xilinx, Inc.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
28 #include "hw/net/cadence_gem.h"
29 #include "qapi/error.h"
30 #include "qemu/log.h"
31 #include "net/checksum.h"
33 #ifdef CADENCE_GEM_ERR_DEBUG
34 #define DB_PRINT(...) do { \
35 fprintf(stderr, ": %s: ", __func__); \
36 fprintf(stderr, ## __VA_ARGS__); \
37 } while (0);
38 #else
39 #define DB_PRINT(...)
40 #endif
42 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
43 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
44 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
45 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
46 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
47 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
48 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
49 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
50 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
51 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
52 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
53 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
54 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
55 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
56 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
57 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
58 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
59 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
60 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
61 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
62 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
63 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
64 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
65 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
66 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
67 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
68 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
69 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
70 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
71 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
72 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
73 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
74 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
75 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
76 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
77 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
78 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
79 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
80 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
81 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
82 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
83 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
84 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
85 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
86 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
87 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
88 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
89 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
90 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
91 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
92 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
93 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
94 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
95 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
96 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
97 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
98 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
99 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
100 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
101 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
102 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
103 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
104 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
105 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
106 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
107 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
108 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
109 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
110 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
111 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
112 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
113 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
114 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
115 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
116 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
117 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
118 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
119 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
120 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
121 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
122 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
124 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
125 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
126 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
127 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
128 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
129 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
130 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
131 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
132 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
133 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
134 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
135 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
137 /* Design Configuration Registers */
138 #define GEM_DESCONF (0x00000280/4)
139 #define GEM_DESCONF2 (0x00000284/4)
140 #define GEM_DESCONF3 (0x00000288/4)
141 #define GEM_DESCONF4 (0x0000028C/4)
142 #define GEM_DESCONF5 (0x00000290/4)
143 #define GEM_DESCONF6 (0x00000294/4)
144 #define GEM_DESCONF7 (0x00000298/4)
146 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
147 #define GEM_INT_Q1_MASK (0x00000640 / 4)
149 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
150 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
152 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
153 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
155 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
156 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
158 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
159 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
161 #define GEM_INT_Q1_MASK (0x00000640 / 4)
162 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
164 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
166 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
167 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
168 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
169 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
170 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
171 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
172 #define GEM_ST1R_QUEUE_SHIFT (0)
173 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
175 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
177 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
178 #define GEM_ST2R_COMPARE_A_SHIFT (13)
179 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
180 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
181 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
182 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
183 + 1)
184 #define GEM_ST2R_QUEUE_SHIFT (0)
185 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
187 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
188 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
190 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
191 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
192 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
193 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
195 /*****************************************/
196 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
197 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
198 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
199 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
201 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
202 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
203 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
204 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
205 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
206 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
207 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
208 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
210 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
211 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
212 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
213 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
215 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
216 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
218 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
219 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
221 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
222 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
223 #define GEM_INT_TXUSED 0x00000008
224 #define GEM_INT_RXUSED 0x00000004
225 #define GEM_INT_RXCMPL 0x00000002
227 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
228 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
229 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
230 #define GEM_PHYMNTNC_ADDR_SHFT 23
231 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
232 #define GEM_PHYMNTNC_REG_SHIFT 18
234 /* Marvell PHY definitions */
235 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
237 #define PHY_REG_CONTROL 0
238 #define PHY_REG_STATUS 1
239 #define PHY_REG_PHYID1 2
240 #define PHY_REG_PHYID2 3
241 #define PHY_REG_ANEGADV 4
242 #define PHY_REG_LINKPABIL 5
243 #define PHY_REG_ANEGEXP 6
244 #define PHY_REG_NEXTP 7
245 #define PHY_REG_LINKPNEXTP 8
246 #define PHY_REG_100BTCTRL 9
247 #define PHY_REG_1000BTSTAT 10
248 #define PHY_REG_EXTSTAT 15
249 #define PHY_REG_PHYSPCFC_CTL 16
250 #define PHY_REG_PHYSPCFC_ST 17
251 #define PHY_REG_INT_EN 18
252 #define PHY_REG_INT_ST 19
253 #define PHY_REG_EXT_PHYSPCFC_CTL 20
254 #define PHY_REG_RXERR 21
255 #define PHY_REG_EACD 22
256 #define PHY_REG_LED 24
257 #define PHY_REG_LED_OVRD 25
258 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
259 #define PHY_REG_EXT_PHYSPCFC_ST 27
260 #define PHY_REG_CABLE_DIAG 28
262 #define PHY_REG_CONTROL_RST 0x8000
263 #define PHY_REG_CONTROL_LOOP 0x4000
264 #define PHY_REG_CONTROL_ANEG 0x1000
266 #define PHY_REG_STATUS_LINK 0x0004
267 #define PHY_REG_STATUS_ANEGCMPL 0x0020
269 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
270 #define PHY_REG_INT_ST_LINKC 0x0400
271 #define PHY_REG_INT_ST_ENERGY 0x0010
273 /***********************************************************************/
274 #define GEM_RX_REJECT (-1)
275 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
276 #define GEM_RX_BROADCAST_ACCEPT (-3)
277 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
278 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
280 #define GEM_RX_SAR_ACCEPT 0
282 /***********************************************************************/
284 #define DESC_1_USED 0x80000000
285 #define DESC_1_LENGTH 0x00001FFF
287 #define DESC_1_TX_WRAP 0x40000000
288 #define DESC_1_TX_LAST 0x00008000
290 #define DESC_0_RX_WRAP 0x00000002
291 #define DESC_0_RX_OWNERSHIP 0x00000001
293 #define R_DESC_1_RX_SAR_SHIFT 25
294 #define R_DESC_1_RX_SAR_LENGTH 2
295 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
296 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
297 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
298 #define R_DESC_1_RX_BROADCAST (1 << 31)
300 #define DESC_1_RX_SOF 0x00004000
301 #define DESC_1_RX_EOF 0x00008000
303 static inline unsigned tx_desc_get_buffer(unsigned *desc)
305 return desc[0];
308 static inline unsigned tx_desc_get_used(unsigned *desc)
310 return (desc[1] & DESC_1_USED) ? 1 : 0;
313 static inline void tx_desc_set_used(unsigned *desc)
315 desc[1] |= DESC_1_USED;
318 static inline unsigned tx_desc_get_wrap(unsigned *desc)
320 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
323 static inline unsigned tx_desc_get_last(unsigned *desc)
325 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
328 static inline void tx_desc_set_last(unsigned *desc)
330 desc[1] |= DESC_1_TX_LAST;
333 static inline unsigned tx_desc_get_length(unsigned *desc)
335 return desc[1] & DESC_1_LENGTH;
338 static inline void print_gem_tx_desc(unsigned *desc, uint8_t queue)
340 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
341 DB_PRINT("bufaddr: 0x%08x\n", *desc);
342 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
343 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
344 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
345 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
348 static inline unsigned rx_desc_get_buffer(unsigned *desc)
350 return desc[0] & ~0x3UL;
353 static inline unsigned rx_desc_get_wrap(unsigned *desc)
355 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
358 static inline unsigned rx_desc_get_ownership(unsigned *desc)
360 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
363 static inline void rx_desc_set_ownership(unsigned *desc)
365 desc[0] |= DESC_0_RX_OWNERSHIP;
368 static inline void rx_desc_set_sof(unsigned *desc)
370 desc[1] |= DESC_1_RX_SOF;
373 static inline void rx_desc_set_eof(unsigned *desc)
375 desc[1] |= DESC_1_RX_EOF;
378 static inline void rx_desc_set_length(unsigned *desc, unsigned len)
380 desc[1] &= ~DESC_1_LENGTH;
381 desc[1] |= len;
384 static inline void rx_desc_set_broadcast(unsigned *desc)
386 desc[1] |= R_DESC_1_RX_BROADCAST;
389 static inline void rx_desc_set_unicast_hash(unsigned *desc)
391 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
394 static inline void rx_desc_set_multicast_hash(unsigned *desc)
396 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
399 static inline void rx_desc_set_sar(unsigned *desc, int sar_idx)
401 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
402 sar_idx);
403 desc[1] |= R_DESC_1_RX_SAR_MATCH;
406 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
407 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
410 * gem_init_register_masks:
411 * One time initialization.
412 * Set masks to identify which register bits have magical clear properties
414 static void gem_init_register_masks(CadenceGEMState *s)
416 /* Mask of register bits which are read only */
417 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
418 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
419 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
420 s->regs_ro[GEM_DMACFG] = 0xFE00F000;
421 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
422 s->regs_ro[GEM_RXQBASE] = 0x00000003;
423 s->regs_ro[GEM_TXQBASE] = 0x00000003;
424 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
425 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
426 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
427 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
429 /* Mask of register bits which are clear on read */
430 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
431 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
433 /* Mask of register bits which are write 1 to clear */
434 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
435 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
436 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
438 /* Mask of register bits which are write only */
439 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
440 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
441 s->regs_wo[GEM_IER] = 0x07FFFFFF;
442 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
446 * phy_update_link:
447 * Make the emulated PHY link state match the QEMU "interface" state.
449 static void phy_update_link(CadenceGEMState *s)
451 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
453 /* Autonegotiation status mirrors link status. */
454 if (qemu_get_queue(s->nic)->link_down) {
455 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
456 PHY_REG_STATUS_LINK);
457 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
458 } else {
459 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
460 PHY_REG_STATUS_LINK);
461 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
462 PHY_REG_INT_ST_ANEGCMPL |
463 PHY_REG_INT_ST_ENERGY);
467 static int gem_can_receive(NetClientState *nc)
469 CadenceGEMState *s;
470 int i;
472 s = qemu_get_nic_opaque(nc);
474 /* Do nothing if receive is not enabled. */
475 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
476 if (s->can_rx_state != 1) {
477 s->can_rx_state = 1;
478 DB_PRINT("can't receive - no enable\n");
480 return 0;
483 for (i = 0; i < s->num_priority_queues; i++) {
484 if (rx_desc_get_ownership(s->rx_desc[i]) == 1) {
485 if (s->can_rx_state != 2) {
486 s->can_rx_state = 2;
487 DB_PRINT("can't receive - busy buffer descriptor (q%d) 0x%x\n",
488 i, s->rx_desc_addr[i]);
490 return 0;
494 if (s->can_rx_state != 0) {
495 s->can_rx_state = 0;
496 DB_PRINT("can receive\n");
498 return 1;
502 * gem_update_int_status:
503 * Raise or lower interrupt based on current status.
505 static void gem_update_int_status(CadenceGEMState *s)
507 int i;
509 if ((s->num_priority_queues == 1) && s->regs[GEM_ISR]) {
510 /* No priority queues, just trigger the interrupt */
511 DB_PRINT("asserting int.\n", i);
512 qemu_set_irq(s->irq[0], 1);
513 return;
516 for (i = 0; i < s->num_priority_queues; ++i) {
517 if (s->regs[GEM_INT_Q1_STATUS + i]) {
518 DB_PRINT("asserting int. (q=%d)\n", i);
519 qemu_set_irq(s->irq[i], 1);
525 * gem_receive_updatestats:
526 * Increment receive statistics.
528 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
529 unsigned bytes)
531 uint64_t octets;
533 /* Total octets (bytes) received */
534 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
535 s->regs[GEM_OCTRXHI];
536 octets += bytes;
537 s->regs[GEM_OCTRXLO] = octets >> 32;
538 s->regs[GEM_OCTRXHI] = octets;
540 /* Error-free Frames received */
541 s->regs[GEM_RXCNT]++;
543 /* Error-free Broadcast Frames counter */
544 if (!memcmp(packet, broadcast_addr, 6)) {
545 s->regs[GEM_RXBROADCNT]++;
548 /* Error-free Multicast Frames counter */
549 if (packet[0] == 0x01) {
550 s->regs[GEM_RXMULTICNT]++;
553 if (bytes <= 64) {
554 s->regs[GEM_RX64CNT]++;
555 } else if (bytes <= 127) {
556 s->regs[GEM_RX65CNT]++;
557 } else if (bytes <= 255) {
558 s->regs[GEM_RX128CNT]++;
559 } else if (bytes <= 511) {
560 s->regs[GEM_RX256CNT]++;
561 } else if (bytes <= 1023) {
562 s->regs[GEM_RX512CNT]++;
563 } else if (bytes <= 1518) {
564 s->regs[GEM_RX1024CNT]++;
565 } else {
566 s->regs[GEM_RX1519CNT]++;
571 * Get the MAC Address bit from the specified position
573 static unsigned get_bit(const uint8_t *mac, unsigned bit)
575 unsigned byte;
577 byte = mac[bit / 8];
578 byte >>= (bit & 0x7);
579 byte &= 1;
581 return byte;
585 * Calculate a GEM MAC Address hash index
587 static unsigned calc_mac_hash(const uint8_t *mac)
589 int index_bit, mac_bit;
590 unsigned hash_index;
592 hash_index = 0;
593 mac_bit = 5;
594 for (index_bit = 5; index_bit >= 0; index_bit--) {
595 hash_index |= (get_bit(mac, mac_bit) ^
596 get_bit(mac, mac_bit + 6) ^
597 get_bit(mac, mac_bit + 12) ^
598 get_bit(mac, mac_bit + 18) ^
599 get_bit(mac, mac_bit + 24) ^
600 get_bit(mac, mac_bit + 30) ^
601 get_bit(mac, mac_bit + 36) ^
602 get_bit(mac, mac_bit + 42)) << index_bit;
603 mac_bit--;
606 return hash_index;
610 * gem_mac_address_filter:
611 * Accept or reject this destination address?
612 * Returns:
613 * GEM_RX_REJECT: reject
614 * >= 0: Specific address accept (which matched SAR is returned)
615 * others for various other modes of accept:
616 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
617 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
619 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
621 uint8_t *gem_spaddr;
622 int i;
624 /* Promiscuous mode? */
625 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
626 return GEM_RX_PROMISCUOUS_ACCEPT;
629 if (!memcmp(packet, broadcast_addr, 6)) {
630 /* Reject broadcast packets? */
631 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
632 return GEM_RX_REJECT;
634 return GEM_RX_BROADCAST_ACCEPT;
637 /* Accept packets -w- hash match? */
638 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
639 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
640 unsigned hash_index;
642 hash_index = calc_mac_hash(packet);
643 if (hash_index < 32) {
644 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
645 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
646 GEM_RX_UNICAST_HASH_ACCEPT;
648 } else {
649 hash_index -= 32;
650 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
651 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
652 GEM_RX_UNICAST_HASH_ACCEPT;
657 /* Check all 4 specific addresses */
658 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
659 for (i = 3; i >= 0; i--) {
660 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
661 return GEM_RX_SAR_ACCEPT + i;
665 /* No address match; reject the packet */
666 return GEM_RX_REJECT;
669 /* Figure out which queue the received data should be sent to */
670 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
671 unsigned rxbufsize)
673 uint32_t reg;
674 bool matched, mismatched;
675 int i, j;
677 for (i = 0; i < s->num_type1_screeners; i++) {
678 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
679 matched = false;
680 mismatched = false;
682 /* Screening is based on UDP Port */
683 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
684 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
685 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
686 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
687 matched = true;
688 } else {
689 mismatched = true;
693 /* Screening is based on DS/TC */
694 if (reg & GEM_ST1R_DSTC_ENABLE) {
695 uint8_t dscp = rxbuf_ptr[14 + 1];
696 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
697 GEM_ST1R_DSTC_MATCH_WIDTH)) {
698 matched = true;
699 } else {
700 mismatched = true;
704 if (matched && !mismatched) {
705 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
709 for (i = 0; i < s->num_type2_screeners; i++) {
710 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
711 matched = false;
712 mismatched = false;
714 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
715 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
716 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
717 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
719 if (et_idx > s->num_type2_screeners) {
720 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
721 "register index: %d\n", et_idx);
723 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
724 et_idx]) {
725 matched = true;
726 } else {
727 mismatched = true;
731 /* Compare A, B, C */
732 for (j = 0; j < 3; j++) {
733 uint32_t cr0, cr1, mask;
734 uint16_t rx_cmp;
735 int offset;
736 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
737 GEM_ST2R_COMPARE_WIDTH);
739 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
740 continue;
742 if (cr_idx > s->num_type2_screeners) {
743 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
744 "register index: %d\n", cr_idx);
747 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
748 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
749 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
750 GEM_T2CW1_OFFSET_VALUE_WIDTH);
752 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
753 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
754 case 3: /* Skip UDP header */
755 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
756 "unimplemented - assuming UDP\n");
757 offset += 8;
758 /* Fallthrough */
759 case 2: /* skip the IP header */
760 offset += 20;
761 /* Fallthrough */
762 case 1: /* Count from after the ethertype */
763 offset += 14;
764 break;
765 case 0:
766 /* Offset from start of frame */
767 break;
770 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
771 mask = extract32(cr0, 0, 16);
773 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
774 matched = true;
775 } else {
776 mismatched = true;
780 if (matched && !mismatched) {
781 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
785 /* We made it here, assume it's queue 0 */
786 return 0;
789 static void gem_get_rx_desc(CadenceGEMState *s, int q)
791 DB_PRINT("read descriptor 0x%x\n", (unsigned)s->rx_desc_addr[q]);
792 /* read current descriptor */
793 cpu_physical_memory_read(s->rx_desc_addr[0],
794 (uint8_t *)s->rx_desc[0], sizeof(s->rx_desc[0]));
796 /* Descriptor owned by software ? */
797 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
798 DB_PRINT("descriptor 0x%x owned by sw.\n",
799 (unsigned)s->rx_desc_addr[q]);
800 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
801 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
802 /* Handle interrupt consequences */
803 gem_update_int_status(s);
808 * gem_receive:
809 * Fit a packet handed to us by QEMU into the receive descriptor ring.
811 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
813 CadenceGEMState *s;
814 unsigned rxbufsize, bytes_to_copy;
815 unsigned rxbuf_offset;
816 uint8_t rxbuf[2048];
817 uint8_t *rxbuf_ptr;
818 bool first_desc = true;
819 int maf;
820 int q = 0;
822 s = qemu_get_nic_opaque(nc);
824 /* Is this destination MAC address "for us" ? */
825 maf = gem_mac_address_filter(s, buf);
826 if (maf == GEM_RX_REJECT) {
827 return -1;
830 /* Discard packets with receive length error enabled ? */
831 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
832 unsigned type_len;
834 /* Fish the ethertype / length field out of the RX packet */
835 type_len = buf[12] << 8 | buf[13];
836 /* It is a length field, not an ethertype */
837 if (type_len < 0x600) {
838 if (size < type_len) {
839 /* discard */
840 return -1;
846 * Determine configured receive buffer offset (probably 0)
848 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
849 GEM_NWCFG_BUFF_OFST_S;
851 /* The configure size of each receive buffer. Determines how many
852 * buffers needed to hold this packet.
854 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
855 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
856 bytes_to_copy = size;
858 /* Hardware allows a zero value here but warns against it. To avoid QEMU
859 * indefinite loops we enforce a minimum value here
861 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
862 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
865 /* Pad to minimum length. Assume FCS field is stripped, logic
866 * below will increment it to the real minimum of 64 when
867 * not FCS stripping
869 if (size < 60) {
870 size = 60;
873 /* Strip of FCS field ? (usually yes) */
874 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
875 rxbuf_ptr = (void *)buf;
876 } else {
877 unsigned crc_val;
879 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
880 size = sizeof(rxbuf) - sizeof(crc_val);
882 bytes_to_copy = size;
883 /* The application wants the FCS field, which QEMU does not provide.
884 * We must try and calculate one.
887 memcpy(rxbuf, buf, size);
888 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
889 rxbuf_ptr = rxbuf;
890 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
891 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
893 bytes_to_copy += 4;
894 size += 4;
897 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
899 /* Find which queue we are targetting */
900 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
902 while (bytes_to_copy) {
903 /* Do nothing if receive is not enabled. */
904 if (!gem_can_receive(nc)) {
905 assert(!first_desc);
906 return -1;
909 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
910 rx_desc_get_buffer(s->rx_desc[q]));
912 /* Copy packet data to emulated DMA buffer */
913 cpu_physical_memory_write(rx_desc_get_buffer(s->rx_desc[q]) +
914 rxbuf_offset,
915 rxbuf_ptr, MIN(bytes_to_copy, rxbufsize));
916 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
917 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
919 /* Update the descriptor. */
920 if (first_desc) {
921 rx_desc_set_sof(s->rx_desc[q]);
922 first_desc = false;
924 if (bytes_to_copy == 0) {
925 rx_desc_set_eof(s->rx_desc[q]);
926 rx_desc_set_length(s->rx_desc[q], size);
928 rx_desc_set_ownership(s->rx_desc[q]);
930 switch (maf) {
931 case GEM_RX_PROMISCUOUS_ACCEPT:
932 break;
933 case GEM_RX_BROADCAST_ACCEPT:
934 rx_desc_set_broadcast(s->rx_desc[q]);
935 break;
936 case GEM_RX_UNICAST_HASH_ACCEPT:
937 rx_desc_set_unicast_hash(s->rx_desc[q]);
938 break;
939 case GEM_RX_MULTICAST_HASH_ACCEPT:
940 rx_desc_set_multicast_hash(s->rx_desc[q]);
941 break;
942 case GEM_RX_REJECT:
943 abort();
944 default: /* SAR */
945 rx_desc_set_sar(s->rx_desc[q], maf);
948 /* Descriptor write-back. */
949 cpu_physical_memory_write(s->rx_desc_addr[q],
950 (uint8_t *)s->rx_desc[q],
951 sizeof(s->rx_desc[q]));
953 /* Next descriptor */
954 if (rx_desc_get_wrap(s->rx_desc[q])) {
955 DB_PRINT("wrapping RX descriptor list\n");
956 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
957 } else {
958 DB_PRINT("incrementing RX descriptor list\n");
959 s->rx_desc_addr[q] += 8;
962 gem_get_rx_desc(s, q);
965 /* Count it */
966 gem_receive_updatestats(s, buf, size);
968 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
969 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
971 /* Handle interrupt consequences */
972 gem_update_int_status(s);
974 return size;
978 * gem_transmit_updatestats:
979 * Increment transmit statistics.
981 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
982 unsigned bytes)
984 uint64_t octets;
986 /* Total octets (bytes) transmitted */
987 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
988 s->regs[GEM_OCTTXHI];
989 octets += bytes;
990 s->regs[GEM_OCTTXLO] = octets >> 32;
991 s->regs[GEM_OCTTXHI] = octets;
993 /* Error-free Frames transmitted */
994 s->regs[GEM_TXCNT]++;
996 /* Error-free Broadcast Frames counter */
997 if (!memcmp(packet, broadcast_addr, 6)) {
998 s->regs[GEM_TXBCNT]++;
1001 /* Error-free Multicast Frames counter */
1002 if (packet[0] == 0x01) {
1003 s->regs[GEM_TXMCNT]++;
1006 if (bytes <= 64) {
1007 s->regs[GEM_TX64CNT]++;
1008 } else if (bytes <= 127) {
1009 s->regs[GEM_TX65CNT]++;
1010 } else if (bytes <= 255) {
1011 s->regs[GEM_TX128CNT]++;
1012 } else if (bytes <= 511) {
1013 s->regs[GEM_TX256CNT]++;
1014 } else if (bytes <= 1023) {
1015 s->regs[GEM_TX512CNT]++;
1016 } else if (bytes <= 1518) {
1017 s->regs[GEM_TX1024CNT]++;
1018 } else {
1019 s->regs[GEM_TX1519CNT]++;
1024 * gem_transmit:
1025 * Fish packets out of the descriptor ring and feed them to QEMU
1027 static void gem_transmit(CadenceGEMState *s)
1029 unsigned desc[2];
1030 hwaddr packet_desc_addr;
1031 uint8_t tx_packet[2048];
1032 uint8_t *p;
1033 unsigned total_bytes;
1034 int q = 0;
1036 /* Do nothing if transmit is not enabled. */
1037 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1038 return;
1041 DB_PRINT("\n");
1043 /* The packet we will hand off to QEMU.
1044 * Packets scattered across multiple descriptors are gathered to this
1045 * one contiguous buffer first.
1047 p = tx_packet;
1048 total_bytes = 0;
1050 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1051 /* read current descriptor */
1052 packet_desc_addr = s->tx_desc_addr[q];
1054 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1055 cpu_physical_memory_read(packet_desc_addr,
1056 (uint8_t *)desc, sizeof(desc));
1057 /* Handle all descriptors owned by hardware */
1058 while (tx_desc_get_used(desc) == 0) {
1060 /* Do nothing if transmit is not enabled. */
1061 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1062 return;
1064 print_gem_tx_desc(desc, q);
1066 /* The real hardware would eat this (and possibly crash).
1067 * For QEMU let's lend a helping hand.
1069 if ((tx_desc_get_buffer(desc) == 0) ||
1070 (tx_desc_get_length(desc) == 0)) {
1071 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1072 (unsigned)packet_desc_addr);
1073 break;
1076 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1077 (p - tx_packet)) {
1078 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1079 "0x%x\n", (unsigned)packet_desc_addr,
1080 (unsigned)tx_desc_get_length(desc),
1081 sizeof(tx_packet) - (p - tx_packet));
1082 break;
1085 /* Gather this fragment of the packet from "dma memory" to our
1086 * contig buffer.
1088 cpu_physical_memory_read(tx_desc_get_buffer(desc), p,
1089 tx_desc_get_length(desc));
1090 p += tx_desc_get_length(desc);
1091 total_bytes += tx_desc_get_length(desc);
1093 /* Last descriptor for this packet; hand the whole thing off */
1094 if (tx_desc_get_last(desc)) {
1095 unsigned desc_first[2];
1097 /* Modify the 1st descriptor of this packet to be owned by
1098 * the processor.
1100 cpu_physical_memory_read(s->tx_desc_addr[q],
1101 (uint8_t *)desc_first,
1102 sizeof(desc_first));
1103 tx_desc_set_used(desc_first);
1104 cpu_physical_memory_write(s->tx_desc_addr[q],
1105 (uint8_t *)desc_first,
1106 sizeof(desc_first));
1107 /* Advance the hardware current descriptor past this packet */
1108 if (tx_desc_get_wrap(desc)) {
1109 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1110 } else {
1111 s->tx_desc_addr[q] = packet_desc_addr + 8;
1113 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1115 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1116 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1118 /* Update queue interrupt status */
1119 if (s->num_priority_queues > 1) {
1120 s->regs[GEM_INT_Q1_STATUS + q] |=
1121 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1124 /* Handle interrupt consequences */
1125 gem_update_int_status(s);
1127 /* Is checksum offload enabled? */
1128 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1129 net_checksum_calculate(tx_packet, total_bytes);
1132 /* Update MAC statistics */
1133 gem_transmit_updatestats(s, tx_packet, total_bytes);
1135 /* Send the packet somewhere */
1136 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1137 GEM_NWCTRL_LOCALLOOP)) {
1138 gem_receive(qemu_get_queue(s->nic), tx_packet,
1139 total_bytes);
1140 } else {
1141 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1142 total_bytes);
1145 /* Prepare for next packet */
1146 p = tx_packet;
1147 total_bytes = 0;
1150 /* read next descriptor */
1151 if (tx_desc_get_wrap(desc)) {
1152 tx_desc_set_last(desc);
1153 packet_desc_addr = s->regs[GEM_TXQBASE];
1154 } else {
1155 packet_desc_addr += 8;
1157 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1158 cpu_physical_memory_read(packet_desc_addr,
1159 (uint8_t *)desc, sizeof(desc));
1162 if (tx_desc_get_used(desc)) {
1163 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1164 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1165 gem_update_int_status(s);
1170 static void gem_phy_reset(CadenceGEMState *s)
1172 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1173 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1174 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1175 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1176 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1177 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1178 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1179 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1180 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1181 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1182 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1183 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1184 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1185 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1186 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1187 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1188 s->phy_regs[PHY_REG_LED] = 0x4100;
1189 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1190 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1192 phy_update_link(s);
1195 static void gem_reset(DeviceState *d)
1197 int i;
1198 CadenceGEMState *s = CADENCE_GEM(d);
1199 const uint8_t *a;
1201 DB_PRINT("\n");
1203 /* Set post reset register values */
1204 memset(&s->regs[0], 0, sizeof(s->regs));
1205 s->regs[GEM_NWCFG] = 0x00080000;
1206 s->regs[GEM_NWSTATUS] = 0x00000006;
1207 s->regs[GEM_DMACFG] = 0x00020784;
1208 s->regs[GEM_IMR] = 0x07ffffff;
1209 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1210 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1211 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1212 s->regs[GEM_MODID] = 0x00020118;
1213 s->regs[GEM_DESCONF] = 0x02500111;
1214 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1215 s->regs[GEM_DESCONF5] = 0x002f2145;
1216 s->regs[GEM_DESCONF6] = 0x00000200;
1218 /* Set MAC address */
1219 a = &s->conf.macaddr.a[0];
1220 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1221 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1223 for (i = 0; i < 4; i++) {
1224 s->sar_active[i] = false;
1227 gem_phy_reset(s);
1229 gem_update_int_status(s);
1232 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1234 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1235 return s->phy_regs[reg_num];
1238 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1240 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1242 switch (reg_num) {
1243 case PHY_REG_CONTROL:
1244 if (val & PHY_REG_CONTROL_RST) {
1245 /* Phy reset */
1246 gem_phy_reset(s);
1247 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1248 s->phy_loop = 0;
1250 if (val & PHY_REG_CONTROL_ANEG) {
1251 /* Complete autonegotiation immediately */
1252 val &= ~PHY_REG_CONTROL_ANEG;
1253 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1255 if (val & PHY_REG_CONTROL_LOOP) {
1256 DB_PRINT("PHY placed in loopback\n");
1257 s->phy_loop = 1;
1258 } else {
1259 s->phy_loop = 0;
1261 break;
1263 s->phy_regs[reg_num] = val;
1267 * gem_read32:
1268 * Read a GEM register.
1270 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1272 CadenceGEMState *s;
1273 uint32_t retval;
1274 int i;
1275 s = (CadenceGEMState *)opaque;
1277 offset >>= 2;
1278 retval = s->regs[offset];
1280 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1282 switch (offset) {
1283 case GEM_ISR:
1284 DB_PRINT("lowering irqs on ISR read\n");
1285 for (i = 0; i < s->num_priority_queues; ++i) {
1286 qemu_set_irq(s->irq[i], 0);
1288 break;
1289 case GEM_PHYMNTNC:
1290 if (retval & GEM_PHYMNTNC_OP_R) {
1291 uint32_t phy_addr, reg_num;
1293 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1294 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1295 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1296 retval &= 0xFFFF0000;
1297 retval |= gem_phy_read(s, reg_num);
1298 } else {
1299 retval |= 0xFFFF; /* No device at this address */
1302 break;
1305 /* Squash read to clear bits */
1306 s->regs[offset] &= ~(s->regs_rtc[offset]);
1308 /* Do not provide write only bits */
1309 retval &= ~(s->regs_wo[offset]);
1311 DB_PRINT("0x%08x\n", retval);
1312 gem_update_int_status(s);
1313 return retval;
1317 * gem_write32:
1318 * Write a GEM register.
1320 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1321 unsigned size)
1323 CadenceGEMState *s = (CadenceGEMState *)opaque;
1324 uint32_t readonly;
1325 int i;
1327 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1328 offset >>= 2;
1330 /* Squash bits which are read only in write value */
1331 val &= ~(s->regs_ro[offset]);
1332 /* Preserve (only) bits which are read only and wtc in register */
1333 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1335 /* Copy register write to backing store */
1336 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1338 /* do w1c */
1339 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1341 /* Handle register write side effects */
1342 switch (offset) {
1343 case GEM_NWCTRL:
1344 if (val & GEM_NWCTRL_RXENA) {
1345 for (i = 0; i < s->num_priority_queues; ++i) {
1346 gem_get_rx_desc(s, i);
1349 if (val & GEM_NWCTRL_TXSTART) {
1350 gem_transmit(s);
1352 if (!(val & GEM_NWCTRL_TXENA)) {
1353 /* Reset to start of Q when transmit disabled. */
1354 for (i = 0; i < s->num_priority_queues; i++) {
1355 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1358 if (gem_can_receive(qemu_get_queue(s->nic))) {
1359 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1361 break;
1363 case GEM_TXSTATUS:
1364 gem_update_int_status(s);
1365 break;
1366 case GEM_RXQBASE:
1367 s->rx_desc_addr[0] = val;
1368 break;
1369 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1370 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1371 break;
1372 case GEM_TXQBASE:
1373 s->tx_desc_addr[0] = val;
1374 break;
1375 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1376 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1377 break;
1378 case GEM_RXSTATUS:
1379 gem_update_int_status(s);
1380 break;
1381 case GEM_IER:
1382 s->regs[GEM_IMR] &= ~val;
1383 gem_update_int_status(s);
1384 break;
1385 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1386 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1387 gem_update_int_status(s);
1388 break;
1389 case GEM_IDR:
1390 s->regs[GEM_IMR] |= val;
1391 gem_update_int_status(s);
1392 break;
1393 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1394 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1395 gem_update_int_status(s);
1396 break;
1397 case GEM_SPADDR1LO:
1398 case GEM_SPADDR2LO:
1399 case GEM_SPADDR3LO:
1400 case GEM_SPADDR4LO:
1401 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1402 break;
1403 case GEM_SPADDR1HI:
1404 case GEM_SPADDR2HI:
1405 case GEM_SPADDR3HI:
1406 case GEM_SPADDR4HI:
1407 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1408 break;
1409 case GEM_PHYMNTNC:
1410 if (val & GEM_PHYMNTNC_OP_W) {
1411 uint32_t phy_addr, reg_num;
1413 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1414 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1415 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1416 gem_phy_write(s, reg_num, val);
1419 break;
1422 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1425 static const MemoryRegionOps gem_ops = {
1426 .read = gem_read,
1427 .write = gem_write,
1428 .endianness = DEVICE_LITTLE_ENDIAN,
1431 static void gem_set_link(NetClientState *nc)
1433 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1435 DB_PRINT("\n");
1436 phy_update_link(s);
1437 gem_update_int_status(s);
1440 static NetClientInfo net_gem_info = {
1441 .type = NET_CLIENT_DRIVER_NIC,
1442 .size = sizeof(NICState),
1443 .can_receive = gem_can_receive,
1444 .receive = gem_receive,
1445 .link_status_changed = gem_set_link,
1448 static void gem_realize(DeviceState *dev, Error **errp)
1450 CadenceGEMState *s = CADENCE_GEM(dev);
1451 int i;
1453 if (s->num_priority_queues == 0 ||
1454 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1455 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1456 s->num_priority_queues);
1457 return;
1458 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1459 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1460 s->num_type1_screeners);
1461 return;
1462 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1463 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1464 s->num_type2_screeners);
1465 return;
1468 for (i = 0; i < s->num_priority_queues; ++i) {
1469 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1472 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1474 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1475 object_get_typename(OBJECT(dev)), dev->id, s);
1478 static void gem_init(Object *obj)
1480 CadenceGEMState *s = CADENCE_GEM(obj);
1481 DeviceState *dev = DEVICE(obj);
1483 DB_PRINT("\n");
1485 gem_init_register_masks(s);
1486 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1487 "enet", sizeof(s->regs));
1489 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1492 static const VMStateDescription vmstate_cadence_gem = {
1493 .name = "cadence_gem",
1494 .version_id = 4,
1495 .minimum_version_id = 4,
1496 .fields = (VMStateField[]) {
1497 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1498 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1499 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1500 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1501 MAX_PRIORITY_QUEUES),
1502 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1503 MAX_PRIORITY_QUEUES),
1504 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1505 VMSTATE_END_OF_LIST(),
1509 static Property gem_properties[] = {
1510 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1511 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1512 num_priority_queues, 1),
1513 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1514 num_type1_screeners, 4),
1515 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1516 num_type2_screeners, 4),
1517 DEFINE_PROP_END_OF_LIST(),
1520 static void gem_class_init(ObjectClass *klass, void *data)
1522 DeviceClass *dc = DEVICE_CLASS(klass);
1524 dc->realize = gem_realize;
1525 dc->props = gem_properties;
1526 dc->vmsd = &vmstate_cadence_gem;
1527 dc->reset = gem_reset;
1530 static const TypeInfo gem_info = {
1531 .name = TYPE_CADENCE_GEM,
1532 .parent = TYPE_SYS_BUS_DEVICE,
1533 .instance_size = sizeof(CadenceGEMState),
1534 .instance_init = gem_init,
1535 .class_init = gem_class_init,
1538 static void gem_register_types(void)
1540 type_register_static(&gem_info);
1543 type_init(gem_register_types)