test/docker/dockerfiles: Add missing packages for acceptance tests
[qemu/ar7.git] / target / arm / helper.c
blob97bb6b8c01b409743e7611dd3306ceae5fb62ae9
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #endif
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #ifndef CONFIG_USER_ONLY
43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
44 MMUAccessType access_type, ARMMMUIdx mmu_idx,
45 bool s1_is_el0,
46 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
47 target_ulong *page_size_ptr,
48 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
49 __attribute__((nonnull));
50 #endif
52 static void switch_mode(CPUARMState *env, int mode);
53 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
55 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
57 ARMCPU *cpu = env_archcpu(env);
58 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
60 /* VFP data registers are always little-endian. */
61 if (reg < nregs) {
62 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
64 if (arm_feature(env, ARM_FEATURE_NEON)) {
65 /* Aliases for Q regs. */
66 nregs += 16;
67 if (reg < nregs) {
68 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
69 return gdb_get_reg128(buf, q[0], q[1]);
72 switch (reg - nregs) {
73 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
74 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
75 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
77 return 0;
80 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
82 ARMCPU *cpu = env_archcpu(env);
83 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
85 if (reg < nregs) {
86 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
87 return 8;
89 if (arm_feature(env, ARM_FEATURE_NEON)) {
90 nregs += 16;
91 if (reg < nregs) {
92 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
93 q[0] = ldq_le_p(buf);
94 q[1] = ldq_le_p(buf + 8);
95 return 16;
98 switch (reg - nregs) {
99 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
100 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
101 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
103 return 0;
106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
108 switch (reg) {
109 case 0 ... 31:
111 /* 128 bit FP register - quads are in LE order */
112 uint64_t *q = aa64_vfp_qreg(env, reg);
113 return gdb_get_reg128(buf, q[1], q[0]);
115 case 32:
116 /* FPSR */
117 return gdb_get_reg32(buf, vfp_get_fpsr(env));
118 case 33:
119 /* FPCR */
120 return gdb_get_reg32(buf,vfp_get_fpcr(env));
121 default:
122 return 0;
126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
128 switch (reg) {
129 case 0 ... 31:
130 /* 128 bit FP register */
132 uint64_t *q = aa64_vfp_qreg(env, reg);
133 q[0] = ldq_le_p(buf);
134 q[1] = ldq_le_p(buf + 8);
135 return 16;
137 case 32:
138 /* FPSR */
139 vfp_set_fpsr(env, ldl_p(buf));
140 return 4;
141 case 33:
142 /* FPCR */
143 vfp_set_fpcr(env, ldl_p(buf));
144 return 4;
145 default:
146 return 0;
150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
152 assert(ri->fieldoffset);
153 if (cpreg_field_is_64bit(ri)) {
154 return CPREG_FIELD64(env, ri);
155 } else {
156 return CPREG_FIELD32(env, ri);
160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t value)
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 CPREG_FIELD64(env, ri) = value;
166 } else {
167 CPREG_FIELD32(env, ri) = value;
171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
173 return (char *)env + ri->fieldoffset;
176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
178 /* Raw read of a coprocessor register (as needed for migration, etc). */
179 if (ri->type & ARM_CP_CONST) {
180 return ri->resetvalue;
181 } else if (ri->raw_readfn) {
182 return ri->raw_readfn(env, ri);
183 } else if (ri->readfn) {
184 return ri->readfn(env, ri);
185 } else {
186 return raw_read(env, ri);
190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
191 uint64_t v)
193 /* Raw write of a coprocessor register (as needed for migration, etc).
194 * Note that constant registers are treated as write-ignored; the
195 * caller should check for success by whether a readback gives the
196 * value written.
198 if (ri->type & ARM_CP_CONST) {
199 return;
200 } else if (ri->raw_writefn) {
201 ri->raw_writefn(env, ri, v);
202 } else if (ri->writefn) {
203 ri->writefn(env, ri, v);
204 } else {
205 raw_write(env, ri, v);
210 * arm_get/set_gdb_*: get/set a gdb register
211 * @env: the CPU state
212 * @buf: a buffer to copy to/from
213 * @reg: register number (offset from start of group)
215 * We return the number of bytes copied
218 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
220 ARMCPU *cpu = env_archcpu(env);
221 const ARMCPRegInfo *ri;
222 uint32_t key;
224 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
225 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
226 if (ri) {
227 if (cpreg_field_is_64bit(ri)) {
228 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
229 } else {
230 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233 return 0;
236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
238 return 0;
241 #ifdef TARGET_AARCH64
242 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
244 ARMCPU *cpu = env_archcpu(env);
246 switch (reg) {
247 /* The first 32 registers are the zregs */
248 case 0 ... 31:
250 int vq, len = 0;
251 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
252 len += gdb_get_reg128(buf,
253 env->vfp.zregs[reg].d[vq * 2 + 1],
254 env->vfp.zregs[reg].d[vq * 2]);
256 return len;
258 case 32:
259 return gdb_get_reg32(buf, vfp_get_fpsr(env));
260 case 33:
261 return gdb_get_reg32(buf, vfp_get_fpcr(env));
262 /* then 16 predicates and the ffr */
263 case 34 ... 50:
265 int preg = reg - 34;
266 int vq, len = 0;
267 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
268 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
270 return len;
272 case 51:
275 * We report in Vector Granules (VG) which is 64bit in a Z reg
276 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
278 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
279 return gdb_get_reg32(buf, vq * 2);
281 default:
282 /* gdbstub asked for something out our range */
283 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
284 break;
287 return 0;
290 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
292 ARMCPU *cpu = env_archcpu(env);
294 /* The first 32 registers are the zregs */
295 switch (reg) {
296 /* The first 32 registers are the zregs */
297 case 0 ... 31:
299 int vq, len = 0;
300 uint64_t *p = (uint64_t *) buf;
301 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
302 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
303 env->vfp.zregs[reg].d[vq * 2] = *p++;
304 len += 16;
306 return len;
308 case 32:
309 vfp_set_fpsr(env, *(uint32_t *)buf);
310 return 4;
311 case 33:
312 vfp_set_fpcr(env, *(uint32_t *)buf);
313 return 4;
314 case 34 ... 50:
316 int preg = reg - 34;
317 int vq, len = 0;
318 uint64_t *p = (uint64_t *) buf;
319 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
320 env->vfp.pregs[preg].p[vq / 4] = *p++;
321 len += 8;
323 return len;
325 case 51:
326 /* cannot set vg via gdbstub */
327 return 0;
328 default:
329 /* gdbstub asked for something out our range */
330 break;
333 return 0;
335 #endif /* TARGET_AARCH64 */
337 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
339 /* Return true if the regdef would cause an assertion if you called
340 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
341 * program bug for it not to have the NO_RAW flag).
342 * NB that returning false here doesn't necessarily mean that calling
343 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
344 * read/write access functions which are safe for raw use" from "has
345 * read/write access functions which have side effects but has forgotten
346 * to provide raw access functions".
347 * The tests here line up with the conditions in read/write_raw_cp_reg()
348 * and assertions in raw_read()/raw_write().
350 if ((ri->type & ARM_CP_CONST) ||
351 ri->fieldoffset ||
352 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
353 return false;
355 return true;
358 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
360 /* Write the coprocessor state from cpu->env to the (index,value) list. */
361 int i;
362 bool ok = true;
364 for (i = 0; i < cpu->cpreg_array_len; i++) {
365 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
366 const ARMCPRegInfo *ri;
367 uint64_t newval;
369 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
370 if (!ri) {
371 ok = false;
372 continue;
374 if (ri->type & ARM_CP_NO_RAW) {
375 continue;
378 newval = read_raw_cp_reg(&cpu->env, ri);
379 if (kvm_sync) {
381 * Only sync if the previous list->cpustate sync succeeded.
382 * Rather than tracking the success/failure state for every
383 * item in the list, we just recheck "does the raw write we must
384 * have made in write_list_to_cpustate() read back OK" here.
386 uint64_t oldval = cpu->cpreg_values[i];
388 if (oldval == newval) {
389 continue;
392 write_raw_cp_reg(&cpu->env, ri, oldval);
393 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
394 continue;
397 write_raw_cp_reg(&cpu->env, ri, newval);
399 cpu->cpreg_values[i] = newval;
401 return ok;
404 bool write_list_to_cpustate(ARMCPU *cpu)
406 int i;
407 bool ok = true;
409 for (i = 0; i < cpu->cpreg_array_len; i++) {
410 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
411 uint64_t v = cpu->cpreg_values[i];
412 const ARMCPRegInfo *ri;
414 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
415 if (!ri) {
416 ok = false;
417 continue;
419 if (ri->type & ARM_CP_NO_RAW) {
420 continue;
422 /* Write value and confirm it reads back as written
423 * (to catch read-only registers and partially read-only
424 * registers where the incoming migration value doesn't match)
426 write_raw_cp_reg(&cpu->env, ri, v);
427 if (read_raw_cp_reg(&cpu->env, ri) != v) {
428 ok = false;
431 return ok;
434 static void add_cpreg_to_list(gpointer key, gpointer opaque)
436 ARMCPU *cpu = opaque;
437 uint64_t regidx;
438 const ARMCPRegInfo *ri;
440 regidx = *(uint32_t *)key;
441 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
443 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
444 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
445 /* The value array need not be initialized at this point */
446 cpu->cpreg_array_len++;
450 static void count_cpreg(gpointer key, gpointer opaque)
452 ARMCPU *cpu = opaque;
453 uint64_t regidx;
454 const ARMCPRegInfo *ri;
456 regidx = *(uint32_t *)key;
457 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
459 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
460 cpu->cpreg_array_len++;
464 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
466 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
467 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
469 if (aidx > bidx) {
470 return 1;
472 if (aidx < bidx) {
473 return -1;
475 return 0;
478 void init_cpreg_list(ARMCPU *cpu)
480 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
481 * Note that we require cpreg_tuples[] to be sorted by key ID.
483 GList *keys;
484 int arraylen;
486 keys = g_hash_table_get_keys(cpu->cp_regs);
487 keys = g_list_sort(keys, cpreg_key_compare);
489 cpu->cpreg_array_len = 0;
491 g_list_foreach(keys, count_cpreg, cpu);
493 arraylen = cpu->cpreg_array_len;
494 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
495 cpu->cpreg_values = g_new(uint64_t, arraylen);
496 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
497 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
498 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
499 cpu->cpreg_array_len = 0;
501 g_list_foreach(keys, add_cpreg_to_list, cpu);
503 assert(cpu->cpreg_array_len == arraylen);
505 g_list_free(keys);
509 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
511 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
512 const ARMCPRegInfo *ri,
513 bool isread)
515 if (!is_a64(env) && arm_current_el(env) == 3 &&
516 arm_is_secure_below_el3(env)) {
517 return CP_ACCESS_TRAP_UNCATEGORIZED;
519 return CP_ACCESS_OK;
522 /* Some secure-only AArch32 registers trap to EL3 if used from
523 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
524 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
525 * We assume that the .access field is set to PL1_RW.
527 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
528 const ARMCPRegInfo *ri,
529 bool isread)
531 if (arm_current_el(env) == 3) {
532 return CP_ACCESS_OK;
534 if (arm_is_secure_below_el3(env)) {
535 return CP_ACCESS_TRAP_EL3;
537 /* This will be EL1 NS and EL2 NS, which just UNDEF */
538 return CP_ACCESS_TRAP_UNCATEGORIZED;
541 /* Check for traps to "powerdown debug" registers, which are controlled
542 * by MDCR.TDOSA
544 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
545 bool isread)
547 int el = arm_current_el(env);
548 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
549 (env->cp15.mdcr_el2 & MDCR_TDE) ||
550 (arm_hcr_el2_eff(env) & HCR_TGE);
552 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
553 return CP_ACCESS_TRAP_EL2;
555 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
556 return CP_ACCESS_TRAP_EL3;
558 return CP_ACCESS_OK;
561 /* Check for traps to "debug ROM" registers, which are controlled
562 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
565 bool isread)
567 int el = arm_current_el(env);
568 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
569 (env->cp15.mdcr_el2 & MDCR_TDE) ||
570 (arm_hcr_el2_eff(env) & HCR_TGE);
572 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
573 return CP_ACCESS_TRAP_EL2;
575 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
576 return CP_ACCESS_TRAP_EL3;
578 return CP_ACCESS_OK;
581 /* Check for traps to general debug registers, which are controlled
582 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
584 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
585 bool isread)
587 int el = arm_current_el(env);
588 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
589 (env->cp15.mdcr_el2 & MDCR_TDE) ||
590 (arm_hcr_el2_eff(env) & HCR_TGE);
592 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
593 return CP_ACCESS_TRAP_EL2;
595 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
596 return CP_ACCESS_TRAP_EL3;
598 return CP_ACCESS_OK;
601 /* Check for traps to performance monitor registers, which are controlled
602 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
604 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
605 bool isread)
607 int el = arm_current_el(env);
609 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
610 && !arm_is_secure_below_el3(env)) {
611 return CP_ACCESS_TRAP_EL2;
613 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
614 return CP_ACCESS_TRAP_EL3;
616 return CP_ACCESS_OK;
619 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
620 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
621 bool isread)
623 if (arm_current_el(env) == 1) {
624 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
625 if (arm_hcr_el2_eff(env) & trap) {
626 return CP_ACCESS_TRAP_EL2;
629 return CP_ACCESS_OK;
632 /* Check for traps from EL1 due to HCR_EL2.TSW. */
633 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
634 bool isread)
636 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
637 return CP_ACCESS_TRAP_EL2;
639 return CP_ACCESS_OK;
642 /* Check for traps from EL1 due to HCR_EL2.TACR. */
643 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
644 bool isread)
646 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
647 return CP_ACCESS_TRAP_EL2;
649 return CP_ACCESS_OK;
652 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
653 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
654 bool isread)
656 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
657 return CP_ACCESS_TRAP_EL2;
659 return CP_ACCESS_OK;
662 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
664 ARMCPU *cpu = env_archcpu(env);
666 raw_write(env, ri, value);
667 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
670 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
672 ARMCPU *cpu = env_archcpu(env);
674 if (raw_read(env, ri) != value) {
675 /* Unlike real hardware the qemu TLB uses virtual addresses,
676 * not modified virtual addresses, so this causes a TLB flush.
678 tlb_flush(CPU(cpu));
679 raw_write(env, ri, value);
683 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
684 uint64_t value)
686 ARMCPU *cpu = env_archcpu(env);
688 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
689 && !extended_addresses_enabled(env)) {
690 /* For VMSA (when not using the LPAE long descriptor page table
691 * format) this register includes the ASID, so do a TLB flush.
692 * For PMSA it is purely a process ID and no action is needed.
694 tlb_flush(CPU(cpu));
696 raw_write(env, ri, value);
699 /* IS variants of TLB operations must affect all cores */
700 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701 uint64_t value)
703 CPUState *cs = env_cpu(env);
705 tlb_flush_all_cpus_synced(cs);
708 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709 uint64_t value)
711 CPUState *cs = env_cpu(env);
713 tlb_flush_all_cpus_synced(cs);
716 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
717 uint64_t value)
719 CPUState *cs = env_cpu(env);
721 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
724 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725 uint64_t value)
727 CPUState *cs = env_cpu(env);
729 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
733 * Non-IS variants of TLB operations are upgraded to
734 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
735 * force broadcast of these operations.
737 static bool tlb_force_broadcast(CPUARMState *env)
739 return (env->cp15.hcr_el2 & HCR_FB) &&
740 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
743 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
744 uint64_t value)
746 /* Invalidate all (TLBIALL) */
747 CPUState *cs = env_cpu(env);
749 if (tlb_force_broadcast(env)) {
750 tlb_flush_all_cpus_synced(cs);
751 } else {
752 tlb_flush(cs);
756 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
759 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
760 CPUState *cs = env_cpu(env);
762 value &= TARGET_PAGE_MASK;
763 if (tlb_force_broadcast(env)) {
764 tlb_flush_page_all_cpus_synced(cs, value);
765 } else {
766 tlb_flush_page(cs, value);
770 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
771 uint64_t value)
773 /* Invalidate by ASID (TLBIASID) */
774 CPUState *cs = env_cpu(env);
776 if (tlb_force_broadcast(env)) {
777 tlb_flush_all_cpus_synced(cs);
778 } else {
779 tlb_flush(cs);
783 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
784 uint64_t value)
786 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
787 CPUState *cs = env_cpu(env);
789 value &= TARGET_PAGE_MASK;
790 if (tlb_force_broadcast(env)) {
791 tlb_flush_page_all_cpus_synced(cs, value);
792 } else {
793 tlb_flush_page(cs, value);
797 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
798 uint64_t value)
800 CPUState *cs = env_cpu(env);
802 tlb_flush_by_mmuidx(cs,
803 ARMMMUIdxBit_E10_1 |
804 ARMMMUIdxBit_E10_1_PAN |
805 ARMMMUIdxBit_E10_0);
808 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
809 uint64_t value)
811 CPUState *cs = env_cpu(env);
813 tlb_flush_by_mmuidx_all_cpus_synced(cs,
814 ARMMMUIdxBit_E10_1 |
815 ARMMMUIdxBit_E10_1_PAN |
816 ARMMMUIdxBit_E10_0);
820 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
821 uint64_t value)
823 CPUState *cs = env_cpu(env);
825 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
828 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
829 uint64_t value)
831 CPUState *cs = env_cpu(env);
833 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
836 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
837 uint64_t value)
839 CPUState *cs = env_cpu(env);
840 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
842 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
845 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
846 uint64_t value)
848 CPUState *cs = env_cpu(env);
849 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
851 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
852 ARMMMUIdxBit_E2);
855 static const ARMCPRegInfo cp_reginfo[] = {
856 /* Define the secure and non-secure FCSE identifier CP registers
857 * separately because there is no secure bank in V8 (no _EL3). This allows
858 * the secure register to be properly reset and migrated. There is also no
859 * v8 EL1 version of the register so the non-secure instance stands alone.
861 { .name = "FCSEIDR",
862 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
863 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
864 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
865 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
866 { .name = "FCSEIDR_S",
867 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
868 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
869 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
870 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
871 /* Define the secure and non-secure context identifier CP registers
872 * separately because there is no secure bank in V8 (no _EL3). This allows
873 * the secure register to be properly reset and migrated. In the
874 * non-secure case, the 32-bit register will have reset and migration
875 * disabled during registration as it is handled by the 64-bit instance.
877 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
878 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
879 .access = PL1_RW, .accessfn = access_tvm_trvm,
880 .secure = ARM_CP_SECSTATE_NS,
881 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
882 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
883 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
884 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
885 .access = PL1_RW, .accessfn = access_tvm_trvm,
886 .secure = ARM_CP_SECSTATE_S,
887 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
888 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
889 REGINFO_SENTINEL
892 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
893 /* NB: Some of these registers exist in v8 but with more precise
894 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
896 /* MMU Domain access control / MPU write buffer control */
897 { .name = "DACR",
898 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
899 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
900 .writefn = dacr_write, .raw_writefn = raw_write,
901 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
902 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
903 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
904 * For v6 and v5, these mappings are overly broad.
906 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
908 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
910 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
912 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
913 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
914 /* Cache maintenance ops; some of this space may be overridden later. */
915 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
916 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
917 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
918 REGINFO_SENTINEL
921 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
922 /* Not all pre-v6 cores implemented this WFI, so this is slightly
923 * over-broad.
925 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
926 .access = PL1_W, .type = ARM_CP_WFI },
927 REGINFO_SENTINEL
930 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
931 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
932 * is UNPREDICTABLE; we choose to NOP as most implementations do).
934 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
935 .access = PL1_W, .type = ARM_CP_WFI },
936 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
937 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
938 * OMAPCP will override this space.
940 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
942 .resetvalue = 0 },
943 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
944 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
945 .resetvalue = 0 },
946 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
947 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
948 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
949 .resetvalue = 0 },
950 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
951 * implementing it as RAZ means the "debug architecture version" bits
952 * will read as a reserved value, which should cause Linux to not try
953 * to use the debug hardware.
955 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
956 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
957 /* MMU TLB control. Note that the wildcarding means we cover not just
958 * the unified TLB ops but also the dside/iside/inner-shareable variants.
960 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
961 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
962 .type = ARM_CP_NO_RAW },
963 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
964 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
965 .type = ARM_CP_NO_RAW },
966 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
967 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
968 .type = ARM_CP_NO_RAW },
969 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
970 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
971 .type = ARM_CP_NO_RAW },
972 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
973 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
974 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
975 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
976 REGINFO_SENTINEL
979 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
980 uint64_t value)
982 uint32_t mask = 0;
984 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
985 if (!arm_feature(env, ARM_FEATURE_V8)) {
986 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
987 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
988 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
990 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
991 /* VFP coprocessor: cp10 & cp11 [23:20] */
992 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
994 if (!arm_feature(env, ARM_FEATURE_NEON)) {
995 /* ASEDIS [31] bit is RAO/WI */
996 value |= (1 << 31);
999 /* VFPv3 and upwards with NEON implement 32 double precision
1000 * registers (D0-D31).
1002 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1003 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1004 value |= (1 << 30);
1007 value &= mask;
1011 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1012 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1014 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1015 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1016 value &= ~(0xf << 20);
1017 value |= env->cp15.cpacr_el1 & (0xf << 20);
1020 env->cp15.cpacr_el1 = value;
1023 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1026 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1027 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1029 uint64_t value = env->cp15.cpacr_el1;
1031 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1032 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1033 value &= ~(0xf << 20);
1035 return value;
1039 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1041 /* Call cpacr_write() so that we reset with the correct RAO bits set
1042 * for our CPU features.
1044 cpacr_write(env, ri, 0);
1047 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1048 bool isread)
1050 if (arm_feature(env, ARM_FEATURE_V8)) {
1051 /* Check if CPACR accesses are to be trapped to EL2 */
1052 if (arm_current_el(env) == 1 &&
1053 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1054 return CP_ACCESS_TRAP_EL2;
1055 /* Check if CPACR accesses are to be trapped to EL3 */
1056 } else if (arm_current_el(env) < 3 &&
1057 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1058 return CP_ACCESS_TRAP_EL3;
1062 return CP_ACCESS_OK;
1065 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1066 bool isread)
1068 /* Check if CPTR accesses are set to trap to EL3 */
1069 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1070 return CP_ACCESS_TRAP_EL3;
1073 return CP_ACCESS_OK;
1076 static const ARMCPRegInfo v6_cp_reginfo[] = {
1077 /* prefetch by MVA in v6, NOP in v7 */
1078 { .name = "MVA_prefetch",
1079 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1080 .access = PL1_W, .type = ARM_CP_NOP },
1081 /* We need to break the TB after ISB to execute self-modifying code
1082 * correctly and also to take any pending interrupts immediately.
1083 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1085 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1086 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1087 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1088 .access = PL0_W, .type = ARM_CP_NOP },
1089 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1090 .access = PL0_W, .type = ARM_CP_NOP },
1091 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1092 .access = PL1_RW, .accessfn = access_tvm_trvm,
1093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1094 offsetof(CPUARMState, cp15.ifar_ns) },
1095 .resetvalue = 0, },
1096 /* Watchpoint Fault Address Register : should actually only be present
1097 * for 1136, 1176, 11MPCore.
1099 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1100 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1101 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1102 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1103 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1104 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1105 REGINFO_SENTINEL
1108 /* Definitions for the PMU registers */
1109 #define PMCRN_MASK 0xf800
1110 #define PMCRN_SHIFT 11
1111 #define PMCRLC 0x40
1112 #define PMCRDP 0x20
1113 #define PMCRX 0x10
1114 #define PMCRD 0x8
1115 #define PMCRC 0x4
1116 #define PMCRP 0x2
1117 #define PMCRE 0x1
1119 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1120 * which can be written as 1 to trigger behaviour but which stay RAZ).
1122 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1124 #define PMXEVTYPER_P 0x80000000
1125 #define PMXEVTYPER_U 0x40000000
1126 #define PMXEVTYPER_NSK 0x20000000
1127 #define PMXEVTYPER_NSU 0x10000000
1128 #define PMXEVTYPER_NSH 0x08000000
1129 #define PMXEVTYPER_M 0x04000000
1130 #define PMXEVTYPER_MT 0x02000000
1131 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1132 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1133 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1134 PMXEVTYPER_M | PMXEVTYPER_MT | \
1135 PMXEVTYPER_EVTCOUNT)
1137 #define PMCCFILTR 0xf8000000
1138 #define PMCCFILTR_M PMXEVTYPER_M
1139 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1141 static inline uint32_t pmu_num_counters(CPUARMState *env)
1143 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1146 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1147 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1149 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1152 typedef struct pm_event {
1153 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1154 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1155 bool (*supported)(CPUARMState *);
1157 * Retrieve the current count of the underlying event. The programmed
1158 * counters hold a difference from the return value from this function
1160 uint64_t (*get_count)(CPUARMState *);
1162 * Return how many nanoseconds it will take (at a minimum) for count events
1163 * to occur. A negative value indicates the counter will never overflow, or
1164 * that the counter has otherwise arranged for the overflow bit to be set
1165 * and the PMU interrupt to be raised on overflow.
1167 int64_t (*ns_per_count)(uint64_t);
1168 } pm_event;
1170 static bool event_always_supported(CPUARMState *env)
1172 return true;
1175 static uint64_t swinc_get_count(CPUARMState *env)
1178 * SW_INCR events are written directly to the pmevcntr's by writes to
1179 * PMSWINC, so there is no underlying count maintained by the PMU itself
1181 return 0;
1184 static int64_t swinc_ns_per(uint64_t ignored)
1186 return -1;
1190 * Return the underlying cycle count for the PMU cycle counters. If we're in
1191 * usermode, simply return 0.
1193 static uint64_t cycles_get_count(CPUARMState *env)
1195 #ifndef CONFIG_USER_ONLY
1196 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1197 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1198 #else
1199 return cpu_get_host_ticks();
1200 #endif
1203 #ifndef CONFIG_USER_ONLY
1204 static int64_t cycles_ns_per(uint64_t cycles)
1206 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1209 static bool instructions_supported(CPUARMState *env)
1211 return icount_enabled() == 1; /* Precise instruction counting */
1214 static uint64_t instructions_get_count(CPUARMState *env)
1216 return (uint64_t)icount_get_raw();
1219 static int64_t instructions_ns_per(uint64_t icount)
1221 return icount_to_ns((int64_t)icount);
1223 #endif
1225 static bool pmu_8_1_events_supported(CPUARMState *env)
1227 /* For events which are supported in any v8.1 PMU */
1228 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1231 static bool pmu_8_4_events_supported(CPUARMState *env)
1233 /* For events which are supported in any v8.1 PMU */
1234 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1237 static uint64_t zero_event_get_count(CPUARMState *env)
1239 /* For events which on QEMU never fire, so their count is always zero */
1240 return 0;
1243 static int64_t zero_event_ns_per(uint64_t cycles)
1245 /* An event which never fires can never overflow */
1246 return -1;
1249 static const pm_event pm_events[] = {
1250 { .number = 0x000, /* SW_INCR */
1251 .supported = event_always_supported,
1252 .get_count = swinc_get_count,
1253 .ns_per_count = swinc_ns_per,
1255 #ifndef CONFIG_USER_ONLY
1256 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1257 .supported = instructions_supported,
1258 .get_count = instructions_get_count,
1259 .ns_per_count = instructions_ns_per,
1261 { .number = 0x011, /* CPU_CYCLES, Cycle */
1262 .supported = event_always_supported,
1263 .get_count = cycles_get_count,
1264 .ns_per_count = cycles_ns_per,
1266 #endif
1267 { .number = 0x023, /* STALL_FRONTEND */
1268 .supported = pmu_8_1_events_supported,
1269 .get_count = zero_event_get_count,
1270 .ns_per_count = zero_event_ns_per,
1272 { .number = 0x024, /* STALL_BACKEND */
1273 .supported = pmu_8_1_events_supported,
1274 .get_count = zero_event_get_count,
1275 .ns_per_count = zero_event_ns_per,
1277 { .number = 0x03c, /* STALL */
1278 .supported = pmu_8_4_events_supported,
1279 .get_count = zero_event_get_count,
1280 .ns_per_count = zero_event_ns_per,
1285 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1286 * events (i.e. the statistical profiling extension), this implementation
1287 * should first be updated to something sparse instead of the current
1288 * supported_event_map[] array.
1290 #define MAX_EVENT_ID 0x3c
1291 #define UNSUPPORTED_EVENT UINT16_MAX
1292 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1295 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1296 * of ARM event numbers to indices in our pm_events array.
1298 * Note: Events in the 0x40XX range are not currently supported.
1300 void pmu_init(ARMCPU *cpu)
1302 unsigned int i;
1305 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1306 * events to them
1308 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1309 supported_event_map[i] = UNSUPPORTED_EVENT;
1311 cpu->pmceid0 = 0;
1312 cpu->pmceid1 = 0;
1314 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1315 const pm_event *cnt = &pm_events[i];
1316 assert(cnt->number <= MAX_EVENT_ID);
1317 /* We do not currently support events in the 0x40xx range */
1318 assert(cnt->number <= 0x3f);
1320 if (cnt->supported(&cpu->env)) {
1321 supported_event_map[cnt->number] = i;
1322 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1323 if (cnt->number & 0x20) {
1324 cpu->pmceid1 |= event_mask;
1325 } else {
1326 cpu->pmceid0 |= event_mask;
1333 * Check at runtime whether a PMU event is supported for the current machine
1335 static bool event_supported(uint16_t number)
1337 if (number > MAX_EVENT_ID) {
1338 return false;
1340 return supported_event_map[number] != UNSUPPORTED_EVENT;
1343 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1344 bool isread)
1346 /* Performance monitor registers user accessibility is controlled
1347 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1348 * trapping to EL2 or EL3 for other accesses.
1350 int el = arm_current_el(env);
1352 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1353 return CP_ACCESS_TRAP;
1355 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1356 && !arm_is_secure_below_el3(env)) {
1357 return CP_ACCESS_TRAP_EL2;
1359 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1360 return CP_ACCESS_TRAP_EL3;
1363 return CP_ACCESS_OK;
1366 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1367 const ARMCPRegInfo *ri,
1368 bool isread)
1370 /* ER: event counter read trap control */
1371 if (arm_feature(env, ARM_FEATURE_V8)
1372 && arm_current_el(env) == 0
1373 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1374 && isread) {
1375 return CP_ACCESS_OK;
1378 return pmreg_access(env, ri, isread);
1381 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1382 const ARMCPRegInfo *ri,
1383 bool isread)
1385 /* SW: software increment write trap control */
1386 if (arm_feature(env, ARM_FEATURE_V8)
1387 && arm_current_el(env) == 0
1388 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1389 && !isread) {
1390 return CP_ACCESS_OK;
1393 return pmreg_access(env, ri, isread);
1396 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1397 const ARMCPRegInfo *ri,
1398 bool isread)
1400 /* ER: event counter read trap control */
1401 if (arm_feature(env, ARM_FEATURE_V8)
1402 && arm_current_el(env) == 0
1403 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1404 return CP_ACCESS_OK;
1407 return pmreg_access(env, ri, isread);
1410 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1411 const ARMCPRegInfo *ri,
1412 bool isread)
1414 /* CR: cycle counter read trap control */
1415 if (arm_feature(env, ARM_FEATURE_V8)
1416 && arm_current_el(env) == 0
1417 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1418 && isread) {
1419 return CP_ACCESS_OK;
1422 return pmreg_access(env, ri, isread);
1425 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1426 * the current EL, security state, and register configuration.
1428 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1430 uint64_t filter;
1431 bool e, p, u, nsk, nsu, nsh, m;
1432 bool enabled, prohibited, filtered;
1433 bool secure = arm_is_secure(env);
1434 int el = arm_current_el(env);
1435 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1437 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1438 return false;
1441 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1442 (counter < hpmn || counter == 31)) {
1443 e = env->cp15.c9_pmcr & PMCRE;
1444 } else {
1445 e = env->cp15.mdcr_el2 & MDCR_HPME;
1447 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1449 if (!secure) {
1450 if (el == 2 && (counter < hpmn || counter == 31)) {
1451 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1452 } else {
1453 prohibited = false;
1455 } else {
1456 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1457 !(env->cp15.mdcr_el3 & MDCR_SPME);
1460 if (prohibited && counter == 31) {
1461 prohibited = env->cp15.c9_pmcr & PMCRDP;
1464 if (counter == 31) {
1465 filter = env->cp15.pmccfiltr_el0;
1466 } else {
1467 filter = env->cp15.c14_pmevtyper[counter];
1470 p = filter & PMXEVTYPER_P;
1471 u = filter & PMXEVTYPER_U;
1472 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1473 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1474 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1475 m = arm_el_is_aa64(env, 1) &&
1476 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1478 if (el == 0) {
1479 filtered = secure ? u : u != nsu;
1480 } else if (el == 1) {
1481 filtered = secure ? p : p != nsk;
1482 } else if (el == 2) {
1483 filtered = !nsh;
1484 } else { /* EL3 */
1485 filtered = m != p;
1488 if (counter != 31) {
1490 * If not checking PMCCNTR, ensure the counter is setup to an event we
1491 * support
1493 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1494 if (!event_supported(event)) {
1495 return false;
1499 return enabled && !prohibited && !filtered;
1502 static void pmu_update_irq(CPUARMState *env)
1504 ARMCPU *cpu = env_archcpu(env);
1505 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1506 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1510 * Ensure c15_ccnt is the guest-visible count so that operations such as
1511 * enabling/disabling the counter or filtering, modifying the count itself,
1512 * etc. can be done logically. This is essentially a no-op if the counter is
1513 * not enabled at the time of the call.
1515 static void pmccntr_op_start(CPUARMState *env)
1517 uint64_t cycles = cycles_get_count(env);
1519 if (pmu_counter_enabled(env, 31)) {
1520 uint64_t eff_cycles = cycles;
1521 if (env->cp15.c9_pmcr & PMCRD) {
1522 /* Increment once every 64 processor clock cycles */
1523 eff_cycles /= 64;
1526 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1528 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1529 1ull << 63 : 1ull << 31;
1530 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1531 env->cp15.c9_pmovsr |= (1 << 31);
1532 pmu_update_irq(env);
1535 env->cp15.c15_ccnt = new_pmccntr;
1537 env->cp15.c15_ccnt_delta = cycles;
1541 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1542 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1543 * pmccntr_op_start.
1545 static void pmccntr_op_finish(CPUARMState *env)
1547 if (pmu_counter_enabled(env, 31)) {
1548 #ifndef CONFIG_USER_ONLY
1549 /* Calculate when the counter will next overflow */
1550 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1551 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1552 remaining_cycles = (uint32_t)remaining_cycles;
1554 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1556 if (overflow_in > 0) {
1557 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1558 overflow_in;
1559 ARMCPU *cpu = env_archcpu(env);
1560 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1562 #endif
1564 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1565 if (env->cp15.c9_pmcr & PMCRD) {
1566 /* Increment once every 64 processor clock cycles */
1567 prev_cycles /= 64;
1569 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1573 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1576 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1577 uint64_t count = 0;
1578 if (event_supported(event)) {
1579 uint16_t event_idx = supported_event_map[event];
1580 count = pm_events[event_idx].get_count(env);
1583 if (pmu_counter_enabled(env, counter)) {
1584 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1586 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1587 env->cp15.c9_pmovsr |= (1 << counter);
1588 pmu_update_irq(env);
1590 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1592 env->cp15.c14_pmevcntr_delta[counter] = count;
1595 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1597 if (pmu_counter_enabled(env, counter)) {
1598 #ifndef CONFIG_USER_ONLY
1599 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1600 uint16_t event_idx = supported_event_map[event];
1601 uint64_t delta = UINT32_MAX -
1602 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1603 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1605 if (overflow_in > 0) {
1606 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1607 overflow_in;
1608 ARMCPU *cpu = env_archcpu(env);
1609 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1611 #endif
1613 env->cp15.c14_pmevcntr_delta[counter] -=
1614 env->cp15.c14_pmevcntr[counter];
1618 void pmu_op_start(CPUARMState *env)
1620 unsigned int i;
1621 pmccntr_op_start(env);
1622 for (i = 0; i < pmu_num_counters(env); i++) {
1623 pmevcntr_op_start(env, i);
1627 void pmu_op_finish(CPUARMState *env)
1629 unsigned int i;
1630 pmccntr_op_finish(env);
1631 for (i = 0; i < pmu_num_counters(env); i++) {
1632 pmevcntr_op_finish(env, i);
1636 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1638 pmu_op_start(&cpu->env);
1641 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1643 pmu_op_finish(&cpu->env);
1646 void arm_pmu_timer_cb(void *opaque)
1648 ARMCPU *cpu = opaque;
1651 * Update all the counter values based on the current underlying counts,
1652 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1653 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1654 * counter may expire.
1656 pmu_op_start(&cpu->env);
1657 pmu_op_finish(&cpu->env);
1660 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1661 uint64_t value)
1663 pmu_op_start(env);
1665 if (value & PMCRC) {
1666 /* The counter has been reset */
1667 env->cp15.c15_ccnt = 0;
1670 if (value & PMCRP) {
1671 unsigned int i;
1672 for (i = 0; i < pmu_num_counters(env); i++) {
1673 env->cp15.c14_pmevcntr[i] = 0;
1677 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1678 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1680 pmu_op_finish(env);
1683 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1684 uint64_t value)
1686 unsigned int i;
1687 for (i = 0; i < pmu_num_counters(env); i++) {
1688 /* Increment a counter's count iff: */
1689 if ((value & (1 << i)) && /* counter's bit is set */
1690 /* counter is enabled and not filtered */
1691 pmu_counter_enabled(env, i) &&
1692 /* counter is SW_INCR */
1693 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1694 pmevcntr_op_start(env, i);
1697 * Detect if this write causes an overflow since we can't predict
1698 * PMSWINC overflows like we can for other events
1700 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1702 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1703 env->cp15.c9_pmovsr |= (1 << i);
1704 pmu_update_irq(env);
1707 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1709 pmevcntr_op_finish(env, i);
1714 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 uint64_t ret;
1717 pmccntr_op_start(env);
1718 ret = env->cp15.c15_ccnt;
1719 pmccntr_op_finish(env);
1720 return ret;
1723 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1726 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1727 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1728 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1729 * accessed.
1731 env->cp15.c9_pmselr = value & 0x1f;
1734 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735 uint64_t value)
1737 pmccntr_op_start(env);
1738 env->cp15.c15_ccnt = value;
1739 pmccntr_op_finish(env);
1742 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1743 uint64_t value)
1745 uint64_t cur_val = pmccntr_read(env, NULL);
1747 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1750 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1751 uint64_t value)
1753 pmccntr_op_start(env);
1754 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1755 pmccntr_op_finish(env);
1758 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1759 uint64_t value)
1761 pmccntr_op_start(env);
1762 /* M is not accessible from AArch32 */
1763 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1764 (value & PMCCFILTR);
1765 pmccntr_op_finish(env);
1768 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1770 /* M is not visible in AArch32 */
1771 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1774 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775 uint64_t value)
1777 value &= pmu_counter_mask(env);
1778 env->cp15.c9_pmcnten |= value;
1781 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1782 uint64_t value)
1784 value &= pmu_counter_mask(env);
1785 env->cp15.c9_pmcnten &= ~value;
1788 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789 uint64_t value)
1791 value &= pmu_counter_mask(env);
1792 env->cp15.c9_pmovsr &= ~value;
1793 pmu_update_irq(env);
1796 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1797 uint64_t value)
1799 value &= pmu_counter_mask(env);
1800 env->cp15.c9_pmovsr |= value;
1801 pmu_update_irq(env);
1804 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value, const uint8_t counter)
1807 if (counter == 31) {
1808 pmccfiltr_write(env, ri, value);
1809 } else if (counter < pmu_num_counters(env)) {
1810 pmevcntr_op_start(env, counter);
1813 * If this counter's event type is changing, store the current
1814 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1815 * pmevcntr_op_finish has the correct baseline when it converts back to
1816 * a delta.
1818 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1819 PMXEVTYPER_EVTCOUNT;
1820 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1821 if (old_event != new_event) {
1822 uint64_t count = 0;
1823 if (event_supported(new_event)) {
1824 uint16_t event_idx = supported_event_map[new_event];
1825 count = pm_events[event_idx].get_count(env);
1827 env->cp15.c14_pmevcntr_delta[counter] = count;
1830 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1831 pmevcntr_op_finish(env, counter);
1833 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1834 * PMSELR value is equal to or greater than the number of implemented
1835 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1839 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1840 const uint8_t counter)
1842 if (counter == 31) {
1843 return env->cp15.pmccfiltr_el0;
1844 } else if (counter < pmu_num_counters(env)) {
1845 return env->cp15.c14_pmevtyper[counter];
1846 } else {
1848 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1849 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1851 return 0;
1855 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1856 uint64_t value)
1858 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1859 pmevtyper_write(env, ri, value, counter);
1862 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1863 uint64_t value)
1865 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1866 env->cp15.c14_pmevtyper[counter] = value;
1869 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1870 * pmu_op_finish calls when loading saved state for a migration. Because
1871 * we're potentially updating the type of event here, the value written to
1872 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1873 * different counter type. Therefore, we need to set this value to the
1874 * current count for the counter type we're writing so that pmu_op_finish
1875 * has the correct count for its calculation.
1877 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1878 if (event_supported(event)) {
1879 uint16_t event_idx = supported_event_map[event];
1880 env->cp15.c14_pmevcntr_delta[counter] =
1881 pm_events[event_idx].get_count(env);
1885 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1887 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1888 return pmevtyper_read(env, ri, counter);
1891 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892 uint64_t value)
1894 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1897 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1899 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1902 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1903 uint64_t value, uint8_t counter)
1905 if (counter < pmu_num_counters(env)) {
1906 pmevcntr_op_start(env, counter);
1907 env->cp15.c14_pmevcntr[counter] = value;
1908 pmevcntr_op_finish(env, counter);
1911 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1912 * are CONSTRAINED UNPREDICTABLE.
1916 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1917 uint8_t counter)
1919 if (counter < pmu_num_counters(env)) {
1920 uint64_t ret;
1921 pmevcntr_op_start(env, counter);
1922 ret = env->cp15.c14_pmevcntr[counter];
1923 pmevcntr_op_finish(env, counter);
1924 return ret;
1925 } else {
1926 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1927 * are CONSTRAINED UNPREDICTABLE. */
1928 return 0;
1932 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1933 uint64_t value)
1935 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1936 pmevcntr_write(env, ri, value, counter);
1939 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1941 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1942 return pmevcntr_read(env, ri, counter);
1945 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1946 uint64_t value)
1948 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1949 assert(counter < pmu_num_counters(env));
1950 env->cp15.c14_pmevcntr[counter] = value;
1951 pmevcntr_write(env, ri, value, counter);
1954 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1956 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1957 assert(counter < pmu_num_counters(env));
1958 return env->cp15.c14_pmevcntr[counter];
1961 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962 uint64_t value)
1964 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1967 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1972 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1973 uint64_t value)
1975 if (arm_feature(env, ARM_FEATURE_V8)) {
1976 env->cp15.c9_pmuserenr = value & 0xf;
1977 } else {
1978 env->cp15.c9_pmuserenr = value & 1;
1982 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983 uint64_t value)
1985 /* We have no event counters so only the C bit can be changed */
1986 value &= pmu_counter_mask(env);
1987 env->cp15.c9_pminten |= value;
1988 pmu_update_irq(env);
1991 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1992 uint64_t value)
1994 value &= pmu_counter_mask(env);
1995 env->cp15.c9_pminten &= ~value;
1996 pmu_update_irq(env);
1999 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2000 uint64_t value)
2002 /* Note that even though the AArch64 view of this register has bits
2003 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2004 * architectural requirements for bits which are RES0 only in some
2005 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2006 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2008 raw_write(env, ri, value & ~0x1FULL);
2011 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2013 /* Begin with base v8.0 state. */
2014 uint32_t valid_mask = 0x3fff;
2015 ARMCPU *cpu = env_archcpu(env);
2017 if (ri->state == ARM_CP_STATE_AA64) {
2018 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2019 valid_mask &= ~SCR_NET;
2021 if (cpu_isar_feature(aa64_lor, cpu)) {
2022 valid_mask |= SCR_TLOR;
2024 if (cpu_isar_feature(aa64_pauth, cpu)) {
2025 valid_mask |= SCR_API | SCR_APK;
2027 if (cpu_isar_feature(aa64_mte, cpu)) {
2028 valid_mask |= SCR_ATA;
2030 } else {
2031 valid_mask &= ~(SCR_RW | SCR_ST);
2034 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2035 valid_mask &= ~SCR_HCE;
2037 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2038 * supported if EL2 exists. The bit is UNK/SBZP when
2039 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2040 * when EL2 is unavailable.
2041 * On ARMv8, this bit is always available.
2043 if (arm_feature(env, ARM_FEATURE_V7) &&
2044 !arm_feature(env, ARM_FEATURE_V8)) {
2045 valid_mask &= ~SCR_SMD;
2049 /* Clear all-context RES0 bits. */
2050 value &= valid_mask;
2051 raw_write(env, ri, value);
2054 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2055 const ARMCPRegInfo *ri,
2056 bool isread)
2058 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2059 return CP_ACCESS_TRAP_EL2;
2062 return CP_ACCESS_OK;
2065 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2067 ARMCPU *cpu = env_archcpu(env);
2069 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2070 * bank
2072 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2073 ri->secure & ARM_CP_SECSTATE_S);
2075 return cpu->ccsidr[index];
2078 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2079 uint64_t value)
2081 raw_write(env, ri, value & 0xf);
2084 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2086 CPUState *cs = env_cpu(env);
2087 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2088 uint64_t ret = 0;
2089 bool allow_virt = (arm_current_el(env) == 1 &&
2090 (!arm_is_secure_below_el3(env) ||
2091 (env->cp15.scr_el3 & SCR_EEL2)));
2093 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2094 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2095 ret |= CPSR_I;
2097 } else {
2098 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2099 ret |= CPSR_I;
2103 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2104 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2105 ret |= CPSR_F;
2107 } else {
2108 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2109 ret |= CPSR_F;
2113 /* External aborts are not possible in QEMU so A bit is always clear */
2114 return ret;
2117 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2118 bool isread)
2120 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2121 return CP_ACCESS_TRAP_EL2;
2124 return CP_ACCESS_OK;
2127 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2128 bool isread)
2130 if (arm_feature(env, ARM_FEATURE_V8)) {
2131 return access_aa64_tid1(env, ri, isread);
2134 return CP_ACCESS_OK;
2137 static const ARMCPRegInfo v7_cp_reginfo[] = {
2138 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2139 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2140 .access = PL1_W, .type = ARM_CP_NOP },
2141 /* Performance monitors are implementation defined in v7,
2142 * but with an ARM recommended set of registers, which we
2143 * follow.
2145 * Performance registers fall into three categories:
2146 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2147 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2148 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2149 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2150 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2152 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2153 .access = PL0_RW, .type = ARM_CP_ALIAS,
2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2155 .writefn = pmcntenset_write,
2156 .accessfn = pmreg_access,
2157 .raw_writefn = raw_write },
2158 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2160 .access = PL0_RW, .accessfn = pmreg_access,
2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2162 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2163 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2164 .access = PL0_RW,
2165 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2166 .accessfn = pmreg_access,
2167 .writefn = pmcntenclr_write,
2168 .type = ARM_CP_ALIAS },
2169 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2170 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2171 .access = PL0_RW, .accessfn = pmreg_access,
2172 .type = ARM_CP_ALIAS,
2173 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2174 .writefn = pmcntenclr_write },
2175 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2176 .access = PL0_RW, .type = ARM_CP_IO,
2177 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2178 .accessfn = pmreg_access,
2179 .writefn = pmovsr_write,
2180 .raw_writefn = raw_write },
2181 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2183 .access = PL0_RW, .accessfn = pmreg_access,
2184 .type = ARM_CP_ALIAS | ARM_CP_IO,
2185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2186 .writefn = pmovsr_write,
2187 .raw_writefn = raw_write },
2188 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2189 .access = PL0_W, .accessfn = pmreg_access_swinc,
2190 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2191 .writefn = pmswinc_write },
2192 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2194 .access = PL0_W, .accessfn = pmreg_access_swinc,
2195 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2196 .writefn = pmswinc_write },
2197 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2198 .access = PL0_RW, .type = ARM_CP_ALIAS,
2199 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2200 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2201 .raw_writefn = raw_write},
2202 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2204 .access = PL0_RW, .accessfn = pmreg_access_selr,
2205 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2206 .writefn = pmselr_write, .raw_writefn = raw_write, },
2207 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2208 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2209 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2210 .accessfn = pmreg_access_ccntr },
2211 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2212 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2213 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2214 .type = ARM_CP_IO,
2215 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2216 .readfn = pmccntr_read, .writefn = pmccntr_write,
2217 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2218 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2219 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2220 .access = PL0_RW, .accessfn = pmreg_access,
2221 .type = ARM_CP_ALIAS | ARM_CP_IO,
2222 .resetvalue = 0, },
2223 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2224 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2225 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2226 .access = PL0_RW, .accessfn = pmreg_access,
2227 .type = ARM_CP_IO,
2228 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2229 .resetvalue = 0, },
2230 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2231 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2232 .accessfn = pmreg_access,
2233 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2234 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2236 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2237 .accessfn = pmreg_access,
2238 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2239 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2240 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2241 .accessfn = pmreg_access_xevcntr,
2242 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2243 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2245 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2246 .accessfn = pmreg_access_xevcntr,
2247 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2248 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2249 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2250 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2251 .resetvalue = 0,
2252 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2253 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2255 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2256 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2257 .resetvalue = 0,
2258 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2259 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2260 .access = PL1_RW, .accessfn = access_tpm,
2261 .type = ARM_CP_ALIAS | ARM_CP_IO,
2262 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2263 .resetvalue = 0,
2264 .writefn = pmintenset_write, .raw_writefn = raw_write },
2265 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2266 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2267 .access = PL1_RW, .accessfn = access_tpm,
2268 .type = ARM_CP_IO,
2269 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2270 .writefn = pmintenset_write, .raw_writefn = raw_write,
2271 .resetvalue = 0x0 },
2272 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2273 .access = PL1_RW, .accessfn = access_tpm,
2274 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2275 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2276 .writefn = pmintenclr_write, },
2277 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2278 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2279 .access = PL1_RW, .accessfn = access_tpm,
2280 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2281 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2282 .writefn = pmintenclr_write },
2283 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2284 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2285 .access = PL1_R,
2286 .accessfn = access_aa64_tid2,
2287 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2288 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2289 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2290 .access = PL1_RW,
2291 .accessfn = access_aa64_tid2,
2292 .writefn = csselr_write, .resetvalue = 0,
2293 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2294 offsetof(CPUARMState, cp15.csselr_ns) } },
2295 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2296 * just RAZ for all cores:
2298 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2299 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2300 .access = PL1_R, .type = ARM_CP_CONST,
2301 .accessfn = access_aa64_tid1,
2302 .resetvalue = 0 },
2303 /* Auxiliary fault status registers: these also are IMPDEF, and we
2304 * choose to RAZ/WI for all cores.
2306 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2307 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2308 .access = PL1_RW, .accessfn = access_tvm_trvm,
2309 .type = ARM_CP_CONST, .resetvalue = 0 },
2310 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2311 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2312 .access = PL1_RW, .accessfn = access_tvm_trvm,
2313 .type = ARM_CP_CONST, .resetvalue = 0 },
2314 /* MAIR can just read-as-written because we don't implement caches
2315 * and so don't need to care about memory attributes.
2317 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2318 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2319 .access = PL1_RW, .accessfn = access_tvm_trvm,
2320 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2321 .resetvalue = 0 },
2322 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2323 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2324 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2325 .resetvalue = 0 },
2326 /* For non-long-descriptor page tables these are PRRR and NMRR;
2327 * regardless they still act as reads-as-written for QEMU.
2329 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2330 * allows them to assign the correct fieldoffset based on the endianness
2331 * handled in the field definitions.
2333 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2334 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2335 .access = PL1_RW, .accessfn = access_tvm_trvm,
2336 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2337 offsetof(CPUARMState, cp15.mair0_ns) },
2338 .resetfn = arm_cp_reset_ignore },
2339 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2340 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2341 .access = PL1_RW, .accessfn = access_tvm_trvm,
2342 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2343 offsetof(CPUARMState, cp15.mair1_ns) },
2344 .resetfn = arm_cp_reset_ignore },
2345 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2346 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2347 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2348 /* 32 bit ITLB invalidates */
2349 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2351 .writefn = tlbiall_write },
2352 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354 .writefn = tlbimva_write },
2355 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357 .writefn = tlbiasid_write },
2358 /* 32 bit DTLB invalidates */
2359 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2360 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2361 .writefn = tlbiall_write },
2362 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2364 .writefn = tlbimva_write },
2365 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2367 .writefn = tlbiasid_write },
2368 /* 32 bit TLB invalidates */
2369 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2370 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2371 .writefn = tlbiall_write },
2372 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbimva_write },
2375 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbiasid_write },
2378 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2379 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380 .writefn = tlbimvaa_write },
2381 REGINFO_SENTINEL
2384 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2385 /* 32 bit TLB invalidates, Inner Shareable */
2386 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2387 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2388 .writefn = tlbiall_is_write },
2389 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2390 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2391 .writefn = tlbimva_is_write },
2392 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbiasid_is_write },
2395 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2396 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397 .writefn = tlbimvaa_is_write },
2398 REGINFO_SENTINEL
2401 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2402 /* PMOVSSET is not implemented in v7 before v7ve */
2403 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2404 .access = PL0_RW, .accessfn = pmreg_access,
2405 .type = ARM_CP_ALIAS | ARM_CP_IO,
2406 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2407 .writefn = pmovsset_write,
2408 .raw_writefn = raw_write },
2409 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2410 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2411 .access = PL0_RW, .accessfn = pmreg_access,
2412 .type = ARM_CP_ALIAS | ARM_CP_IO,
2413 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2414 .writefn = pmovsset_write,
2415 .raw_writefn = raw_write },
2416 REGINFO_SENTINEL
2419 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2420 uint64_t value)
2422 value &= 1;
2423 env->teecr = value;
2426 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2427 bool isread)
2429 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2430 return CP_ACCESS_TRAP;
2432 return CP_ACCESS_OK;
2435 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2436 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2437 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2438 .resetvalue = 0,
2439 .writefn = teecr_write },
2440 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2441 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2442 .accessfn = teehbr_access, .resetvalue = 0 },
2443 REGINFO_SENTINEL
2446 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2447 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2448 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2449 .access = PL0_RW,
2450 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2451 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2452 .access = PL0_RW,
2453 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2454 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2455 .resetfn = arm_cp_reset_ignore },
2456 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2457 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2458 .access = PL0_R|PL1_W,
2459 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2460 .resetvalue = 0},
2461 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2462 .access = PL0_R|PL1_W,
2463 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2464 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2465 .resetfn = arm_cp_reset_ignore },
2466 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2467 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2468 .access = PL1_RW,
2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2471 .access = PL1_RW,
2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2474 .resetvalue = 0 },
2475 REGINFO_SENTINEL
2478 #ifndef CONFIG_USER_ONLY
2480 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2481 bool isread)
2483 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2484 * Writable only at the highest implemented exception level.
2486 int el = arm_current_el(env);
2487 uint64_t hcr;
2488 uint32_t cntkctl;
2490 switch (el) {
2491 case 0:
2492 hcr = arm_hcr_el2_eff(env);
2493 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2494 cntkctl = env->cp15.cnthctl_el2;
2495 } else {
2496 cntkctl = env->cp15.c14_cntkctl;
2498 if (!extract32(cntkctl, 0, 2)) {
2499 return CP_ACCESS_TRAP;
2501 break;
2502 case 1:
2503 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2504 arm_is_secure_below_el3(env)) {
2505 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2506 return CP_ACCESS_TRAP_UNCATEGORIZED;
2508 break;
2509 case 2:
2510 case 3:
2511 break;
2514 if (!isread && el < arm_highest_el(env)) {
2515 return CP_ACCESS_TRAP_UNCATEGORIZED;
2518 return CP_ACCESS_OK;
2521 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2522 bool isread)
2524 unsigned int cur_el = arm_current_el(env);
2525 bool secure = arm_is_secure(env);
2526 uint64_t hcr = arm_hcr_el2_eff(env);
2528 switch (cur_el) {
2529 case 0:
2530 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2531 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2532 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2533 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2536 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2537 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2538 return CP_ACCESS_TRAP;
2541 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2542 if (hcr & HCR_E2H) {
2543 if (timeridx == GTIMER_PHYS &&
2544 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2545 return CP_ACCESS_TRAP_EL2;
2547 } else {
2548 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2549 if (arm_feature(env, ARM_FEATURE_EL2) &&
2550 timeridx == GTIMER_PHYS && !secure &&
2551 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2552 return CP_ACCESS_TRAP_EL2;
2555 break;
2557 case 1:
2558 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2559 if (arm_feature(env, ARM_FEATURE_EL2) &&
2560 timeridx == GTIMER_PHYS && !secure &&
2561 (hcr & HCR_E2H
2562 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2563 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2564 return CP_ACCESS_TRAP_EL2;
2566 break;
2568 return CP_ACCESS_OK;
2571 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2572 bool isread)
2574 unsigned int cur_el = arm_current_el(env);
2575 bool secure = arm_is_secure(env);
2576 uint64_t hcr = arm_hcr_el2_eff(env);
2578 switch (cur_el) {
2579 case 0:
2580 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2581 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2582 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2583 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2587 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2588 * EL0 if EL0[PV]TEN is zero.
2590 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2591 return CP_ACCESS_TRAP;
2593 /* fall through */
2595 case 1:
2596 if (arm_feature(env, ARM_FEATURE_EL2) &&
2597 timeridx == GTIMER_PHYS && !secure) {
2598 if (hcr & HCR_E2H) {
2599 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2600 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2601 return CP_ACCESS_TRAP_EL2;
2603 } else {
2604 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2605 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2606 return CP_ACCESS_TRAP_EL2;
2610 break;
2612 return CP_ACCESS_OK;
2615 static CPAccessResult gt_pct_access(CPUARMState *env,
2616 const ARMCPRegInfo *ri,
2617 bool isread)
2619 return gt_counter_access(env, GTIMER_PHYS, isread);
2622 static CPAccessResult gt_vct_access(CPUARMState *env,
2623 const ARMCPRegInfo *ri,
2624 bool isread)
2626 return gt_counter_access(env, GTIMER_VIRT, isread);
2629 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2630 bool isread)
2632 return gt_timer_access(env, GTIMER_PHYS, isread);
2635 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2636 bool isread)
2638 return gt_timer_access(env, GTIMER_VIRT, isread);
2641 static CPAccessResult gt_stimer_access(CPUARMState *env,
2642 const ARMCPRegInfo *ri,
2643 bool isread)
2645 /* The AArch64 register view of the secure physical timer is
2646 * always accessible from EL3, and configurably accessible from
2647 * Secure EL1.
2649 switch (arm_current_el(env)) {
2650 case 1:
2651 if (!arm_is_secure(env)) {
2652 return CP_ACCESS_TRAP;
2654 if (!(env->cp15.scr_el3 & SCR_ST)) {
2655 return CP_ACCESS_TRAP_EL3;
2657 return CP_ACCESS_OK;
2658 case 0:
2659 case 2:
2660 return CP_ACCESS_TRAP;
2661 case 3:
2662 return CP_ACCESS_OK;
2663 default:
2664 g_assert_not_reached();
2668 static uint64_t gt_get_countervalue(CPUARMState *env)
2670 ARMCPU *cpu = env_archcpu(env);
2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2675 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2677 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2679 if (gt->ctl & 1) {
2680 /* Timer enabled: calculate and set current ISTATUS, irq, and
2681 * reset timer to when ISTATUS next has to change
2683 uint64_t offset = timeridx == GTIMER_VIRT ?
2684 cpu->env.cp15.cntvoff_el2 : 0;
2685 uint64_t count = gt_get_countervalue(&cpu->env);
2686 /* Note that this must be unsigned 64 bit arithmetic: */
2687 int istatus = count - offset >= gt->cval;
2688 uint64_t nexttick;
2689 int irqstate;
2691 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2693 irqstate = (istatus && !(gt->ctl & 2));
2694 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2696 if (istatus) {
2697 /* Next transition is when count rolls back over to zero */
2698 nexttick = UINT64_MAX;
2699 } else {
2700 /* Next transition is when we hit cval */
2701 nexttick = gt->cval + offset;
2703 /* Note that the desired next expiry time might be beyond the
2704 * signed-64-bit range of a QEMUTimer -- in this case we just
2705 * set the timer for as far in the future as possible. When the
2706 * timer expires we will reset the timer for any remaining period.
2708 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2709 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2710 } else {
2711 timer_mod(cpu->gt_timer[timeridx], nexttick);
2713 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2714 } else {
2715 /* Timer disabled: ISTATUS and timer output always clear */
2716 gt->ctl &= ~4;
2717 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2718 timer_del(cpu->gt_timer[timeridx]);
2719 trace_arm_gt_recalc_disabled(timeridx);
2723 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2724 int timeridx)
2726 ARMCPU *cpu = env_archcpu(env);
2728 timer_del(cpu->gt_timer[timeridx]);
2731 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2733 return gt_get_countervalue(env);
2736 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2738 uint64_t hcr;
2740 switch (arm_current_el(env)) {
2741 case 2:
2742 hcr = arm_hcr_el2_eff(env);
2743 if (hcr & HCR_E2H) {
2744 return 0;
2746 break;
2747 case 0:
2748 hcr = arm_hcr_el2_eff(env);
2749 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2750 return 0;
2752 break;
2755 return env->cp15.cntvoff_el2;
2758 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2760 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2763 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2764 int timeridx,
2765 uint64_t value)
2767 trace_arm_gt_cval_write(timeridx, value);
2768 env->cp15.c14_timer[timeridx].cval = value;
2769 gt_recalc_timer(env_archcpu(env), timeridx);
2772 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2773 int timeridx)
2775 uint64_t offset = 0;
2777 switch (timeridx) {
2778 case GTIMER_VIRT:
2779 case GTIMER_HYPVIRT:
2780 offset = gt_virt_cnt_offset(env);
2781 break;
2784 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2785 (gt_get_countervalue(env) - offset));
2788 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 int timeridx,
2790 uint64_t value)
2792 uint64_t offset = 0;
2794 switch (timeridx) {
2795 case GTIMER_VIRT:
2796 case GTIMER_HYPVIRT:
2797 offset = gt_virt_cnt_offset(env);
2798 break;
2801 trace_arm_gt_tval_write(timeridx, value);
2802 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2803 sextract64(value, 0, 32);
2804 gt_recalc_timer(env_archcpu(env), timeridx);
2807 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2808 int timeridx,
2809 uint64_t value)
2811 ARMCPU *cpu = env_archcpu(env);
2812 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2814 trace_arm_gt_ctl_write(timeridx, value);
2815 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2816 if ((oldval ^ value) & 1) {
2817 /* Enable toggled */
2818 gt_recalc_timer(cpu, timeridx);
2819 } else if ((oldval ^ value) & 2) {
2820 /* IMASK toggled: don't need to recalculate,
2821 * just set the interrupt line based on ISTATUS
2823 int irqstate = (oldval & 4) && !(value & 2);
2825 trace_arm_gt_imask_toggle(timeridx, irqstate);
2826 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2830 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2832 gt_timer_reset(env, ri, GTIMER_PHYS);
2835 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2836 uint64_t value)
2838 gt_cval_write(env, ri, GTIMER_PHYS, value);
2841 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843 return gt_tval_read(env, ri, GTIMER_PHYS);
2846 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2847 uint64_t value)
2849 gt_tval_write(env, ri, GTIMER_PHYS, value);
2852 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2853 uint64_t value)
2855 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2858 static int gt_phys_redir_timeridx(CPUARMState *env)
2860 switch (arm_mmu_idx(env)) {
2861 case ARMMMUIdx_E20_0:
2862 case ARMMMUIdx_E20_2:
2863 case ARMMMUIdx_E20_2_PAN:
2864 return GTIMER_HYP;
2865 default:
2866 return GTIMER_PHYS;
2870 static int gt_virt_redir_timeridx(CPUARMState *env)
2872 switch (arm_mmu_idx(env)) {
2873 case ARMMMUIdx_E20_0:
2874 case ARMMMUIdx_E20_2:
2875 case ARMMMUIdx_E20_2_PAN:
2876 return GTIMER_HYPVIRT;
2877 default:
2878 return GTIMER_VIRT;
2882 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2883 const ARMCPRegInfo *ri)
2885 int timeridx = gt_phys_redir_timeridx(env);
2886 return env->cp15.c14_timer[timeridx].cval;
2889 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2890 uint64_t value)
2892 int timeridx = gt_phys_redir_timeridx(env);
2893 gt_cval_write(env, ri, timeridx, value);
2896 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2897 const ARMCPRegInfo *ri)
2899 int timeridx = gt_phys_redir_timeridx(env);
2900 return gt_tval_read(env, ri, timeridx);
2903 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904 uint64_t value)
2906 int timeridx = gt_phys_redir_timeridx(env);
2907 gt_tval_write(env, ri, timeridx, value);
2910 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2911 const ARMCPRegInfo *ri)
2913 int timeridx = gt_phys_redir_timeridx(env);
2914 return env->cp15.c14_timer[timeridx].ctl;
2917 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918 uint64_t value)
2920 int timeridx = gt_phys_redir_timeridx(env);
2921 gt_ctl_write(env, ri, timeridx, value);
2924 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2926 gt_timer_reset(env, ri, GTIMER_VIRT);
2929 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930 uint64_t value)
2932 gt_cval_write(env, ri, GTIMER_VIRT, value);
2935 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2937 return gt_tval_read(env, ri, GTIMER_VIRT);
2940 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2941 uint64_t value)
2943 gt_tval_write(env, ri, GTIMER_VIRT, value);
2946 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2947 uint64_t value)
2949 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2952 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953 uint64_t value)
2955 ARMCPU *cpu = env_archcpu(env);
2957 trace_arm_gt_cntvoff_write(value);
2958 raw_write(env, ri, value);
2959 gt_recalc_timer(cpu, GTIMER_VIRT);
2962 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2963 const ARMCPRegInfo *ri)
2965 int timeridx = gt_virt_redir_timeridx(env);
2966 return env->cp15.c14_timer[timeridx].cval;
2969 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2970 uint64_t value)
2972 int timeridx = gt_virt_redir_timeridx(env);
2973 gt_cval_write(env, ri, timeridx, value);
2976 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2977 const ARMCPRegInfo *ri)
2979 int timeridx = gt_virt_redir_timeridx(env);
2980 return gt_tval_read(env, ri, timeridx);
2983 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984 uint64_t value)
2986 int timeridx = gt_virt_redir_timeridx(env);
2987 gt_tval_write(env, ri, timeridx, value);
2990 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2991 const ARMCPRegInfo *ri)
2993 int timeridx = gt_virt_redir_timeridx(env);
2994 return env->cp15.c14_timer[timeridx].ctl;
2997 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998 uint64_t value)
3000 int timeridx = gt_virt_redir_timeridx(env);
3001 gt_ctl_write(env, ri, timeridx, value);
3004 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3006 gt_timer_reset(env, ri, GTIMER_HYP);
3009 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010 uint64_t value)
3012 gt_cval_write(env, ri, GTIMER_HYP, value);
3015 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3017 return gt_tval_read(env, ri, GTIMER_HYP);
3020 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3021 uint64_t value)
3023 gt_tval_write(env, ri, GTIMER_HYP, value);
3026 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3027 uint64_t value)
3029 gt_ctl_write(env, ri, GTIMER_HYP, value);
3032 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3034 gt_timer_reset(env, ri, GTIMER_SEC);
3037 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3038 uint64_t value)
3040 gt_cval_write(env, ri, GTIMER_SEC, value);
3043 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3045 return gt_tval_read(env, ri, GTIMER_SEC);
3048 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3049 uint64_t value)
3051 gt_tval_write(env, ri, GTIMER_SEC, value);
3054 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055 uint64_t value)
3057 gt_ctl_write(env, ri, GTIMER_SEC, value);
3060 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3062 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3065 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066 uint64_t value)
3068 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3071 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3073 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3076 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3077 uint64_t value)
3079 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3082 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3083 uint64_t value)
3085 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3088 void arm_gt_ptimer_cb(void *opaque)
3090 ARMCPU *cpu = opaque;
3092 gt_recalc_timer(cpu, GTIMER_PHYS);
3095 void arm_gt_vtimer_cb(void *opaque)
3097 ARMCPU *cpu = opaque;
3099 gt_recalc_timer(cpu, GTIMER_VIRT);
3102 void arm_gt_htimer_cb(void *opaque)
3104 ARMCPU *cpu = opaque;
3106 gt_recalc_timer(cpu, GTIMER_HYP);
3109 void arm_gt_stimer_cb(void *opaque)
3111 ARMCPU *cpu = opaque;
3113 gt_recalc_timer(cpu, GTIMER_SEC);
3116 void arm_gt_hvtimer_cb(void *opaque)
3118 ARMCPU *cpu = opaque;
3120 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3123 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3125 ARMCPU *cpu = env_archcpu(env);
3127 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3130 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3131 /* Note that CNTFRQ is purely reads-as-written for the benefit
3132 * of software; writing it doesn't actually change the timer frequency.
3133 * Our reset value matches the fixed frequency we implement the timer at.
3135 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3136 .type = ARM_CP_ALIAS,
3137 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3138 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3140 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3141 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3142 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3144 .resetfn = arm_gt_cntfrq_reset,
3146 /* overall control: mostly access permissions */
3147 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3148 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3149 .access = PL1_RW,
3150 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3151 .resetvalue = 0,
3153 /* per-timer control */
3154 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3155 .secure = ARM_CP_SECSTATE_NS,
3156 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3157 .accessfn = gt_ptimer_access,
3158 .fieldoffset = offsetoflow32(CPUARMState,
3159 cp15.c14_timer[GTIMER_PHYS].ctl),
3160 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3161 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3163 { .name = "CNTP_CTL_S",
3164 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3165 .secure = ARM_CP_SECSTATE_S,
3166 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3167 .accessfn = gt_ptimer_access,
3168 .fieldoffset = offsetoflow32(CPUARMState,
3169 cp15.c14_timer[GTIMER_SEC].ctl),
3170 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3172 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3173 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3174 .type = ARM_CP_IO, .access = PL0_RW,
3175 .accessfn = gt_ptimer_access,
3176 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3177 .resetvalue = 0,
3178 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3179 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3181 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3182 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183 .accessfn = gt_vtimer_access,
3184 .fieldoffset = offsetoflow32(CPUARMState,
3185 cp15.c14_timer[GTIMER_VIRT].ctl),
3186 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3187 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3189 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3190 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3191 .type = ARM_CP_IO, .access = PL0_RW,
3192 .accessfn = gt_vtimer_access,
3193 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3194 .resetvalue = 0,
3195 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3196 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3198 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3199 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3200 .secure = ARM_CP_SECSTATE_NS,
3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3202 .accessfn = gt_ptimer_access,
3203 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3205 { .name = "CNTP_TVAL_S",
3206 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3207 .secure = ARM_CP_SECSTATE_S,
3208 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3209 .accessfn = gt_ptimer_access,
3210 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3212 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3213 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3215 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3216 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3218 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3219 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3220 .accessfn = gt_vtimer_access,
3221 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3223 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3224 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3226 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3227 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3229 /* The counter itself */
3230 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3231 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3232 .accessfn = gt_pct_access,
3233 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3235 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3236 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3237 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3238 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3240 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3241 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3242 .accessfn = gt_vct_access,
3243 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3245 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3246 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3247 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3248 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3250 /* Comparison value, indicating when the timer goes off */
3251 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3252 .secure = ARM_CP_SECSTATE_NS,
3253 .access = PL0_RW,
3254 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3255 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3256 .accessfn = gt_ptimer_access,
3257 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3258 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3260 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3261 .secure = ARM_CP_SECSTATE_S,
3262 .access = PL0_RW,
3263 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3264 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3265 .accessfn = gt_ptimer_access,
3266 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3268 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3270 .access = PL0_RW,
3271 .type = ARM_CP_IO,
3272 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3273 .resetvalue = 0, .accessfn = gt_ptimer_access,
3274 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3275 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3277 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3278 .access = PL0_RW,
3279 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3280 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3281 .accessfn = gt_vtimer_access,
3282 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3283 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3285 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3286 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3287 .access = PL0_RW,
3288 .type = ARM_CP_IO,
3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3290 .resetvalue = 0, .accessfn = gt_vtimer_access,
3291 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3292 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3294 /* Secure timer -- this is actually restricted to only EL3
3295 * and configurably Secure-EL1 via the accessfn.
3297 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3298 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3299 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3300 .accessfn = gt_stimer_access,
3301 .readfn = gt_sec_tval_read,
3302 .writefn = gt_sec_tval_write,
3303 .resetfn = gt_sec_timer_reset,
3305 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3306 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3307 .type = ARM_CP_IO, .access = PL1_RW,
3308 .accessfn = gt_stimer_access,
3309 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3310 .resetvalue = 0,
3311 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3313 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3314 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3315 .type = ARM_CP_IO, .access = PL1_RW,
3316 .accessfn = gt_stimer_access,
3317 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3318 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3320 REGINFO_SENTINEL
3323 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3324 bool isread)
3326 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3327 return CP_ACCESS_TRAP;
3329 return CP_ACCESS_OK;
3332 #else
3334 /* In user-mode most of the generic timer registers are inaccessible
3335 * however modern kernels (4.12+) allow access to cntvct_el0
3338 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3340 ARMCPU *cpu = env_archcpu(env);
3342 /* Currently we have no support for QEMUTimer in linux-user so we
3343 * can't call gt_get_countervalue(env), instead we directly
3344 * call the lower level functions.
3346 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3349 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3350 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3351 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3352 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3353 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3354 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3359 .readfn = gt_virt_cnt_read,
3361 REGINFO_SENTINEL
3364 #endif
3366 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3368 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3369 raw_write(env, ri, value);
3370 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3371 raw_write(env, ri, value & 0xfffff6ff);
3372 } else {
3373 raw_write(env, ri, value & 0xfffff1ff);
3377 #ifndef CONFIG_USER_ONLY
3378 /* get_phys_addr() isn't present for user-mode-only targets */
3380 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3381 bool isread)
3383 if (ri->opc2 & 4) {
3384 /* The ATS12NSO* operations must trap to EL3 if executed in
3385 * Secure EL1 (which can only happen if EL3 is AArch64).
3386 * They are simply UNDEF if executed from NS EL1.
3387 * They function normally from EL2 or EL3.
3389 if (arm_current_el(env) == 1) {
3390 if (arm_is_secure_below_el3(env)) {
3391 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3393 return CP_ACCESS_TRAP_UNCATEGORIZED;
3396 return CP_ACCESS_OK;
3399 #ifdef CONFIG_TCG
3400 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3401 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3403 hwaddr phys_addr;
3404 target_ulong page_size;
3405 int prot;
3406 bool ret;
3407 uint64_t par64;
3408 bool format64 = false;
3409 MemTxAttrs attrs = {};
3410 ARMMMUFaultInfo fi = {};
3411 ARMCacheAttrs cacheattrs = {};
3413 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3414 &prot, &page_size, &fi, &cacheattrs);
3416 if (ret) {
3418 * Some kinds of translation fault must cause exceptions rather
3419 * than being reported in the PAR.
3421 int current_el = arm_current_el(env);
3422 int target_el;
3423 uint32_t syn, fsr, fsc;
3424 bool take_exc = false;
3426 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3427 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3429 * Synchronous stage 2 fault on an access made as part of the
3430 * translation table walk for AT S1E0* or AT S1E1* insn
3431 * executed from NS EL1. If this is a synchronous external abort
3432 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3433 * to EL3. Otherwise the fault is taken as an exception to EL2,
3434 * and HPFAR_EL2 holds the faulting IPA.
3436 if (fi.type == ARMFault_SyncExternalOnWalk &&
3437 (env->cp15.scr_el3 & SCR_EA)) {
3438 target_el = 3;
3439 } else {
3440 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3441 target_el = 2;
3443 take_exc = true;
3444 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3446 * Synchronous external aborts during a translation table walk
3447 * are taken as Data Abort exceptions.
3449 if (fi.stage2) {
3450 if (current_el == 3) {
3451 target_el = 3;
3452 } else {
3453 target_el = 2;
3455 } else {
3456 target_el = exception_target_el(env);
3458 take_exc = true;
3461 if (take_exc) {
3462 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3463 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3464 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3465 fsr = arm_fi_to_lfsc(&fi);
3466 fsc = extract32(fsr, 0, 6);
3467 } else {
3468 fsr = arm_fi_to_sfsc(&fi);
3469 fsc = 0x3f;
3472 * Report exception with ESR indicating a fault due to a
3473 * translation table walk for a cache maintenance instruction.
3475 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3476 fi.ea, 1, fi.s1ptw, 1, fsc);
3477 env->exception.vaddress = value;
3478 env->exception.fsr = fsr;
3479 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3483 if (is_a64(env)) {
3484 format64 = true;
3485 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3487 * ATS1Cxx:
3488 * * TTBCR.EAE determines whether the result is returned using the
3489 * 32-bit or the 64-bit PAR format
3490 * * Instructions executed in Hyp mode always use the 64bit format
3492 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3493 * * The Non-secure TTBCR.EAE bit is set to 1
3494 * * The implementation includes EL2, and the value of HCR.VM is 1
3496 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3498 * ATS1Hx always uses the 64bit format.
3500 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3502 if (arm_feature(env, ARM_FEATURE_EL2)) {
3503 if (mmu_idx == ARMMMUIdx_E10_0 ||
3504 mmu_idx == ARMMMUIdx_E10_1 ||
3505 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3506 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3507 } else {
3508 format64 |= arm_current_el(env) == 2;
3513 if (format64) {
3514 /* Create a 64-bit PAR */
3515 par64 = (1 << 11); /* LPAE bit always set */
3516 if (!ret) {
3517 par64 |= phys_addr & ~0xfffULL;
3518 if (!attrs.secure) {
3519 par64 |= (1 << 9); /* NS */
3521 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3522 par64 |= cacheattrs.shareability << 7; /* SH */
3523 } else {
3524 uint32_t fsr = arm_fi_to_lfsc(&fi);
3526 par64 |= 1; /* F */
3527 par64 |= (fsr & 0x3f) << 1; /* FS */
3528 if (fi.stage2) {
3529 par64 |= (1 << 9); /* S */
3531 if (fi.s1ptw) {
3532 par64 |= (1 << 8); /* PTW */
3535 } else {
3536 /* fsr is a DFSR/IFSR value for the short descriptor
3537 * translation table format (with WnR always clear).
3538 * Convert it to a 32-bit PAR.
3540 if (!ret) {
3541 /* We do not set any attribute bits in the PAR */
3542 if (page_size == (1 << 24)
3543 && arm_feature(env, ARM_FEATURE_V7)) {
3544 par64 = (phys_addr & 0xff000000) | (1 << 1);
3545 } else {
3546 par64 = phys_addr & 0xfffff000;
3548 if (!attrs.secure) {
3549 par64 |= (1 << 9); /* NS */
3551 } else {
3552 uint32_t fsr = arm_fi_to_sfsc(&fi);
3554 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3555 ((fsr & 0xf) << 1) | 1;
3558 return par64;
3560 #endif /* CONFIG_TCG */
3562 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3564 #ifdef CONFIG_TCG
3565 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3566 uint64_t par64;
3567 ARMMMUIdx mmu_idx;
3568 int el = arm_current_el(env);
3569 bool secure = arm_is_secure_below_el3(env);
3571 switch (ri->opc2 & 6) {
3572 case 0:
3573 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3574 switch (el) {
3575 case 3:
3576 mmu_idx = ARMMMUIdx_SE3;
3577 break;
3578 case 2:
3579 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3580 /* fall through */
3581 case 1:
3582 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3583 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3584 : ARMMMUIdx_Stage1_E1_PAN);
3585 } else {
3586 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3588 break;
3589 default:
3590 g_assert_not_reached();
3592 break;
3593 case 2:
3594 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3595 switch (el) {
3596 case 3:
3597 mmu_idx = ARMMMUIdx_SE10_0;
3598 break;
3599 case 2:
3600 mmu_idx = ARMMMUIdx_Stage1_E0;
3601 break;
3602 case 1:
3603 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3604 break;
3605 default:
3606 g_assert_not_reached();
3608 break;
3609 case 4:
3610 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3611 mmu_idx = ARMMMUIdx_E10_1;
3612 break;
3613 case 6:
3614 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3615 mmu_idx = ARMMMUIdx_E10_0;
3616 break;
3617 default:
3618 g_assert_not_reached();
3621 par64 = do_ats_write(env, value, access_type, mmu_idx);
3623 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3624 #else
3625 /* Handled by hardware accelerator. */
3626 g_assert_not_reached();
3627 #endif /* CONFIG_TCG */
3630 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3631 uint64_t value)
3633 #ifdef CONFIG_TCG
3634 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3635 uint64_t par64;
3637 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3639 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3640 #else
3641 /* Handled by hardware accelerator. */
3642 g_assert_not_reached();
3643 #endif /* CONFIG_TCG */
3646 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3647 bool isread)
3649 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3650 return CP_ACCESS_TRAP;
3652 return CP_ACCESS_OK;
3655 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3656 uint64_t value)
3658 #ifdef CONFIG_TCG
3659 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3660 ARMMMUIdx mmu_idx;
3661 int secure = arm_is_secure_below_el3(env);
3663 switch (ri->opc2 & 6) {
3664 case 0:
3665 switch (ri->opc1) {
3666 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3667 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3668 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3669 : ARMMMUIdx_Stage1_E1_PAN);
3670 } else {
3671 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3673 break;
3674 case 4: /* AT S1E2R, AT S1E2W */
3675 mmu_idx = ARMMMUIdx_E2;
3676 break;
3677 case 6: /* AT S1E3R, AT S1E3W */
3678 mmu_idx = ARMMMUIdx_SE3;
3679 break;
3680 default:
3681 g_assert_not_reached();
3683 break;
3684 case 2: /* AT S1E0R, AT S1E0W */
3685 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3686 break;
3687 case 4: /* AT S12E1R, AT S12E1W */
3688 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3689 break;
3690 case 6: /* AT S12E0R, AT S12E0W */
3691 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3692 break;
3693 default:
3694 g_assert_not_reached();
3697 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3698 #else
3699 /* Handled by hardware accelerator. */
3700 g_assert_not_reached();
3701 #endif /* CONFIG_TCG */
3703 #endif
3705 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3706 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3707 .access = PL1_RW, .resetvalue = 0,
3708 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3709 offsetoflow32(CPUARMState, cp15.par_ns) },
3710 .writefn = par_write },
3711 #ifndef CONFIG_USER_ONLY
3712 /* This underdecoding is safe because the reginfo is NO_RAW. */
3713 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3714 .access = PL1_W, .accessfn = ats_access,
3715 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3716 #endif
3717 REGINFO_SENTINEL
3720 /* Return basic MPU access permission bits. */
3721 static uint32_t simple_mpu_ap_bits(uint32_t val)
3723 uint32_t ret;
3724 uint32_t mask;
3725 int i;
3726 ret = 0;
3727 mask = 3;
3728 for (i = 0; i < 16; i += 2) {
3729 ret |= (val >> i) & mask;
3730 mask <<= 2;
3732 return ret;
3735 /* Pad basic MPU access permission bits to extended format. */
3736 static uint32_t extended_mpu_ap_bits(uint32_t val)
3738 uint32_t ret;
3739 uint32_t mask;
3740 int i;
3741 ret = 0;
3742 mask = 3;
3743 for (i = 0; i < 16; i += 2) {
3744 ret |= (val & mask) << i;
3745 mask <<= 2;
3747 return ret;
3750 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3751 uint64_t value)
3753 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3756 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3758 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3761 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762 uint64_t value)
3764 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3767 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3769 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3772 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3774 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3776 if (!u32p) {
3777 return 0;
3780 u32p += env->pmsav7.rnr[M_REG_NS];
3781 return *u32p;
3784 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785 uint64_t value)
3787 ARMCPU *cpu = env_archcpu(env);
3788 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3790 if (!u32p) {
3791 return;
3794 u32p += env->pmsav7.rnr[M_REG_NS];
3795 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796 *u32p = value;
3799 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3800 uint64_t value)
3802 ARMCPU *cpu = env_archcpu(env);
3803 uint32_t nrgs = cpu->pmsav7_dregion;
3805 if (value >= nrgs) {
3806 qemu_log_mask(LOG_GUEST_ERROR,
3807 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3808 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3809 return;
3812 raw_write(env, ri, value);
3815 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3816 /* Reset for all these registers is handled in arm_cpu_reset(),
3817 * because the PMSAv7 is also used by M-profile CPUs, which do
3818 * not register cpregs but still need the state to be reset.
3820 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3821 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3822 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3823 .readfn = pmsav7_read, .writefn = pmsav7_write,
3824 .resetfn = arm_cp_reset_ignore },
3825 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3826 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3827 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3828 .readfn = pmsav7_read, .writefn = pmsav7_write,
3829 .resetfn = arm_cp_reset_ignore },
3830 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3831 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3832 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3833 .readfn = pmsav7_read, .writefn = pmsav7_write,
3834 .resetfn = arm_cp_reset_ignore },
3835 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3836 .access = PL1_RW,
3837 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3838 .writefn = pmsav7_rgnr_write,
3839 .resetfn = arm_cp_reset_ignore },
3840 REGINFO_SENTINEL
3843 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3844 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3845 .access = PL1_RW, .type = ARM_CP_ALIAS,
3846 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3847 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3848 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3849 .access = PL1_RW, .type = ARM_CP_ALIAS,
3850 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3851 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3852 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3853 .access = PL1_RW,
3854 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3855 .resetvalue = 0, },
3856 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3857 .access = PL1_RW,
3858 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3859 .resetvalue = 0, },
3860 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3861 .access = PL1_RW,
3862 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3863 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3864 .access = PL1_RW,
3865 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3866 /* Protection region base and size registers */
3867 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3868 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3869 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3870 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3871 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3872 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3873 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3874 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3875 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3876 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3877 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3878 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3879 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3880 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3881 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3882 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3883 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3884 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3885 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3886 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3887 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3888 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3889 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3890 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3891 REGINFO_SENTINEL
3894 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895 uint64_t value)
3897 TCR *tcr = raw_ptr(env, ri);
3898 int maskshift = extract32(value, 0, 3);
3900 if (!arm_feature(env, ARM_FEATURE_V8)) {
3901 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3902 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3903 * using Long-desciptor translation table format */
3904 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3905 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3906 /* In an implementation that includes the Security Extensions
3907 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3908 * Short-descriptor translation table format.
3910 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3911 } else {
3912 value &= TTBCR_N;
3916 /* Update the masks corresponding to the TCR bank being written
3917 * Note that we always calculate mask and base_mask, but
3918 * they are only used for short-descriptor tables (ie if EAE is 0);
3919 * for long-descriptor tables the TCR fields are used differently
3920 * and the mask and base_mask values are meaningless.
3922 tcr->raw_tcr = value;
3923 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3924 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3927 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3928 uint64_t value)
3930 ARMCPU *cpu = env_archcpu(env);
3931 TCR *tcr = raw_ptr(env, ri);
3933 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3934 /* With LPAE the TTBCR could result in a change of ASID
3935 * via the TTBCR.A1 bit, so do a TLB flush.
3937 tlb_flush(CPU(cpu));
3939 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3940 value = deposit64(tcr->raw_tcr, 0, 32, value);
3941 vmsa_ttbcr_raw_write(env, ri, value);
3944 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3946 TCR *tcr = raw_ptr(env, ri);
3948 /* Reset both the TCR as well as the masks corresponding to the bank of
3949 * the TCR being reset.
3951 tcr->raw_tcr = 0;
3952 tcr->mask = 0;
3953 tcr->base_mask = 0xffffc000u;
3956 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3957 uint64_t value)
3959 ARMCPU *cpu = env_archcpu(env);
3960 TCR *tcr = raw_ptr(env, ri);
3962 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3963 tlb_flush(CPU(cpu));
3964 tcr->raw_tcr = value;
3967 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3968 uint64_t value)
3970 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3971 if (cpreg_field_is_64bit(ri) &&
3972 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3973 ARMCPU *cpu = env_archcpu(env);
3974 tlb_flush(CPU(cpu));
3976 raw_write(env, ri, value);
3979 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3980 uint64_t value)
3983 * If we are running with E2&0 regime, then an ASID is active.
3984 * Flush if that might be changing. Note we're not checking
3985 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3986 * holds the active ASID, only checking the field that might.
3988 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3989 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3990 tlb_flush_by_mmuidx(env_cpu(env),
3991 ARMMMUIdxBit_E20_2 |
3992 ARMMMUIdxBit_E20_2_PAN |
3993 ARMMMUIdxBit_E20_0);
3995 raw_write(env, ri, value);
3998 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3999 uint64_t value)
4001 ARMCPU *cpu = env_archcpu(env);
4002 CPUState *cs = CPU(cpu);
4005 * A change in VMID to the stage2 page table (Stage2) invalidates
4006 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4008 if (raw_read(env, ri) != value) {
4009 tlb_flush_by_mmuidx(cs,
4010 ARMMMUIdxBit_E10_1 |
4011 ARMMMUIdxBit_E10_1_PAN |
4012 ARMMMUIdxBit_E10_0);
4013 raw_write(env, ri, value);
4017 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4018 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4019 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4020 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4021 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4022 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4023 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4024 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4025 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4026 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4027 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4028 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4029 offsetof(CPUARMState, cp15.dfar_ns) } },
4030 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4031 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4032 .access = PL1_RW, .accessfn = access_tvm_trvm,
4033 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4034 .resetvalue = 0, },
4035 REGINFO_SENTINEL
4038 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4039 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4040 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4041 .access = PL1_RW, .accessfn = access_tvm_trvm,
4042 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4043 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4044 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4045 .access = PL1_RW, .accessfn = access_tvm_trvm,
4046 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4047 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4048 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4049 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4050 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4051 .access = PL1_RW, .accessfn = access_tvm_trvm,
4052 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4053 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4054 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4055 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4056 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4057 .access = PL1_RW, .accessfn = access_tvm_trvm,
4058 .writefn = vmsa_tcr_el12_write,
4059 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4060 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4061 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4062 .access = PL1_RW, .accessfn = access_tvm_trvm,
4063 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4064 .raw_writefn = vmsa_ttbcr_raw_write,
4065 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4066 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4067 REGINFO_SENTINEL
4070 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4071 * qemu tlbs nor adjusting cached masks.
4073 static const ARMCPRegInfo ttbcr2_reginfo = {
4074 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4075 .access = PL1_RW, .accessfn = access_tvm_trvm,
4076 .type = ARM_CP_ALIAS,
4077 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4078 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4081 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4082 uint64_t value)
4084 env->cp15.c15_ticonfig = value & 0xe7;
4085 /* The OS_TYPE bit in this register changes the reported CPUID! */
4086 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4087 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4090 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4091 uint64_t value)
4093 env->cp15.c15_threadid = value & 0xffff;
4096 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4097 uint64_t value)
4099 /* Wait-for-interrupt (deprecated) */
4100 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4103 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4104 uint64_t value)
4106 /* On OMAP there are registers indicating the max/min index of dcache lines
4107 * containing a dirty line; cache flush operations have to reset these.
4109 env->cp15.c15_i_max = 0x000;
4110 env->cp15.c15_i_min = 0xff0;
4113 static const ARMCPRegInfo omap_cp_reginfo[] = {
4114 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4115 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4116 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4117 .resetvalue = 0, },
4118 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4119 .access = PL1_RW, .type = ARM_CP_NOP },
4120 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4121 .access = PL1_RW,
4122 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4123 .writefn = omap_ticonfig_write },
4124 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4125 .access = PL1_RW,
4126 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4127 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4128 .access = PL1_RW, .resetvalue = 0xff0,
4129 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4130 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4131 .access = PL1_RW,
4132 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4133 .writefn = omap_threadid_write },
4134 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4135 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4136 .type = ARM_CP_NO_RAW,
4137 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4138 /* TODO: Peripheral port remap register:
4139 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4140 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4141 * when MMU is off.
4143 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4144 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4145 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4146 .writefn = omap_cachemaint_write },
4147 { .name = "C9", .cp = 15, .crn = 9,
4148 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4149 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4150 REGINFO_SENTINEL
4153 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154 uint64_t value)
4156 env->cp15.c15_cpar = value & 0x3fff;
4159 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4160 { .name = "XSCALE_CPAR",
4161 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4162 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4163 .writefn = xscale_cpar_write, },
4164 { .name = "XSCALE_AUXCR",
4165 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4166 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4167 .resetvalue = 0, },
4168 /* XScale specific cache-lockdown: since we have no cache we NOP these
4169 * and hope the guest does not really rely on cache behaviour.
4171 { .name = "XSCALE_LOCK_ICACHE_LINE",
4172 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4173 .access = PL1_W, .type = ARM_CP_NOP },
4174 { .name = "XSCALE_UNLOCK_ICACHE",
4175 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4176 .access = PL1_W, .type = ARM_CP_NOP },
4177 { .name = "XSCALE_DCACHE_LOCK",
4178 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4179 .access = PL1_RW, .type = ARM_CP_NOP },
4180 { .name = "XSCALE_UNLOCK_DCACHE",
4181 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4182 .access = PL1_W, .type = ARM_CP_NOP },
4183 REGINFO_SENTINEL
4186 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4187 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4188 * implementation of this implementation-defined space.
4189 * Ideally this should eventually disappear in favour of actually
4190 * implementing the correct behaviour for all cores.
4192 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4193 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4194 .access = PL1_RW,
4195 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4196 .resetvalue = 0 },
4197 REGINFO_SENTINEL
4200 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4201 /* Cache status: RAZ because we have no cache so it's always clean */
4202 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4203 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4204 .resetvalue = 0 },
4205 REGINFO_SENTINEL
4208 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4209 /* We never have a a block transfer operation in progress */
4210 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4211 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4212 .resetvalue = 0 },
4213 /* The cache ops themselves: these all NOP for QEMU */
4214 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4215 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4216 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4217 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4218 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4219 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4220 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4221 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4222 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4223 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4224 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4225 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4226 REGINFO_SENTINEL
4229 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4230 /* The cache test-and-clean instructions always return (1 << 30)
4231 * to indicate that there are no dirty cache lines.
4233 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4234 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4235 .resetvalue = (1 << 30) },
4236 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4237 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4238 .resetvalue = (1 << 30) },
4239 REGINFO_SENTINEL
4242 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4243 /* Ignore ReadBuffer accesses */
4244 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4245 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4246 .access = PL1_RW, .resetvalue = 0,
4247 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4248 REGINFO_SENTINEL
4251 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4253 ARMCPU *cpu = env_archcpu(env);
4254 unsigned int cur_el = arm_current_el(env);
4255 bool secure = arm_is_secure(env);
4257 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4258 return env->cp15.vpidr_el2;
4260 return raw_read(env, ri);
4263 static uint64_t mpidr_read_val(CPUARMState *env)
4265 ARMCPU *cpu = env_archcpu(env);
4266 uint64_t mpidr = cpu->mp_affinity;
4268 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4269 mpidr |= (1U << 31);
4270 /* Cores which are uniprocessor (non-coherent)
4271 * but still implement the MP extensions set
4272 * bit 30. (For instance, Cortex-R5).
4274 if (cpu->mp_is_up) {
4275 mpidr |= (1u << 30);
4278 return mpidr;
4281 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4283 unsigned int cur_el = arm_current_el(env);
4284 bool secure = arm_is_secure(env);
4286 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4287 return env->cp15.vmpidr_el2;
4289 return mpidr_read_val(env);
4292 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4293 /* NOP AMAIR0/1 */
4294 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4295 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4296 .access = PL1_RW, .accessfn = access_tvm_trvm,
4297 .type = ARM_CP_CONST, .resetvalue = 0 },
4298 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4299 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4300 .access = PL1_RW, .accessfn = access_tvm_trvm,
4301 .type = ARM_CP_CONST, .resetvalue = 0 },
4302 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4303 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4305 offsetof(CPUARMState, cp15.par_ns)} },
4306 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4307 .access = PL1_RW, .accessfn = access_tvm_trvm,
4308 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4309 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4310 offsetof(CPUARMState, cp15.ttbr0_ns) },
4311 .writefn = vmsa_ttbr_write, },
4312 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4313 .access = PL1_RW, .accessfn = access_tvm_trvm,
4314 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4315 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4316 offsetof(CPUARMState, cp15.ttbr1_ns) },
4317 .writefn = vmsa_ttbr_write, },
4318 REGINFO_SENTINEL
4321 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4323 return vfp_get_fpcr(env);
4326 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4327 uint64_t value)
4329 vfp_set_fpcr(env, value);
4332 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4334 return vfp_get_fpsr(env);
4337 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4338 uint64_t value)
4340 vfp_set_fpsr(env, value);
4343 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4344 bool isread)
4346 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4347 return CP_ACCESS_TRAP;
4349 return CP_ACCESS_OK;
4352 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4353 uint64_t value)
4355 env->daif = value & PSTATE_DAIF;
4358 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4360 return env->pstate & PSTATE_PAN;
4363 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4364 uint64_t value)
4366 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4369 static const ARMCPRegInfo pan_reginfo = {
4370 .name = "PAN", .state = ARM_CP_STATE_AA64,
4371 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4372 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4373 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4376 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4378 return env->pstate & PSTATE_UAO;
4381 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382 uint64_t value)
4384 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4387 static const ARMCPRegInfo uao_reginfo = {
4388 .name = "UAO", .state = ARM_CP_STATE_AA64,
4389 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4390 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4391 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4394 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4395 const ARMCPRegInfo *ri,
4396 bool isread)
4398 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4399 switch (arm_current_el(env)) {
4400 case 0:
4401 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4402 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4403 return CP_ACCESS_TRAP;
4405 /* fall through */
4406 case 1:
4407 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4408 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4409 return CP_ACCESS_TRAP_EL2;
4411 break;
4413 return CP_ACCESS_OK;
4416 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4417 const ARMCPRegInfo *ri,
4418 bool isread)
4420 /* Cache invalidate/clean to Point of Unification... */
4421 switch (arm_current_el(env)) {
4422 case 0:
4423 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4424 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4425 return CP_ACCESS_TRAP;
4427 /* fall through */
4428 case 1:
4429 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4430 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4431 return CP_ACCESS_TRAP_EL2;
4433 break;
4435 return CP_ACCESS_OK;
4438 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4439 * Page D4-1736 (DDI0487A.b)
4442 static int vae1_tlbmask(CPUARMState *env)
4444 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4445 if (arm_is_secure_below_el3(env)) {
4446 return ARMMMUIdxBit_SE10_1 |
4447 ARMMMUIdxBit_SE10_1_PAN |
4448 ARMMMUIdxBit_SE10_0;
4449 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4450 == (HCR_E2H | HCR_TGE)) {
4451 return ARMMMUIdxBit_E20_2 |
4452 ARMMMUIdxBit_E20_2_PAN |
4453 ARMMMUIdxBit_E20_0;
4454 } else {
4455 return ARMMMUIdxBit_E10_1 |
4456 ARMMMUIdxBit_E10_1_PAN |
4457 ARMMMUIdxBit_E10_0;
4461 /* Return 56 if TBI is enabled, 64 otherwise. */
4462 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4463 uint64_t addr)
4465 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4466 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4467 int select = extract64(addr, 55, 1);
4469 return (tbi >> select) & 1 ? 56 : 64;
4472 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4474 ARMMMUIdx mmu_idx;
4476 /* Only the regime of the mmu_idx below is significant. */
4477 if (arm_is_secure_below_el3(env)) {
4478 mmu_idx = ARMMMUIdx_SE10_0;
4479 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4480 == (HCR_E2H | HCR_TGE)) {
4481 mmu_idx = ARMMMUIdx_E20_0;
4482 } else {
4483 mmu_idx = ARMMMUIdx_E10_0;
4485 return tlbbits_for_regime(env, mmu_idx, addr);
4488 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4489 uint64_t value)
4491 CPUState *cs = env_cpu(env);
4492 int mask = vae1_tlbmask(env);
4494 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4497 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4498 uint64_t value)
4500 CPUState *cs = env_cpu(env);
4501 int mask = vae1_tlbmask(env);
4503 if (tlb_force_broadcast(env)) {
4504 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4505 } else {
4506 tlb_flush_by_mmuidx(cs, mask);
4510 static int alle1_tlbmask(CPUARMState *env)
4513 * Note that the 'ALL' scope must invalidate both stage 1 and
4514 * stage 2 translations, whereas most other scopes only invalidate
4515 * stage 1 translations.
4517 if (arm_is_secure_below_el3(env)) {
4518 return ARMMMUIdxBit_SE10_1 |
4519 ARMMMUIdxBit_SE10_1_PAN |
4520 ARMMMUIdxBit_SE10_0;
4521 } else {
4522 return ARMMMUIdxBit_E10_1 |
4523 ARMMMUIdxBit_E10_1_PAN |
4524 ARMMMUIdxBit_E10_0;
4528 static int e2_tlbmask(CPUARMState *env)
4530 /* TODO: ARMv8.4-SecEL2 */
4531 return ARMMMUIdxBit_E20_0 |
4532 ARMMMUIdxBit_E20_2 |
4533 ARMMMUIdxBit_E20_2_PAN |
4534 ARMMMUIdxBit_E2;
4537 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4538 uint64_t value)
4540 CPUState *cs = env_cpu(env);
4541 int mask = alle1_tlbmask(env);
4543 tlb_flush_by_mmuidx(cs, mask);
4546 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547 uint64_t value)
4549 CPUState *cs = env_cpu(env);
4550 int mask = e2_tlbmask(env);
4552 tlb_flush_by_mmuidx(cs, mask);
4555 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4556 uint64_t value)
4558 ARMCPU *cpu = env_archcpu(env);
4559 CPUState *cs = CPU(cpu);
4561 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4564 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565 uint64_t value)
4567 CPUState *cs = env_cpu(env);
4568 int mask = alle1_tlbmask(env);
4570 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4573 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4574 uint64_t value)
4576 CPUState *cs = env_cpu(env);
4577 int mask = e2_tlbmask(env);
4579 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4582 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4583 uint64_t value)
4585 CPUState *cs = env_cpu(env);
4587 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4590 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591 uint64_t value)
4593 /* Invalidate by VA, EL2
4594 * Currently handles both VAE2 and VALE2, since we don't support
4595 * flush-last-level-only.
4597 CPUState *cs = env_cpu(env);
4598 int mask = e2_tlbmask(env);
4599 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4601 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4604 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4605 uint64_t value)
4607 /* Invalidate by VA, EL3
4608 * Currently handles both VAE3 and VALE3, since we don't support
4609 * flush-last-level-only.
4611 ARMCPU *cpu = env_archcpu(env);
4612 CPUState *cs = CPU(cpu);
4613 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4615 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4618 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619 uint64_t value)
4621 CPUState *cs = env_cpu(env);
4622 int mask = vae1_tlbmask(env);
4623 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4624 int bits = vae1_tlbbits(env, pageaddr);
4626 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4629 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630 uint64_t value)
4632 /* Invalidate by VA, EL1&0 (AArch64 version).
4633 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4634 * since we don't support flush-for-specific-ASID-only or
4635 * flush-last-level-only.
4637 CPUState *cs = env_cpu(env);
4638 int mask = vae1_tlbmask(env);
4639 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4640 int bits = vae1_tlbbits(env, pageaddr);
4642 if (tlb_force_broadcast(env)) {
4643 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4644 } else {
4645 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4649 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4650 uint64_t value)
4652 CPUState *cs = env_cpu(env);
4653 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4654 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4656 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4657 ARMMMUIdxBit_E2, bits);
4660 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4661 uint64_t value)
4663 CPUState *cs = env_cpu(env);
4664 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4665 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4667 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4668 ARMMMUIdxBit_SE3, bits);
4671 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4672 bool isread)
4674 int cur_el = arm_current_el(env);
4676 if (cur_el < 2) {
4677 uint64_t hcr = arm_hcr_el2_eff(env);
4679 if (cur_el == 0) {
4680 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4681 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4682 return CP_ACCESS_TRAP_EL2;
4684 } else {
4685 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4686 return CP_ACCESS_TRAP;
4688 if (hcr & HCR_TDZ) {
4689 return CP_ACCESS_TRAP_EL2;
4692 } else if (hcr & HCR_TDZ) {
4693 return CP_ACCESS_TRAP_EL2;
4696 return CP_ACCESS_OK;
4699 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4701 ARMCPU *cpu = env_archcpu(env);
4702 int dzp_bit = 1 << 4;
4704 /* DZP indicates whether DC ZVA access is allowed */
4705 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4706 dzp_bit = 0;
4708 return cpu->dcz_blocksize | dzp_bit;
4711 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4712 bool isread)
4714 if (!(env->pstate & PSTATE_SP)) {
4715 /* Access to SP_EL0 is undefined if it's being used as
4716 * the stack pointer.
4718 return CP_ACCESS_TRAP_UNCATEGORIZED;
4720 return CP_ACCESS_OK;
4723 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4725 return env->pstate & PSTATE_SP;
4728 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4730 update_spsel(env, val);
4733 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4734 uint64_t value)
4736 ARMCPU *cpu = env_archcpu(env);
4738 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4739 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4740 value &= ~SCTLR_M;
4743 /* ??? Lots of these bits are not implemented. */
4745 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4746 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4747 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4748 } else {
4749 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4750 SCTLR_ATA0 | SCTLR_ATA);
4754 if (raw_read(env, ri) == value) {
4755 /* Skip the TLB flush if nothing actually changed; Linux likes
4756 * to do a lot of pointless SCTLR writes.
4758 return;
4761 raw_write(env, ri, value);
4763 /* This may enable/disable the MMU, so do a TLB flush. */
4764 tlb_flush(CPU(cpu));
4766 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4768 * Normally we would always end the TB on an SCTLR write; see the
4769 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4770 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4771 * of hflags from the translator, so do it here.
4773 arm_rebuild_hflags(env);
4777 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4778 bool isread)
4780 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4781 return CP_ACCESS_TRAP_FP_EL2;
4783 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4784 return CP_ACCESS_TRAP_FP_EL3;
4786 return CP_ACCESS_OK;
4789 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4790 uint64_t value)
4792 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4795 static const ARMCPRegInfo v8_cp_reginfo[] = {
4796 /* Minimal set of EL0-visible registers. This will need to be expanded
4797 * significantly for system emulation of AArch64 CPUs.
4799 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4801 .access = PL0_RW, .type = ARM_CP_NZCV },
4802 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4804 .type = ARM_CP_NO_RAW,
4805 .access = PL0_RW, .accessfn = aa64_daif_access,
4806 .fieldoffset = offsetof(CPUARMState, daif),
4807 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4808 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4809 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4810 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4811 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4812 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4814 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4815 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4816 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4818 .access = PL0_R, .type = ARM_CP_NO_RAW,
4819 .readfn = aa64_dczid_read },
4820 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4821 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4822 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4823 #ifndef CONFIG_USER_ONLY
4824 /* Avoid overhead of an access check that always passes in user-mode */
4825 .accessfn = aa64_zva_access,
4826 #endif
4828 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4830 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4831 /* Cache ops: all NOPs since we don't emulate caches */
4832 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4833 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4834 .access = PL1_W, .type = ARM_CP_NOP,
4835 .accessfn = aa64_cacheop_pou_access },
4836 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4837 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4838 .access = PL1_W, .type = ARM_CP_NOP,
4839 .accessfn = aa64_cacheop_pou_access },
4840 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4841 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4842 .access = PL0_W, .type = ARM_CP_NOP,
4843 .accessfn = aa64_cacheop_pou_access },
4844 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4845 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4846 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4847 .type = ARM_CP_NOP },
4848 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4850 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4851 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4853 .access = PL0_W, .type = ARM_CP_NOP,
4854 .accessfn = aa64_cacheop_poc_access },
4855 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4857 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4858 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4860 .access = PL0_W, .type = ARM_CP_NOP,
4861 .accessfn = aa64_cacheop_pou_access },
4862 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4864 .access = PL0_W, .type = ARM_CP_NOP,
4865 .accessfn = aa64_cacheop_poc_access },
4866 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4867 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4868 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4869 /* TLBI operations */
4870 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4873 .writefn = tlbi_aa64_vmalle1is_write },
4874 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4877 .writefn = tlbi_aa64_vae1is_write },
4878 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4881 .writefn = tlbi_aa64_vmalle1is_write },
4882 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vae1is_write },
4886 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4889 .writefn = tlbi_aa64_vae1is_write },
4890 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4893 .writefn = tlbi_aa64_vae1is_write },
4894 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4897 .writefn = tlbi_aa64_vmalle1_write },
4898 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4901 .writefn = tlbi_aa64_vae1_write },
4902 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4904 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4905 .writefn = tlbi_aa64_vmalle1_write },
4906 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4908 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4909 .writefn = tlbi_aa64_vae1_write },
4910 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4912 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4913 .writefn = tlbi_aa64_vae1_write },
4914 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4916 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4917 .writefn = tlbi_aa64_vae1_write },
4918 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4920 .access = PL2_W, .type = ARM_CP_NOP },
4921 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4923 .access = PL2_W, .type = ARM_CP_NOP },
4924 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4926 .access = PL2_W, .type = ARM_CP_NO_RAW,
4927 .writefn = tlbi_aa64_alle1is_write },
4928 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4930 .access = PL2_W, .type = ARM_CP_NO_RAW,
4931 .writefn = tlbi_aa64_alle1is_write },
4932 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4934 .access = PL2_W, .type = ARM_CP_NOP },
4935 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4937 .access = PL2_W, .type = ARM_CP_NOP },
4938 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4940 .access = PL2_W, .type = ARM_CP_NO_RAW,
4941 .writefn = tlbi_aa64_alle1_write },
4942 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4944 .access = PL2_W, .type = ARM_CP_NO_RAW,
4945 .writefn = tlbi_aa64_alle1is_write },
4946 #ifndef CONFIG_USER_ONLY
4947 /* 64 bit address translation operations */
4948 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4950 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951 .writefn = ats_write64 },
4952 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4953 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4954 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955 .writefn = ats_write64 },
4956 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4958 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4959 .writefn = ats_write64 },
4960 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4961 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4962 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4963 .writefn = ats_write64 },
4964 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4965 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4966 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4967 .writefn = ats_write64 },
4968 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4969 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4970 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4971 .writefn = ats_write64 },
4972 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4973 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4974 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4975 .writefn = ats_write64 },
4976 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4978 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4979 .writefn = ats_write64 },
4980 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4981 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4983 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4984 .writefn = ats_write64 },
4985 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4987 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4988 .writefn = ats_write64 },
4989 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4990 .type = ARM_CP_ALIAS,
4991 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4992 .access = PL1_RW, .resetvalue = 0,
4993 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4994 .writefn = par_write },
4995 #endif
4996 /* TLB invalidate last level of translation table walk */
4997 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4998 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4999 .writefn = tlbimva_is_write },
5000 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5001 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5002 .writefn = tlbimvaa_is_write },
5003 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5004 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5005 .writefn = tlbimva_write },
5006 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5007 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5008 .writefn = tlbimvaa_write },
5009 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5010 .type = ARM_CP_NO_RAW, .access = PL2_W,
5011 .writefn = tlbimva_hyp_write },
5012 { .name = "TLBIMVALHIS",
5013 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5014 .type = ARM_CP_NO_RAW, .access = PL2_W,
5015 .writefn = tlbimva_hyp_is_write },
5016 { .name = "TLBIIPAS2",
5017 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5018 .type = ARM_CP_NOP, .access = PL2_W },
5019 { .name = "TLBIIPAS2IS",
5020 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5021 .type = ARM_CP_NOP, .access = PL2_W },
5022 { .name = "TLBIIPAS2L",
5023 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5024 .type = ARM_CP_NOP, .access = PL2_W },
5025 { .name = "TLBIIPAS2LIS",
5026 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5027 .type = ARM_CP_NOP, .access = PL2_W },
5028 /* 32 bit cache operations */
5029 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5031 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5032 .type = ARM_CP_NOP, .access = PL1_W },
5033 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5035 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5038 .type = ARM_CP_NOP, .access = PL1_W },
5039 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5040 .type = ARM_CP_NOP, .access = PL1_W },
5041 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5042 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5043 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5045 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5047 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5049 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5051 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055 /* MMU Domain access control / MPU write buffer control */
5056 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5057 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5058 .writefn = dacr_write, .raw_writefn = raw_write,
5059 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5060 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5061 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5062 .type = ARM_CP_ALIAS,
5063 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5064 .access = PL1_RW,
5065 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5066 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5067 .type = ARM_CP_ALIAS,
5068 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5069 .access = PL1_RW,
5070 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5071 /* We rely on the access checks not allowing the guest to write to the
5072 * state field when SPSel indicates that it's being used as the stack
5073 * pointer.
5075 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5076 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5077 .access = PL1_RW, .accessfn = sp_el0_access,
5078 .type = ARM_CP_ALIAS,
5079 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5080 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5081 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5082 .access = PL2_RW, .type = ARM_CP_ALIAS,
5083 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5084 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5085 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5086 .type = ARM_CP_NO_RAW,
5087 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5088 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5089 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5090 .type = ARM_CP_ALIAS,
5091 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5092 .access = PL2_RW, .accessfn = fpexc32_access },
5093 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5095 .access = PL2_RW, .resetvalue = 0,
5096 .writefn = dacr_write, .raw_writefn = raw_write,
5097 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5098 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5100 .access = PL2_RW, .resetvalue = 0,
5101 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5102 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5103 .type = ARM_CP_ALIAS,
5104 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5105 .access = PL2_RW,
5106 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5107 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5108 .type = ARM_CP_ALIAS,
5109 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5110 .access = PL2_RW,
5111 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5112 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5113 .type = ARM_CP_ALIAS,
5114 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5115 .access = PL2_RW,
5116 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5117 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5118 .type = ARM_CP_ALIAS,
5119 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5120 .access = PL2_RW,
5121 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5122 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5123 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5124 .resetvalue = 0,
5125 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5126 { .name = "SDCR", .type = ARM_CP_ALIAS,
5127 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5128 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5129 .writefn = sdcr_write,
5130 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5131 REGINFO_SENTINEL
5134 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5135 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5136 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5137 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5138 .access = PL2_RW,
5139 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5140 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5141 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5142 .access = PL2_RW,
5143 .type = ARM_CP_CONST, .resetvalue = 0 },
5144 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5145 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5148 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5149 .access = PL2_RW,
5150 .type = ARM_CP_CONST, .resetvalue = 0 },
5151 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5153 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5154 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5155 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5156 .access = PL2_RW, .type = ARM_CP_CONST,
5157 .resetvalue = 0 },
5158 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5159 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5161 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5162 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5163 .access = PL2_RW, .type = ARM_CP_CONST,
5164 .resetvalue = 0 },
5165 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5166 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5167 .access = PL2_RW, .type = ARM_CP_CONST,
5168 .resetvalue = 0 },
5169 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5170 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5171 .access = PL2_RW, .type = ARM_CP_CONST,
5172 .resetvalue = 0 },
5173 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5174 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5175 .access = PL2_RW, .type = ARM_CP_CONST,
5176 .resetvalue = 0 },
5177 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5178 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5179 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5180 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5181 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5182 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5183 .type = ARM_CP_CONST, .resetvalue = 0 },
5184 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5185 .cp = 15, .opc1 = 6, .crm = 2,
5186 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5187 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5188 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5191 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5193 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5194 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5195 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5196 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5197 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5198 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5199 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5200 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5201 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5202 .resetvalue = 0 },
5203 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5204 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5207 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5208 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5209 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5210 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5211 .resetvalue = 0 },
5212 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5213 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5214 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5215 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5216 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5217 .resetvalue = 0 },
5218 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5219 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5220 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5221 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5222 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5223 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5224 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5225 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5226 .access = PL2_RW, .accessfn = access_tda,
5227 .type = ARM_CP_CONST, .resetvalue = 0 },
5228 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5229 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5230 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5231 .type = ARM_CP_CONST, .resetvalue = 0 },
5232 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5233 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5234 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5235 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5236 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5237 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5238 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5239 .type = ARM_CP_CONST,
5240 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5241 .access = PL2_RW, .resetvalue = 0 },
5242 REGINFO_SENTINEL
5245 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5246 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5247 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5248 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5249 .access = PL2_RW,
5250 .type = ARM_CP_CONST, .resetvalue = 0 },
5251 REGINFO_SENTINEL
5254 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5256 ARMCPU *cpu = env_archcpu(env);
5258 if (arm_feature(env, ARM_FEATURE_V8)) {
5259 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5260 } else {
5261 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5264 if (arm_feature(env, ARM_FEATURE_EL3)) {
5265 valid_mask &= ~HCR_HCD;
5266 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5267 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5268 * However, if we're using the SMC PSCI conduit then QEMU is
5269 * effectively acting like EL3 firmware and so the guest at
5270 * EL2 should retain the ability to prevent EL1 from being
5271 * able to make SMC calls into the ersatz firmware, so in
5272 * that case HCR.TSC should be read/write.
5274 valid_mask &= ~HCR_TSC;
5277 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5278 if (cpu_isar_feature(aa64_vh, cpu)) {
5279 valid_mask |= HCR_E2H;
5281 if (cpu_isar_feature(aa64_lor, cpu)) {
5282 valid_mask |= HCR_TLOR;
5284 if (cpu_isar_feature(aa64_pauth, cpu)) {
5285 valid_mask |= HCR_API | HCR_APK;
5287 if (cpu_isar_feature(aa64_mte, cpu)) {
5288 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5292 /* Clear RES0 bits. */
5293 value &= valid_mask;
5296 * These bits change the MMU setup:
5297 * HCR_VM enables stage 2 translation
5298 * HCR_PTW forbids certain page-table setups
5299 * HCR_DC disables stage1 and enables stage2 translation
5300 * HCR_DCT enables tagging on (disabled) stage1 translation
5302 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5303 tlb_flush(CPU(cpu));
5305 env->cp15.hcr_el2 = value;
5308 * Updates to VI and VF require us to update the status of
5309 * virtual interrupts, which are the logical OR of these bits
5310 * and the state of the input lines from the GIC. (This requires
5311 * that we have the iothread lock, which is done by marking the
5312 * reginfo structs as ARM_CP_IO.)
5313 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5314 * possible for it to be taken immediately, because VIRQ and
5315 * VFIQ are masked unless running at EL0 or EL1, and HCR
5316 * can only be written at EL2.
5318 g_assert(qemu_mutex_iothread_locked());
5319 arm_cpu_update_virq(cpu);
5320 arm_cpu_update_vfiq(cpu);
5323 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5325 do_hcr_write(env, value, 0);
5328 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5329 uint64_t value)
5331 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5332 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5333 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5336 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5337 uint64_t value)
5339 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5340 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5341 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5345 * Return the effective value of HCR_EL2.
5346 * Bits that are not included here:
5347 * RW (read from SCR_EL3.RW as needed)
5349 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5351 uint64_t ret = env->cp15.hcr_el2;
5353 if (arm_is_secure_below_el3(env)) {
5355 * "This register has no effect if EL2 is not enabled in the
5356 * current Security state". This is ARMv8.4-SecEL2 speak for
5357 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5359 * Prior to that, the language was "In an implementation that
5360 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5361 * as if this field is 0 for all purposes other than a direct
5362 * read or write access of HCR_EL2". With lots of enumeration
5363 * on a per-field basis. In current QEMU, this is condition
5364 * is arm_is_secure_below_el3.
5366 * Since the v8.4 language applies to the entire register, and
5367 * appears to be backward compatible, use that.
5369 return 0;
5373 * For a cpu that supports both aarch64 and aarch32, we can set bits
5374 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5375 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5377 if (!arm_el_is_aa64(env, 2)) {
5378 uint64_t aa32_valid;
5381 * These bits are up-to-date as of ARMv8.6.
5382 * For HCR, it's easiest to list just the 2 bits that are invalid.
5383 * For HCR2, list those that are valid.
5385 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5386 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5387 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5388 ret &= aa32_valid;
5391 if (ret & HCR_TGE) {
5392 /* These bits are up-to-date as of ARMv8.6. */
5393 if (ret & HCR_E2H) {
5394 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5395 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5396 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5397 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5398 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5399 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5400 } else {
5401 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5403 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5404 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5405 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5406 HCR_TLOR);
5409 return ret;
5412 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5413 uint64_t value)
5416 * For A-profile AArch32 EL3, if NSACR.CP10
5417 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5419 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5420 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5421 value &= ~(0x3 << 10);
5422 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5424 env->cp15.cptr_el[2] = value;
5427 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5430 * For A-profile AArch32 EL3, if NSACR.CP10
5431 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5433 uint64_t value = env->cp15.cptr_el[2];
5435 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5436 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5437 value |= 0x3 << 10;
5439 return value;
5442 static const ARMCPRegInfo el2_cp_reginfo[] = {
5443 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5444 .type = ARM_CP_IO,
5445 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5446 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5447 .writefn = hcr_write },
5448 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5449 .type = ARM_CP_ALIAS | ARM_CP_IO,
5450 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5451 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5452 .writefn = hcr_writelow },
5453 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5455 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5456 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5457 .type = ARM_CP_ALIAS,
5458 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5459 .access = PL2_RW,
5460 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5461 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5462 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5463 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5464 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5465 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5466 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5467 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5468 .type = ARM_CP_ALIAS,
5469 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5470 .access = PL2_RW,
5471 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5472 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5473 .type = ARM_CP_ALIAS,
5474 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5475 .access = PL2_RW,
5476 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5477 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5478 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5479 .access = PL2_RW, .writefn = vbar_write,
5480 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5481 .resetvalue = 0 },
5482 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5483 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5484 .access = PL3_RW, .type = ARM_CP_ALIAS,
5485 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5486 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5487 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5488 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5489 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5490 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5491 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5492 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5493 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5494 .resetvalue = 0 },
5495 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5496 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5497 .access = PL2_RW, .type = ARM_CP_ALIAS,
5498 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5499 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5500 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5501 .access = PL2_RW, .type = ARM_CP_CONST,
5502 .resetvalue = 0 },
5503 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5504 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5505 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5506 .access = PL2_RW, .type = ARM_CP_CONST,
5507 .resetvalue = 0 },
5508 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5509 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5510 .access = PL2_RW, .type = ARM_CP_CONST,
5511 .resetvalue = 0 },
5512 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5513 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5514 .access = PL2_RW, .type = ARM_CP_CONST,
5515 .resetvalue = 0 },
5516 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5517 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5518 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5519 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5520 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5521 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5522 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5523 .type = ARM_CP_ALIAS,
5524 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5525 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5526 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5527 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5528 .access = PL2_RW,
5529 /* no .writefn needed as this can't cause an ASID change;
5530 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5532 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5533 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5534 .cp = 15, .opc1 = 6, .crm = 2,
5535 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5536 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5537 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5538 .writefn = vttbr_write },
5539 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5540 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5541 .access = PL2_RW, .writefn = vttbr_write,
5542 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5543 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5544 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5545 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5546 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5547 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5548 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5549 .access = PL2_RW, .resetvalue = 0,
5550 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5551 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5552 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5553 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5554 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5555 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5556 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5557 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5558 { .name = "TLBIALLNSNH",
5559 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5560 .type = ARM_CP_NO_RAW, .access = PL2_W,
5561 .writefn = tlbiall_nsnh_write },
5562 { .name = "TLBIALLNSNHIS",
5563 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5564 .type = ARM_CP_NO_RAW, .access = PL2_W,
5565 .writefn = tlbiall_nsnh_is_write },
5566 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5567 .type = ARM_CP_NO_RAW, .access = PL2_W,
5568 .writefn = tlbiall_hyp_write },
5569 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5570 .type = ARM_CP_NO_RAW, .access = PL2_W,
5571 .writefn = tlbiall_hyp_is_write },
5572 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5573 .type = ARM_CP_NO_RAW, .access = PL2_W,
5574 .writefn = tlbimva_hyp_write },
5575 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5576 .type = ARM_CP_NO_RAW, .access = PL2_W,
5577 .writefn = tlbimva_hyp_is_write },
5578 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5579 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5580 .type = ARM_CP_NO_RAW, .access = PL2_W,
5581 .writefn = tlbi_aa64_alle2_write },
5582 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5583 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5584 .type = ARM_CP_NO_RAW, .access = PL2_W,
5585 .writefn = tlbi_aa64_vae2_write },
5586 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5587 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5588 .access = PL2_W, .type = ARM_CP_NO_RAW,
5589 .writefn = tlbi_aa64_vae2_write },
5590 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5592 .access = PL2_W, .type = ARM_CP_NO_RAW,
5593 .writefn = tlbi_aa64_alle2is_write },
5594 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5595 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5596 .type = ARM_CP_NO_RAW, .access = PL2_W,
5597 .writefn = tlbi_aa64_vae2is_write },
5598 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5599 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5600 .access = PL2_W, .type = ARM_CP_NO_RAW,
5601 .writefn = tlbi_aa64_vae2is_write },
5602 #ifndef CONFIG_USER_ONLY
5603 /* Unlike the other EL2-related AT operations, these must
5604 * UNDEF from EL3 if EL2 is not implemented, which is why we
5605 * define them here rather than with the rest of the AT ops.
5607 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5608 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5609 .access = PL2_W, .accessfn = at_s1e2_access,
5610 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5611 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5612 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5613 .access = PL2_W, .accessfn = at_s1e2_access,
5614 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5615 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5616 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5617 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5618 * to behave as if SCR.NS was 1.
5620 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5621 .access = PL2_W,
5622 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5623 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5624 .access = PL2_W,
5625 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5626 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5628 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5629 * reset values as IMPDEF. We choose to reset to 3 to comply with
5630 * both ARMv7 and ARMv8.
5632 .access = PL2_RW, .resetvalue = 3,
5633 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5634 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5635 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5636 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5637 .writefn = gt_cntvoff_write,
5638 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5639 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5640 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5641 .writefn = gt_cntvoff_write,
5642 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5643 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5644 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5645 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5646 .type = ARM_CP_IO, .access = PL2_RW,
5647 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5648 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5649 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5650 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5651 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5652 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5653 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5654 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5655 .resetfn = gt_hyp_timer_reset,
5656 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5657 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5658 .type = ARM_CP_IO,
5659 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5660 .access = PL2_RW,
5661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5662 .resetvalue = 0,
5663 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5664 #endif
5665 /* The only field of MDCR_EL2 that has a defined architectural reset value
5666 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5667 * don't implement any PMU event counters, so using zero as a reset
5668 * value for MDCR_EL2 is okay
5670 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5671 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5672 .access = PL2_RW, .resetvalue = 0,
5673 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5674 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5675 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5676 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5677 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5678 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5679 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5680 .access = PL2_RW,
5681 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5682 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5683 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5684 .access = PL2_RW,
5685 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5686 REGINFO_SENTINEL
5689 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5690 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5691 .type = ARM_CP_ALIAS | ARM_CP_IO,
5692 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5693 .access = PL2_RW,
5694 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5695 .writefn = hcr_writehigh },
5696 REGINFO_SENTINEL
5699 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5700 bool isread)
5702 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5703 * At Secure EL1 it traps to EL3.
5705 if (arm_current_el(env) == 3) {
5706 return CP_ACCESS_OK;
5708 if (arm_is_secure_below_el3(env)) {
5709 return CP_ACCESS_TRAP_EL3;
5711 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5712 if (isread) {
5713 return CP_ACCESS_OK;
5715 return CP_ACCESS_TRAP_UNCATEGORIZED;
5718 static const ARMCPRegInfo el3_cp_reginfo[] = {
5719 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5720 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5721 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5722 .resetvalue = 0, .writefn = scr_write },
5723 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5724 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5725 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5726 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5727 .writefn = scr_write },
5728 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5729 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5730 .access = PL3_RW, .resetvalue = 0,
5731 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5732 { .name = "SDER",
5733 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5734 .access = PL3_RW, .resetvalue = 0,
5735 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5736 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5737 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5738 .writefn = vbar_write, .resetvalue = 0,
5739 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5740 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5741 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5742 .access = PL3_RW, .resetvalue = 0,
5743 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5744 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5745 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5746 .access = PL3_RW,
5747 /* no .writefn needed as this can't cause an ASID change;
5748 * we must provide a .raw_writefn and .resetfn because we handle
5749 * reset and migration for the AArch32 TTBCR(S), which might be
5750 * using mask and base_mask.
5752 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5753 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5754 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5755 .type = ARM_CP_ALIAS,
5756 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5757 .access = PL3_RW,
5758 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5759 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5761 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5762 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5764 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5765 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5766 .type = ARM_CP_ALIAS,
5767 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5768 .access = PL3_RW,
5769 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5770 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5771 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5772 .access = PL3_RW, .writefn = vbar_write,
5773 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5774 .resetvalue = 0 },
5775 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5776 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5777 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5778 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5779 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5780 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5781 .access = PL3_RW, .resetvalue = 0,
5782 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5783 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5785 .access = PL3_RW, .type = ARM_CP_CONST,
5786 .resetvalue = 0 },
5787 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5788 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5789 .access = PL3_RW, .type = ARM_CP_CONST,
5790 .resetvalue = 0 },
5791 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5792 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5793 .access = PL3_RW, .type = ARM_CP_CONST,
5794 .resetvalue = 0 },
5795 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5796 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5797 .access = PL3_W, .type = ARM_CP_NO_RAW,
5798 .writefn = tlbi_aa64_alle3is_write },
5799 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5801 .access = PL3_W, .type = ARM_CP_NO_RAW,
5802 .writefn = tlbi_aa64_vae3is_write },
5803 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5805 .access = PL3_W, .type = ARM_CP_NO_RAW,
5806 .writefn = tlbi_aa64_vae3is_write },
5807 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5808 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5809 .access = PL3_W, .type = ARM_CP_NO_RAW,
5810 .writefn = tlbi_aa64_alle3_write },
5811 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5812 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5813 .access = PL3_W, .type = ARM_CP_NO_RAW,
5814 .writefn = tlbi_aa64_vae3_write },
5815 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5816 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5817 .access = PL3_W, .type = ARM_CP_NO_RAW,
5818 .writefn = tlbi_aa64_vae3_write },
5819 REGINFO_SENTINEL
5822 #ifndef CONFIG_USER_ONLY
5823 /* Test if system register redirection is to occur in the current state. */
5824 static bool redirect_for_e2h(CPUARMState *env)
5826 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5829 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5831 CPReadFn *readfn;
5833 if (redirect_for_e2h(env)) {
5834 /* Switch to the saved EL2 version of the register. */
5835 ri = ri->opaque;
5836 readfn = ri->readfn;
5837 } else {
5838 readfn = ri->orig_readfn;
5840 if (readfn == NULL) {
5841 readfn = raw_read;
5843 return readfn(env, ri);
5846 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5847 uint64_t value)
5849 CPWriteFn *writefn;
5851 if (redirect_for_e2h(env)) {
5852 /* Switch to the saved EL2 version of the register. */
5853 ri = ri->opaque;
5854 writefn = ri->writefn;
5855 } else {
5856 writefn = ri->orig_writefn;
5858 if (writefn == NULL) {
5859 writefn = raw_write;
5861 writefn(env, ri, value);
5864 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5866 struct E2HAlias {
5867 uint32_t src_key, dst_key, new_key;
5868 const char *src_name, *dst_name, *new_name;
5869 bool (*feature)(const ARMISARegisters *id);
5872 #define K(op0, op1, crn, crm, op2) \
5873 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5875 static const struct E2HAlias aliases[] = {
5876 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5877 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5878 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5879 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5880 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5881 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5882 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5883 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5884 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5885 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5886 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5887 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5888 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5889 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5890 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5891 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5892 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5893 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5894 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5895 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5896 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5897 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5898 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5899 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5900 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5901 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5902 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5903 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5904 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5905 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5906 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5907 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5910 * Note that redirection of ZCR is mentioned in the description
5911 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5912 * not in the summary table.
5914 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5915 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5917 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5918 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5920 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5921 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5923 #undef K
5925 size_t i;
5927 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5928 const struct E2HAlias *a = &aliases[i];
5929 ARMCPRegInfo *src_reg, *dst_reg;
5931 if (a->feature && !a->feature(&cpu->isar)) {
5932 continue;
5935 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5936 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5937 g_assert(src_reg != NULL);
5938 g_assert(dst_reg != NULL);
5940 /* Cross-compare names to detect typos in the keys. */
5941 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5942 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5944 /* None of the core system registers use opaque; we will. */
5945 g_assert(src_reg->opaque == NULL);
5947 /* Create alias before redirection so we dup the right data. */
5948 if (a->new_key) {
5949 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5950 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5951 bool ok;
5953 new_reg->name = a->new_name;
5954 new_reg->type |= ARM_CP_ALIAS;
5955 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5956 new_reg->access &= PL2_RW | PL3_RW;
5958 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5959 g_assert(ok);
5962 src_reg->opaque = dst_reg;
5963 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5964 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5965 if (!src_reg->raw_readfn) {
5966 src_reg->raw_readfn = raw_read;
5968 if (!src_reg->raw_writefn) {
5969 src_reg->raw_writefn = raw_write;
5971 src_reg->readfn = el2_e2h_read;
5972 src_reg->writefn = el2_e2h_write;
5975 #endif
5977 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5978 bool isread)
5980 int cur_el = arm_current_el(env);
5982 if (cur_el < 2) {
5983 uint64_t hcr = arm_hcr_el2_eff(env);
5985 if (cur_el == 0) {
5986 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5987 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5988 return CP_ACCESS_TRAP_EL2;
5990 } else {
5991 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5992 return CP_ACCESS_TRAP;
5994 if (hcr & HCR_TID2) {
5995 return CP_ACCESS_TRAP_EL2;
5998 } else if (hcr & HCR_TID2) {
5999 return CP_ACCESS_TRAP_EL2;
6003 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6004 return CP_ACCESS_TRAP_EL2;
6007 return CP_ACCESS_OK;
6010 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6011 uint64_t value)
6013 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6014 * read via a bit in OSLSR_EL1.
6016 int oslock;
6018 if (ri->state == ARM_CP_STATE_AA32) {
6019 oslock = (value == 0xC5ACCE55);
6020 } else {
6021 oslock = value & 1;
6024 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6027 static const ARMCPRegInfo debug_cp_reginfo[] = {
6028 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6029 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6030 * unlike DBGDRAR it is never accessible from EL0.
6031 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6032 * accessor.
6034 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6035 .access = PL0_R, .accessfn = access_tdra,
6036 .type = ARM_CP_CONST, .resetvalue = 0 },
6037 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6038 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6039 .access = PL1_R, .accessfn = access_tdra,
6040 .type = ARM_CP_CONST, .resetvalue = 0 },
6041 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6042 .access = PL0_R, .accessfn = access_tdra,
6043 .type = ARM_CP_CONST, .resetvalue = 0 },
6044 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6045 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6046 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6047 .access = PL1_RW, .accessfn = access_tda,
6048 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6049 .resetvalue = 0 },
6050 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6051 * We don't implement the configurable EL0 access.
6053 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6054 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6055 .type = ARM_CP_ALIAS,
6056 .access = PL1_R, .accessfn = access_tda,
6057 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6058 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6060 .access = PL1_W, .type = ARM_CP_NO_RAW,
6061 .accessfn = access_tdosa,
6062 .writefn = oslar_write },
6063 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6064 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6065 .access = PL1_R, .resetvalue = 10,
6066 .accessfn = access_tdosa,
6067 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6068 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6069 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6070 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6071 .access = PL1_RW, .accessfn = access_tdosa,
6072 .type = ARM_CP_NOP },
6073 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6074 * implement vector catch debug events yet.
6076 { .name = "DBGVCR",
6077 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6078 .access = PL1_RW, .accessfn = access_tda,
6079 .type = ARM_CP_NOP },
6080 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6081 * to save and restore a 32-bit guest's DBGVCR)
6083 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6084 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6085 .access = PL2_RW, .accessfn = access_tda,
6086 .type = ARM_CP_NOP },
6087 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6088 * Channel but Linux may try to access this register. The 32-bit
6089 * alias is DBGDCCINT.
6091 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6092 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6093 .access = PL1_RW, .accessfn = access_tda,
6094 .type = ARM_CP_NOP },
6095 REGINFO_SENTINEL
6098 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6099 /* 64 bit access versions of the (dummy) debug registers */
6100 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6101 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6102 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6103 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6104 REGINFO_SENTINEL
6107 /* Return the exception level to which exceptions should be taken
6108 * via SVEAccessTrap. If an exception should be routed through
6109 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6110 * take care of raising that exception.
6111 * C.f. the ARM pseudocode function CheckSVEEnabled.
6113 int sve_exception_el(CPUARMState *env, int el)
6115 #ifndef CONFIG_USER_ONLY
6116 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6118 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6119 bool disabled = false;
6121 /* The CPACR.ZEN controls traps to EL1:
6122 * 0, 2 : trap EL0 and EL1 accesses
6123 * 1 : trap only EL0 accesses
6124 * 3 : trap no accesses
6126 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6127 disabled = true;
6128 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6129 disabled = el == 0;
6131 if (disabled) {
6132 /* route_to_el2 */
6133 return hcr_el2 & HCR_TGE ? 2 : 1;
6136 /* Check CPACR.FPEN. */
6137 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6138 disabled = true;
6139 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6140 disabled = el == 0;
6142 if (disabled) {
6143 return 0;
6147 /* CPTR_EL2. Since TZ and TFP are positive,
6148 * they will be zero when EL2 is not present.
6150 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6151 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6152 return 2;
6154 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6155 return 0;
6159 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6160 if (arm_feature(env, ARM_FEATURE_EL3)
6161 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6162 return 3;
6164 #endif
6165 return 0;
6168 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6170 uint32_t end_len;
6172 end_len = start_len &= 0xf;
6173 if (!test_bit(start_len, cpu->sve_vq_map)) {
6174 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6175 assert(end_len < start_len);
6177 return end_len;
6181 * Given that SVE is enabled, return the vector length for EL.
6183 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6185 ARMCPU *cpu = env_archcpu(env);
6186 uint32_t zcr_len = cpu->sve_max_vq - 1;
6188 if (el <= 1) {
6189 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6191 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6192 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6194 if (arm_feature(env, ARM_FEATURE_EL3)) {
6195 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6198 return sve_zcr_get_valid_len(cpu, zcr_len);
6201 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6202 uint64_t value)
6204 int cur_el = arm_current_el(env);
6205 int old_len = sve_zcr_len_for_el(env, cur_el);
6206 int new_len;
6208 /* Bits other than [3:0] are RAZ/WI. */
6209 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6210 raw_write(env, ri, value & 0xf);
6213 * Because we arrived here, we know both FP and SVE are enabled;
6214 * otherwise we would have trapped access to the ZCR_ELn register.
6216 new_len = sve_zcr_len_for_el(env, cur_el);
6217 if (new_len < old_len) {
6218 aarch64_sve_narrow_vq(env, new_len + 1);
6222 static const ARMCPRegInfo zcr_el1_reginfo = {
6223 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6224 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6225 .access = PL1_RW, .type = ARM_CP_SVE,
6226 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6227 .writefn = zcr_write, .raw_writefn = raw_write
6230 static const ARMCPRegInfo zcr_el2_reginfo = {
6231 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6232 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6233 .access = PL2_RW, .type = ARM_CP_SVE,
6234 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6235 .writefn = zcr_write, .raw_writefn = raw_write
6238 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6239 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6241 .access = PL2_RW, .type = ARM_CP_SVE,
6242 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6245 static const ARMCPRegInfo zcr_el3_reginfo = {
6246 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6247 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6248 .access = PL3_RW, .type = ARM_CP_SVE,
6249 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6250 .writefn = zcr_write, .raw_writefn = raw_write
6253 void hw_watchpoint_update(ARMCPU *cpu, int n)
6255 CPUARMState *env = &cpu->env;
6256 vaddr len = 0;
6257 vaddr wvr = env->cp15.dbgwvr[n];
6258 uint64_t wcr = env->cp15.dbgwcr[n];
6259 int mask;
6260 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6262 if (env->cpu_watchpoint[n]) {
6263 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6264 env->cpu_watchpoint[n] = NULL;
6267 if (!extract64(wcr, 0, 1)) {
6268 /* E bit clear : watchpoint disabled */
6269 return;
6272 switch (extract64(wcr, 3, 2)) {
6273 case 0:
6274 /* LSC 00 is reserved and must behave as if the wp is disabled */
6275 return;
6276 case 1:
6277 flags |= BP_MEM_READ;
6278 break;
6279 case 2:
6280 flags |= BP_MEM_WRITE;
6281 break;
6282 case 3:
6283 flags |= BP_MEM_ACCESS;
6284 break;
6287 /* Attempts to use both MASK and BAS fields simultaneously are
6288 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6289 * thus generating a watchpoint for every byte in the masked region.
6291 mask = extract64(wcr, 24, 4);
6292 if (mask == 1 || mask == 2) {
6293 /* Reserved values of MASK; we must act as if the mask value was
6294 * some non-reserved value, or as if the watchpoint were disabled.
6295 * We choose the latter.
6297 return;
6298 } else if (mask) {
6299 /* Watchpoint covers an aligned area up to 2GB in size */
6300 len = 1ULL << mask;
6301 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6302 * whether the watchpoint fires when the unmasked bits match; we opt
6303 * to generate the exceptions.
6305 wvr &= ~(len - 1);
6306 } else {
6307 /* Watchpoint covers bytes defined by the byte address select bits */
6308 int bas = extract64(wcr, 5, 8);
6309 int basstart;
6311 if (extract64(wvr, 2, 1)) {
6312 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6313 * ignored, and BAS[3:0] define which bytes to watch.
6315 bas &= 0xf;
6318 if (bas == 0) {
6319 /* This must act as if the watchpoint is disabled */
6320 return;
6323 /* The BAS bits are supposed to be programmed to indicate a contiguous
6324 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6325 * we fire for each byte in the word/doubleword addressed by the WVR.
6326 * We choose to ignore any non-zero bits after the first range of 1s.
6328 basstart = ctz32(bas);
6329 len = cto32(bas >> basstart);
6330 wvr += basstart;
6333 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6334 &env->cpu_watchpoint[n]);
6337 void hw_watchpoint_update_all(ARMCPU *cpu)
6339 int i;
6340 CPUARMState *env = &cpu->env;
6342 /* Completely clear out existing QEMU watchpoints and our array, to
6343 * avoid possible stale entries following migration load.
6345 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6346 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6348 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6349 hw_watchpoint_update(cpu, i);
6353 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6354 uint64_t value)
6356 ARMCPU *cpu = env_archcpu(env);
6357 int i = ri->crm;
6359 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6360 * register reads and behaves as if values written are sign extended.
6361 * Bits [1:0] are RES0.
6363 value = sextract64(value, 0, 49) & ~3ULL;
6365 raw_write(env, ri, value);
6366 hw_watchpoint_update(cpu, i);
6369 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6370 uint64_t value)
6372 ARMCPU *cpu = env_archcpu(env);
6373 int i = ri->crm;
6375 raw_write(env, ri, value);
6376 hw_watchpoint_update(cpu, i);
6379 void hw_breakpoint_update(ARMCPU *cpu, int n)
6381 CPUARMState *env = &cpu->env;
6382 uint64_t bvr = env->cp15.dbgbvr[n];
6383 uint64_t bcr = env->cp15.dbgbcr[n];
6384 vaddr addr;
6385 int bt;
6386 int flags = BP_CPU;
6388 if (env->cpu_breakpoint[n]) {
6389 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6390 env->cpu_breakpoint[n] = NULL;
6393 if (!extract64(bcr, 0, 1)) {
6394 /* E bit clear : watchpoint disabled */
6395 return;
6398 bt = extract64(bcr, 20, 4);
6400 switch (bt) {
6401 case 4: /* unlinked address mismatch (reserved if AArch64) */
6402 case 5: /* linked address mismatch (reserved if AArch64) */
6403 qemu_log_mask(LOG_UNIMP,
6404 "arm: address mismatch breakpoint types not implemented\n");
6405 return;
6406 case 0: /* unlinked address match */
6407 case 1: /* linked address match */
6409 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6410 * we behave as if the register was sign extended. Bits [1:0] are
6411 * RES0. The BAS field is used to allow setting breakpoints on 16
6412 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6413 * a bp will fire if the addresses covered by the bp and the addresses
6414 * covered by the insn overlap but the insn doesn't start at the
6415 * start of the bp address range. We choose to require the insn and
6416 * the bp to have the same address. The constraints on writing to
6417 * BAS enforced in dbgbcr_write mean we have only four cases:
6418 * 0b0000 => no breakpoint
6419 * 0b0011 => breakpoint on addr
6420 * 0b1100 => breakpoint on addr + 2
6421 * 0b1111 => breakpoint on addr
6422 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6424 int bas = extract64(bcr, 5, 4);
6425 addr = sextract64(bvr, 0, 49) & ~3ULL;
6426 if (bas == 0) {
6427 return;
6429 if (bas == 0xc) {
6430 addr += 2;
6432 break;
6434 case 2: /* unlinked context ID match */
6435 case 8: /* unlinked VMID match (reserved if no EL2) */
6436 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6437 qemu_log_mask(LOG_UNIMP,
6438 "arm: unlinked context breakpoint types not implemented\n");
6439 return;
6440 case 9: /* linked VMID match (reserved if no EL2) */
6441 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6442 case 3: /* linked context ID match */
6443 default:
6444 /* We must generate no events for Linked context matches (unless
6445 * they are linked to by some other bp/wp, which is handled in
6446 * updates for the linking bp/wp). We choose to also generate no events
6447 * for reserved values.
6449 return;
6452 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6455 void hw_breakpoint_update_all(ARMCPU *cpu)
6457 int i;
6458 CPUARMState *env = &cpu->env;
6460 /* Completely clear out existing QEMU breakpoints and our array, to
6461 * avoid possible stale entries following migration load.
6463 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6464 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6466 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6467 hw_breakpoint_update(cpu, i);
6471 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6472 uint64_t value)
6474 ARMCPU *cpu = env_archcpu(env);
6475 int i = ri->crm;
6477 raw_write(env, ri, value);
6478 hw_breakpoint_update(cpu, i);
6481 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6482 uint64_t value)
6484 ARMCPU *cpu = env_archcpu(env);
6485 int i = ri->crm;
6487 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6488 * copy of BAS[0].
6490 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6491 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6493 raw_write(env, ri, value);
6494 hw_breakpoint_update(cpu, i);
6497 static void define_debug_regs(ARMCPU *cpu)
6499 /* Define v7 and v8 architectural debug registers.
6500 * These are just dummy implementations for now.
6502 int i;
6503 int wrps, brps, ctx_cmps;
6504 ARMCPRegInfo dbgdidr = {
6505 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6506 .access = PL0_R, .accessfn = access_tda,
6507 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6510 /* Note that all these register fields hold "number of Xs minus 1". */
6511 brps = arm_num_brps(cpu);
6512 wrps = arm_num_wrps(cpu);
6513 ctx_cmps = arm_num_ctx_cmps(cpu);
6515 assert(ctx_cmps <= brps);
6517 define_one_arm_cp_reg(cpu, &dbgdidr);
6518 define_arm_cp_regs(cpu, debug_cp_reginfo);
6520 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6521 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6524 for (i = 0; i < brps; i++) {
6525 ARMCPRegInfo dbgregs[] = {
6526 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6527 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6528 .access = PL1_RW, .accessfn = access_tda,
6529 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6530 .writefn = dbgbvr_write, .raw_writefn = raw_write
6532 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6533 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6534 .access = PL1_RW, .accessfn = access_tda,
6535 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6536 .writefn = dbgbcr_write, .raw_writefn = raw_write
6538 REGINFO_SENTINEL
6540 define_arm_cp_regs(cpu, dbgregs);
6543 for (i = 0; i < wrps; i++) {
6544 ARMCPRegInfo dbgregs[] = {
6545 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6546 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6547 .access = PL1_RW, .accessfn = access_tda,
6548 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6549 .writefn = dbgwvr_write, .raw_writefn = raw_write
6551 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6552 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6553 .access = PL1_RW, .accessfn = access_tda,
6554 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6555 .writefn = dbgwcr_write, .raw_writefn = raw_write
6557 REGINFO_SENTINEL
6559 define_arm_cp_regs(cpu, dbgregs);
6563 static void define_pmu_regs(ARMCPU *cpu)
6566 * v7 performance monitor control register: same implementor
6567 * field as main ID register, and we implement four counters in
6568 * addition to the cycle count register.
6570 unsigned int i, pmcrn = 4;
6571 ARMCPRegInfo pmcr = {
6572 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6573 .access = PL0_RW,
6574 .type = ARM_CP_IO | ARM_CP_ALIAS,
6575 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6576 .accessfn = pmreg_access, .writefn = pmcr_write,
6577 .raw_writefn = raw_write,
6579 ARMCPRegInfo pmcr64 = {
6580 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6581 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6582 .access = PL0_RW, .accessfn = pmreg_access,
6583 .type = ARM_CP_IO,
6584 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6585 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6586 PMCRLC,
6587 .writefn = pmcr_write, .raw_writefn = raw_write,
6589 define_one_arm_cp_reg(cpu, &pmcr);
6590 define_one_arm_cp_reg(cpu, &pmcr64);
6591 for (i = 0; i < pmcrn; i++) {
6592 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6593 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6594 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6595 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6596 ARMCPRegInfo pmev_regs[] = {
6597 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6598 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6599 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6600 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6601 .accessfn = pmreg_access },
6602 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6603 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6604 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6605 .type = ARM_CP_IO,
6606 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6607 .raw_readfn = pmevcntr_rawread,
6608 .raw_writefn = pmevcntr_rawwrite },
6609 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6610 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6611 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6612 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6613 .accessfn = pmreg_access },
6614 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6615 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6616 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6617 .type = ARM_CP_IO,
6618 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6619 .raw_writefn = pmevtyper_rawwrite },
6620 REGINFO_SENTINEL
6622 define_arm_cp_regs(cpu, pmev_regs);
6623 g_free(pmevcntr_name);
6624 g_free(pmevcntr_el0_name);
6625 g_free(pmevtyper_name);
6626 g_free(pmevtyper_el0_name);
6628 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6629 ARMCPRegInfo v81_pmu_regs[] = {
6630 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6631 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6632 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6633 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6634 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6635 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6636 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6637 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6638 REGINFO_SENTINEL
6640 define_arm_cp_regs(cpu, v81_pmu_regs);
6642 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6643 static const ARMCPRegInfo v84_pmmir = {
6644 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6645 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6646 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6647 .resetvalue = 0
6649 define_one_arm_cp_reg(cpu, &v84_pmmir);
6653 /* We don't know until after realize whether there's a GICv3
6654 * attached, and that is what registers the gicv3 sysregs.
6655 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6656 * at runtime.
6658 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6660 ARMCPU *cpu = env_archcpu(env);
6661 uint64_t pfr1 = cpu->isar.id_pfr1;
6663 if (env->gicv3state) {
6664 pfr1 |= 1 << 28;
6666 return pfr1;
6669 #ifndef CONFIG_USER_ONLY
6670 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6672 ARMCPU *cpu = env_archcpu(env);
6673 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6675 if (env->gicv3state) {
6676 pfr0 |= 1 << 24;
6678 return pfr0;
6680 #endif
6682 /* Shared logic between LORID and the rest of the LOR* registers.
6683 * Secure state has already been delt with.
6685 static CPAccessResult access_lor_ns(CPUARMState *env)
6687 int el = arm_current_el(env);
6689 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6690 return CP_ACCESS_TRAP_EL2;
6692 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6693 return CP_ACCESS_TRAP_EL3;
6695 return CP_ACCESS_OK;
6698 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6699 bool isread)
6701 if (arm_is_secure_below_el3(env)) {
6702 /* Access ok in secure mode. */
6703 return CP_ACCESS_OK;
6705 return access_lor_ns(env);
6708 static CPAccessResult access_lor_other(CPUARMState *env,
6709 const ARMCPRegInfo *ri, bool isread)
6711 if (arm_is_secure_below_el3(env)) {
6712 /* Access denied in secure mode. */
6713 return CP_ACCESS_TRAP;
6715 return access_lor_ns(env);
6719 * A trivial implementation of ARMv8.1-LOR leaves all of these
6720 * registers fixed at 0, which indicates that there are zero
6721 * supported Limited Ordering regions.
6723 static const ARMCPRegInfo lor_reginfo[] = {
6724 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6725 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6726 .access = PL1_RW, .accessfn = access_lor_other,
6727 .type = ARM_CP_CONST, .resetvalue = 0 },
6728 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6729 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6730 .access = PL1_RW, .accessfn = access_lor_other,
6731 .type = ARM_CP_CONST, .resetvalue = 0 },
6732 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6734 .access = PL1_RW, .accessfn = access_lor_other,
6735 .type = ARM_CP_CONST, .resetvalue = 0 },
6736 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6737 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6738 .access = PL1_RW, .accessfn = access_lor_other,
6739 .type = ARM_CP_CONST, .resetvalue = 0 },
6740 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6741 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6742 .access = PL1_R, .accessfn = access_lorid,
6743 .type = ARM_CP_CONST, .resetvalue = 0 },
6744 REGINFO_SENTINEL
6747 #ifdef TARGET_AARCH64
6748 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6749 bool isread)
6751 int el = arm_current_el(env);
6753 if (el < 2 &&
6754 arm_feature(env, ARM_FEATURE_EL2) &&
6755 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6756 return CP_ACCESS_TRAP_EL2;
6758 if (el < 3 &&
6759 arm_feature(env, ARM_FEATURE_EL3) &&
6760 !(env->cp15.scr_el3 & SCR_APK)) {
6761 return CP_ACCESS_TRAP_EL3;
6763 return CP_ACCESS_OK;
6766 static const ARMCPRegInfo pauth_reginfo[] = {
6767 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6769 .access = PL1_RW, .accessfn = access_pauth,
6770 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6771 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6773 .access = PL1_RW, .accessfn = access_pauth,
6774 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6775 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6776 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6777 .access = PL1_RW, .accessfn = access_pauth,
6778 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6779 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6781 .access = PL1_RW, .accessfn = access_pauth,
6782 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6783 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6784 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6785 .access = PL1_RW, .accessfn = access_pauth,
6786 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6787 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6788 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6789 .access = PL1_RW, .accessfn = access_pauth,
6790 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6791 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6792 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6793 .access = PL1_RW, .accessfn = access_pauth,
6794 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6795 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6796 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6797 .access = PL1_RW, .accessfn = access_pauth,
6798 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6799 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6801 .access = PL1_RW, .accessfn = access_pauth,
6802 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6803 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6804 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6805 .access = PL1_RW, .accessfn = access_pauth,
6806 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6807 REGINFO_SENTINEL
6810 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6812 Error *err = NULL;
6813 uint64_t ret;
6815 /* Success sets NZCV = 0000. */
6816 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6818 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6820 * ??? Failed, for unknown reasons in the crypto subsystem.
6821 * The best we can do is log the reason and return the
6822 * timed-out indication to the guest. There is no reason
6823 * we know to expect this failure to be transitory, so the
6824 * guest may well hang retrying the operation.
6826 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6827 ri->name, error_get_pretty(err));
6828 error_free(err);
6830 env->ZF = 0; /* NZCF = 0100 */
6831 return 0;
6833 return ret;
6836 /* We do not support re-seeding, so the two registers operate the same. */
6837 static const ARMCPRegInfo rndr_reginfo[] = {
6838 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6839 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6840 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6841 .access = PL0_R, .readfn = rndr_readfn },
6842 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6843 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6844 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6845 .access = PL0_R, .readfn = rndr_readfn },
6846 REGINFO_SENTINEL
6849 #ifndef CONFIG_USER_ONLY
6850 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6851 uint64_t value)
6853 ARMCPU *cpu = env_archcpu(env);
6854 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6855 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6856 uint64_t vaddr_in = (uint64_t) value;
6857 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6858 void *haddr;
6859 int mem_idx = cpu_mmu_index(env, false);
6861 /* This won't be crossing page boundaries */
6862 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6863 if (haddr) {
6865 ram_addr_t offset;
6866 MemoryRegion *mr;
6868 /* RCU lock is already being held */
6869 mr = memory_region_from_host(haddr, &offset);
6871 if (mr) {
6872 memory_region_writeback(mr, offset, dline_size);
6877 static const ARMCPRegInfo dcpop_reg[] = {
6878 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6879 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6880 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6881 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6882 REGINFO_SENTINEL
6885 static const ARMCPRegInfo dcpodp_reg[] = {
6886 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6887 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6888 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6889 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6890 REGINFO_SENTINEL
6892 #endif /*CONFIG_USER_ONLY*/
6894 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6895 bool isread)
6897 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6898 return CP_ACCESS_TRAP_EL2;
6901 return CP_ACCESS_OK;
6904 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6905 bool isread)
6907 int el = arm_current_el(env);
6909 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6910 uint64_t hcr = arm_hcr_el2_eff(env);
6911 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6912 return CP_ACCESS_TRAP_EL2;
6915 if (el < 3 &&
6916 arm_feature(env, ARM_FEATURE_EL3) &&
6917 !(env->cp15.scr_el3 & SCR_ATA)) {
6918 return CP_ACCESS_TRAP_EL3;
6920 return CP_ACCESS_OK;
6923 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6925 return env->pstate & PSTATE_TCO;
6928 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6930 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6933 static const ARMCPRegInfo mte_reginfo[] = {
6934 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6935 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6936 .access = PL1_RW, .accessfn = access_mte,
6937 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6938 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6939 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6940 .access = PL1_RW, .accessfn = access_mte,
6941 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6942 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6943 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6944 .access = PL2_RW, .accessfn = access_mte,
6945 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6946 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6947 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6948 .access = PL3_RW,
6949 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6950 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6952 .access = PL1_RW, .accessfn = access_mte,
6953 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6954 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6955 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6956 .access = PL1_RW, .accessfn = access_mte,
6957 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6958 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6959 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6960 .access = PL1_R, .accessfn = access_aa64_tid5,
6961 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6962 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6964 .type = ARM_CP_NO_RAW,
6965 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6966 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6968 .type = ARM_CP_NOP, .access = PL1_W,
6969 .accessfn = aa64_cacheop_poc_access },
6970 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6971 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6972 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6973 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6975 .type = ARM_CP_NOP, .access = PL1_W,
6976 .accessfn = aa64_cacheop_poc_access },
6977 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6978 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6979 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6980 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6981 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6982 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6983 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6984 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6985 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6986 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6987 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6988 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6989 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6991 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6992 REGINFO_SENTINEL
6995 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6996 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6997 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6998 .type = ARM_CP_CONST, .access = PL0_RW, },
6999 REGINFO_SENTINEL
7002 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7003 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7004 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7005 .type = ARM_CP_NOP, .access = PL0_W,
7006 .accessfn = aa64_cacheop_poc_access },
7007 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7008 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7009 .type = ARM_CP_NOP, .access = PL0_W,
7010 .accessfn = aa64_cacheop_poc_access },
7011 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7012 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7013 .type = ARM_CP_NOP, .access = PL0_W,
7014 .accessfn = aa64_cacheop_poc_access },
7015 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7016 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7017 .type = ARM_CP_NOP, .access = PL0_W,
7018 .accessfn = aa64_cacheop_poc_access },
7019 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7020 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7021 .type = ARM_CP_NOP, .access = PL0_W,
7022 .accessfn = aa64_cacheop_poc_access },
7023 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7024 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7025 .type = ARM_CP_NOP, .access = PL0_W,
7026 .accessfn = aa64_cacheop_poc_access },
7027 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7028 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7029 .type = ARM_CP_NOP, .access = PL0_W,
7030 .accessfn = aa64_cacheop_poc_access },
7031 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7032 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7033 .type = ARM_CP_NOP, .access = PL0_W,
7034 .accessfn = aa64_cacheop_poc_access },
7035 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7037 .access = PL0_W, .type = ARM_CP_DC_GVA,
7038 #ifndef CONFIG_USER_ONLY
7039 /* Avoid overhead of an access check that always passes in user-mode */
7040 .accessfn = aa64_zva_access,
7041 #endif
7043 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7045 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7046 #ifndef CONFIG_USER_ONLY
7047 /* Avoid overhead of an access check that always passes in user-mode */
7048 .accessfn = aa64_zva_access,
7049 #endif
7051 REGINFO_SENTINEL
7054 #endif
7056 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7057 bool isread)
7059 int el = arm_current_el(env);
7061 if (el == 0) {
7062 uint64_t sctlr = arm_sctlr(env, el);
7063 if (!(sctlr & SCTLR_EnRCTX)) {
7064 return CP_ACCESS_TRAP;
7066 } else if (el == 1) {
7067 uint64_t hcr = arm_hcr_el2_eff(env);
7068 if (hcr & HCR_NV) {
7069 return CP_ACCESS_TRAP_EL2;
7072 return CP_ACCESS_OK;
7075 static const ARMCPRegInfo predinv_reginfo[] = {
7076 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7077 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7078 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7079 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7080 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7081 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7082 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7083 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7084 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7086 * Note the AArch32 opcodes have a different OPC1.
7088 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7089 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7090 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7091 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7092 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7093 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7094 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7095 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7096 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7097 REGINFO_SENTINEL
7100 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7102 /* Read the high 32 bits of the current CCSIDR */
7103 return extract64(ccsidr_read(env, ri), 32, 32);
7106 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7107 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7108 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7109 .access = PL1_R,
7110 .accessfn = access_aa64_tid2,
7111 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7112 REGINFO_SENTINEL
7115 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7116 bool isread)
7118 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7119 return CP_ACCESS_TRAP_EL2;
7122 return CP_ACCESS_OK;
7125 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7126 bool isread)
7128 if (arm_feature(env, ARM_FEATURE_V8)) {
7129 return access_aa64_tid3(env, ri, isread);
7132 return CP_ACCESS_OK;
7135 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7136 bool isread)
7138 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7139 return CP_ACCESS_TRAP_EL2;
7142 return CP_ACCESS_OK;
7145 static const ARMCPRegInfo jazelle_regs[] = {
7146 { .name = "JIDR",
7147 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7148 .access = PL1_R, .accessfn = access_jazelle,
7149 .type = ARM_CP_CONST, .resetvalue = 0 },
7150 { .name = "JOSCR",
7151 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7152 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7153 { .name = "JMCR",
7154 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7155 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7156 REGINFO_SENTINEL
7159 static const ARMCPRegInfo vhe_reginfo[] = {
7160 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7161 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7162 .access = PL2_RW,
7163 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7164 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7166 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7167 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7168 #ifndef CONFIG_USER_ONLY
7169 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7170 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7171 .fieldoffset =
7172 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7173 .type = ARM_CP_IO, .access = PL2_RW,
7174 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7175 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7176 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7177 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7178 .resetfn = gt_hv_timer_reset,
7179 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7180 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7181 .type = ARM_CP_IO,
7182 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7183 .access = PL2_RW,
7184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7185 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7186 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7187 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7188 .type = ARM_CP_IO | ARM_CP_ALIAS,
7189 .access = PL2_RW, .accessfn = e2h_access,
7190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7191 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7192 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7193 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7194 .type = ARM_CP_IO | ARM_CP_ALIAS,
7195 .access = PL2_RW, .accessfn = e2h_access,
7196 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7197 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7198 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7199 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7200 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7201 .access = PL2_RW, .accessfn = e2h_access,
7202 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7203 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7205 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7206 .access = PL2_RW, .accessfn = e2h_access,
7207 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7208 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7209 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7210 .type = ARM_CP_IO | ARM_CP_ALIAS,
7211 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7212 .access = PL2_RW, .accessfn = e2h_access,
7213 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7214 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7215 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7216 .type = ARM_CP_IO | ARM_CP_ALIAS,
7217 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7218 .access = PL2_RW, .accessfn = e2h_access,
7219 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7220 #endif
7221 REGINFO_SENTINEL
7224 #ifndef CONFIG_USER_ONLY
7225 static const ARMCPRegInfo ats1e1_reginfo[] = {
7226 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7227 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7228 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7229 .writefn = ats_write64 },
7230 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7231 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7232 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7233 .writefn = ats_write64 },
7234 REGINFO_SENTINEL
7237 static const ARMCPRegInfo ats1cp_reginfo[] = {
7238 { .name = "ATS1CPRP",
7239 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7240 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7241 .writefn = ats_write },
7242 { .name = "ATS1CPWP",
7243 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7244 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7245 .writefn = ats_write },
7246 REGINFO_SENTINEL
7248 #endif
7251 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7252 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7253 * is non-zero, which is never for ARMv7, optionally in ARMv8
7254 * and mandatorily for ARMv8.2 and up.
7255 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7256 * implementation is RAZ/WI we can ignore this detail, as we
7257 * do for ACTLR.
7259 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7260 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7261 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7262 .access = PL1_RW, .accessfn = access_tacr,
7263 .type = ARM_CP_CONST, .resetvalue = 0 },
7264 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7265 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7266 .access = PL2_RW, .type = ARM_CP_CONST,
7267 .resetvalue = 0 },
7268 REGINFO_SENTINEL
7271 void register_cp_regs_for_features(ARMCPU *cpu)
7273 /* Register all the coprocessor registers based on feature bits */
7274 CPUARMState *env = &cpu->env;
7275 if (arm_feature(env, ARM_FEATURE_M)) {
7276 /* M profile has no coprocessor registers */
7277 return;
7280 define_arm_cp_regs(cpu, cp_reginfo);
7281 if (!arm_feature(env, ARM_FEATURE_V8)) {
7282 /* Must go early as it is full of wildcards that may be
7283 * overridden by later definitions.
7285 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7288 if (arm_feature(env, ARM_FEATURE_V6)) {
7289 /* The ID registers all have impdef reset values */
7290 ARMCPRegInfo v6_idregs[] = {
7291 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7293 .access = PL1_R, .type = ARM_CP_CONST,
7294 .accessfn = access_aa32_tid3,
7295 .resetvalue = cpu->isar.id_pfr0 },
7296 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7297 * the value of the GIC field until after we define these regs.
7299 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7300 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7301 .access = PL1_R, .type = ARM_CP_NO_RAW,
7302 .accessfn = access_aa32_tid3,
7303 .readfn = id_pfr1_read,
7304 .writefn = arm_cp_write_ignore },
7305 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7306 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7307 .access = PL1_R, .type = ARM_CP_CONST,
7308 .accessfn = access_aa32_tid3,
7309 .resetvalue = cpu->isar.id_dfr0 },
7310 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7311 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7312 .access = PL1_R, .type = ARM_CP_CONST,
7313 .accessfn = access_aa32_tid3,
7314 .resetvalue = cpu->id_afr0 },
7315 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7316 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7317 .access = PL1_R, .type = ARM_CP_CONST,
7318 .accessfn = access_aa32_tid3,
7319 .resetvalue = cpu->isar.id_mmfr0 },
7320 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7322 .access = PL1_R, .type = ARM_CP_CONST,
7323 .accessfn = access_aa32_tid3,
7324 .resetvalue = cpu->isar.id_mmfr1 },
7325 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7326 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7327 .access = PL1_R, .type = ARM_CP_CONST,
7328 .accessfn = access_aa32_tid3,
7329 .resetvalue = cpu->isar.id_mmfr2 },
7330 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7331 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7332 .access = PL1_R, .type = ARM_CP_CONST,
7333 .accessfn = access_aa32_tid3,
7334 .resetvalue = cpu->isar.id_mmfr3 },
7335 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7336 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7337 .access = PL1_R, .type = ARM_CP_CONST,
7338 .accessfn = access_aa32_tid3,
7339 .resetvalue = cpu->isar.id_isar0 },
7340 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7342 .access = PL1_R, .type = ARM_CP_CONST,
7343 .accessfn = access_aa32_tid3,
7344 .resetvalue = cpu->isar.id_isar1 },
7345 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7346 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7347 .access = PL1_R, .type = ARM_CP_CONST,
7348 .accessfn = access_aa32_tid3,
7349 .resetvalue = cpu->isar.id_isar2 },
7350 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7352 .access = PL1_R, .type = ARM_CP_CONST,
7353 .accessfn = access_aa32_tid3,
7354 .resetvalue = cpu->isar.id_isar3 },
7355 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7357 .access = PL1_R, .type = ARM_CP_CONST,
7358 .accessfn = access_aa32_tid3,
7359 .resetvalue = cpu->isar.id_isar4 },
7360 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7362 .access = PL1_R, .type = ARM_CP_CONST,
7363 .accessfn = access_aa32_tid3,
7364 .resetvalue = cpu->isar.id_isar5 },
7365 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7366 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7367 .access = PL1_R, .type = ARM_CP_CONST,
7368 .accessfn = access_aa32_tid3,
7369 .resetvalue = cpu->isar.id_mmfr4 },
7370 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7371 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7372 .access = PL1_R, .type = ARM_CP_CONST,
7373 .accessfn = access_aa32_tid3,
7374 .resetvalue = cpu->isar.id_isar6 },
7375 REGINFO_SENTINEL
7377 define_arm_cp_regs(cpu, v6_idregs);
7378 define_arm_cp_regs(cpu, v6_cp_reginfo);
7379 } else {
7380 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7382 if (arm_feature(env, ARM_FEATURE_V6K)) {
7383 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7385 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7386 !arm_feature(env, ARM_FEATURE_PMSA)) {
7387 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7389 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7390 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7392 if (arm_feature(env, ARM_FEATURE_V7)) {
7393 ARMCPRegInfo clidr = {
7394 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7395 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7396 .access = PL1_R, .type = ARM_CP_CONST,
7397 .accessfn = access_aa64_tid2,
7398 .resetvalue = cpu->clidr
7400 define_one_arm_cp_reg(cpu, &clidr);
7401 define_arm_cp_regs(cpu, v7_cp_reginfo);
7402 define_debug_regs(cpu);
7403 define_pmu_regs(cpu);
7404 } else {
7405 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7407 if (arm_feature(env, ARM_FEATURE_V8)) {
7408 /* AArch64 ID registers, which all have impdef reset values.
7409 * Note that within the ID register ranges the unused slots
7410 * must all RAZ, not UNDEF; future architecture versions may
7411 * define new registers here.
7413 ARMCPRegInfo v8_idregs[] = {
7415 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7416 * emulation because we don't know the right value for the
7417 * GIC field until after we define these regs.
7419 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7421 .access = PL1_R,
7422 #ifdef CONFIG_USER_ONLY
7423 .type = ARM_CP_CONST,
7424 .resetvalue = cpu->isar.id_aa64pfr0
7425 #else
7426 .type = ARM_CP_NO_RAW,
7427 .accessfn = access_aa64_tid3,
7428 .readfn = id_aa64pfr0_read,
7429 .writefn = arm_cp_write_ignore
7430 #endif
7432 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7433 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7434 .access = PL1_R, .type = ARM_CP_CONST,
7435 .accessfn = access_aa64_tid3,
7436 .resetvalue = cpu->isar.id_aa64pfr1},
7437 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7438 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7439 .access = PL1_R, .type = ARM_CP_CONST,
7440 .accessfn = access_aa64_tid3,
7441 .resetvalue = 0 },
7442 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7444 .access = PL1_R, .type = ARM_CP_CONST,
7445 .accessfn = access_aa64_tid3,
7446 .resetvalue = 0 },
7447 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7448 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7449 .access = PL1_R, .type = ARM_CP_CONST,
7450 .accessfn = access_aa64_tid3,
7451 /* At present, only SVEver == 0 is defined anyway. */
7452 .resetvalue = 0 },
7453 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7454 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7455 .access = PL1_R, .type = ARM_CP_CONST,
7456 .accessfn = access_aa64_tid3,
7457 .resetvalue = 0 },
7458 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7460 .access = PL1_R, .type = ARM_CP_CONST,
7461 .accessfn = access_aa64_tid3,
7462 .resetvalue = 0 },
7463 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7464 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7465 .access = PL1_R, .type = ARM_CP_CONST,
7466 .accessfn = access_aa64_tid3,
7467 .resetvalue = 0 },
7468 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7470 .access = PL1_R, .type = ARM_CP_CONST,
7471 .accessfn = access_aa64_tid3,
7472 .resetvalue = cpu->isar.id_aa64dfr0 },
7473 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7474 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7475 .access = PL1_R, .type = ARM_CP_CONST,
7476 .accessfn = access_aa64_tid3,
7477 .resetvalue = cpu->isar.id_aa64dfr1 },
7478 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7479 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7480 .access = PL1_R, .type = ARM_CP_CONST,
7481 .accessfn = access_aa64_tid3,
7482 .resetvalue = 0 },
7483 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7484 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7485 .access = PL1_R, .type = ARM_CP_CONST,
7486 .accessfn = access_aa64_tid3,
7487 .resetvalue = 0 },
7488 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7489 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7490 .access = PL1_R, .type = ARM_CP_CONST,
7491 .accessfn = access_aa64_tid3,
7492 .resetvalue = cpu->id_aa64afr0 },
7493 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7494 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7495 .access = PL1_R, .type = ARM_CP_CONST,
7496 .accessfn = access_aa64_tid3,
7497 .resetvalue = cpu->id_aa64afr1 },
7498 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7499 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7500 .access = PL1_R, .type = ARM_CP_CONST,
7501 .accessfn = access_aa64_tid3,
7502 .resetvalue = 0 },
7503 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7505 .access = PL1_R, .type = ARM_CP_CONST,
7506 .accessfn = access_aa64_tid3,
7507 .resetvalue = 0 },
7508 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7509 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7510 .access = PL1_R, .type = ARM_CP_CONST,
7511 .accessfn = access_aa64_tid3,
7512 .resetvalue = cpu->isar.id_aa64isar0 },
7513 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7514 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7515 .access = PL1_R, .type = ARM_CP_CONST,
7516 .accessfn = access_aa64_tid3,
7517 .resetvalue = cpu->isar.id_aa64isar1 },
7518 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7520 .access = PL1_R, .type = ARM_CP_CONST,
7521 .accessfn = access_aa64_tid3,
7522 .resetvalue = 0 },
7523 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7524 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7525 .access = PL1_R, .type = ARM_CP_CONST,
7526 .accessfn = access_aa64_tid3,
7527 .resetvalue = 0 },
7528 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7529 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7530 .access = PL1_R, .type = ARM_CP_CONST,
7531 .accessfn = access_aa64_tid3,
7532 .resetvalue = 0 },
7533 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7534 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7535 .access = PL1_R, .type = ARM_CP_CONST,
7536 .accessfn = access_aa64_tid3,
7537 .resetvalue = 0 },
7538 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7540 .access = PL1_R, .type = ARM_CP_CONST,
7541 .accessfn = access_aa64_tid3,
7542 .resetvalue = 0 },
7543 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7544 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7545 .access = PL1_R, .type = ARM_CP_CONST,
7546 .accessfn = access_aa64_tid3,
7547 .resetvalue = 0 },
7548 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7550 .access = PL1_R, .type = ARM_CP_CONST,
7551 .accessfn = access_aa64_tid3,
7552 .resetvalue = cpu->isar.id_aa64mmfr0 },
7553 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7555 .access = PL1_R, .type = ARM_CP_CONST,
7556 .accessfn = access_aa64_tid3,
7557 .resetvalue = cpu->isar.id_aa64mmfr1 },
7558 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7559 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7560 .access = PL1_R, .type = ARM_CP_CONST,
7561 .accessfn = access_aa64_tid3,
7562 .resetvalue = cpu->isar.id_aa64mmfr2 },
7563 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7564 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7565 .access = PL1_R, .type = ARM_CP_CONST,
7566 .accessfn = access_aa64_tid3,
7567 .resetvalue = 0 },
7568 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7570 .access = PL1_R, .type = ARM_CP_CONST,
7571 .accessfn = access_aa64_tid3,
7572 .resetvalue = 0 },
7573 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7575 .access = PL1_R, .type = ARM_CP_CONST,
7576 .accessfn = access_aa64_tid3,
7577 .resetvalue = 0 },
7578 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7580 .access = PL1_R, .type = ARM_CP_CONST,
7581 .accessfn = access_aa64_tid3,
7582 .resetvalue = 0 },
7583 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7585 .access = PL1_R, .type = ARM_CP_CONST,
7586 .accessfn = access_aa64_tid3,
7587 .resetvalue = 0 },
7588 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7590 .access = PL1_R, .type = ARM_CP_CONST,
7591 .accessfn = access_aa64_tid3,
7592 .resetvalue = cpu->isar.mvfr0 },
7593 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7594 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7595 .access = PL1_R, .type = ARM_CP_CONST,
7596 .accessfn = access_aa64_tid3,
7597 .resetvalue = cpu->isar.mvfr1 },
7598 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7600 .access = PL1_R, .type = ARM_CP_CONST,
7601 .accessfn = access_aa64_tid3,
7602 .resetvalue = cpu->isar.mvfr2 },
7603 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7604 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7605 .access = PL1_R, .type = ARM_CP_CONST,
7606 .accessfn = access_aa64_tid3,
7607 .resetvalue = 0 },
7608 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7609 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7610 .access = PL1_R, .type = ARM_CP_CONST,
7611 .accessfn = access_aa64_tid3,
7612 .resetvalue = 0 },
7613 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7614 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7615 .access = PL1_R, .type = ARM_CP_CONST,
7616 .accessfn = access_aa64_tid3,
7617 .resetvalue = 0 },
7618 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7620 .access = PL1_R, .type = ARM_CP_CONST,
7621 .accessfn = access_aa64_tid3,
7622 .resetvalue = 0 },
7623 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7625 .access = PL1_R, .type = ARM_CP_CONST,
7626 .accessfn = access_aa64_tid3,
7627 .resetvalue = 0 },
7628 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7629 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7630 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7631 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7632 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7633 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7634 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7635 .resetvalue = cpu->pmceid0 },
7636 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7637 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7638 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7639 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7640 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7641 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7642 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7643 .resetvalue = cpu->pmceid1 },
7644 REGINFO_SENTINEL
7646 #ifdef CONFIG_USER_ONLY
7647 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7648 { .name = "ID_AA64PFR0_EL1",
7649 .exported_bits = 0x000f000f00ff0000,
7650 .fixed_bits = 0x0000000000000011 },
7651 { .name = "ID_AA64PFR1_EL1",
7652 .exported_bits = 0x00000000000000f0 },
7653 { .name = "ID_AA64PFR*_EL1_RESERVED",
7654 .is_glob = true },
7655 { .name = "ID_AA64ZFR0_EL1" },
7656 { .name = "ID_AA64MMFR0_EL1",
7657 .fixed_bits = 0x00000000ff000000 },
7658 { .name = "ID_AA64MMFR1_EL1" },
7659 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7660 .is_glob = true },
7661 { .name = "ID_AA64DFR0_EL1",
7662 .fixed_bits = 0x0000000000000006 },
7663 { .name = "ID_AA64DFR1_EL1" },
7664 { .name = "ID_AA64DFR*_EL1_RESERVED",
7665 .is_glob = true },
7666 { .name = "ID_AA64AFR*",
7667 .is_glob = true },
7668 { .name = "ID_AA64ISAR0_EL1",
7669 .exported_bits = 0x00fffffff0fffff0 },
7670 { .name = "ID_AA64ISAR1_EL1",
7671 .exported_bits = 0x000000f0ffffffff },
7672 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7673 .is_glob = true },
7674 REGUSERINFO_SENTINEL
7676 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7677 #endif
7678 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7679 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7680 !arm_feature(env, ARM_FEATURE_EL2)) {
7681 ARMCPRegInfo rvbar = {
7682 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7683 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7684 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7686 define_one_arm_cp_reg(cpu, &rvbar);
7688 define_arm_cp_regs(cpu, v8_idregs);
7689 define_arm_cp_regs(cpu, v8_cp_reginfo);
7691 if (arm_feature(env, ARM_FEATURE_EL2)) {
7692 uint64_t vmpidr_def = mpidr_read_val(env);
7693 ARMCPRegInfo vpidr_regs[] = {
7694 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7695 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7696 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7697 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7698 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7699 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7700 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7701 .access = PL2_RW, .resetvalue = cpu->midr,
7702 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7703 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7704 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7705 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7706 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7707 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7708 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7709 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7710 .access = PL2_RW,
7711 .resetvalue = vmpidr_def,
7712 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7713 REGINFO_SENTINEL
7715 define_arm_cp_regs(cpu, vpidr_regs);
7716 define_arm_cp_regs(cpu, el2_cp_reginfo);
7717 if (arm_feature(env, ARM_FEATURE_V8)) {
7718 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7720 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7721 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7722 ARMCPRegInfo rvbar = {
7723 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7724 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7725 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7727 define_one_arm_cp_reg(cpu, &rvbar);
7729 } else {
7730 /* If EL2 is missing but higher ELs are enabled, we need to
7731 * register the no_el2 reginfos.
7733 if (arm_feature(env, ARM_FEATURE_EL3)) {
7734 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7735 * of MIDR_EL1 and MPIDR_EL1.
7737 ARMCPRegInfo vpidr_regs[] = {
7738 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7739 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7740 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7741 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7742 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7743 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7744 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7745 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7746 .type = ARM_CP_NO_RAW,
7747 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7748 REGINFO_SENTINEL
7750 define_arm_cp_regs(cpu, vpidr_regs);
7751 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7752 if (arm_feature(env, ARM_FEATURE_V8)) {
7753 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7757 if (arm_feature(env, ARM_FEATURE_EL3)) {
7758 define_arm_cp_regs(cpu, el3_cp_reginfo);
7759 ARMCPRegInfo el3_regs[] = {
7760 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7761 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7762 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7763 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7764 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7765 .access = PL3_RW,
7766 .raw_writefn = raw_write, .writefn = sctlr_write,
7767 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7768 .resetvalue = cpu->reset_sctlr },
7769 REGINFO_SENTINEL
7772 define_arm_cp_regs(cpu, el3_regs);
7774 /* The behaviour of NSACR is sufficiently various that we don't
7775 * try to describe it in a single reginfo:
7776 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7777 * reads as constant 0xc00 from NS EL1 and NS EL2
7778 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7779 * if v7 without EL3, register doesn't exist
7780 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7782 if (arm_feature(env, ARM_FEATURE_EL3)) {
7783 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7784 ARMCPRegInfo nsacr = {
7785 .name = "NSACR", .type = ARM_CP_CONST,
7786 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7787 .access = PL1_RW, .accessfn = nsacr_access,
7788 .resetvalue = 0xc00
7790 define_one_arm_cp_reg(cpu, &nsacr);
7791 } else {
7792 ARMCPRegInfo nsacr = {
7793 .name = "NSACR",
7794 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7795 .access = PL3_RW | PL1_R,
7796 .resetvalue = 0,
7797 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7799 define_one_arm_cp_reg(cpu, &nsacr);
7801 } else {
7802 if (arm_feature(env, ARM_FEATURE_V8)) {
7803 ARMCPRegInfo nsacr = {
7804 .name = "NSACR", .type = ARM_CP_CONST,
7805 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7806 .access = PL1_R,
7807 .resetvalue = 0xc00
7809 define_one_arm_cp_reg(cpu, &nsacr);
7813 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7814 if (arm_feature(env, ARM_FEATURE_V6)) {
7815 /* PMSAv6 not implemented */
7816 assert(arm_feature(env, ARM_FEATURE_V7));
7817 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7818 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7819 } else {
7820 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7822 } else {
7823 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7824 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7825 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7826 if (cpu_isar_feature(aa32_hpd, cpu)) {
7827 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7830 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7831 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7833 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7834 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7836 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7837 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7839 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7840 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7842 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7843 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7845 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7846 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7848 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7849 define_arm_cp_regs(cpu, omap_cp_reginfo);
7851 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7852 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7854 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7855 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7857 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7858 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7860 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7861 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7863 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7864 define_arm_cp_regs(cpu, jazelle_regs);
7866 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7867 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7868 * be read-only (ie write causes UNDEF exception).
7871 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7872 /* Pre-v8 MIDR space.
7873 * Note that the MIDR isn't a simple constant register because
7874 * of the TI925 behaviour where writes to another register can
7875 * cause the MIDR value to change.
7877 * Unimplemented registers in the c15 0 0 0 space default to
7878 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7879 * and friends override accordingly.
7881 { .name = "MIDR",
7882 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7883 .access = PL1_R, .resetvalue = cpu->midr,
7884 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7885 .readfn = midr_read,
7886 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7887 .type = ARM_CP_OVERRIDE },
7888 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7889 { .name = "DUMMY",
7890 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7891 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7892 { .name = "DUMMY",
7893 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7894 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7895 { .name = "DUMMY",
7896 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7897 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7898 { .name = "DUMMY",
7899 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7900 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7901 { .name = "DUMMY",
7902 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7903 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7904 REGINFO_SENTINEL
7906 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7907 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7909 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7910 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7911 .readfn = midr_read },
7912 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7913 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7915 .access = PL1_R, .resetvalue = cpu->midr },
7916 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7917 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7918 .access = PL1_R, .resetvalue = cpu->midr },
7919 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7921 .access = PL1_R,
7922 .accessfn = access_aa64_tid1,
7923 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7924 REGINFO_SENTINEL
7926 ARMCPRegInfo id_cp_reginfo[] = {
7927 /* These are common to v8 and pre-v8 */
7928 { .name = "CTR",
7929 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7930 .access = PL1_R, .accessfn = ctr_el0_access,
7931 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7932 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7933 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7934 .access = PL0_R, .accessfn = ctr_el0_access,
7935 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7936 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7937 { .name = "TCMTR",
7938 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7939 .access = PL1_R,
7940 .accessfn = access_aa32_tid1,
7941 .type = ARM_CP_CONST, .resetvalue = 0 },
7942 REGINFO_SENTINEL
7944 /* TLBTR is specific to VMSA */
7945 ARMCPRegInfo id_tlbtr_reginfo = {
7946 .name = "TLBTR",
7947 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7948 .access = PL1_R,
7949 .accessfn = access_aa32_tid1,
7950 .type = ARM_CP_CONST, .resetvalue = 0,
7952 /* MPUIR is specific to PMSA V6+ */
7953 ARMCPRegInfo id_mpuir_reginfo = {
7954 .name = "MPUIR",
7955 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7956 .access = PL1_R, .type = ARM_CP_CONST,
7957 .resetvalue = cpu->pmsav7_dregion << 8
7959 ARMCPRegInfo crn0_wi_reginfo = {
7960 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7961 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7962 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7964 #ifdef CONFIG_USER_ONLY
7965 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7966 { .name = "MIDR_EL1",
7967 .exported_bits = 0x00000000ffffffff },
7968 { .name = "REVIDR_EL1" },
7969 REGUSERINFO_SENTINEL
7971 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7972 #endif
7973 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7974 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7975 ARMCPRegInfo *r;
7976 /* Register the blanket "writes ignored" value first to cover the
7977 * whole space. Then update the specific ID registers to allow write
7978 * access, so that they ignore writes rather than causing them to
7979 * UNDEF.
7981 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7982 for (r = id_pre_v8_midr_cp_reginfo;
7983 r->type != ARM_CP_SENTINEL; r++) {
7984 r->access = PL1_RW;
7986 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7987 r->access = PL1_RW;
7989 id_mpuir_reginfo.access = PL1_RW;
7990 id_tlbtr_reginfo.access = PL1_RW;
7992 if (arm_feature(env, ARM_FEATURE_V8)) {
7993 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7994 } else {
7995 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7997 define_arm_cp_regs(cpu, id_cp_reginfo);
7998 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7999 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8000 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8001 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8005 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8006 ARMCPRegInfo mpidr_cp_reginfo[] = {
8007 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8008 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8009 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8010 REGINFO_SENTINEL
8012 #ifdef CONFIG_USER_ONLY
8013 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8014 { .name = "MPIDR_EL1",
8015 .fixed_bits = 0x0000000080000000 },
8016 REGUSERINFO_SENTINEL
8018 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8019 #endif
8020 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8023 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8024 ARMCPRegInfo auxcr_reginfo[] = {
8025 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8026 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8027 .access = PL1_RW, .accessfn = access_tacr,
8028 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8029 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8030 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8031 .access = PL2_RW, .type = ARM_CP_CONST,
8032 .resetvalue = 0 },
8033 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8034 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8035 .access = PL3_RW, .type = ARM_CP_CONST,
8036 .resetvalue = 0 },
8037 REGINFO_SENTINEL
8039 define_arm_cp_regs(cpu, auxcr_reginfo);
8040 if (cpu_isar_feature(aa32_ac2, cpu)) {
8041 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8045 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8047 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8048 * There are two flavours:
8049 * (1) older 32-bit only cores have a simple 32-bit CBAR
8050 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8051 * 32-bit register visible to AArch32 at a different encoding
8052 * to the "flavour 1" register and with the bits rearranged to
8053 * be able to squash a 64-bit address into the 32-bit view.
8054 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8055 * in future if we support AArch32-only configs of some of the
8056 * AArch64 cores we might need to add a specific feature flag
8057 * to indicate cores with "flavour 2" CBAR.
8059 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8060 /* 32 bit view is [31:18] 0...0 [43:32]. */
8061 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8062 | extract64(cpu->reset_cbar, 32, 12);
8063 ARMCPRegInfo cbar_reginfo[] = {
8064 { .name = "CBAR",
8065 .type = ARM_CP_CONST,
8066 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8067 .access = PL1_R, .resetvalue = cbar32 },
8068 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8069 .type = ARM_CP_CONST,
8070 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8071 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8072 REGINFO_SENTINEL
8074 /* We don't implement a r/w 64 bit CBAR currently */
8075 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8076 define_arm_cp_regs(cpu, cbar_reginfo);
8077 } else {
8078 ARMCPRegInfo cbar = {
8079 .name = "CBAR",
8080 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8081 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8082 .fieldoffset = offsetof(CPUARMState,
8083 cp15.c15_config_base_address)
8085 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8086 cbar.access = PL1_R;
8087 cbar.fieldoffset = 0;
8088 cbar.type = ARM_CP_CONST;
8090 define_one_arm_cp_reg(cpu, &cbar);
8094 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8095 ARMCPRegInfo vbar_cp_reginfo[] = {
8096 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8097 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8098 .access = PL1_RW, .writefn = vbar_write,
8099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8100 offsetof(CPUARMState, cp15.vbar_ns) },
8101 .resetvalue = 0 },
8102 REGINFO_SENTINEL
8104 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8107 /* Generic registers whose values depend on the implementation */
8109 ARMCPRegInfo sctlr = {
8110 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8111 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8112 .access = PL1_RW, .accessfn = access_tvm_trvm,
8113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8114 offsetof(CPUARMState, cp15.sctlr_ns) },
8115 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8116 .raw_writefn = raw_write,
8118 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8119 /* Normally we would always end the TB on an SCTLR write, but Linux
8120 * arch/arm/mach-pxa/sleep.S expects two instructions following
8121 * an MMU enable to execute from cache. Imitate this behaviour.
8123 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8125 define_one_arm_cp_reg(cpu, &sctlr);
8128 if (cpu_isar_feature(aa64_lor, cpu)) {
8129 define_arm_cp_regs(cpu, lor_reginfo);
8131 if (cpu_isar_feature(aa64_pan, cpu)) {
8132 define_one_arm_cp_reg(cpu, &pan_reginfo);
8134 #ifndef CONFIG_USER_ONLY
8135 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8136 define_arm_cp_regs(cpu, ats1e1_reginfo);
8138 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8139 define_arm_cp_regs(cpu, ats1cp_reginfo);
8141 #endif
8142 if (cpu_isar_feature(aa64_uao, cpu)) {
8143 define_one_arm_cp_reg(cpu, &uao_reginfo);
8146 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8147 define_arm_cp_regs(cpu, vhe_reginfo);
8150 if (cpu_isar_feature(aa64_sve, cpu)) {
8151 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8152 if (arm_feature(env, ARM_FEATURE_EL2)) {
8153 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8154 } else {
8155 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8157 if (arm_feature(env, ARM_FEATURE_EL3)) {
8158 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8162 #ifdef TARGET_AARCH64
8163 if (cpu_isar_feature(aa64_pauth, cpu)) {
8164 define_arm_cp_regs(cpu, pauth_reginfo);
8166 if (cpu_isar_feature(aa64_rndr, cpu)) {
8167 define_arm_cp_regs(cpu, rndr_reginfo);
8169 #ifndef CONFIG_USER_ONLY
8170 /* Data Cache clean instructions up to PoP */
8171 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8172 define_one_arm_cp_reg(cpu, dcpop_reg);
8174 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8175 define_one_arm_cp_reg(cpu, dcpodp_reg);
8178 #endif /*CONFIG_USER_ONLY*/
8181 * If full MTE is enabled, add all of the system registers.
8182 * If only "instructions available at EL0" are enabled,
8183 * then define only a RAZ/WI version of PSTATE.TCO.
8185 if (cpu_isar_feature(aa64_mte, cpu)) {
8186 define_arm_cp_regs(cpu, mte_reginfo);
8187 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8188 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8189 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8190 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8192 #endif
8194 if (cpu_isar_feature(any_predinv, cpu)) {
8195 define_arm_cp_regs(cpu, predinv_reginfo);
8198 if (cpu_isar_feature(any_ccidx, cpu)) {
8199 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8202 #ifndef CONFIG_USER_ONLY
8204 * Register redirections and aliases must be done last,
8205 * after the registers from the other extensions have been defined.
8207 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8208 define_arm_vh_e2h_redirects_aliases(cpu);
8210 #endif
8213 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8215 CPUState *cs = CPU(cpu);
8216 CPUARMState *env = &cpu->env;
8218 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8220 * The lower part of each SVE register aliases to the FPU
8221 * registers so we don't need to include both.
8223 #ifdef TARGET_AARCH64
8224 if (isar_feature_aa64_sve(&cpu->isar)) {
8225 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8226 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8227 "sve-registers.xml", 0);
8228 } else
8229 #endif
8231 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8232 aarch64_fpu_gdb_set_reg,
8233 34, "aarch64-fpu.xml", 0);
8235 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8236 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8237 51, "arm-neon.xml", 0);
8238 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8239 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8240 35, "arm-vfp3.xml", 0);
8241 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8242 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8243 19, "arm-vfp.xml", 0);
8245 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8246 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8247 "system-registers.xml", 0);
8251 /* Sort alphabetically by type name, except for "any". */
8252 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8254 ObjectClass *class_a = (ObjectClass *)a;
8255 ObjectClass *class_b = (ObjectClass *)b;
8256 const char *name_a, *name_b;
8258 name_a = object_class_get_name(class_a);
8259 name_b = object_class_get_name(class_b);
8260 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8261 return 1;
8262 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8263 return -1;
8264 } else {
8265 return strcmp(name_a, name_b);
8269 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8271 ObjectClass *oc = data;
8272 const char *typename;
8273 char *name;
8275 typename = object_class_get_name(oc);
8276 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8277 qemu_printf(" %s\n", name);
8278 g_free(name);
8281 void arm_cpu_list(void)
8283 GSList *list;
8285 list = object_class_get_list(TYPE_ARM_CPU, false);
8286 list = g_slist_sort(list, arm_cpu_list_compare);
8287 qemu_printf("Available CPUs:\n");
8288 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8289 g_slist_free(list);
8292 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8294 ObjectClass *oc = data;
8295 CpuDefinitionInfoList **cpu_list = user_data;
8296 CpuDefinitionInfoList *entry;
8297 CpuDefinitionInfo *info;
8298 const char *typename;
8300 typename = object_class_get_name(oc);
8301 info = g_malloc0(sizeof(*info));
8302 info->name = g_strndup(typename,
8303 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8304 info->q_typename = g_strdup(typename);
8306 entry = g_malloc0(sizeof(*entry));
8307 entry->value = info;
8308 entry->next = *cpu_list;
8309 *cpu_list = entry;
8312 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8314 CpuDefinitionInfoList *cpu_list = NULL;
8315 GSList *list;
8317 list = object_class_get_list(TYPE_ARM_CPU, false);
8318 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8319 g_slist_free(list);
8321 return cpu_list;
8324 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8325 void *opaque, int state, int secstate,
8326 int crm, int opc1, int opc2,
8327 const char *name)
8329 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8330 * add a single reginfo struct to the hash table.
8332 uint32_t *key = g_new(uint32_t, 1);
8333 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8334 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8335 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8337 r2->name = g_strdup(name);
8338 /* Reset the secure state to the specific incoming state. This is
8339 * necessary as the register may have been defined with both states.
8341 r2->secure = secstate;
8343 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8344 /* Register is banked (using both entries in array).
8345 * Overwriting fieldoffset as the array is only used to define
8346 * banked registers but later only fieldoffset is used.
8348 r2->fieldoffset = r->bank_fieldoffsets[ns];
8351 if (state == ARM_CP_STATE_AA32) {
8352 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8353 /* If the register is banked then we don't need to migrate or
8354 * reset the 32-bit instance in certain cases:
8356 * 1) If the register has both 32-bit and 64-bit instances then we
8357 * can count on the 64-bit instance taking care of the
8358 * non-secure bank.
8359 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8360 * taking care of the secure bank. This requires that separate
8361 * 32 and 64-bit definitions are provided.
8363 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8364 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8365 r2->type |= ARM_CP_ALIAS;
8367 } else if ((secstate != r->secure) && !ns) {
8368 /* The register is not banked so we only want to allow migration of
8369 * the non-secure instance.
8371 r2->type |= ARM_CP_ALIAS;
8374 if (r->state == ARM_CP_STATE_BOTH) {
8375 /* We assume it is a cp15 register if the .cp field is left unset.
8377 if (r2->cp == 0) {
8378 r2->cp = 15;
8381 #ifdef HOST_WORDS_BIGENDIAN
8382 if (r2->fieldoffset) {
8383 r2->fieldoffset += sizeof(uint32_t);
8385 #endif
8388 if (state == ARM_CP_STATE_AA64) {
8389 /* To allow abbreviation of ARMCPRegInfo
8390 * definitions, we treat cp == 0 as equivalent to
8391 * the value for "standard guest-visible sysreg".
8392 * STATE_BOTH definitions are also always "standard
8393 * sysreg" in their AArch64 view (the .cp value may
8394 * be non-zero for the benefit of the AArch32 view).
8396 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8397 r2->cp = CP_REG_ARM64_SYSREG_CP;
8399 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8400 r2->opc0, opc1, opc2);
8401 } else {
8402 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8404 if (opaque) {
8405 r2->opaque = opaque;
8407 /* reginfo passed to helpers is correct for the actual access,
8408 * and is never ARM_CP_STATE_BOTH:
8410 r2->state = state;
8411 /* Make sure reginfo passed to helpers for wildcarded regs
8412 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8414 r2->crm = crm;
8415 r2->opc1 = opc1;
8416 r2->opc2 = opc2;
8417 /* By convention, for wildcarded registers only the first
8418 * entry is used for migration; the others are marked as
8419 * ALIAS so we don't try to transfer the register
8420 * multiple times. Special registers (ie NOP/WFI) are
8421 * never migratable and not even raw-accessible.
8423 if ((r->type & ARM_CP_SPECIAL)) {
8424 r2->type |= ARM_CP_NO_RAW;
8426 if (((r->crm == CP_ANY) && crm != 0) ||
8427 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8428 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8429 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8432 /* Check that raw accesses are either forbidden or handled. Note that
8433 * we can't assert this earlier because the setup of fieldoffset for
8434 * banked registers has to be done first.
8436 if (!(r2->type & ARM_CP_NO_RAW)) {
8437 assert(!raw_accessors_invalid(r2));
8440 /* Overriding of an existing definition must be explicitly
8441 * requested.
8443 if (!(r->type & ARM_CP_OVERRIDE)) {
8444 ARMCPRegInfo *oldreg;
8445 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8446 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8447 fprintf(stderr, "Register redefined: cp=%d %d bit "
8448 "crn=%d crm=%d opc1=%d opc2=%d, "
8449 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8450 r2->crn, r2->crm, r2->opc1, r2->opc2,
8451 oldreg->name, r2->name);
8452 g_assert_not_reached();
8455 g_hash_table_insert(cpu->cp_regs, key, r2);
8459 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8460 const ARMCPRegInfo *r, void *opaque)
8462 /* Define implementations of coprocessor registers.
8463 * We store these in a hashtable because typically
8464 * there are less than 150 registers in a space which
8465 * is 16*16*16*8*8 = 262144 in size.
8466 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8467 * If a register is defined twice then the second definition is
8468 * used, so this can be used to define some generic registers and
8469 * then override them with implementation specific variations.
8470 * At least one of the original and the second definition should
8471 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8472 * against accidental use.
8474 * The state field defines whether the register is to be
8475 * visible in the AArch32 or AArch64 execution state. If the
8476 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8477 * reginfo structure for the AArch32 view, which sees the lower
8478 * 32 bits of the 64 bit register.
8480 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8481 * be wildcarded. AArch64 registers are always considered to be 64
8482 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8483 * the register, if any.
8485 int crm, opc1, opc2, state;
8486 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8487 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8488 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8489 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8490 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8491 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8492 /* 64 bit registers have only CRm and Opc1 fields */
8493 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8494 /* op0 only exists in the AArch64 encodings */
8495 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8496 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8497 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8499 * This API is only for Arm's system coprocessors (14 and 15) or
8500 * (M-profile or v7A-and-earlier only) for implementation defined
8501 * coprocessors in the range 0..7. Our decode assumes this, since
8502 * 8..13 can be used for other insns including VFP and Neon. See
8503 * valid_cp() in translate.c. Assert here that we haven't tried
8504 * to use an invalid coprocessor number.
8506 switch (r->state) {
8507 case ARM_CP_STATE_BOTH:
8508 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8509 if (r->cp == 0) {
8510 break;
8512 /* fall through */
8513 case ARM_CP_STATE_AA32:
8514 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8515 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8516 assert(r->cp >= 14 && r->cp <= 15);
8517 } else {
8518 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8520 break;
8521 case ARM_CP_STATE_AA64:
8522 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8523 break;
8524 default:
8525 g_assert_not_reached();
8527 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8528 * encodes a minimum access level for the register. We roll this
8529 * runtime check into our general permission check code, so check
8530 * here that the reginfo's specified permissions are strict enough
8531 * to encompass the generic architectural permission check.
8533 if (r->state != ARM_CP_STATE_AA32) {
8534 int mask = 0;
8535 switch (r->opc1) {
8536 case 0:
8537 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8538 mask = PL0U_R | PL1_RW;
8539 break;
8540 case 1: case 2:
8541 /* min_EL EL1 */
8542 mask = PL1_RW;
8543 break;
8544 case 3:
8545 /* min_EL EL0 */
8546 mask = PL0_RW;
8547 break;
8548 case 4:
8549 case 5:
8550 /* min_EL EL2 */
8551 mask = PL2_RW;
8552 break;
8553 case 6:
8554 /* min_EL EL3 */
8555 mask = PL3_RW;
8556 break;
8557 case 7:
8558 /* min_EL EL1, secure mode only (we don't check the latter) */
8559 mask = PL1_RW;
8560 break;
8561 default:
8562 /* broken reginfo with out-of-range opc1 */
8563 assert(false);
8564 break;
8566 /* assert our permissions are not too lax (stricter is fine) */
8567 assert((r->access & ~mask) == 0);
8570 /* Check that the register definition has enough info to handle
8571 * reads and writes if they are permitted.
8573 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8574 if (r->access & PL3_R) {
8575 assert((r->fieldoffset ||
8576 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8577 r->readfn);
8579 if (r->access & PL3_W) {
8580 assert((r->fieldoffset ||
8581 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8582 r->writefn);
8585 /* Bad type field probably means missing sentinel at end of reg list */
8586 assert(cptype_valid(r->type));
8587 for (crm = crmmin; crm <= crmmax; crm++) {
8588 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8589 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8590 for (state = ARM_CP_STATE_AA32;
8591 state <= ARM_CP_STATE_AA64; state++) {
8592 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8593 continue;
8595 if (state == ARM_CP_STATE_AA32) {
8596 /* Under AArch32 CP registers can be common
8597 * (same for secure and non-secure world) or banked.
8599 char *name;
8601 switch (r->secure) {
8602 case ARM_CP_SECSTATE_S:
8603 case ARM_CP_SECSTATE_NS:
8604 add_cpreg_to_hashtable(cpu, r, opaque, state,
8605 r->secure, crm, opc1, opc2,
8606 r->name);
8607 break;
8608 default:
8609 name = g_strdup_printf("%s_S", r->name);
8610 add_cpreg_to_hashtable(cpu, r, opaque, state,
8611 ARM_CP_SECSTATE_S,
8612 crm, opc1, opc2, name);
8613 g_free(name);
8614 add_cpreg_to_hashtable(cpu, r, opaque, state,
8615 ARM_CP_SECSTATE_NS,
8616 crm, opc1, opc2, r->name);
8617 break;
8619 } else {
8620 /* AArch64 registers get mapped to non-secure instance
8621 * of AArch32 */
8622 add_cpreg_to_hashtable(cpu, r, opaque, state,
8623 ARM_CP_SECSTATE_NS,
8624 crm, opc1, opc2, r->name);
8632 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8633 const ARMCPRegInfo *regs, void *opaque)
8635 /* Define a whole list of registers */
8636 const ARMCPRegInfo *r;
8637 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8638 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8643 * Modify ARMCPRegInfo for access from userspace.
8645 * This is a data driven modification directed by
8646 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8647 * user-space cannot alter any values and dynamic values pertaining to
8648 * execution state are hidden from user space view anyway.
8650 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8652 const ARMCPRegUserSpaceInfo *m;
8653 ARMCPRegInfo *r;
8655 for (m = mods; m->name; m++) {
8656 GPatternSpec *pat = NULL;
8657 if (m->is_glob) {
8658 pat = g_pattern_spec_new(m->name);
8660 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8661 if (pat && g_pattern_match_string(pat, r->name)) {
8662 r->type = ARM_CP_CONST;
8663 r->access = PL0U_R;
8664 r->resetvalue = 0;
8665 /* continue */
8666 } else if (strcmp(r->name, m->name) == 0) {
8667 r->type = ARM_CP_CONST;
8668 r->access = PL0U_R;
8669 r->resetvalue &= m->exported_bits;
8670 r->resetvalue |= m->fixed_bits;
8671 break;
8674 if (pat) {
8675 g_pattern_spec_free(pat);
8680 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8682 return g_hash_table_lookup(cpregs, &encoded_cp);
8685 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8686 uint64_t value)
8688 /* Helper coprocessor write function for write-ignore registers */
8691 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8693 /* Helper coprocessor write function for read-as-zero registers */
8694 return 0;
8697 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8699 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8702 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8704 /* Return true if it is not valid for us to switch to
8705 * this CPU mode (ie all the UNPREDICTABLE cases in
8706 * the ARM ARM CPSRWriteByInstr pseudocode).
8709 /* Changes to or from Hyp via MSR and CPS are illegal. */
8710 if (write_type == CPSRWriteByInstr &&
8711 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8712 mode == ARM_CPU_MODE_HYP)) {
8713 return 1;
8716 switch (mode) {
8717 case ARM_CPU_MODE_USR:
8718 return 0;
8719 case ARM_CPU_MODE_SYS:
8720 case ARM_CPU_MODE_SVC:
8721 case ARM_CPU_MODE_ABT:
8722 case ARM_CPU_MODE_UND:
8723 case ARM_CPU_MODE_IRQ:
8724 case ARM_CPU_MODE_FIQ:
8725 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8726 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8728 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8729 * and CPS are treated as illegal mode changes.
8731 if (write_type == CPSRWriteByInstr &&
8732 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8733 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8734 return 1;
8736 return 0;
8737 case ARM_CPU_MODE_HYP:
8738 return !arm_feature(env, ARM_FEATURE_EL2)
8739 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8740 case ARM_CPU_MODE_MON:
8741 return arm_current_el(env) < 3;
8742 default:
8743 return 1;
8747 uint32_t cpsr_read(CPUARMState *env)
8749 int ZF;
8750 ZF = (env->ZF == 0);
8751 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8752 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8753 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8754 | ((env->condexec_bits & 0xfc) << 8)
8755 | (env->GE << 16) | (env->daif & CPSR_AIF);
8758 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8759 CPSRWriteType write_type)
8761 uint32_t changed_daif;
8763 if (mask & CPSR_NZCV) {
8764 env->ZF = (~val) & CPSR_Z;
8765 env->NF = val;
8766 env->CF = (val >> 29) & 1;
8767 env->VF = (val << 3) & 0x80000000;
8769 if (mask & CPSR_Q)
8770 env->QF = ((val & CPSR_Q) != 0);
8771 if (mask & CPSR_T)
8772 env->thumb = ((val & CPSR_T) != 0);
8773 if (mask & CPSR_IT_0_1) {
8774 env->condexec_bits &= ~3;
8775 env->condexec_bits |= (val >> 25) & 3;
8777 if (mask & CPSR_IT_2_7) {
8778 env->condexec_bits &= 3;
8779 env->condexec_bits |= (val >> 8) & 0xfc;
8781 if (mask & CPSR_GE) {
8782 env->GE = (val >> 16) & 0xf;
8785 /* In a V7 implementation that includes the security extensions but does
8786 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8787 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8788 * bits respectively.
8790 * In a V8 implementation, it is permitted for privileged software to
8791 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8793 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8794 arm_feature(env, ARM_FEATURE_EL3) &&
8795 !arm_feature(env, ARM_FEATURE_EL2) &&
8796 !arm_is_secure(env)) {
8798 changed_daif = (env->daif ^ val) & mask;
8800 if (changed_daif & CPSR_A) {
8801 /* Check to see if we are allowed to change the masking of async
8802 * abort exceptions from a non-secure state.
8804 if (!(env->cp15.scr_el3 & SCR_AW)) {
8805 qemu_log_mask(LOG_GUEST_ERROR,
8806 "Ignoring attempt to switch CPSR_A flag from "
8807 "non-secure world with SCR.AW bit clear\n");
8808 mask &= ~CPSR_A;
8812 if (changed_daif & CPSR_F) {
8813 /* Check to see if we are allowed to change the masking of FIQ
8814 * exceptions from a non-secure state.
8816 if (!(env->cp15.scr_el3 & SCR_FW)) {
8817 qemu_log_mask(LOG_GUEST_ERROR,
8818 "Ignoring attempt to switch CPSR_F flag from "
8819 "non-secure world with SCR.FW bit clear\n");
8820 mask &= ~CPSR_F;
8823 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8824 * If this bit is set software is not allowed to mask
8825 * FIQs, but is allowed to set CPSR_F to 0.
8827 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8828 (val & CPSR_F)) {
8829 qemu_log_mask(LOG_GUEST_ERROR,
8830 "Ignoring attempt to enable CPSR_F flag "
8831 "(non-maskable FIQ [NMFI] support enabled)\n");
8832 mask &= ~CPSR_F;
8837 env->daif &= ~(CPSR_AIF & mask);
8838 env->daif |= val & CPSR_AIF & mask;
8840 if (write_type != CPSRWriteRaw &&
8841 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8842 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8843 /* Note that we can only get here in USR mode if this is a
8844 * gdb stub write; for this case we follow the architectural
8845 * behaviour for guest writes in USR mode of ignoring an attempt
8846 * to switch mode. (Those are caught by translate.c for writes
8847 * triggered by guest instructions.)
8849 mask &= ~CPSR_M;
8850 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8851 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8852 * v7, and has defined behaviour in v8:
8853 * + leave CPSR.M untouched
8854 * + allow changes to the other CPSR fields
8855 * + set PSTATE.IL
8856 * For user changes via the GDB stub, we don't set PSTATE.IL,
8857 * as this would be unnecessarily harsh for a user error.
8859 mask &= ~CPSR_M;
8860 if (write_type != CPSRWriteByGDBStub &&
8861 arm_feature(env, ARM_FEATURE_V8)) {
8862 mask |= CPSR_IL;
8863 val |= CPSR_IL;
8865 qemu_log_mask(LOG_GUEST_ERROR,
8866 "Illegal AArch32 mode switch attempt from %s to %s\n",
8867 aarch32_mode_name(env->uncached_cpsr),
8868 aarch32_mode_name(val));
8869 } else {
8870 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8871 write_type == CPSRWriteExceptionReturn ?
8872 "Exception return from AArch32" :
8873 "AArch32 mode switch from",
8874 aarch32_mode_name(env->uncached_cpsr),
8875 aarch32_mode_name(val), env->regs[15]);
8876 switch_mode(env, val & CPSR_M);
8879 mask &= ~CACHED_CPSR_BITS;
8880 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8883 /* Sign/zero extend */
8884 uint32_t HELPER(sxtb16)(uint32_t x)
8886 uint32_t res;
8887 res = (uint16_t)(int8_t)x;
8888 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8889 return res;
8892 uint32_t HELPER(uxtb16)(uint32_t x)
8894 uint32_t res;
8895 res = (uint16_t)(uint8_t)x;
8896 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8897 return res;
8900 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8902 if (den == 0)
8903 return 0;
8904 if (num == INT_MIN && den == -1)
8905 return INT_MIN;
8906 return num / den;
8909 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8911 if (den == 0)
8912 return 0;
8913 return num / den;
8916 uint32_t HELPER(rbit)(uint32_t x)
8918 return revbit32(x);
8921 #ifdef CONFIG_USER_ONLY
8923 static void switch_mode(CPUARMState *env, int mode)
8925 ARMCPU *cpu = env_archcpu(env);
8927 if (mode != ARM_CPU_MODE_USR) {
8928 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8932 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8933 uint32_t cur_el, bool secure)
8935 return 1;
8938 void aarch64_sync_64_to_32(CPUARMState *env)
8940 g_assert_not_reached();
8943 #else
8945 static void switch_mode(CPUARMState *env, int mode)
8947 int old_mode;
8948 int i;
8950 old_mode = env->uncached_cpsr & CPSR_M;
8951 if (mode == old_mode)
8952 return;
8954 if (old_mode == ARM_CPU_MODE_FIQ) {
8955 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8956 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8957 } else if (mode == ARM_CPU_MODE_FIQ) {
8958 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8959 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8962 i = bank_number(old_mode);
8963 env->banked_r13[i] = env->regs[13];
8964 env->banked_spsr[i] = env->spsr;
8966 i = bank_number(mode);
8967 env->regs[13] = env->banked_r13[i];
8968 env->spsr = env->banked_spsr[i];
8970 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8971 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8974 /* Physical Interrupt Target EL Lookup Table
8976 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8978 * The below multi-dimensional table is used for looking up the target
8979 * exception level given numerous condition criteria. Specifically, the
8980 * target EL is based on SCR and HCR routing controls as well as the
8981 * currently executing EL and secure state.
8983 * Dimensions:
8984 * target_el_table[2][2][2][2][2][4]
8985 * | | | | | +--- Current EL
8986 * | | | | +------ Non-secure(0)/Secure(1)
8987 * | | | +--------- HCR mask override
8988 * | | +------------ SCR exec state control
8989 * | +--------------- SCR mask override
8990 * +------------------ 32-bit(0)/64-bit(1) EL3
8992 * The table values are as such:
8993 * 0-3 = EL0-EL3
8994 * -1 = Cannot occur
8996 * The ARM ARM target EL table includes entries indicating that an "exception
8997 * is not taken". The two cases where this is applicable are:
8998 * 1) An exception is taken from EL3 but the SCR does not have the exception
8999 * routed to EL3.
9000 * 2) An exception is taken from EL2 but the HCR does not have the exception
9001 * routed to EL2.
9002 * In these two cases, the below table contain a target of EL1. This value is
9003 * returned as it is expected that the consumer of the table data will check
9004 * for "target EL >= current EL" to ensure the exception is not taken.
9006 * SCR HCR
9007 * 64 EA AMO From
9008 * BIT IRQ IMO Non-secure Secure
9009 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9011 static const int8_t target_el_table[2][2][2][2][2][4] = {
9012 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9013 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9014 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9015 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9016 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9017 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9018 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9019 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9020 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9021 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
9022 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
9023 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
9024 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9025 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9026 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9027 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
9031 * Determine the target EL for physical exceptions
9033 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9034 uint32_t cur_el, bool secure)
9036 CPUARMState *env = cs->env_ptr;
9037 bool rw;
9038 bool scr;
9039 bool hcr;
9040 int target_el;
9041 /* Is the highest EL AArch64? */
9042 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9043 uint64_t hcr_el2;
9045 if (arm_feature(env, ARM_FEATURE_EL3)) {
9046 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9047 } else {
9048 /* Either EL2 is the highest EL (and so the EL2 register width
9049 * is given by is64); or there is no EL2 or EL3, in which case
9050 * the value of 'rw' does not affect the table lookup anyway.
9052 rw = is64;
9055 hcr_el2 = arm_hcr_el2_eff(env);
9056 switch (excp_idx) {
9057 case EXCP_IRQ:
9058 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9059 hcr = hcr_el2 & HCR_IMO;
9060 break;
9061 case EXCP_FIQ:
9062 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9063 hcr = hcr_el2 & HCR_FMO;
9064 break;
9065 default:
9066 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9067 hcr = hcr_el2 & HCR_AMO;
9068 break;
9072 * For these purposes, TGE and AMO/IMO/FMO both force the
9073 * interrupt to EL2. Fold TGE into the bit extracted above.
9075 hcr |= (hcr_el2 & HCR_TGE) != 0;
9077 /* Perform a table-lookup for the target EL given the current state */
9078 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9080 assert(target_el > 0);
9082 return target_el;
9085 void arm_log_exception(int idx)
9087 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9088 const char *exc = NULL;
9089 static const char * const excnames[] = {
9090 [EXCP_UDEF] = "Undefined Instruction",
9091 [EXCP_SWI] = "SVC",
9092 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9093 [EXCP_DATA_ABORT] = "Data Abort",
9094 [EXCP_IRQ] = "IRQ",
9095 [EXCP_FIQ] = "FIQ",
9096 [EXCP_BKPT] = "Breakpoint",
9097 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9098 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9099 [EXCP_HVC] = "Hypervisor Call",
9100 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9101 [EXCP_SMC] = "Secure Monitor Call",
9102 [EXCP_VIRQ] = "Virtual IRQ",
9103 [EXCP_VFIQ] = "Virtual FIQ",
9104 [EXCP_SEMIHOST] = "Semihosting call",
9105 [EXCP_NOCP] = "v7M NOCP UsageFault",
9106 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9107 [EXCP_STKOF] = "v8M STKOF UsageFault",
9108 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9109 [EXCP_LSERR] = "v8M LSERR UsageFault",
9110 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9113 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9114 exc = excnames[idx];
9116 if (!exc) {
9117 exc = "unknown";
9119 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9124 * Function used to synchronize QEMU's AArch64 register set with AArch32
9125 * register set. This is necessary when switching between AArch32 and AArch64
9126 * execution state.
9128 void aarch64_sync_32_to_64(CPUARMState *env)
9130 int i;
9131 uint32_t mode = env->uncached_cpsr & CPSR_M;
9133 /* We can blanket copy R[0:7] to X[0:7] */
9134 for (i = 0; i < 8; i++) {
9135 env->xregs[i] = env->regs[i];
9139 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9140 * Otherwise, they come from the banked user regs.
9142 if (mode == ARM_CPU_MODE_FIQ) {
9143 for (i = 8; i < 13; i++) {
9144 env->xregs[i] = env->usr_regs[i - 8];
9146 } else {
9147 for (i = 8; i < 13; i++) {
9148 env->xregs[i] = env->regs[i];
9153 * Registers x13-x23 are the various mode SP and FP registers. Registers
9154 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9155 * from the mode banked register.
9157 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9158 env->xregs[13] = env->regs[13];
9159 env->xregs[14] = env->regs[14];
9160 } else {
9161 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9162 /* HYP is an exception in that it is copied from r14 */
9163 if (mode == ARM_CPU_MODE_HYP) {
9164 env->xregs[14] = env->regs[14];
9165 } else {
9166 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9170 if (mode == ARM_CPU_MODE_HYP) {
9171 env->xregs[15] = env->regs[13];
9172 } else {
9173 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9176 if (mode == ARM_CPU_MODE_IRQ) {
9177 env->xregs[16] = env->regs[14];
9178 env->xregs[17] = env->regs[13];
9179 } else {
9180 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9181 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9184 if (mode == ARM_CPU_MODE_SVC) {
9185 env->xregs[18] = env->regs[14];
9186 env->xregs[19] = env->regs[13];
9187 } else {
9188 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9189 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9192 if (mode == ARM_CPU_MODE_ABT) {
9193 env->xregs[20] = env->regs[14];
9194 env->xregs[21] = env->regs[13];
9195 } else {
9196 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9197 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9200 if (mode == ARM_CPU_MODE_UND) {
9201 env->xregs[22] = env->regs[14];
9202 env->xregs[23] = env->regs[13];
9203 } else {
9204 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9205 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9209 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9210 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9211 * FIQ bank for r8-r14.
9213 if (mode == ARM_CPU_MODE_FIQ) {
9214 for (i = 24; i < 31; i++) {
9215 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9217 } else {
9218 for (i = 24; i < 29; i++) {
9219 env->xregs[i] = env->fiq_regs[i - 24];
9221 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9222 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9225 env->pc = env->regs[15];
9229 * Function used to synchronize QEMU's AArch32 register set with AArch64
9230 * register set. This is necessary when switching between AArch32 and AArch64
9231 * execution state.
9233 void aarch64_sync_64_to_32(CPUARMState *env)
9235 int i;
9236 uint32_t mode = env->uncached_cpsr & CPSR_M;
9238 /* We can blanket copy X[0:7] to R[0:7] */
9239 for (i = 0; i < 8; i++) {
9240 env->regs[i] = env->xregs[i];
9244 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9245 * Otherwise, we copy x8-x12 into the banked user regs.
9247 if (mode == ARM_CPU_MODE_FIQ) {
9248 for (i = 8; i < 13; i++) {
9249 env->usr_regs[i - 8] = env->xregs[i];
9251 } else {
9252 for (i = 8; i < 13; i++) {
9253 env->regs[i] = env->xregs[i];
9258 * Registers r13 & r14 depend on the current mode.
9259 * If we are in a given mode, we copy the corresponding x registers to r13
9260 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9261 * for the mode.
9263 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9264 env->regs[13] = env->xregs[13];
9265 env->regs[14] = env->xregs[14];
9266 } else {
9267 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9270 * HYP is an exception in that it does not have its own banked r14 but
9271 * shares the USR r14
9273 if (mode == ARM_CPU_MODE_HYP) {
9274 env->regs[14] = env->xregs[14];
9275 } else {
9276 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9280 if (mode == ARM_CPU_MODE_HYP) {
9281 env->regs[13] = env->xregs[15];
9282 } else {
9283 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9286 if (mode == ARM_CPU_MODE_IRQ) {
9287 env->regs[14] = env->xregs[16];
9288 env->regs[13] = env->xregs[17];
9289 } else {
9290 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9291 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9294 if (mode == ARM_CPU_MODE_SVC) {
9295 env->regs[14] = env->xregs[18];
9296 env->regs[13] = env->xregs[19];
9297 } else {
9298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9299 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9302 if (mode == ARM_CPU_MODE_ABT) {
9303 env->regs[14] = env->xregs[20];
9304 env->regs[13] = env->xregs[21];
9305 } else {
9306 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9307 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9310 if (mode == ARM_CPU_MODE_UND) {
9311 env->regs[14] = env->xregs[22];
9312 env->regs[13] = env->xregs[23];
9313 } else {
9314 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9315 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9318 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9319 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9320 * FIQ bank for r8-r14.
9322 if (mode == ARM_CPU_MODE_FIQ) {
9323 for (i = 24; i < 31; i++) {
9324 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9326 } else {
9327 for (i = 24; i < 29; i++) {
9328 env->fiq_regs[i - 24] = env->xregs[i];
9330 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9331 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9334 env->regs[15] = env->pc;
9337 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9338 uint32_t mask, uint32_t offset,
9339 uint32_t newpc)
9341 int new_el;
9343 /* Change the CPU state so as to actually take the exception. */
9344 switch_mode(env, new_mode);
9347 * For exceptions taken to AArch32 we must clear the SS bit in both
9348 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9350 env->uncached_cpsr &= ~PSTATE_SS;
9351 env->spsr = cpsr_read(env);
9352 /* Clear IT bits. */
9353 env->condexec_bits = 0;
9354 /* Switch to the new mode, and to the correct instruction set. */
9355 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9357 /* This must be after mode switching. */
9358 new_el = arm_current_el(env);
9360 /* Set new mode endianness */
9361 env->uncached_cpsr &= ~CPSR_E;
9362 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9363 env->uncached_cpsr |= CPSR_E;
9365 /* J and IL must always be cleared for exception entry */
9366 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9367 env->daif |= mask;
9369 if (new_mode == ARM_CPU_MODE_HYP) {
9370 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9371 env->elr_el[2] = env->regs[15];
9372 } else {
9373 /* CPSR.PAN is normally preserved preserved unless... */
9374 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9375 switch (new_el) {
9376 case 3:
9377 if (!arm_is_secure_below_el3(env)) {
9378 /* ... the target is EL3, from non-secure state. */
9379 env->uncached_cpsr &= ~CPSR_PAN;
9380 break;
9382 /* ... the target is EL3, from secure state ... */
9383 /* fall through */
9384 case 1:
9385 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9386 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9387 env->uncached_cpsr |= CPSR_PAN;
9389 break;
9393 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9394 * and we should just guard the thumb mode on V4
9396 if (arm_feature(env, ARM_FEATURE_V4T)) {
9397 env->thumb =
9398 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9400 env->regs[14] = env->regs[15] + offset;
9402 env->regs[15] = newpc;
9403 arm_rebuild_hflags(env);
9406 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9409 * Handle exception entry to Hyp mode; this is sufficiently
9410 * different to entry to other AArch32 modes that we handle it
9411 * separately here.
9413 * The vector table entry used is always the 0x14 Hyp mode entry point,
9414 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9415 * The offset applied to the preferred return address is always zero
9416 * (see DDI0487C.a section G1.12.3).
9417 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9419 uint32_t addr, mask;
9420 ARMCPU *cpu = ARM_CPU(cs);
9421 CPUARMState *env = &cpu->env;
9423 switch (cs->exception_index) {
9424 case EXCP_UDEF:
9425 addr = 0x04;
9426 break;
9427 case EXCP_SWI:
9428 addr = 0x14;
9429 break;
9430 case EXCP_BKPT:
9431 /* Fall through to prefetch abort. */
9432 case EXCP_PREFETCH_ABORT:
9433 env->cp15.ifar_s = env->exception.vaddress;
9434 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9435 (uint32_t)env->exception.vaddress);
9436 addr = 0x0c;
9437 break;
9438 case EXCP_DATA_ABORT:
9439 env->cp15.dfar_s = env->exception.vaddress;
9440 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9441 (uint32_t)env->exception.vaddress);
9442 addr = 0x10;
9443 break;
9444 case EXCP_IRQ:
9445 addr = 0x18;
9446 break;
9447 case EXCP_FIQ:
9448 addr = 0x1c;
9449 break;
9450 case EXCP_HVC:
9451 addr = 0x08;
9452 break;
9453 case EXCP_HYP_TRAP:
9454 addr = 0x14;
9455 break;
9456 default:
9457 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9460 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9461 if (!arm_feature(env, ARM_FEATURE_V8)) {
9463 * QEMU syndrome values are v8-style. v7 has the IL bit
9464 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9465 * If this is a v7 CPU, squash the IL bit in those cases.
9467 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9468 (cs->exception_index == EXCP_DATA_ABORT &&
9469 !(env->exception.syndrome & ARM_EL_ISV)) ||
9470 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9471 env->exception.syndrome &= ~ARM_EL_IL;
9474 env->cp15.esr_el[2] = env->exception.syndrome;
9477 if (arm_current_el(env) != 2 && addr < 0x14) {
9478 addr = 0x14;
9481 mask = 0;
9482 if (!(env->cp15.scr_el3 & SCR_EA)) {
9483 mask |= CPSR_A;
9485 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9486 mask |= CPSR_I;
9488 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9489 mask |= CPSR_F;
9492 addr += env->cp15.hvbar;
9494 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9497 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9499 ARMCPU *cpu = ARM_CPU(cs);
9500 CPUARMState *env = &cpu->env;
9501 uint32_t addr;
9502 uint32_t mask;
9503 int new_mode;
9504 uint32_t offset;
9505 uint32_t moe;
9507 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9508 switch (syn_get_ec(env->exception.syndrome)) {
9509 case EC_BREAKPOINT:
9510 case EC_BREAKPOINT_SAME_EL:
9511 moe = 1;
9512 break;
9513 case EC_WATCHPOINT:
9514 case EC_WATCHPOINT_SAME_EL:
9515 moe = 10;
9516 break;
9517 case EC_AA32_BKPT:
9518 moe = 3;
9519 break;
9520 case EC_VECTORCATCH:
9521 moe = 5;
9522 break;
9523 default:
9524 moe = 0;
9525 break;
9528 if (moe) {
9529 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9532 if (env->exception.target_el == 2) {
9533 arm_cpu_do_interrupt_aarch32_hyp(cs);
9534 return;
9537 switch (cs->exception_index) {
9538 case EXCP_UDEF:
9539 new_mode = ARM_CPU_MODE_UND;
9540 addr = 0x04;
9541 mask = CPSR_I;
9542 if (env->thumb)
9543 offset = 2;
9544 else
9545 offset = 4;
9546 break;
9547 case EXCP_SWI:
9548 new_mode = ARM_CPU_MODE_SVC;
9549 addr = 0x08;
9550 mask = CPSR_I;
9551 /* The PC already points to the next instruction. */
9552 offset = 0;
9553 break;
9554 case EXCP_BKPT:
9555 /* Fall through to prefetch abort. */
9556 case EXCP_PREFETCH_ABORT:
9557 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9558 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9559 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9560 env->exception.fsr, (uint32_t)env->exception.vaddress);
9561 new_mode = ARM_CPU_MODE_ABT;
9562 addr = 0x0c;
9563 mask = CPSR_A | CPSR_I;
9564 offset = 4;
9565 break;
9566 case EXCP_DATA_ABORT:
9567 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9568 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9569 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9570 env->exception.fsr,
9571 (uint32_t)env->exception.vaddress);
9572 new_mode = ARM_CPU_MODE_ABT;
9573 addr = 0x10;
9574 mask = CPSR_A | CPSR_I;
9575 offset = 8;
9576 break;
9577 case EXCP_IRQ:
9578 new_mode = ARM_CPU_MODE_IRQ;
9579 addr = 0x18;
9580 /* Disable IRQ and imprecise data aborts. */
9581 mask = CPSR_A | CPSR_I;
9582 offset = 4;
9583 if (env->cp15.scr_el3 & SCR_IRQ) {
9584 /* IRQ routed to monitor mode */
9585 new_mode = ARM_CPU_MODE_MON;
9586 mask |= CPSR_F;
9588 break;
9589 case EXCP_FIQ:
9590 new_mode = ARM_CPU_MODE_FIQ;
9591 addr = 0x1c;
9592 /* Disable FIQ, IRQ and imprecise data aborts. */
9593 mask = CPSR_A | CPSR_I | CPSR_F;
9594 if (env->cp15.scr_el3 & SCR_FIQ) {
9595 /* FIQ routed to monitor mode */
9596 new_mode = ARM_CPU_MODE_MON;
9598 offset = 4;
9599 break;
9600 case EXCP_VIRQ:
9601 new_mode = ARM_CPU_MODE_IRQ;
9602 addr = 0x18;
9603 /* Disable IRQ and imprecise data aborts. */
9604 mask = CPSR_A | CPSR_I;
9605 offset = 4;
9606 break;
9607 case EXCP_VFIQ:
9608 new_mode = ARM_CPU_MODE_FIQ;
9609 addr = 0x1c;
9610 /* Disable FIQ, IRQ and imprecise data aborts. */
9611 mask = CPSR_A | CPSR_I | CPSR_F;
9612 offset = 4;
9613 break;
9614 case EXCP_SMC:
9615 new_mode = ARM_CPU_MODE_MON;
9616 addr = 0x08;
9617 mask = CPSR_A | CPSR_I | CPSR_F;
9618 offset = 0;
9619 break;
9620 default:
9621 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9622 return; /* Never happens. Keep compiler happy. */
9625 if (new_mode == ARM_CPU_MODE_MON) {
9626 addr += env->cp15.mvbar;
9627 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9628 /* High vectors. When enabled, base address cannot be remapped. */
9629 addr += 0xffff0000;
9630 } else {
9631 /* ARM v7 architectures provide a vector base address register to remap
9632 * the interrupt vector table.
9633 * This register is only followed in non-monitor mode, and is banked.
9634 * Note: only bits 31:5 are valid.
9636 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9639 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9640 env->cp15.scr_el3 &= ~SCR_NS;
9643 take_aarch32_exception(env, new_mode, mask, offset, addr);
9646 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9649 * Return the register number of the AArch64 view of the AArch32
9650 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9651 * be that of the AArch32 mode the exception came from.
9653 int mode = env->uncached_cpsr & CPSR_M;
9655 switch (aarch32_reg) {
9656 case 0 ... 7:
9657 return aarch32_reg;
9658 case 8 ... 12:
9659 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9660 case 13:
9661 switch (mode) {
9662 case ARM_CPU_MODE_USR:
9663 case ARM_CPU_MODE_SYS:
9664 return 13;
9665 case ARM_CPU_MODE_HYP:
9666 return 15;
9667 case ARM_CPU_MODE_IRQ:
9668 return 17;
9669 case ARM_CPU_MODE_SVC:
9670 return 19;
9671 case ARM_CPU_MODE_ABT:
9672 return 21;
9673 case ARM_CPU_MODE_UND:
9674 return 23;
9675 case ARM_CPU_MODE_FIQ:
9676 return 29;
9677 default:
9678 g_assert_not_reached();
9680 case 14:
9681 switch (mode) {
9682 case ARM_CPU_MODE_USR:
9683 case ARM_CPU_MODE_SYS:
9684 case ARM_CPU_MODE_HYP:
9685 return 14;
9686 case ARM_CPU_MODE_IRQ:
9687 return 16;
9688 case ARM_CPU_MODE_SVC:
9689 return 18;
9690 case ARM_CPU_MODE_ABT:
9691 return 20;
9692 case ARM_CPU_MODE_UND:
9693 return 22;
9694 case ARM_CPU_MODE_FIQ:
9695 return 30;
9696 default:
9697 g_assert_not_reached();
9699 case 15:
9700 return 31;
9701 default:
9702 g_assert_not_reached();
9706 /* Handle exception entry to a target EL which is using AArch64 */
9707 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9709 ARMCPU *cpu = ARM_CPU(cs);
9710 CPUARMState *env = &cpu->env;
9711 unsigned int new_el = env->exception.target_el;
9712 target_ulong addr = env->cp15.vbar_el[new_el];
9713 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9714 unsigned int old_mode;
9715 unsigned int cur_el = arm_current_el(env);
9716 int rt;
9719 * Note that new_el can never be 0. If cur_el is 0, then
9720 * el0_a64 is is_a64(), else el0_a64 is ignored.
9722 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9724 if (cur_el < new_el) {
9725 /* Entry vector offset depends on whether the implemented EL
9726 * immediately lower than the target level is using AArch32 or AArch64
9728 bool is_aa64;
9729 uint64_t hcr;
9731 switch (new_el) {
9732 case 3:
9733 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9734 break;
9735 case 2:
9736 hcr = arm_hcr_el2_eff(env);
9737 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9738 is_aa64 = (hcr & HCR_RW) != 0;
9739 break;
9741 /* fall through */
9742 case 1:
9743 is_aa64 = is_a64(env);
9744 break;
9745 default:
9746 g_assert_not_reached();
9749 if (is_aa64) {
9750 addr += 0x400;
9751 } else {
9752 addr += 0x600;
9754 } else if (pstate_read(env) & PSTATE_SP) {
9755 addr += 0x200;
9758 switch (cs->exception_index) {
9759 case EXCP_PREFETCH_ABORT:
9760 case EXCP_DATA_ABORT:
9761 env->cp15.far_el[new_el] = env->exception.vaddress;
9762 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9763 env->cp15.far_el[new_el]);
9764 /* fall through */
9765 case EXCP_BKPT:
9766 case EXCP_UDEF:
9767 case EXCP_SWI:
9768 case EXCP_HVC:
9769 case EXCP_HYP_TRAP:
9770 case EXCP_SMC:
9771 switch (syn_get_ec(env->exception.syndrome)) {
9772 case EC_ADVSIMDFPACCESSTRAP:
9774 * QEMU internal FP/SIMD syndromes from AArch32 include the
9775 * TA and coproc fields which are only exposed if the exception
9776 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9777 * AArch64 format syndrome.
9779 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9780 break;
9781 case EC_CP14RTTRAP:
9782 case EC_CP15RTTRAP:
9783 case EC_CP14DTTRAP:
9785 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9786 * the raw register field from the insn; when taking this to
9787 * AArch64 we must convert it to the AArch64 view of the register
9788 * number. Notice that we read a 4-bit AArch32 register number and
9789 * write back a 5-bit AArch64 one.
9791 rt = extract32(env->exception.syndrome, 5, 4);
9792 rt = aarch64_regnum(env, rt);
9793 env->exception.syndrome = deposit32(env->exception.syndrome,
9794 5, 5, rt);
9795 break;
9796 case EC_CP15RRTTRAP:
9797 case EC_CP14RRTTRAP:
9798 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9799 rt = extract32(env->exception.syndrome, 5, 4);
9800 rt = aarch64_regnum(env, rt);
9801 env->exception.syndrome = deposit32(env->exception.syndrome,
9802 5, 5, rt);
9803 rt = extract32(env->exception.syndrome, 10, 4);
9804 rt = aarch64_regnum(env, rt);
9805 env->exception.syndrome = deposit32(env->exception.syndrome,
9806 10, 5, rt);
9807 break;
9809 env->cp15.esr_el[new_el] = env->exception.syndrome;
9810 break;
9811 case EXCP_IRQ:
9812 case EXCP_VIRQ:
9813 addr += 0x80;
9814 break;
9815 case EXCP_FIQ:
9816 case EXCP_VFIQ:
9817 addr += 0x100;
9818 break;
9819 default:
9820 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9823 if (is_a64(env)) {
9824 old_mode = pstate_read(env);
9825 aarch64_save_sp(env, arm_current_el(env));
9826 env->elr_el[new_el] = env->pc;
9827 } else {
9828 old_mode = cpsr_read(env);
9829 env->elr_el[new_el] = env->regs[15];
9831 aarch64_sync_32_to_64(env);
9833 env->condexec_bits = 0;
9835 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9837 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9838 env->elr_el[new_el]);
9840 if (cpu_isar_feature(aa64_pan, cpu)) {
9841 /* The value of PSTATE.PAN is normally preserved, except when ... */
9842 new_mode |= old_mode & PSTATE_PAN;
9843 switch (new_el) {
9844 case 2:
9845 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9846 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9847 != (HCR_E2H | HCR_TGE)) {
9848 break;
9850 /* fall through */
9851 case 1:
9852 /* ... the target is EL1 ... */
9853 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9854 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9855 new_mode |= PSTATE_PAN;
9857 break;
9860 if (cpu_isar_feature(aa64_mte, cpu)) {
9861 new_mode |= PSTATE_TCO;
9864 pstate_write(env, PSTATE_DAIF | new_mode);
9865 env->aarch64 = 1;
9866 aarch64_restore_sp(env, new_el);
9867 helper_rebuild_hflags_a64(env, new_el);
9869 env->pc = addr;
9871 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9872 new_el, env->pc, pstate_read(env));
9876 * Do semihosting call and set the appropriate return value. All the
9877 * permission and validity checks have been done at translate time.
9879 * We only see semihosting exceptions in TCG only as they are not
9880 * trapped to the hypervisor in KVM.
9882 #ifdef CONFIG_TCG
9883 static void handle_semihosting(CPUState *cs)
9885 ARMCPU *cpu = ARM_CPU(cs);
9886 CPUARMState *env = &cpu->env;
9888 if (is_a64(env)) {
9889 qemu_log_mask(CPU_LOG_INT,
9890 "...handling as semihosting call 0x%" PRIx64 "\n",
9891 env->xregs[0]);
9892 env->xregs[0] = do_arm_semihosting(env);
9893 env->pc += 4;
9894 } else {
9895 qemu_log_mask(CPU_LOG_INT,
9896 "...handling as semihosting call 0x%x\n",
9897 env->regs[0]);
9898 env->regs[0] = do_arm_semihosting(env);
9899 env->regs[15] += env->thumb ? 2 : 4;
9902 #endif
9904 /* Handle a CPU exception for A and R profile CPUs.
9905 * Do any appropriate logging, handle PSCI calls, and then hand off
9906 * to the AArch64-entry or AArch32-entry function depending on the
9907 * target exception level's register width.
9909 void arm_cpu_do_interrupt(CPUState *cs)
9911 ARMCPU *cpu = ARM_CPU(cs);
9912 CPUARMState *env = &cpu->env;
9913 unsigned int new_el = env->exception.target_el;
9915 assert(!arm_feature(env, ARM_FEATURE_M));
9917 arm_log_exception(cs->exception_index);
9918 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9919 new_el);
9920 if (qemu_loglevel_mask(CPU_LOG_INT)
9921 && !excp_is_internal(cs->exception_index)) {
9922 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9923 syn_get_ec(env->exception.syndrome),
9924 env->exception.syndrome);
9927 if (arm_is_psci_call(cpu, cs->exception_index)) {
9928 arm_handle_psci_call(cpu);
9929 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9930 return;
9934 * Semihosting semantics depend on the register width of the code
9935 * that caused the exception, not the target exception level, so
9936 * must be handled here.
9938 #ifdef CONFIG_TCG
9939 if (cs->exception_index == EXCP_SEMIHOST) {
9940 handle_semihosting(cs);
9941 return;
9943 #endif
9945 /* Hooks may change global state so BQL should be held, also the
9946 * BQL needs to be held for any modification of
9947 * cs->interrupt_request.
9949 g_assert(qemu_mutex_iothread_locked());
9951 arm_call_pre_el_change_hook(cpu);
9953 assert(!excp_is_internal(cs->exception_index));
9954 if (arm_el_is_aa64(env, new_el)) {
9955 arm_cpu_do_interrupt_aarch64(cs);
9956 } else {
9957 arm_cpu_do_interrupt_aarch32(cs);
9960 arm_call_el_change_hook(cpu);
9962 if (!kvm_enabled()) {
9963 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9966 #endif /* !CONFIG_USER_ONLY */
9968 uint64_t arm_sctlr(CPUARMState *env, int el)
9970 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9971 if (el == 0) {
9972 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9973 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9975 return env->cp15.sctlr_el[el];
9978 /* Return the SCTLR value which controls this address translation regime */
9979 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9981 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9984 #ifndef CONFIG_USER_ONLY
9986 /* Return true if the specified stage of address translation is disabled */
9987 static inline bool regime_translation_disabled(CPUARMState *env,
9988 ARMMMUIdx mmu_idx)
9990 if (arm_feature(env, ARM_FEATURE_M)) {
9991 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9992 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9993 case R_V7M_MPU_CTRL_ENABLE_MASK:
9994 /* Enabled, but not for HardFault and NMI */
9995 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9996 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9997 /* Enabled for all cases */
9998 return false;
9999 case 0:
10000 default:
10001 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10002 * we warned about that in armv7m_nvic.c when the guest set it.
10004 return true;
10008 if (mmu_idx == ARMMMUIdx_Stage2) {
10009 /* HCR.DC means HCR.VM behaves as 1 */
10010 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10013 if (env->cp15.hcr_el2 & HCR_TGE) {
10014 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10015 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10016 return true;
10020 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10021 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10022 return true;
10025 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10028 static inline bool regime_translation_big_endian(CPUARMState *env,
10029 ARMMMUIdx mmu_idx)
10031 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10034 /* Return the TTBR associated with this translation regime */
10035 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10036 int ttbrn)
10038 if (mmu_idx == ARMMMUIdx_Stage2) {
10039 return env->cp15.vttbr_el2;
10041 if (ttbrn == 0) {
10042 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10043 } else {
10044 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10048 #endif /* !CONFIG_USER_ONLY */
10050 /* Convert a possible stage1+2 MMU index into the appropriate
10051 * stage 1 MMU index
10053 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10055 switch (mmu_idx) {
10056 case ARMMMUIdx_E10_0:
10057 return ARMMMUIdx_Stage1_E0;
10058 case ARMMMUIdx_E10_1:
10059 return ARMMMUIdx_Stage1_E1;
10060 case ARMMMUIdx_E10_1_PAN:
10061 return ARMMMUIdx_Stage1_E1_PAN;
10062 default:
10063 return mmu_idx;
10067 /* Return true if the translation regime is using LPAE format page tables */
10068 static inline bool regime_using_lpae_format(CPUARMState *env,
10069 ARMMMUIdx mmu_idx)
10071 int el = regime_el(env, mmu_idx);
10072 if (el == 2 || arm_el_is_aa64(env, el)) {
10073 return true;
10075 if (arm_feature(env, ARM_FEATURE_LPAE)
10076 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10077 return true;
10079 return false;
10082 /* Returns true if the stage 1 translation regime is using LPAE format page
10083 * tables. Used when raising alignment exceptions, whose FSR changes depending
10084 * on whether the long or short descriptor format is in use. */
10085 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10087 mmu_idx = stage_1_mmu_idx(mmu_idx);
10089 return regime_using_lpae_format(env, mmu_idx);
10092 #ifndef CONFIG_USER_ONLY
10093 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10095 switch (mmu_idx) {
10096 case ARMMMUIdx_SE10_0:
10097 case ARMMMUIdx_E20_0:
10098 case ARMMMUIdx_Stage1_E0:
10099 case ARMMMUIdx_MUser:
10100 case ARMMMUIdx_MSUser:
10101 case ARMMMUIdx_MUserNegPri:
10102 case ARMMMUIdx_MSUserNegPri:
10103 return true;
10104 default:
10105 return false;
10106 case ARMMMUIdx_E10_0:
10107 case ARMMMUIdx_E10_1:
10108 case ARMMMUIdx_E10_1_PAN:
10109 g_assert_not_reached();
10113 /* Translate section/page access permissions to page
10114 * R/W protection flags
10116 * @env: CPUARMState
10117 * @mmu_idx: MMU index indicating required translation regime
10118 * @ap: The 3-bit access permissions (AP[2:0])
10119 * @domain_prot: The 2-bit domain access permissions
10121 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10122 int ap, int domain_prot)
10124 bool is_user = regime_is_user(env, mmu_idx);
10126 if (domain_prot == 3) {
10127 return PAGE_READ | PAGE_WRITE;
10130 switch (ap) {
10131 case 0:
10132 if (arm_feature(env, ARM_FEATURE_V7)) {
10133 return 0;
10135 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10136 case SCTLR_S:
10137 return is_user ? 0 : PAGE_READ;
10138 case SCTLR_R:
10139 return PAGE_READ;
10140 default:
10141 return 0;
10143 case 1:
10144 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10145 case 2:
10146 if (is_user) {
10147 return PAGE_READ;
10148 } else {
10149 return PAGE_READ | PAGE_WRITE;
10151 case 3:
10152 return PAGE_READ | PAGE_WRITE;
10153 case 4: /* Reserved. */
10154 return 0;
10155 case 5:
10156 return is_user ? 0 : PAGE_READ;
10157 case 6:
10158 return PAGE_READ;
10159 case 7:
10160 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10161 return 0;
10163 return PAGE_READ;
10164 default:
10165 g_assert_not_reached();
10169 /* Translate section/page access permissions to page
10170 * R/W protection flags.
10172 * @ap: The 2-bit simple AP (AP[2:1])
10173 * @is_user: TRUE if accessing from PL0
10175 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10177 switch (ap) {
10178 case 0:
10179 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10180 case 1:
10181 return PAGE_READ | PAGE_WRITE;
10182 case 2:
10183 return is_user ? 0 : PAGE_READ;
10184 case 3:
10185 return PAGE_READ;
10186 default:
10187 g_assert_not_reached();
10191 static inline int
10192 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10194 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10197 /* Translate S2 section/page access permissions to protection flags
10199 * @env: CPUARMState
10200 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10201 * @xn: XN (execute-never) bits
10202 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10204 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10206 int prot = 0;
10208 if (s2ap & 1) {
10209 prot |= PAGE_READ;
10211 if (s2ap & 2) {
10212 prot |= PAGE_WRITE;
10215 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10216 switch (xn) {
10217 case 0:
10218 prot |= PAGE_EXEC;
10219 break;
10220 case 1:
10221 if (s1_is_el0) {
10222 prot |= PAGE_EXEC;
10224 break;
10225 case 2:
10226 break;
10227 case 3:
10228 if (!s1_is_el0) {
10229 prot |= PAGE_EXEC;
10231 break;
10232 default:
10233 g_assert_not_reached();
10235 } else {
10236 if (!extract32(xn, 1, 1)) {
10237 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10238 prot |= PAGE_EXEC;
10242 return prot;
10245 /* Translate section/page access permissions to protection flags
10247 * @env: CPUARMState
10248 * @mmu_idx: MMU index indicating required translation regime
10249 * @is_aa64: TRUE if AArch64
10250 * @ap: The 2-bit simple AP (AP[2:1])
10251 * @ns: NS (non-secure) bit
10252 * @xn: XN (execute-never) bit
10253 * @pxn: PXN (privileged execute-never) bit
10255 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10256 int ap, int ns, int xn, int pxn)
10258 bool is_user = regime_is_user(env, mmu_idx);
10259 int prot_rw, user_rw;
10260 bool have_wxn;
10261 int wxn = 0;
10263 assert(mmu_idx != ARMMMUIdx_Stage2);
10265 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10266 if (is_user) {
10267 prot_rw = user_rw;
10268 } else {
10269 if (user_rw && regime_is_pan(env, mmu_idx)) {
10270 /* PAN forbids data accesses but doesn't affect insn fetch */
10271 prot_rw = 0;
10272 } else {
10273 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10277 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10278 return prot_rw;
10281 /* TODO have_wxn should be replaced with
10282 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10283 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10284 * compatible processors have EL2, which is required for [U]WXN.
10286 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10288 if (have_wxn) {
10289 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10292 if (is_aa64) {
10293 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10294 xn = pxn || (user_rw & PAGE_WRITE);
10296 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10297 switch (regime_el(env, mmu_idx)) {
10298 case 1:
10299 case 3:
10300 if (is_user) {
10301 xn = xn || !(user_rw & PAGE_READ);
10302 } else {
10303 int uwxn = 0;
10304 if (have_wxn) {
10305 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10307 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10308 (uwxn && (user_rw & PAGE_WRITE));
10310 break;
10311 case 2:
10312 break;
10314 } else {
10315 xn = wxn = 0;
10318 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10319 return prot_rw;
10321 return prot_rw | PAGE_EXEC;
10324 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10325 uint32_t *table, uint32_t address)
10327 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10328 TCR *tcr = regime_tcr(env, mmu_idx);
10330 if (address & tcr->mask) {
10331 if (tcr->raw_tcr & TTBCR_PD1) {
10332 /* Translation table walk disabled for TTBR1 */
10333 return false;
10335 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10336 } else {
10337 if (tcr->raw_tcr & TTBCR_PD0) {
10338 /* Translation table walk disabled for TTBR0 */
10339 return false;
10341 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10343 *table |= (address >> 18) & 0x3ffc;
10344 return true;
10347 /* Translate a S1 pagetable walk through S2 if needed. */
10348 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10349 hwaddr addr, MemTxAttrs txattrs,
10350 ARMMMUFaultInfo *fi)
10352 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10353 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10354 target_ulong s2size;
10355 hwaddr s2pa;
10356 int s2prot;
10357 int ret;
10358 ARMCacheAttrs cacheattrs = {};
10360 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10361 false,
10362 &s2pa, &txattrs, &s2prot, &s2size, fi,
10363 &cacheattrs);
10364 if (ret) {
10365 assert(fi->type != ARMFault_None);
10366 fi->s2addr = addr;
10367 fi->stage2 = true;
10368 fi->s1ptw = true;
10369 return ~0;
10371 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10373 * PTW set and S1 walk touched S2 Device memory:
10374 * generate Permission fault.
10376 fi->type = ARMFault_Permission;
10377 fi->s2addr = addr;
10378 fi->stage2 = true;
10379 fi->s1ptw = true;
10380 return ~0;
10382 addr = s2pa;
10384 return addr;
10387 /* All loads done in the course of a page table walk go through here. */
10388 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10389 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10391 ARMCPU *cpu = ARM_CPU(cs);
10392 CPUARMState *env = &cpu->env;
10393 MemTxAttrs attrs = {};
10394 MemTxResult result = MEMTX_OK;
10395 AddressSpace *as;
10396 uint32_t data;
10398 attrs.secure = is_secure;
10399 as = arm_addressspace(cs, attrs);
10400 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10401 if (fi->s1ptw) {
10402 return 0;
10404 if (regime_translation_big_endian(env, mmu_idx)) {
10405 data = address_space_ldl_be(as, addr, attrs, &result);
10406 } else {
10407 data = address_space_ldl_le(as, addr, attrs, &result);
10409 if (result == MEMTX_OK) {
10410 return data;
10412 fi->type = ARMFault_SyncExternalOnWalk;
10413 fi->ea = arm_extabort_type(result);
10414 return 0;
10417 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10418 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10420 ARMCPU *cpu = ARM_CPU(cs);
10421 CPUARMState *env = &cpu->env;
10422 MemTxAttrs attrs = {};
10423 MemTxResult result = MEMTX_OK;
10424 AddressSpace *as;
10425 uint64_t data;
10427 attrs.secure = is_secure;
10428 as = arm_addressspace(cs, attrs);
10429 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10430 if (fi->s1ptw) {
10431 return 0;
10433 if (regime_translation_big_endian(env, mmu_idx)) {
10434 data = address_space_ldq_be(as, addr, attrs, &result);
10435 } else {
10436 data = address_space_ldq_le(as, addr, attrs, &result);
10438 if (result == MEMTX_OK) {
10439 return data;
10441 fi->type = ARMFault_SyncExternalOnWalk;
10442 fi->ea = arm_extabort_type(result);
10443 return 0;
10446 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10447 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10448 hwaddr *phys_ptr, int *prot,
10449 target_ulong *page_size,
10450 ARMMMUFaultInfo *fi)
10452 CPUState *cs = env_cpu(env);
10453 int level = 1;
10454 uint32_t table;
10455 uint32_t desc;
10456 int type;
10457 int ap;
10458 int domain = 0;
10459 int domain_prot;
10460 hwaddr phys_addr;
10461 uint32_t dacr;
10463 /* Pagetable walk. */
10464 /* Lookup l1 descriptor. */
10465 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10466 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10467 fi->type = ARMFault_Translation;
10468 goto do_fault;
10470 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10471 mmu_idx, fi);
10472 if (fi->type != ARMFault_None) {
10473 goto do_fault;
10475 type = (desc & 3);
10476 domain = (desc >> 5) & 0x0f;
10477 if (regime_el(env, mmu_idx) == 1) {
10478 dacr = env->cp15.dacr_ns;
10479 } else {
10480 dacr = env->cp15.dacr_s;
10482 domain_prot = (dacr >> (domain * 2)) & 3;
10483 if (type == 0) {
10484 /* Section translation fault. */
10485 fi->type = ARMFault_Translation;
10486 goto do_fault;
10488 if (type != 2) {
10489 level = 2;
10491 if (domain_prot == 0 || domain_prot == 2) {
10492 fi->type = ARMFault_Domain;
10493 goto do_fault;
10495 if (type == 2) {
10496 /* 1Mb section. */
10497 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10498 ap = (desc >> 10) & 3;
10499 *page_size = 1024 * 1024;
10500 } else {
10501 /* Lookup l2 entry. */
10502 if (type == 1) {
10503 /* Coarse pagetable. */
10504 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10505 } else {
10506 /* Fine pagetable. */
10507 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10509 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10510 mmu_idx, fi);
10511 if (fi->type != ARMFault_None) {
10512 goto do_fault;
10514 switch (desc & 3) {
10515 case 0: /* Page translation fault. */
10516 fi->type = ARMFault_Translation;
10517 goto do_fault;
10518 case 1: /* 64k page. */
10519 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10520 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10521 *page_size = 0x10000;
10522 break;
10523 case 2: /* 4k page. */
10524 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10525 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10526 *page_size = 0x1000;
10527 break;
10528 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10529 if (type == 1) {
10530 /* ARMv6/XScale extended small page format */
10531 if (arm_feature(env, ARM_FEATURE_XSCALE)
10532 || arm_feature(env, ARM_FEATURE_V6)) {
10533 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10534 *page_size = 0x1000;
10535 } else {
10536 /* UNPREDICTABLE in ARMv5; we choose to take a
10537 * page translation fault.
10539 fi->type = ARMFault_Translation;
10540 goto do_fault;
10542 } else {
10543 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10544 *page_size = 0x400;
10546 ap = (desc >> 4) & 3;
10547 break;
10548 default:
10549 /* Never happens, but compiler isn't smart enough to tell. */
10550 abort();
10553 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10554 *prot |= *prot ? PAGE_EXEC : 0;
10555 if (!(*prot & (1 << access_type))) {
10556 /* Access permission fault. */
10557 fi->type = ARMFault_Permission;
10558 goto do_fault;
10560 *phys_ptr = phys_addr;
10561 return false;
10562 do_fault:
10563 fi->domain = domain;
10564 fi->level = level;
10565 return true;
10568 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10569 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10570 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10571 target_ulong *page_size, ARMMMUFaultInfo *fi)
10573 CPUState *cs = env_cpu(env);
10574 ARMCPU *cpu = env_archcpu(env);
10575 int level = 1;
10576 uint32_t table;
10577 uint32_t desc;
10578 uint32_t xn;
10579 uint32_t pxn = 0;
10580 int type;
10581 int ap;
10582 int domain = 0;
10583 int domain_prot;
10584 hwaddr phys_addr;
10585 uint32_t dacr;
10586 bool ns;
10588 /* Pagetable walk. */
10589 /* Lookup l1 descriptor. */
10590 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10591 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10592 fi->type = ARMFault_Translation;
10593 goto do_fault;
10595 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10596 mmu_idx, fi);
10597 if (fi->type != ARMFault_None) {
10598 goto do_fault;
10600 type = (desc & 3);
10601 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10602 /* Section translation fault, or attempt to use the encoding
10603 * which is Reserved on implementations without PXN.
10605 fi->type = ARMFault_Translation;
10606 goto do_fault;
10608 if ((type == 1) || !(desc & (1 << 18))) {
10609 /* Page or Section. */
10610 domain = (desc >> 5) & 0x0f;
10612 if (regime_el(env, mmu_idx) == 1) {
10613 dacr = env->cp15.dacr_ns;
10614 } else {
10615 dacr = env->cp15.dacr_s;
10617 if (type == 1) {
10618 level = 2;
10620 domain_prot = (dacr >> (domain * 2)) & 3;
10621 if (domain_prot == 0 || domain_prot == 2) {
10622 /* Section or Page domain fault */
10623 fi->type = ARMFault_Domain;
10624 goto do_fault;
10626 if (type != 1) {
10627 if (desc & (1 << 18)) {
10628 /* Supersection. */
10629 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10630 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10631 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10632 *page_size = 0x1000000;
10633 } else {
10634 /* Section. */
10635 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10636 *page_size = 0x100000;
10638 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10639 xn = desc & (1 << 4);
10640 pxn = desc & 1;
10641 ns = extract32(desc, 19, 1);
10642 } else {
10643 if (cpu_isar_feature(aa32_pxn, cpu)) {
10644 pxn = (desc >> 2) & 1;
10646 ns = extract32(desc, 3, 1);
10647 /* Lookup l2 entry. */
10648 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10649 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10650 mmu_idx, fi);
10651 if (fi->type != ARMFault_None) {
10652 goto do_fault;
10654 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10655 switch (desc & 3) {
10656 case 0: /* Page translation fault. */
10657 fi->type = ARMFault_Translation;
10658 goto do_fault;
10659 case 1: /* 64k page. */
10660 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10661 xn = desc & (1 << 15);
10662 *page_size = 0x10000;
10663 break;
10664 case 2: case 3: /* 4k page. */
10665 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10666 xn = desc & 1;
10667 *page_size = 0x1000;
10668 break;
10669 default:
10670 /* Never happens, but compiler isn't smart enough to tell. */
10671 abort();
10674 if (domain_prot == 3) {
10675 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10676 } else {
10677 if (pxn && !regime_is_user(env, mmu_idx)) {
10678 xn = 1;
10680 if (xn && access_type == MMU_INST_FETCH) {
10681 fi->type = ARMFault_Permission;
10682 goto do_fault;
10685 if (arm_feature(env, ARM_FEATURE_V6K) &&
10686 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10687 /* The simplified model uses AP[0] as an access control bit. */
10688 if ((ap & 1) == 0) {
10689 /* Access flag fault. */
10690 fi->type = ARMFault_AccessFlag;
10691 goto do_fault;
10693 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10694 } else {
10695 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10697 if (*prot && !xn) {
10698 *prot |= PAGE_EXEC;
10700 if (!(*prot & (1 << access_type))) {
10701 /* Access permission fault. */
10702 fi->type = ARMFault_Permission;
10703 goto do_fault;
10706 if (ns) {
10707 /* The NS bit will (as required by the architecture) have no effect if
10708 * the CPU doesn't support TZ or this is a non-secure translation
10709 * regime, because the attribute will already be non-secure.
10711 attrs->secure = false;
10713 *phys_ptr = phys_addr;
10714 return false;
10715 do_fault:
10716 fi->domain = domain;
10717 fi->level = level;
10718 return true;
10722 * check_s2_mmu_setup
10723 * @cpu: ARMCPU
10724 * @is_aa64: True if the translation regime is in AArch64 state
10725 * @startlevel: Suggested starting level
10726 * @inputsize: Bitsize of IPAs
10727 * @stride: Page-table stride (See the ARM ARM)
10729 * Returns true if the suggested S2 translation parameters are OK and
10730 * false otherwise.
10732 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10733 int inputsize, int stride)
10735 const int grainsize = stride + 3;
10736 int startsizecheck;
10738 /* Negative levels are never allowed. */
10739 if (level < 0) {
10740 return false;
10743 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10744 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10745 return false;
10748 if (is_aa64) {
10749 CPUARMState *env = &cpu->env;
10750 unsigned int pamax = arm_pamax(cpu);
10752 switch (stride) {
10753 case 13: /* 64KB Pages. */
10754 if (level == 0 || (level == 1 && pamax <= 42)) {
10755 return false;
10757 break;
10758 case 11: /* 16KB Pages. */
10759 if (level == 0 || (level == 1 && pamax <= 40)) {
10760 return false;
10762 break;
10763 case 9: /* 4KB Pages. */
10764 if (level == 0 && pamax <= 42) {
10765 return false;
10767 break;
10768 default:
10769 g_assert_not_reached();
10772 /* Inputsize checks. */
10773 if (inputsize > pamax &&
10774 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10775 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10776 return false;
10778 } else {
10779 /* AArch32 only supports 4KB pages. Assert on that. */
10780 assert(stride == 9);
10782 if (level == 0) {
10783 return false;
10786 return true;
10789 /* Translate from the 4-bit stage 2 representation of
10790 * memory attributes (without cache-allocation hints) to
10791 * the 8-bit representation of the stage 1 MAIR registers
10792 * (which includes allocation hints).
10794 * ref: shared/translation/attrs/S2AttrDecode()
10795 * .../S2ConvertAttrsHints()
10797 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10799 uint8_t hiattr = extract32(s2attrs, 2, 2);
10800 uint8_t loattr = extract32(s2attrs, 0, 2);
10801 uint8_t hihint = 0, lohint = 0;
10803 if (hiattr != 0) { /* normal memory */
10804 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10805 hiattr = loattr = 1; /* non-cacheable */
10806 } else {
10807 if (hiattr != 1) { /* Write-through or write-back */
10808 hihint = 3; /* RW allocate */
10810 if (loattr != 1) { /* Write-through or write-back */
10811 lohint = 3; /* RW allocate */
10816 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10818 #endif /* !CONFIG_USER_ONLY */
10820 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10822 if (regime_has_2_ranges(mmu_idx)) {
10823 return extract64(tcr, 37, 2);
10824 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10825 return 0; /* VTCR_EL2 */
10826 } else {
10827 /* Replicate the single TBI bit so we always have 2 bits. */
10828 return extract32(tcr, 20, 1) * 3;
10832 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10834 if (regime_has_2_ranges(mmu_idx)) {
10835 return extract64(tcr, 51, 2);
10836 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10837 return 0; /* VTCR_EL2 */
10838 } else {
10839 /* Replicate the single TBID bit so we always have 2 bits. */
10840 return extract32(tcr, 29, 1) * 3;
10844 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10846 if (regime_has_2_ranges(mmu_idx)) {
10847 return extract64(tcr, 57, 2);
10848 } else {
10849 /* Replicate the single TCMA bit so we always have 2 bits. */
10850 return extract32(tcr, 30, 1) * 3;
10854 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10855 ARMMMUIdx mmu_idx, bool data)
10857 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10858 bool epd, hpd, using16k, using64k;
10859 int select, tsz, tbi;
10861 if (!regime_has_2_ranges(mmu_idx)) {
10862 select = 0;
10863 tsz = extract32(tcr, 0, 6);
10864 using64k = extract32(tcr, 14, 1);
10865 using16k = extract32(tcr, 15, 1);
10866 if (mmu_idx == ARMMMUIdx_Stage2) {
10867 /* VTCR_EL2 */
10868 hpd = false;
10869 } else {
10870 hpd = extract32(tcr, 24, 1);
10872 epd = false;
10873 } else {
10875 * Bit 55 is always between the two regions, and is canonical for
10876 * determining if address tagging is enabled.
10878 select = extract64(va, 55, 1);
10879 if (!select) {
10880 tsz = extract32(tcr, 0, 6);
10881 epd = extract32(tcr, 7, 1);
10882 using64k = extract32(tcr, 14, 1);
10883 using16k = extract32(tcr, 15, 1);
10884 hpd = extract64(tcr, 41, 1);
10885 } else {
10886 int tg = extract32(tcr, 30, 2);
10887 using16k = tg == 1;
10888 using64k = tg == 3;
10889 tsz = extract32(tcr, 16, 6);
10890 epd = extract32(tcr, 23, 1);
10891 hpd = extract64(tcr, 42, 1);
10894 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10895 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10897 /* Present TBI as a composite with TBID. */
10898 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10899 if (!data) {
10900 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10902 tbi = (tbi >> select) & 1;
10904 return (ARMVAParameters) {
10905 .tsz = tsz,
10906 .select = select,
10907 .tbi = tbi,
10908 .epd = epd,
10909 .hpd = hpd,
10910 .using16k = using16k,
10911 .using64k = using64k,
10915 #ifndef CONFIG_USER_ONLY
10916 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10917 ARMMMUIdx mmu_idx)
10919 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10920 uint32_t el = regime_el(env, mmu_idx);
10921 int select, tsz;
10922 bool epd, hpd;
10924 if (mmu_idx == ARMMMUIdx_Stage2) {
10925 /* VTCR */
10926 bool sext = extract32(tcr, 4, 1);
10927 bool sign = extract32(tcr, 3, 1);
10930 * If the sign-extend bit is not the same as t0sz[3], the result
10931 * is unpredictable. Flag this as a guest error.
10933 if (sign != sext) {
10934 qemu_log_mask(LOG_GUEST_ERROR,
10935 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10937 tsz = sextract32(tcr, 0, 4) + 8;
10938 select = 0;
10939 hpd = false;
10940 epd = false;
10941 } else if (el == 2) {
10942 /* HTCR */
10943 tsz = extract32(tcr, 0, 3);
10944 select = 0;
10945 hpd = extract64(tcr, 24, 1);
10946 epd = false;
10947 } else {
10948 int t0sz = extract32(tcr, 0, 3);
10949 int t1sz = extract32(tcr, 16, 3);
10951 if (t1sz == 0) {
10952 select = va > (0xffffffffu >> t0sz);
10953 } else {
10954 /* Note that we will detect errors later. */
10955 select = va >= ~(0xffffffffu >> t1sz);
10957 if (!select) {
10958 tsz = t0sz;
10959 epd = extract32(tcr, 7, 1);
10960 hpd = extract64(tcr, 41, 1);
10961 } else {
10962 tsz = t1sz;
10963 epd = extract32(tcr, 23, 1);
10964 hpd = extract64(tcr, 42, 1);
10966 /* For aarch32, hpd0 is not enabled without t2e as well. */
10967 hpd &= extract32(tcr, 6, 1);
10970 return (ARMVAParameters) {
10971 .tsz = tsz,
10972 .select = select,
10973 .epd = epd,
10974 .hpd = hpd,
10979 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10981 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10982 * prot and page_size may not be filled in, and the populated fsr value provides
10983 * information on why the translation aborted, in the format of a long-format
10984 * DFSR/IFSR fault register, with the following caveats:
10985 * * the WnR bit is never set (the caller must do this).
10987 * @env: CPUARMState
10988 * @address: virtual address to get physical address for
10989 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10990 * @mmu_idx: MMU index indicating required translation regime
10991 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10992 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
10993 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10994 * @phys_ptr: set to the physical address corresponding to the virtual address
10995 * @attrs: set to the memory transaction attributes to use
10996 * @prot: set to the permissions for the page containing phys_ptr
10997 * @page_size_ptr: set to the size of the page containing phys_ptr
10998 * @fi: set to fault info if the translation fails
10999 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11001 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
11002 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11003 bool s1_is_el0,
11004 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11005 target_ulong *page_size_ptr,
11006 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11008 ARMCPU *cpu = env_archcpu(env);
11009 CPUState *cs = CPU(cpu);
11010 /* Read an LPAE long-descriptor translation table. */
11011 ARMFaultType fault_type = ARMFault_Translation;
11012 uint32_t level;
11013 ARMVAParameters param;
11014 uint64_t ttbr;
11015 hwaddr descaddr, indexmask, indexmask_grainsize;
11016 uint32_t tableattrs;
11017 target_ulong page_size;
11018 uint32_t attrs;
11019 int32_t stride;
11020 int addrsize, inputsize;
11021 TCR *tcr = regime_tcr(env, mmu_idx);
11022 int ap, ns, xn, pxn;
11023 uint32_t el = regime_el(env, mmu_idx);
11024 uint64_t descaddrmask;
11025 bool aarch64 = arm_el_is_aa64(env, el);
11026 bool guarded = false;
11028 /* TODO: This code does not support shareability levels. */
11029 if (aarch64) {
11030 param = aa64_va_parameters(env, address, mmu_idx,
11031 access_type != MMU_INST_FETCH);
11032 level = 0;
11033 addrsize = 64 - 8 * param.tbi;
11034 inputsize = 64 - param.tsz;
11035 } else {
11036 param = aa32_va_parameters(env, address, mmu_idx);
11037 level = 1;
11038 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11039 inputsize = addrsize - param.tsz;
11043 * We determined the region when collecting the parameters, but we
11044 * have not yet validated that the address is valid for the region.
11045 * Extract the top bits and verify that they all match select.
11047 * For aa32, if inputsize == addrsize, then we have selected the
11048 * region by exclusion in aa32_va_parameters and there is no more
11049 * validation to do here.
11051 if (inputsize < addrsize) {
11052 target_ulong top_bits = sextract64(address, inputsize,
11053 addrsize - inputsize);
11054 if (-top_bits != param.select) {
11055 /* The gap between the two regions is a Translation fault */
11056 fault_type = ARMFault_Translation;
11057 goto do_fault;
11061 if (param.using64k) {
11062 stride = 13;
11063 } else if (param.using16k) {
11064 stride = 11;
11065 } else {
11066 stride = 9;
11069 /* Note that QEMU ignores shareability and cacheability attributes,
11070 * so we don't need to do anything with the SH, ORGN, IRGN fields
11071 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11072 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11073 * implement any ASID-like capability so we can ignore it (instead
11074 * we will always flush the TLB any time the ASID is changed).
11076 ttbr = regime_ttbr(env, mmu_idx, param.select);
11078 /* Here we should have set up all the parameters for the translation:
11079 * inputsize, ttbr, epd, stride, tbi
11082 if (param.epd) {
11083 /* Translation table walk disabled => Translation fault on TLB miss
11084 * Note: This is always 0 on 64-bit EL2 and EL3.
11086 goto do_fault;
11089 if (mmu_idx != ARMMMUIdx_Stage2) {
11090 /* The starting level depends on the virtual address size (which can
11091 * be up to 48 bits) and the translation granule size. It indicates
11092 * the number of strides (stride bits at a time) needed to
11093 * consume the bits of the input address. In the pseudocode this is:
11094 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11095 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11096 * our 'stride + 3' and 'stride' is our 'stride'.
11097 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11098 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11099 * = 4 - (inputsize - 4) / stride;
11101 level = 4 - (inputsize - 4) / stride;
11102 } else {
11103 /* For stage 2 translations the starting level is specified by the
11104 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11106 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11107 uint32_t startlevel;
11108 bool ok;
11110 if (!aarch64 || stride == 9) {
11111 /* AArch32 or 4KB pages */
11112 startlevel = 2 - sl0;
11113 } else {
11114 /* 16KB or 64KB pages */
11115 startlevel = 3 - sl0;
11118 /* Check that the starting level is valid. */
11119 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11120 inputsize, stride);
11121 if (!ok) {
11122 fault_type = ARMFault_Translation;
11123 goto do_fault;
11125 level = startlevel;
11128 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11129 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11131 /* Now we can extract the actual base address from the TTBR */
11132 descaddr = extract64(ttbr, 0, 48);
11134 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11135 * and also to mask out CnP (bit 0) which could validly be non-zero.
11137 descaddr &= ~indexmask;
11139 /* The address field in the descriptor goes up to bit 39 for ARMv7
11140 * but up to bit 47 for ARMv8, but we use the descaddrmask
11141 * up to bit 39 for AArch32, because we don't need other bits in that case
11142 * to construct next descriptor address (anyway they should be all zeroes).
11144 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11145 ~indexmask_grainsize;
11147 /* Secure accesses start with the page table in secure memory and
11148 * can be downgraded to non-secure at any step. Non-secure accesses
11149 * remain non-secure. We implement this by just ORing in the NSTable/NS
11150 * bits at each step.
11152 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11153 for (;;) {
11154 uint64_t descriptor;
11155 bool nstable;
11157 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11158 descaddr &= ~7ULL;
11159 nstable = extract32(tableattrs, 4, 1);
11160 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11161 if (fi->type != ARMFault_None) {
11162 goto do_fault;
11165 if (!(descriptor & 1) ||
11166 (!(descriptor & 2) && (level == 3))) {
11167 /* Invalid, or the Reserved level 3 encoding */
11168 goto do_fault;
11170 descaddr = descriptor & descaddrmask;
11172 if ((descriptor & 2) && (level < 3)) {
11173 /* Table entry. The top five bits are attributes which may
11174 * propagate down through lower levels of the table (and
11175 * which are all arranged so that 0 means "no effect", so
11176 * we can gather them up by ORing in the bits at each level).
11178 tableattrs |= extract64(descriptor, 59, 5);
11179 level++;
11180 indexmask = indexmask_grainsize;
11181 continue;
11183 /* Block entry at level 1 or 2, or page entry at level 3.
11184 * These are basically the same thing, although the number
11185 * of bits we pull in from the vaddr varies.
11187 page_size = (1ULL << ((stride * (4 - level)) + 3));
11188 descaddr |= (address & (page_size - 1));
11189 /* Extract attributes from the descriptor */
11190 attrs = extract64(descriptor, 2, 10)
11191 | (extract64(descriptor, 52, 12) << 10);
11193 if (mmu_idx == ARMMMUIdx_Stage2) {
11194 /* Stage 2 table descriptors do not include any attribute fields */
11195 break;
11197 /* Merge in attributes from table descriptors */
11198 attrs |= nstable << 3; /* NS */
11199 guarded = extract64(descriptor, 50, 1); /* GP */
11200 if (param.hpd) {
11201 /* HPD disables all the table attributes except NSTable. */
11202 break;
11204 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11205 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11206 * means "force PL1 access only", which means forcing AP[1] to 0.
11208 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11209 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11210 break;
11212 /* Here descaddr is the final physical address, and attributes
11213 * are all in attrs.
11215 fault_type = ARMFault_AccessFlag;
11216 if ((attrs & (1 << 8)) == 0) {
11217 /* Access flag */
11218 goto do_fault;
11221 ap = extract32(attrs, 4, 2);
11223 if (mmu_idx == ARMMMUIdx_Stage2) {
11224 ns = true;
11225 xn = extract32(attrs, 11, 2);
11226 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11227 } else {
11228 ns = extract32(attrs, 3, 1);
11229 xn = extract32(attrs, 12, 1);
11230 pxn = extract32(attrs, 11, 1);
11231 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11234 fault_type = ARMFault_Permission;
11235 if (!(*prot & (1 << access_type))) {
11236 goto do_fault;
11239 if (ns) {
11240 /* The NS bit will (as required by the architecture) have no effect if
11241 * the CPU doesn't support TZ or this is a non-secure translation
11242 * regime, because the attribute will already be non-secure.
11244 txattrs->secure = false;
11246 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11247 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11248 arm_tlb_bti_gp(txattrs) = true;
11251 if (mmu_idx == ARMMMUIdx_Stage2) {
11252 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11253 } else {
11254 /* Index into MAIR registers for cache attributes */
11255 uint8_t attrindx = extract32(attrs, 0, 3);
11256 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11257 assert(attrindx <= 7);
11258 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11260 cacheattrs->shareability = extract32(attrs, 6, 2);
11262 *phys_ptr = descaddr;
11263 *page_size_ptr = page_size;
11264 return false;
11266 do_fault:
11267 fi->type = fault_type;
11268 fi->level = level;
11269 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11270 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11271 return true;
11274 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11275 ARMMMUIdx mmu_idx,
11276 int32_t address, int *prot)
11278 if (!arm_feature(env, ARM_FEATURE_M)) {
11279 *prot = PAGE_READ | PAGE_WRITE;
11280 switch (address) {
11281 case 0xF0000000 ... 0xFFFFFFFF:
11282 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11283 /* hivecs execing is ok */
11284 *prot |= PAGE_EXEC;
11286 break;
11287 case 0x00000000 ... 0x7FFFFFFF:
11288 *prot |= PAGE_EXEC;
11289 break;
11291 } else {
11292 /* Default system address map for M profile cores.
11293 * The architecture specifies which regions are execute-never;
11294 * at the MPU level no other checks are defined.
11296 switch (address) {
11297 case 0x00000000 ... 0x1fffffff: /* ROM */
11298 case 0x20000000 ... 0x3fffffff: /* SRAM */
11299 case 0x60000000 ... 0x7fffffff: /* RAM */
11300 case 0x80000000 ... 0x9fffffff: /* RAM */
11301 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11302 break;
11303 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11304 case 0xa0000000 ... 0xbfffffff: /* Device */
11305 case 0xc0000000 ... 0xdfffffff: /* Device */
11306 case 0xe0000000 ... 0xffffffff: /* System */
11307 *prot = PAGE_READ | PAGE_WRITE;
11308 break;
11309 default:
11310 g_assert_not_reached();
11315 static bool pmsav7_use_background_region(ARMCPU *cpu,
11316 ARMMMUIdx mmu_idx, bool is_user)
11318 /* Return true if we should use the default memory map as a
11319 * "background" region if there are no hits against any MPU regions.
11321 CPUARMState *env = &cpu->env;
11323 if (is_user) {
11324 return false;
11327 if (arm_feature(env, ARM_FEATURE_M)) {
11328 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11329 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11330 } else {
11331 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11335 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11337 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11338 return arm_feature(env, ARM_FEATURE_M) &&
11339 extract32(address, 20, 12) == 0xe00;
11342 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11344 /* True if address is in the M profile system region
11345 * 0xe0000000 - 0xffffffff
11347 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11350 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11351 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11352 hwaddr *phys_ptr, int *prot,
11353 target_ulong *page_size,
11354 ARMMMUFaultInfo *fi)
11356 ARMCPU *cpu = env_archcpu(env);
11357 int n;
11358 bool is_user = regime_is_user(env, mmu_idx);
11360 *phys_ptr = address;
11361 *page_size = TARGET_PAGE_SIZE;
11362 *prot = 0;
11364 if (regime_translation_disabled(env, mmu_idx) ||
11365 m_is_ppb_region(env, address)) {
11366 /* MPU disabled or M profile PPB access: use default memory map.
11367 * The other case which uses the default memory map in the
11368 * v7M ARM ARM pseudocode is exception vector reads from the vector
11369 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11370 * which always does a direct read using address_space_ldl(), rather
11371 * than going via this function, so we don't need to check that here.
11373 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11374 } else { /* MPU enabled */
11375 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11376 /* region search */
11377 uint32_t base = env->pmsav7.drbar[n];
11378 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11379 uint32_t rmask;
11380 bool srdis = false;
11382 if (!(env->pmsav7.drsr[n] & 0x1)) {
11383 continue;
11386 if (!rsize) {
11387 qemu_log_mask(LOG_GUEST_ERROR,
11388 "DRSR[%d]: Rsize field cannot be 0\n", n);
11389 continue;
11391 rsize++;
11392 rmask = (1ull << rsize) - 1;
11394 if (base & rmask) {
11395 qemu_log_mask(LOG_GUEST_ERROR,
11396 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11397 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11398 n, base, rmask);
11399 continue;
11402 if (address < base || address > base + rmask) {
11404 * Address not in this region. We must check whether the
11405 * region covers addresses in the same page as our address.
11406 * In that case we must not report a size that covers the
11407 * whole page for a subsequent hit against a different MPU
11408 * region or the background region, because it would result in
11409 * incorrect TLB hits for subsequent accesses to addresses that
11410 * are in this MPU region.
11412 if (ranges_overlap(base, rmask,
11413 address & TARGET_PAGE_MASK,
11414 TARGET_PAGE_SIZE)) {
11415 *page_size = 1;
11417 continue;
11420 /* Region matched */
11422 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11423 int i, snd;
11424 uint32_t srdis_mask;
11426 rsize -= 3; /* sub region size (power of 2) */
11427 snd = ((address - base) >> rsize) & 0x7;
11428 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11430 srdis_mask = srdis ? 0x3 : 0x0;
11431 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11432 /* This will check in groups of 2, 4 and then 8, whether
11433 * the subregion bits are consistent. rsize is incremented
11434 * back up to give the region size, considering consistent
11435 * adjacent subregions as one region. Stop testing if rsize
11436 * is already big enough for an entire QEMU page.
11438 int snd_rounded = snd & ~(i - 1);
11439 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11440 snd_rounded + 8, i);
11441 if (srdis_mask ^ srdis_multi) {
11442 break;
11444 srdis_mask = (srdis_mask << i) | srdis_mask;
11445 rsize++;
11448 if (srdis) {
11449 continue;
11451 if (rsize < TARGET_PAGE_BITS) {
11452 *page_size = 1 << rsize;
11454 break;
11457 if (n == -1) { /* no hits */
11458 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11459 /* background fault */
11460 fi->type = ARMFault_Background;
11461 return true;
11463 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11464 } else { /* a MPU hit! */
11465 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11466 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11468 if (m_is_system_region(env, address)) {
11469 /* System space is always execute never */
11470 xn = 1;
11473 if (is_user) { /* User mode AP bit decoding */
11474 switch (ap) {
11475 case 0:
11476 case 1:
11477 case 5:
11478 break; /* no access */
11479 case 3:
11480 *prot |= PAGE_WRITE;
11481 /* fall through */
11482 case 2:
11483 case 6:
11484 *prot |= PAGE_READ | PAGE_EXEC;
11485 break;
11486 case 7:
11487 /* for v7M, same as 6; for R profile a reserved value */
11488 if (arm_feature(env, ARM_FEATURE_M)) {
11489 *prot |= PAGE_READ | PAGE_EXEC;
11490 break;
11492 /* fall through */
11493 default:
11494 qemu_log_mask(LOG_GUEST_ERROR,
11495 "DRACR[%d]: Bad value for AP bits: 0x%"
11496 PRIx32 "\n", n, ap);
11498 } else { /* Priv. mode AP bits decoding */
11499 switch (ap) {
11500 case 0:
11501 break; /* no access */
11502 case 1:
11503 case 2:
11504 case 3:
11505 *prot |= PAGE_WRITE;
11506 /* fall through */
11507 case 5:
11508 case 6:
11509 *prot |= PAGE_READ | PAGE_EXEC;
11510 break;
11511 case 7:
11512 /* for v7M, same as 6; for R profile a reserved value */
11513 if (arm_feature(env, ARM_FEATURE_M)) {
11514 *prot |= PAGE_READ | PAGE_EXEC;
11515 break;
11517 /* fall through */
11518 default:
11519 qemu_log_mask(LOG_GUEST_ERROR,
11520 "DRACR[%d]: Bad value for AP bits: 0x%"
11521 PRIx32 "\n", n, ap);
11525 /* execute never */
11526 if (xn) {
11527 *prot &= ~PAGE_EXEC;
11532 fi->type = ARMFault_Permission;
11533 fi->level = 1;
11534 return !(*prot & (1 << access_type));
11537 static bool v8m_is_sau_exempt(CPUARMState *env,
11538 uint32_t address, MMUAccessType access_type)
11540 /* The architecture specifies that certain address ranges are
11541 * exempt from v8M SAU/IDAU checks.
11543 return
11544 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11545 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11546 (address >= 0xe000e000 && address <= 0xe000efff) ||
11547 (address >= 0xe002e000 && address <= 0xe002efff) ||
11548 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11549 (address >= 0xe00ff000 && address <= 0xe00fffff);
11552 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11553 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11554 V8M_SAttributes *sattrs)
11556 /* Look up the security attributes for this address. Compare the
11557 * pseudocode SecurityCheck() function.
11558 * We assume the caller has zero-initialized *sattrs.
11560 ARMCPU *cpu = env_archcpu(env);
11561 int r;
11562 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11563 int idau_region = IREGION_NOTVALID;
11564 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11565 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11567 if (cpu->idau) {
11568 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11569 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11571 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11572 &idau_nsc);
11575 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11576 /* 0xf0000000..0xffffffff is always S for insn fetches */
11577 return;
11580 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11581 sattrs->ns = !regime_is_secure(env, mmu_idx);
11582 return;
11585 if (idau_region != IREGION_NOTVALID) {
11586 sattrs->irvalid = true;
11587 sattrs->iregion = idau_region;
11590 switch (env->sau.ctrl & 3) {
11591 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11592 break;
11593 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11594 sattrs->ns = true;
11595 break;
11596 default: /* SAU.ENABLE == 1 */
11597 for (r = 0; r < cpu->sau_sregion; r++) {
11598 if (env->sau.rlar[r] & 1) {
11599 uint32_t base = env->sau.rbar[r] & ~0x1f;
11600 uint32_t limit = env->sau.rlar[r] | 0x1f;
11602 if (base <= address && limit >= address) {
11603 if (base > addr_page_base || limit < addr_page_limit) {
11604 sattrs->subpage = true;
11606 if (sattrs->srvalid) {
11607 /* If we hit in more than one region then we must report
11608 * as Secure, not NS-Callable, with no valid region
11609 * number info.
11611 sattrs->ns = false;
11612 sattrs->nsc = false;
11613 sattrs->sregion = 0;
11614 sattrs->srvalid = false;
11615 break;
11616 } else {
11617 if (env->sau.rlar[r] & 2) {
11618 sattrs->nsc = true;
11619 } else {
11620 sattrs->ns = true;
11622 sattrs->srvalid = true;
11623 sattrs->sregion = r;
11625 } else {
11627 * Address not in this region. We must check whether the
11628 * region covers addresses in the same page as our address.
11629 * In that case we must not report a size that covers the
11630 * whole page for a subsequent hit against a different MPU
11631 * region or the background region, because it would result
11632 * in incorrect TLB hits for subsequent accesses to
11633 * addresses that are in this MPU region.
11635 if (limit >= base &&
11636 ranges_overlap(base, limit - base + 1,
11637 addr_page_base,
11638 TARGET_PAGE_SIZE)) {
11639 sattrs->subpage = true;
11644 break;
11648 * The IDAU will override the SAU lookup results if it specifies
11649 * higher security than the SAU does.
11651 if (!idau_ns) {
11652 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11653 sattrs->ns = false;
11654 sattrs->nsc = idau_nsc;
11659 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11660 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11661 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11662 int *prot, bool *is_subpage,
11663 ARMMMUFaultInfo *fi, uint32_t *mregion)
11665 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11666 * that a full phys-to-virt translation does).
11667 * mregion is (if not NULL) set to the region number which matched,
11668 * or -1 if no region number is returned (MPU off, address did not
11669 * hit a region, address hit in multiple regions).
11670 * We set is_subpage to true if the region hit doesn't cover the
11671 * entire TARGET_PAGE the address is within.
11673 ARMCPU *cpu = env_archcpu(env);
11674 bool is_user = regime_is_user(env, mmu_idx);
11675 uint32_t secure = regime_is_secure(env, mmu_idx);
11676 int n;
11677 int matchregion = -1;
11678 bool hit = false;
11679 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11680 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11682 *is_subpage = false;
11683 *phys_ptr = address;
11684 *prot = 0;
11685 if (mregion) {
11686 *mregion = -1;
11689 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11690 * was an exception vector read from the vector table (which is always
11691 * done using the default system address map), because those accesses
11692 * are done in arm_v7m_load_vector(), which always does a direct
11693 * read using address_space_ldl(), rather than going via this function.
11695 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11696 hit = true;
11697 } else if (m_is_ppb_region(env, address)) {
11698 hit = true;
11699 } else {
11700 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11701 hit = true;
11704 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11705 /* region search */
11706 /* Note that the base address is bits [31:5] from the register
11707 * with bits [4:0] all zeroes, but the limit address is bits
11708 * [31:5] from the register with bits [4:0] all ones.
11710 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11711 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11713 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11714 /* Region disabled */
11715 continue;
11718 if (address < base || address > limit) {
11720 * Address not in this region. We must check whether the
11721 * region covers addresses in the same page as our address.
11722 * In that case we must not report a size that covers the
11723 * whole page for a subsequent hit against a different MPU
11724 * region or the background region, because it would result in
11725 * incorrect TLB hits for subsequent accesses to addresses that
11726 * are in this MPU region.
11728 if (limit >= base &&
11729 ranges_overlap(base, limit - base + 1,
11730 addr_page_base,
11731 TARGET_PAGE_SIZE)) {
11732 *is_subpage = true;
11734 continue;
11737 if (base > addr_page_base || limit < addr_page_limit) {
11738 *is_subpage = true;
11741 if (matchregion != -1) {
11742 /* Multiple regions match -- always a failure (unlike
11743 * PMSAv7 where highest-numbered-region wins)
11745 fi->type = ARMFault_Permission;
11746 fi->level = 1;
11747 return true;
11750 matchregion = n;
11751 hit = true;
11755 if (!hit) {
11756 /* background fault */
11757 fi->type = ARMFault_Background;
11758 return true;
11761 if (matchregion == -1) {
11762 /* hit using the background region */
11763 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11764 } else {
11765 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11766 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11768 if (m_is_system_region(env, address)) {
11769 /* System space is always execute never */
11770 xn = 1;
11773 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11774 if (*prot && !xn) {
11775 *prot |= PAGE_EXEC;
11777 /* We don't need to look the attribute up in the MAIR0/MAIR1
11778 * registers because that only tells us about cacheability.
11780 if (mregion) {
11781 *mregion = matchregion;
11785 fi->type = ARMFault_Permission;
11786 fi->level = 1;
11787 return !(*prot & (1 << access_type));
11791 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11792 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11793 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11794 int *prot, target_ulong *page_size,
11795 ARMMMUFaultInfo *fi)
11797 uint32_t secure = regime_is_secure(env, mmu_idx);
11798 V8M_SAttributes sattrs = {};
11799 bool ret;
11800 bool mpu_is_subpage;
11802 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11803 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11804 if (access_type == MMU_INST_FETCH) {
11805 /* Instruction fetches always use the MMU bank and the
11806 * transaction attribute determined by the fetch address,
11807 * regardless of CPU state. This is painful for QEMU
11808 * to handle, because it would mean we need to encode
11809 * into the mmu_idx not just the (user, negpri) information
11810 * for the current security state but also that for the
11811 * other security state, which would balloon the number
11812 * of mmu_idx values needed alarmingly.
11813 * Fortunately we can avoid this because it's not actually
11814 * possible to arbitrarily execute code from memory with
11815 * the wrong security attribute: it will always generate
11816 * an exception of some kind or another, apart from the
11817 * special case of an NS CPU executing an SG instruction
11818 * in S&NSC memory. So we always just fail the translation
11819 * here and sort things out in the exception handler
11820 * (including possibly emulating an SG instruction).
11822 if (sattrs.ns != !secure) {
11823 if (sattrs.nsc) {
11824 fi->type = ARMFault_QEMU_NSCExec;
11825 } else {
11826 fi->type = ARMFault_QEMU_SFault;
11828 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11829 *phys_ptr = address;
11830 *prot = 0;
11831 return true;
11833 } else {
11834 /* For data accesses we always use the MMU bank indicated
11835 * by the current CPU state, but the security attributes
11836 * might downgrade a secure access to nonsecure.
11838 if (sattrs.ns) {
11839 txattrs->secure = false;
11840 } else if (!secure) {
11841 /* NS access to S memory must fault.
11842 * Architecturally we should first check whether the
11843 * MPU information for this address indicates that we
11844 * are doing an unaligned access to Device memory, which
11845 * should generate a UsageFault instead. QEMU does not
11846 * currently check for that kind of unaligned access though.
11847 * If we added it we would need to do so as a special case
11848 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11850 fi->type = ARMFault_QEMU_SFault;
11851 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11852 *phys_ptr = address;
11853 *prot = 0;
11854 return true;
11859 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11860 txattrs, prot, &mpu_is_subpage, fi, NULL);
11861 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11862 return ret;
11865 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11866 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11867 hwaddr *phys_ptr, int *prot,
11868 ARMMMUFaultInfo *fi)
11870 int n;
11871 uint32_t mask;
11872 uint32_t base;
11873 bool is_user = regime_is_user(env, mmu_idx);
11875 if (regime_translation_disabled(env, mmu_idx)) {
11876 /* MPU disabled. */
11877 *phys_ptr = address;
11878 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11879 return false;
11882 *phys_ptr = address;
11883 for (n = 7; n >= 0; n--) {
11884 base = env->cp15.c6_region[n];
11885 if ((base & 1) == 0) {
11886 continue;
11888 mask = 1 << ((base >> 1) & 0x1f);
11889 /* Keep this shift separate from the above to avoid an
11890 (undefined) << 32. */
11891 mask = (mask << 1) - 1;
11892 if (((base ^ address) & ~mask) == 0) {
11893 break;
11896 if (n < 0) {
11897 fi->type = ARMFault_Background;
11898 return true;
11901 if (access_type == MMU_INST_FETCH) {
11902 mask = env->cp15.pmsav5_insn_ap;
11903 } else {
11904 mask = env->cp15.pmsav5_data_ap;
11906 mask = (mask >> (n * 4)) & 0xf;
11907 switch (mask) {
11908 case 0:
11909 fi->type = ARMFault_Permission;
11910 fi->level = 1;
11911 return true;
11912 case 1:
11913 if (is_user) {
11914 fi->type = ARMFault_Permission;
11915 fi->level = 1;
11916 return true;
11918 *prot = PAGE_READ | PAGE_WRITE;
11919 break;
11920 case 2:
11921 *prot = PAGE_READ;
11922 if (!is_user) {
11923 *prot |= PAGE_WRITE;
11925 break;
11926 case 3:
11927 *prot = PAGE_READ | PAGE_WRITE;
11928 break;
11929 case 5:
11930 if (is_user) {
11931 fi->type = ARMFault_Permission;
11932 fi->level = 1;
11933 return true;
11935 *prot = PAGE_READ;
11936 break;
11937 case 6:
11938 *prot = PAGE_READ;
11939 break;
11940 default:
11941 /* Bad permission. */
11942 fi->type = ARMFault_Permission;
11943 fi->level = 1;
11944 return true;
11946 *prot |= PAGE_EXEC;
11947 return false;
11950 /* Combine either inner or outer cacheability attributes for normal
11951 * memory, according to table D4-42 and pseudocode procedure
11952 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11954 * NB: only stage 1 includes allocation hints (RW bits), leading to
11955 * some asymmetry.
11957 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11959 if (s1 == 4 || s2 == 4) {
11960 /* non-cacheable has precedence */
11961 return 4;
11962 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11963 /* stage 1 write-through takes precedence */
11964 return s1;
11965 } else if (extract32(s2, 2, 2) == 2) {
11966 /* stage 2 write-through takes precedence, but the allocation hint
11967 * is still taken from stage 1
11969 return (2 << 2) | extract32(s1, 0, 2);
11970 } else { /* write-back */
11971 return s1;
11975 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11976 * and CombineS1S2Desc()
11978 * @s1: Attributes from stage 1 walk
11979 * @s2: Attributes from stage 2 walk
11981 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11983 uint8_t s1lo, s2lo, s1hi, s2hi;
11984 ARMCacheAttrs ret;
11985 bool tagged = false;
11987 if (s1.attrs == 0xf0) {
11988 tagged = true;
11989 s1.attrs = 0xff;
11992 s1lo = extract32(s1.attrs, 0, 4);
11993 s2lo = extract32(s2.attrs, 0, 4);
11994 s1hi = extract32(s1.attrs, 4, 4);
11995 s2hi = extract32(s2.attrs, 4, 4);
11997 /* Combine shareability attributes (table D4-43) */
11998 if (s1.shareability == 2 || s2.shareability == 2) {
11999 /* if either are outer-shareable, the result is outer-shareable */
12000 ret.shareability = 2;
12001 } else if (s1.shareability == 3 || s2.shareability == 3) {
12002 /* if either are inner-shareable, the result is inner-shareable */
12003 ret.shareability = 3;
12004 } else {
12005 /* both non-shareable */
12006 ret.shareability = 0;
12009 /* Combine memory type and cacheability attributes */
12010 if (s1hi == 0 || s2hi == 0) {
12011 /* Device has precedence over normal */
12012 if (s1lo == 0 || s2lo == 0) {
12013 /* nGnRnE has precedence over anything */
12014 ret.attrs = 0;
12015 } else if (s1lo == 4 || s2lo == 4) {
12016 /* non-Reordering has precedence over Reordering */
12017 ret.attrs = 4; /* nGnRE */
12018 } else if (s1lo == 8 || s2lo == 8) {
12019 /* non-Gathering has precedence over Gathering */
12020 ret.attrs = 8; /* nGRE */
12021 } else {
12022 ret.attrs = 0xc; /* GRE */
12025 /* Any location for which the resultant memory type is any
12026 * type of Device memory is always treated as Outer Shareable.
12028 ret.shareability = 2;
12029 } else { /* Normal memory */
12030 /* Outer/inner cacheability combine independently */
12031 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12032 | combine_cacheattr_nibble(s1lo, s2lo);
12034 if (ret.attrs == 0x44) {
12035 /* Any location for which the resultant memory type is Normal
12036 * Inner Non-cacheable, Outer Non-cacheable is always treated
12037 * as Outer Shareable.
12039 ret.shareability = 2;
12043 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12044 if (tagged && ret.attrs == 0xff) {
12045 ret.attrs = 0xf0;
12048 return ret;
12052 /* get_phys_addr - get the physical address for this virtual address
12054 * Find the physical address corresponding to the given virtual address,
12055 * by doing a translation table walk on MMU based systems or using the
12056 * MPU state on MPU based systems.
12058 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12059 * prot and page_size may not be filled in, and the populated fsr value provides
12060 * information on why the translation aborted, in the format of a
12061 * DFSR/IFSR fault register, with the following caveats:
12062 * * we honour the short vs long DFSR format differences.
12063 * * the WnR bit is never set (the caller must do this).
12064 * * for PSMAv5 based systems we don't bother to return a full FSR format
12065 * value.
12067 * @env: CPUARMState
12068 * @address: virtual address to get physical address for
12069 * @access_type: 0 for read, 1 for write, 2 for execute
12070 * @mmu_idx: MMU index indicating required translation regime
12071 * @phys_ptr: set to the physical address corresponding to the virtual address
12072 * @attrs: set to the memory transaction attributes to use
12073 * @prot: set to the permissions for the page containing phys_ptr
12074 * @page_size: set to the size of the page containing phys_ptr
12075 * @fi: set to fault info if the translation fails
12076 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12078 bool get_phys_addr(CPUARMState *env, target_ulong address,
12079 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12080 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12081 target_ulong *page_size,
12082 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12084 if (mmu_idx == ARMMMUIdx_E10_0 ||
12085 mmu_idx == ARMMMUIdx_E10_1 ||
12086 mmu_idx == ARMMMUIdx_E10_1_PAN) {
12087 /* Call ourselves recursively to do the stage 1 and then stage 2
12088 * translations.
12090 if (arm_feature(env, ARM_FEATURE_EL2)) {
12091 hwaddr ipa;
12092 int s2_prot;
12093 int ret;
12094 ARMCacheAttrs cacheattrs2 = {};
12096 ret = get_phys_addr(env, address, access_type,
12097 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12098 prot, page_size, fi, cacheattrs);
12100 /* If S1 fails or S2 is disabled, return early. */
12101 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12102 *phys_ptr = ipa;
12103 return ret;
12106 /* S1 is done. Now do S2 translation. */
12107 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12108 mmu_idx == ARMMMUIdx_E10_0,
12109 phys_ptr, attrs, &s2_prot,
12110 page_size, fi, &cacheattrs2);
12111 fi->s2addr = ipa;
12112 /* Combine the S1 and S2 perms. */
12113 *prot &= s2_prot;
12115 /* If S2 fails, return early. */
12116 if (ret) {
12117 return ret;
12120 /* Combine the S1 and S2 cache attributes. */
12121 if (env->cp15.hcr_el2 & HCR_DC) {
12123 * HCR.DC forces the first stage attributes to
12124 * Normal Non-Shareable,
12125 * Inner Write-Back Read-Allocate Write-Allocate,
12126 * Outer Write-Back Read-Allocate Write-Allocate.
12127 * Do not overwrite Tagged within attrs.
12129 if (cacheattrs->attrs != 0xf0) {
12130 cacheattrs->attrs = 0xff;
12132 cacheattrs->shareability = 0;
12134 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12135 return 0;
12136 } else {
12138 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12140 mmu_idx = stage_1_mmu_idx(mmu_idx);
12144 /* The page table entries may downgrade secure to non-secure, but
12145 * cannot upgrade an non-secure translation regime's attributes
12146 * to secure.
12148 attrs->secure = regime_is_secure(env, mmu_idx);
12149 attrs->user = regime_is_user(env, mmu_idx);
12151 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12152 * In v7 and earlier it affects all stage 1 translations.
12154 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12155 && !arm_feature(env, ARM_FEATURE_V8)) {
12156 if (regime_el(env, mmu_idx) == 3) {
12157 address += env->cp15.fcseidr_s;
12158 } else {
12159 address += env->cp15.fcseidr_ns;
12163 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12164 bool ret;
12165 *page_size = TARGET_PAGE_SIZE;
12167 if (arm_feature(env, ARM_FEATURE_V8)) {
12168 /* PMSAv8 */
12169 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12170 phys_ptr, attrs, prot, page_size, fi);
12171 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12172 /* PMSAv7 */
12173 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12174 phys_ptr, prot, page_size, fi);
12175 } else {
12176 /* Pre-v7 MPU */
12177 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12178 phys_ptr, prot, fi);
12180 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12181 " mmu_idx %u -> %s (prot %c%c%c)\n",
12182 access_type == MMU_DATA_LOAD ? "reading" :
12183 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12184 (uint32_t)address, mmu_idx,
12185 ret ? "Miss" : "Hit",
12186 *prot & PAGE_READ ? 'r' : '-',
12187 *prot & PAGE_WRITE ? 'w' : '-',
12188 *prot & PAGE_EXEC ? 'x' : '-');
12190 return ret;
12193 /* Definitely a real MMU, not an MPU */
12195 if (regime_translation_disabled(env, mmu_idx)) {
12196 uint64_t hcr;
12197 uint8_t memattr;
12200 * MMU disabled. S1 addresses within aa64 translation regimes are
12201 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12203 if (mmu_idx != ARMMMUIdx_Stage2) {
12204 int r_el = regime_el(env, mmu_idx);
12205 if (arm_el_is_aa64(env, r_el)) {
12206 int pamax = arm_pamax(env_archcpu(env));
12207 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12208 int addrtop, tbi;
12210 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12211 if (access_type == MMU_INST_FETCH) {
12212 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12214 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12215 addrtop = (tbi ? 55 : 63);
12217 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12218 fi->type = ARMFault_AddressSize;
12219 fi->level = 0;
12220 fi->stage2 = false;
12221 return 1;
12225 * When TBI is disabled, we've just validated that all of the
12226 * bits above PAMax are zero, so logically we only need to
12227 * clear the top byte for TBI. But it's clearer to follow
12228 * the pseudocode set of addrdesc.paddress.
12230 address = extract64(address, 0, 52);
12233 *phys_ptr = address;
12234 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12235 *page_size = TARGET_PAGE_SIZE;
12237 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12238 hcr = arm_hcr_el2_eff(env);
12239 cacheattrs->shareability = 0;
12240 if (hcr & HCR_DC) {
12241 if (hcr & HCR_DCT) {
12242 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12243 } else {
12244 memattr = 0xff; /* Normal, WB, RWA */
12246 } else if (access_type == MMU_INST_FETCH) {
12247 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12248 memattr = 0xee; /* Normal, WT, RA, NT */
12249 } else {
12250 memattr = 0x44; /* Normal, NC, No */
12252 cacheattrs->shareability = 2; /* outer sharable */
12253 } else {
12254 memattr = 0x00; /* Device, nGnRnE */
12256 cacheattrs->attrs = memattr;
12257 return 0;
12260 if (regime_using_lpae_format(env, mmu_idx)) {
12261 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12262 phys_ptr, attrs, prot, page_size,
12263 fi, cacheattrs);
12264 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12265 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12266 phys_ptr, attrs, prot, page_size, fi);
12267 } else {
12268 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12269 phys_ptr, prot, page_size, fi);
12273 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12274 MemTxAttrs *attrs)
12276 ARMCPU *cpu = ARM_CPU(cs);
12277 CPUARMState *env = &cpu->env;
12278 hwaddr phys_addr;
12279 target_ulong page_size;
12280 int prot;
12281 bool ret;
12282 ARMMMUFaultInfo fi = {};
12283 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12284 ARMCacheAttrs cacheattrs = {};
12286 *attrs = (MemTxAttrs) {};
12288 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12289 attrs, &prot, &page_size, &fi, &cacheattrs);
12291 if (ret) {
12292 return -1;
12294 return phys_addr;
12297 #endif
12299 /* Note that signed overflow is undefined in C. The following routines are
12300 careful to use unsigned types where modulo arithmetic is required.
12301 Failure to do so _will_ break on newer gcc. */
12303 /* Signed saturating arithmetic. */
12305 /* Perform 16-bit signed saturating addition. */
12306 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12308 uint16_t res;
12310 res = a + b;
12311 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12312 if (a & 0x8000)
12313 res = 0x8000;
12314 else
12315 res = 0x7fff;
12317 return res;
12320 /* Perform 8-bit signed saturating addition. */
12321 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12323 uint8_t res;
12325 res = a + b;
12326 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12327 if (a & 0x80)
12328 res = 0x80;
12329 else
12330 res = 0x7f;
12332 return res;
12335 /* Perform 16-bit signed saturating subtraction. */
12336 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12338 uint16_t res;
12340 res = a - b;
12341 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12342 if (a & 0x8000)
12343 res = 0x8000;
12344 else
12345 res = 0x7fff;
12347 return res;
12350 /* Perform 8-bit signed saturating subtraction. */
12351 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12353 uint8_t res;
12355 res = a - b;
12356 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12357 if (a & 0x80)
12358 res = 0x80;
12359 else
12360 res = 0x7f;
12362 return res;
12365 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12366 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12367 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12368 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12369 #define PFX q
12371 #include "op_addsub.h"
12373 /* Unsigned saturating arithmetic. */
12374 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12376 uint16_t res;
12377 res = a + b;
12378 if (res < a)
12379 res = 0xffff;
12380 return res;
12383 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12385 if (a > b)
12386 return a - b;
12387 else
12388 return 0;
12391 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12393 uint8_t res;
12394 res = a + b;
12395 if (res < a)
12396 res = 0xff;
12397 return res;
12400 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12402 if (a > b)
12403 return a - b;
12404 else
12405 return 0;
12408 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12409 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12410 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12411 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12412 #define PFX uq
12414 #include "op_addsub.h"
12416 /* Signed modulo arithmetic. */
12417 #define SARITH16(a, b, n, op) do { \
12418 int32_t sum; \
12419 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12420 RESULT(sum, n, 16); \
12421 if (sum >= 0) \
12422 ge |= 3 << (n * 2); \
12423 } while(0)
12425 #define SARITH8(a, b, n, op) do { \
12426 int32_t sum; \
12427 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12428 RESULT(sum, n, 8); \
12429 if (sum >= 0) \
12430 ge |= 1 << n; \
12431 } while(0)
12434 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12435 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12436 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12437 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12438 #define PFX s
12439 #define ARITH_GE
12441 #include "op_addsub.h"
12443 /* Unsigned modulo arithmetic. */
12444 #define ADD16(a, b, n) do { \
12445 uint32_t sum; \
12446 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12447 RESULT(sum, n, 16); \
12448 if ((sum >> 16) == 1) \
12449 ge |= 3 << (n * 2); \
12450 } while(0)
12452 #define ADD8(a, b, n) do { \
12453 uint32_t sum; \
12454 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12455 RESULT(sum, n, 8); \
12456 if ((sum >> 8) == 1) \
12457 ge |= 1 << n; \
12458 } while(0)
12460 #define SUB16(a, b, n) do { \
12461 uint32_t sum; \
12462 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12463 RESULT(sum, n, 16); \
12464 if ((sum >> 16) == 0) \
12465 ge |= 3 << (n * 2); \
12466 } while(0)
12468 #define SUB8(a, b, n) do { \
12469 uint32_t sum; \
12470 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12471 RESULT(sum, n, 8); \
12472 if ((sum >> 8) == 0) \
12473 ge |= 1 << n; \
12474 } while(0)
12476 #define PFX u
12477 #define ARITH_GE
12479 #include "op_addsub.h"
12481 /* Halved signed arithmetic. */
12482 #define ADD16(a, b, n) \
12483 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12484 #define SUB16(a, b, n) \
12485 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12486 #define ADD8(a, b, n) \
12487 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12488 #define SUB8(a, b, n) \
12489 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12490 #define PFX sh
12492 #include "op_addsub.h"
12494 /* Halved unsigned arithmetic. */
12495 #define ADD16(a, b, n) \
12496 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12497 #define SUB16(a, b, n) \
12498 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12499 #define ADD8(a, b, n) \
12500 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12501 #define SUB8(a, b, n) \
12502 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12503 #define PFX uh
12505 #include "op_addsub.h"
12507 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12509 if (a > b)
12510 return a - b;
12511 else
12512 return b - a;
12515 /* Unsigned sum of absolute byte differences. */
12516 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12518 uint32_t sum;
12519 sum = do_usad(a, b);
12520 sum += do_usad(a >> 8, b >> 8);
12521 sum += do_usad(a >> 16, b >>16);
12522 sum += do_usad(a >> 24, b >> 24);
12523 return sum;
12526 /* For ARMv6 SEL instruction. */
12527 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12529 uint32_t mask;
12531 mask = 0;
12532 if (flags & 1)
12533 mask |= 0xff;
12534 if (flags & 2)
12535 mask |= 0xff00;
12536 if (flags & 4)
12537 mask |= 0xff0000;
12538 if (flags & 8)
12539 mask |= 0xff000000;
12540 return (a & mask) | (b & ~mask);
12543 /* CRC helpers.
12544 * The upper bytes of val (above the number specified by 'bytes') must have
12545 * been zeroed out by the caller.
12547 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12549 uint8_t buf[4];
12551 stl_le_p(buf, val);
12553 /* zlib crc32 converts the accumulator and output to one's complement. */
12554 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12557 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12559 uint8_t buf[4];
12561 stl_le_p(buf, val);
12563 /* Linux crc32c converts the output to one's complement. */
12564 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12567 /* Return the exception level to which FP-disabled exceptions should
12568 * be taken, or 0 if FP is enabled.
12570 int fp_exception_el(CPUARMState *env, int cur_el)
12572 #ifndef CONFIG_USER_ONLY
12573 /* CPACR and the CPTR registers don't exist before v6, so FP is
12574 * always accessible
12576 if (!arm_feature(env, ARM_FEATURE_V6)) {
12577 return 0;
12580 if (arm_feature(env, ARM_FEATURE_M)) {
12581 /* CPACR can cause a NOCP UsageFault taken to current security state */
12582 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12583 return 1;
12586 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12587 if (!extract32(env->v7m.nsacr, 10, 1)) {
12588 /* FP insns cause a NOCP UsageFault taken to Secure */
12589 return 3;
12593 return 0;
12596 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12597 * 0, 2 : trap EL0 and EL1/PL1 accesses
12598 * 1 : trap only EL0 accesses
12599 * 3 : trap no accesses
12600 * This register is ignored if E2H+TGE are both set.
12602 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12603 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12605 switch (fpen) {
12606 case 0:
12607 case 2:
12608 if (cur_el == 0 || cur_el == 1) {
12609 /* Trap to PL1, which might be EL1 or EL3 */
12610 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12611 return 3;
12613 return 1;
12615 if (cur_el == 3 && !is_a64(env)) {
12616 /* Secure PL1 running at EL3 */
12617 return 3;
12619 break;
12620 case 1:
12621 if (cur_el == 0) {
12622 return 1;
12624 break;
12625 case 3:
12626 break;
12631 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12632 * to control non-secure access to the FPU. It doesn't have any
12633 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12635 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12636 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12637 if (!extract32(env->cp15.nsacr, 10, 1)) {
12638 /* FP insns act as UNDEF */
12639 return cur_el == 2 ? 2 : 1;
12643 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12644 * check because zero bits in the registers mean "don't trap".
12647 /* CPTR_EL2 : present in v7VE or v8 */
12648 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12649 && !arm_is_secure_below_el3(env)) {
12650 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12651 return 2;
12654 /* CPTR_EL3 : present in v8 */
12655 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12656 /* Trap all FP ops to EL3 */
12657 return 3;
12659 #endif
12660 return 0;
12663 /* Return the exception level we're running at if this is our mmu_idx */
12664 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12666 if (mmu_idx & ARM_MMU_IDX_M) {
12667 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12670 switch (mmu_idx) {
12671 case ARMMMUIdx_E10_0:
12672 case ARMMMUIdx_E20_0:
12673 case ARMMMUIdx_SE10_0:
12674 return 0;
12675 case ARMMMUIdx_E10_1:
12676 case ARMMMUIdx_E10_1_PAN:
12677 case ARMMMUIdx_SE10_1:
12678 case ARMMMUIdx_SE10_1_PAN:
12679 return 1;
12680 case ARMMMUIdx_E2:
12681 case ARMMMUIdx_E20_2:
12682 case ARMMMUIdx_E20_2_PAN:
12683 return 2;
12684 case ARMMMUIdx_SE3:
12685 return 3;
12686 default:
12687 g_assert_not_reached();
12691 #ifndef CONFIG_TCG
12692 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12694 g_assert_not_reached();
12696 #endif
12698 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12700 if (arm_feature(env, ARM_FEATURE_M)) {
12701 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12704 /* See ARM pseudo-function ELIsInHost. */
12705 switch (el) {
12706 case 0:
12707 if (arm_is_secure_below_el3(env)) {
12708 return ARMMMUIdx_SE10_0;
12710 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12711 && arm_el_is_aa64(env, 2)) {
12712 return ARMMMUIdx_E20_0;
12714 return ARMMMUIdx_E10_0;
12715 case 1:
12716 if (arm_is_secure_below_el3(env)) {
12717 if (env->pstate & PSTATE_PAN) {
12718 return ARMMMUIdx_SE10_1_PAN;
12720 return ARMMMUIdx_SE10_1;
12722 if (env->pstate & PSTATE_PAN) {
12723 return ARMMMUIdx_E10_1_PAN;
12725 return ARMMMUIdx_E10_1;
12726 case 2:
12727 /* TODO: ARMv8.4-SecEL2 */
12728 /* Note that TGE does not apply at EL2. */
12729 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12730 if (env->pstate & PSTATE_PAN) {
12731 return ARMMMUIdx_E20_2_PAN;
12733 return ARMMMUIdx_E20_2;
12735 return ARMMMUIdx_E2;
12736 case 3:
12737 return ARMMMUIdx_SE3;
12738 default:
12739 g_assert_not_reached();
12743 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12745 return arm_mmu_idx_el(env, arm_current_el(env));
12748 #ifndef CONFIG_USER_ONLY
12749 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12751 return stage_1_mmu_idx(arm_mmu_idx(env));
12753 #endif
12755 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12756 ARMMMUIdx mmu_idx, uint32_t flags)
12758 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12759 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12760 arm_to_core_mmu_idx(mmu_idx));
12762 if (arm_singlestep_active(env)) {
12763 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12765 return flags;
12768 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12769 ARMMMUIdx mmu_idx, uint32_t flags)
12771 bool sctlr_b = arm_sctlr_b(env);
12773 if (sctlr_b) {
12774 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12776 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12777 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12779 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12781 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12784 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12785 ARMMMUIdx mmu_idx)
12787 uint32_t flags = 0;
12789 if (arm_v7m_is_handler_mode(env)) {
12790 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12794 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12795 * is suppressing them because the requested execution priority
12796 * is less than 0.
12798 if (arm_feature(env, ARM_FEATURE_V8) &&
12799 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12800 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12801 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12804 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12807 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12809 int flags = 0;
12811 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12812 arm_debug_target_el(env));
12813 return flags;
12816 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12817 ARMMMUIdx mmu_idx)
12819 uint32_t flags = rebuild_hflags_aprofile(env);
12821 if (arm_el_is_aa64(env, 1)) {
12822 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12825 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12826 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12827 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12830 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12833 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12834 ARMMMUIdx mmu_idx)
12836 uint32_t flags = rebuild_hflags_aprofile(env);
12837 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12838 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12839 uint64_t sctlr;
12840 int tbii, tbid;
12842 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12844 /* Get control bits for tagged addresses. */
12845 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12846 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12848 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12849 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12851 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12852 int sve_el = sve_exception_el(env, el);
12853 uint32_t zcr_len;
12856 * If SVE is disabled, but FP is enabled,
12857 * then the effective len is 0.
12859 if (sve_el != 0 && fp_el == 0) {
12860 zcr_len = 0;
12861 } else {
12862 zcr_len = sve_zcr_len_for_el(env, el);
12864 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12865 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12868 sctlr = regime_sctlr(env, stage1);
12870 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12871 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12874 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12876 * In order to save space in flags, we record only whether
12877 * pauth is "inactive", meaning all insns are implemented as
12878 * a nop, or "active" when some action must be performed.
12879 * The decision of which action to take is left to a helper.
12881 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12882 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12886 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12887 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12888 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12889 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12893 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12894 if (!(env->pstate & PSTATE_UAO)) {
12895 switch (mmu_idx) {
12896 case ARMMMUIdx_E10_1:
12897 case ARMMMUIdx_E10_1_PAN:
12898 case ARMMMUIdx_SE10_1:
12899 case ARMMMUIdx_SE10_1_PAN:
12900 /* TODO: ARMv8.3-NV */
12901 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12902 break;
12903 case ARMMMUIdx_E20_2:
12904 case ARMMMUIdx_E20_2_PAN:
12905 /* TODO: ARMv8.4-SecEL2 */
12907 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12908 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12910 if (env->cp15.hcr_el2 & HCR_TGE) {
12911 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12913 break;
12914 default:
12915 break;
12919 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12921 * Set MTE_ACTIVE if any access may be Checked, and leave clear
12922 * if all accesses must be Unchecked:
12923 * 1) If no TBI, then there are no tags in the address to check,
12924 * 2) If Tag Check Override, then all accesses are Unchecked,
12925 * 3) If Tag Check Fail == 0, then Checked access have no effect,
12926 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12928 if (allocation_tag_access_enabled(env, el, sctlr)) {
12929 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12930 if (tbid
12931 && !(env->pstate & PSTATE_TCO)
12932 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12933 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12936 /* And again for unprivileged accesses, if required. */
12937 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12938 && tbid
12939 && !(env->pstate & PSTATE_TCO)
12940 && (sctlr & SCTLR_TCF0)
12941 && allocation_tag_access_enabled(env, 0, sctlr)) {
12942 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12944 /* Cache TCMA as well as TBI. */
12945 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12946 aa64_va_parameter_tcma(tcr, mmu_idx));
12949 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12952 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12954 int el = arm_current_el(env);
12955 int fp_el = fp_exception_el(env, el);
12956 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12958 if (is_a64(env)) {
12959 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12960 } else if (arm_feature(env, ARM_FEATURE_M)) {
12961 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12962 } else {
12963 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12967 void arm_rebuild_hflags(CPUARMState *env)
12969 env->hflags = rebuild_hflags_internal(env);
12973 * If we have triggered a EL state change we can't rely on the
12974 * translator having passed it to us, we need to recompute.
12976 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12978 int el = arm_current_el(env);
12979 int fp_el = fp_exception_el(env, el);
12980 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12981 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12984 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12986 int fp_el = fp_exception_el(env, el);
12987 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12989 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12993 * If we have triggered a EL state change we can't rely on the
12994 * translator having passed it to us, we need to recompute.
12996 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12998 int el = arm_current_el(env);
12999 int fp_el = fp_exception_el(env, el);
13000 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13001 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13004 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13006 int fp_el = fp_exception_el(env, el);
13007 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13009 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13012 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13014 int fp_el = fp_exception_el(env, el);
13015 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13017 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13020 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13022 #ifdef CONFIG_DEBUG_TCG
13023 uint32_t env_flags_current = env->hflags;
13024 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13026 if (unlikely(env_flags_current != env_flags_rebuilt)) {
13027 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13028 env_flags_current, env_flags_rebuilt);
13029 abort();
13031 #endif
13034 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13035 target_ulong *cs_base, uint32_t *pflags)
13037 uint32_t flags = env->hflags;
13038 uint32_t pstate_for_ss;
13040 *cs_base = 0;
13041 assert_hflags_rebuild_correctly(env);
13043 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13044 *pc = env->pc;
13045 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13046 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13048 pstate_for_ss = env->pstate;
13049 } else {
13050 *pc = env->regs[15];
13052 if (arm_feature(env, ARM_FEATURE_M)) {
13053 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13054 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13055 != env->v7m.secure) {
13056 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13059 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13060 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13061 (env->v7m.secure &&
13062 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13064 * ASPEN is set, but FPCA/SFPA indicate that there is no
13065 * active FP context; we must create a new FP context before
13066 * executing any FP insn.
13068 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13071 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13072 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13073 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13075 } else {
13077 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13078 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13080 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13081 flags = FIELD_DP32(flags, TBFLAG_A32,
13082 XSCALE_CPAR, env->cp15.c15_cpar);
13083 } else {
13084 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13085 env->vfp.vec_len);
13086 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13087 env->vfp.vec_stride);
13089 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13090 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13094 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13095 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13096 pstate_for_ss = env->uncached_cpsr;
13100 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13101 * states defined in the ARM ARM for software singlestep:
13102 * SS_ACTIVE PSTATE.SS State
13103 * 0 x Inactive (the TB flag for SS is always 0)
13104 * 1 0 Active-pending
13105 * 1 1 Active-not-pending
13106 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13108 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13109 (pstate_for_ss & PSTATE_SS)) {
13110 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13113 *pflags = flags;
13116 #ifdef TARGET_AARCH64
13118 * The manual says that when SVE is enabled and VQ is widened the
13119 * implementation is allowed to zero the previously inaccessible
13120 * portion of the registers. The corollary to that is that when
13121 * SVE is enabled and VQ is narrowed we are also allowed to zero
13122 * the now inaccessible portion of the registers.
13124 * The intent of this is that no predicate bit beyond VQ is ever set.
13125 * Which means that some operations on predicate registers themselves
13126 * may operate on full uint64_t or even unrolled across the maximum
13127 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13128 * may well be cheaper than conditionals to restrict the operation
13129 * to the relevant portion of a uint16_t[16].
13131 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13133 int i, j;
13134 uint64_t pmask;
13136 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13137 assert(vq <= env_archcpu(env)->sve_max_vq);
13139 /* Zap the high bits of the zregs. */
13140 for (i = 0; i < 32; i++) {
13141 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13144 /* Zap the high bits of the pregs and ffr. */
13145 pmask = 0;
13146 if (vq & 3) {
13147 pmask = ~(-1ULL << (16 * (vq & 3)));
13149 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13150 for (i = 0; i < 17; ++i) {
13151 env->vfp.pregs[i].p[j] &= pmask;
13153 pmask = 0;
13158 * Notice a change in SVE vector size when changing EL.
13160 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13161 int new_el, bool el0_a64)
13163 ARMCPU *cpu = env_archcpu(env);
13164 int old_len, new_len;
13165 bool old_a64, new_a64;
13167 /* Nothing to do if no SVE. */
13168 if (!cpu_isar_feature(aa64_sve, cpu)) {
13169 return;
13172 /* Nothing to do if FP is disabled in either EL. */
13173 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13174 return;
13178 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13179 * at ELx, or not available because the EL is in AArch32 state, then
13180 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13181 * has an effective value of 0".
13183 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13184 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13185 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13186 * we already have the correct register contents when encountering the
13187 * vq0->vq0 transition between EL0->EL1.
13189 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13190 old_len = (old_a64 && !sve_exception_el(env, old_el)
13191 ? sve_zcr_len_for_el(env, old_el) : 0);
13192 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13193 new_len = (new_a64 && !sve_exception_el(env, new_el)
13194 ? sve_zcr_len_for_el(env, new_el) : 0);
13196 /* When changing vector length, clear inaccessible state. */
13197 if (new_len < old_len) {
13198 aarch64_sve_narrow_vq(env, new_len + 1);
13201 #endif