4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
16 #include "qemu/module.h"
19 #define DEBUG_IMX_SPI 0
22 #define DPRINTF(fmt, args...) \
24 if (DEBUG_IMX_SPI) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
30 static const char *imx_spi_reg_name(uint32_t reg
)
32 static char unknown
[20];
36 return "ECSPI_RXDATA";
38 return "ECSPI_TXDATA";
40 return "ECSPI_CONREG";
42 return "ECSPI_CONFIGREG";
44 return "ECSPI_INTREG";
46 return "ECSPI_DMAREG";
48 return "ECSPI_STATREG";
50 return "ECSPI_PERIODREG";
52 return "ECSPI_TESTREG";
54 return "ECSPI_MSGDATA";
56 sprintf(unknown
, "%d ?", reg
);
61 static const VMStateDescription vmstate_imx_spi
= {
64 .minimum_version_id
= 1,
65 .fields
= (VMStateField
[]) {
66 VMSTATE_FIFO32(tx_fifo
, IMXSPIState
),
67 VMSTATE_FIFO32(rx_fifo
, IMXSPIState
),
68 VMSTATE_INT16(burst_length
, IMXSPIState
),
69 VMSTATE_UINT32_ARRAY(regs
, IMXSPIState
, ECSPI_MAX
),
74 static void imx_spi_txfifo_reset(IMXSPIState
*s
)
76 fifo32_reset(&s
->tx_fifo
);
77 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_TE
;
78 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_TF
;
81 static void imx_spi_rxfifo_reset(IMXSPIState
*s
)
83 fifo32_reset(&s
->rx_fifo
);
84 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_RR
;
85 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_RF
;
86 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_RO
;
89 static void imx_spi_update_irq(IMXSPIState
*s
)
93 if (fifo32_is_empty(&s
->rx_fifo
)) {
94 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_RR
;
96 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_RR
;
99 if (fifo32_is_full(&s
->rx_fifo
)) {
100 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_RF
;
102 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_RF
;
105 if (fifo32_is_empty(&s
->tx_fifo
)) {
106 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_TE
;
108 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_TE
;
111 if (fifo32_is_full(&s
->tx_fifo
)) {
112 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_TF
;
114 s
->regs
[ECSPI_STATREG
] &= ~ECSPI_STATREG_TF
;
117 level
= s
->regs
[ECSPI_STATREG
] & s
->regs
[ECSPI_INTREG
] ? 1 : 0;
119 qemu_set_irq(s
->irq
, level
);
121 DPRINTF("IRQ level is %d\n", level
);
124 static uint8_t imx_spi_selected_channel(IMXSPIState
*s
)
126 return EXTRACT(s
->regs
[ECSPI_CONREG
], ECSPI_CONREG_CHANNEL_SELECT
);
129 static uint32_t imx_spi_burst_length(IMXSPIState
*s
)
131 return EXTRACT(s
->regs
[ECSPI_CONREG
], ECSPI_CONREG_BURST_LENGTH
) + 1;
134 static bool imx_spi_is_enabled(IMXSPIState
*s
)
136 return s
->regs
[ECSPI_CONREG
] & ECSPI_CONREG_EN
;
139 static bool imx_spi_channel_is_master(IMXSPIState
*s
)
141 uint8_t mode
= EXTRACT(s
->regs
[ECSPI_CONREG
], ECSPI_CONREG_CHANNEL_MODE
);
143 return (mode
& (1 << imx_spi_selected_channel(s
))) ? true : false;
146 static bool imx_spi_is_multiple_master_burst(IMXSPIState
*s
)
148 uint8_t wave
= EXTRACT(s
->regs
[ECSPI_CONFIGREG
], ECSPI_CONFIGREG_SS_CTL
);
150 return imx_spi_channel_is_master(s
) &&
151 !(s
->regs
[ECSPI_CONREG
] & ECSPI_CONREG_SMC
) &&
152 ((wave
& (1 << imx_spi_selected_channel(s
))) ? true : false);
155 static void imx_spi_flush_txfifo(IMXSPIState
*s
)
160 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
161 fifo32_num_used(&s
->tx_fifo
), fifo32_num_used(&s
->rx_fifo
));
163 while (!fifo32_is_empty(&s
->tx_fifo
)) {
167 if (s
->burst_length
<= 0) {
168 s
->burst_length
= imx_spi_burst_length(s
);
170 DPRINTF("Burst length = %d\n", s
->burst_length
);
172 if (imx_spi_is_multiple_master_burst(s
)) {
173 s
->regs
[ECSPI_CONREG
] |= ECSPI_CONREG_XCH
;
177 tx
= fifo32_pop(&s
->tx_fifo
);
179 DPRINTF("data tx:0x%08x\n", tx
);
181 tx_burst
= MIN(s
->burst_length
, 32);
185 while (tx_burst
> 0) {
186 uint8_t byte
= tx
& 0xff;
188 DPRINTF("writing 0x%02x\n", (uint32_t)byte
);
190 /* We need to write one byte at a time */
191 byte
= ssi_transfer(s
->bus
, byte
);
193 DPRINTF("0x%02x read\n", (uint32_t)byte
);
196 rx
|= (byte
<< (index
* 8));
198 /* Remove 8 bits from the actual burst */
200 s
->burst_length
-= 8;
204 DPRINTF("data rx:0x%08x\n", rx
);
206 if (fifo32_is_full(&s
->rx_fifo
)) {
207 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_RO
;
209 fifo32_push(&s
->rx_fifo
, rx
);
212 if (s
->burst_length
<= 0) {
213 if (!imx_spi_is_multiple_master_burst(s
)) {
214 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_TC
;
220 if (fifo32_is_empty(&s
->tx_fifo
)) {
221 s
->regs
[ECSPI_STATREG
] |= ECSPI_STATREG_TC
;
222 s
->regs
[ECSPI_CONREG
] &= ~ECSPI_CONREG_XCH
;
225 /* TODO: We should also use TDR and RDR bits */
227 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
228 fifo32_num_used(&s
->tx_fifo
), fifo32_num_used(&s
->rx_fifo
));
231 static void imx_spi_reset(DeviceState
*dev
)
233 IMXSPIState
*s
= IMX_SPI(dev
);
237 memset(s
->regs
, 0, sizeof(s
->regs
));
239 s
->regs
[ECSPI_STATREG
] = 0x00000003;
241 imx_spi_rxfifo_reset(s
);
242 imx_spi_txfifo_reset(s
);
244 imx_spi_update_irq(s
);
249 static uint64_t imx_spi_read(void *opaque
, hwaddr offset
, unsigned size
)
252 IMXSPIState
*s
= opaque
;
253 uint32_t index
= offset
>> 2;
255 if (index
>= ECSPI_MAX
) {
256 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
257 HWADDR_PRIx
"\n", TYPE_IMX_SPI
, __func__
, offset
);
263 if (!imx_spi_is_enabled(s
)) {
265 } else if (fifo32_is_empty(&s
->rx_fifo
)) {
266 /* value is undefined */
269 /* read from the RX FIFO */
270 value
= fifo32_pop(&s
->rx_fifo
);
275 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Trying to read from TX FIFO\n",
276 TYPE_IMX_SPI
, __func__
);
278 /* Reading from TXDATA gives 0 */
282 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Trying to read from MSG FIFO\n",
283 TYPE_IMX_SPI
, __func__
);
285 /* Reading from MSGDATA gives 0 */
289 value
= s
->regs
[index
];
293 DPRINTF("reg[%s] => 0x%" PRIx32
"\n", imx_spi_reg_name(index
), value
);
295 imx_spi_update_irq(s
);
297 return (uint64_t)value
;
300 static void imx_spi_write(void *opaque
, hwaddr offset
, uint64_t value
,
303 IMXSPIState
*s
= opaque
;
304 uint32_t index
= offset
>> 2;
305 uint32_t change_mask
;
307 if (index
>= ECSPI_MAX
) {
308 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Bad register at offset 0x%"
309 HWADDR_PRIx
"\n", TYPE_IMX_SPI
, __func__
, offset
);
313 DPRINTF("reg[%s] <= 0x%" PRIx32
"\n", imx_spi_reg_name(index
),
316 change_mask
= s
->regs
[index
] ^ value
;
320 qemu_log_mask(LOG_GUEST_ERROR
, "[%s]%s: Trying to write to RX FIFO\n",
321 TYPE_IMX_SPI
, __func__
);
324 if (!imx_spi_is_enabled(s
)) {
325 /* Ignore writes if device is disabled */
327 } else if (fifo32_is_full(&s
->tx_fifo
)) {
328 /* Ignore writes if queue is full */
332 fifo32_push(&s
->tx_fifo
, (uint32_t)value
);
334 if (imx_spi_channel_is_master(s
) &&
335 (s
->regs
[ECSPI_CONREG
] & ECSPI_CONREG_SMC
)) {
337 * Start emitting if current channel is master and SMC bit is
340 imx_spi_flush_txfifo(s
);
345 /* the RO and TC bits are write-one-to-clear */
346 value
&= ECSPI_STATREG_RO
| ECSPI_STATREG_TC
;
347 s
->regs
[ECSPI_STATREG
] &= ~value
;
351 s
->regs
[ECSPI_CONREG
] = value
;
353 if (!imx_spi_is_enabled(s
)) {
354 /* device is disabled, so this is a reset */
355 imx_spi_reset(DEVICE(s
));
359 if (imx_spi_channel_is_master(s
)) {
362 /* We are in master mode */
364 for (i
= 0; i
< 4; i
++) {
365 qemu_set_irq(s
->cs_lines
[i
],
366 i
== imx_spi_selected_channel(s
) ? 0 : 1);
369 if ((value
& change_mask
& ECSPI_CONREG_SMC
) &&
370 !fifo32_is_empty(&s
->tx_fifo
)) {
371 /* SMC bit is set and TX FIFO has some slots filled in */
372 imx_spi_flush_txfifo(s
);
373 } else if ((value
& change_mask
& ECSPI_CONREG_XCH
) &&
374 !(value
& ECSPI_CONREG_SMC
)) {
375 /* This is a request to start emitting */
376 imx_spi_flush_txfifo(s
);
382 /* it is not clear from the spec what MSGDATA is for */
383 /* Anyway it is not used by Linux driver */
384 /* So for now we just ignore it */
385 qemu_log_mask(LOG_UNIMP
,
386 "[%s]%s: Trying to write to MSGDATA, ignoring\n",
387 TYPE_IMX_SPI
, __func__
);
390 s
->regs
[index
] = value
;
395 imx_spi_update_irq(s
);
398 static const struct MemoryRegionOps imx_spi_ops
= {
399 .read
= imx_spi_read
,
400 .write
= imx_spi_write
,
401 .endianness
= DEVICE_NATIVE_ENDIAN
,
404 * Our device would not work correctly if the guest was doing
405 * unaligned access. This might not be a limitation on the real
406 * device but in practice there is no reason for a guest to access
407 * this device unaligned.
409 .min_access_size
= 4,
410 .max_access_size
= 4,
415 static void imx_spi_realize(DeviceState
*dev
, Error
**errp
)
417 IMXSPIState
*s
= IMX_SPI(dev
);
420 s
->bus
= ssi_create_bus(dev
, "spi");
422 memory_region_init_io(&s
->iomem
, OBJECT(dev
), &imx_spi_ops
, s
,
423 TYPE_IMX_SPI
, 0x1000);
424 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &s
->iomem
);
425 sysbus_init_irq(SYS_BUS_DEVICE(dev
), &s
->irq
);
427 for (i
= 0; i
< 4; ++i
) {
428 sysbus_init_irq(SYS_BUS_DEVICE(dev
), &s
->cs_lines
[i
]);
433 fifo32_create(&s
->tx_fifo
, ECSPI_FIFO_SIZE
);
434 fifo32_create(&s
->rx_fifo
, ECSPI_FIFO_SIZE
);
437 static void imx_spi_class_init(ObjectClass
*klass
, void *data
)
439 DeviceClass
*dc
= DEVICE_CLASS(klass
);
441 dc
->realize
= imx_spi_realize
;
442 dc
->vmsd
= &vmstate_imx_spi
;
443 dc
->reset
= imx_spi_reset
;
444 dc
->desc
= "i.MX SPI Controller";
447 static const TypeInfo imx_spi_info
= {
448 .name
= TYPE_IMX_SPI
,
449 .parent
= TYPE_SYS_BUS_DEVICE
,
450 .instance_size
= sizeof(IMXSPIState
),
451 .class_init
= imx_spi_class_init
,
454 static void imx_spi_register_types(void)
456 type_register_static(&imx_spi_info
);
459 type_init(imx_spi_register_types
)