iotests: Fix 232 for LUKS
[qemu/ar7.git] / accel / tcg / softmmu_template.h
blobe970a8b378ea47e27944422514c5beb5b9992d74
1 /*
2 * Software MMU support
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #if DATA_SIZE == 8
25 #define SUFFIX q
26 #define LSUFFIX q
27 #define SDATA_TYPE int64_t
28 #define DATA_TYPE uint64_t
29 #elif DATA_SIZE == 4
30 #define SUFFIX l
31 #define LSUFFIX l
32 #define SDATA_TYPE int32_t
33 #define DATA_TYPE uint32_t
34 #elif DATA_SIZE == 2
35 #define SUFFIX w
36 #define LSUFFIX uw
37 #define SDATA_TYPE int16_t
38 #define DATA_TYPE uint16_t
39 #elif DATA_SIZE == 1
40 #define SUFFIX b
41 #define LSUFFIX ub
42 #define SDATA_TYPE int8_t
43 #define DATA_TYPE uint8_t
44 #else
45 #error unsupported data size
46 #endif
49 /* For the benefit of TCG generated code, we want to avoid the complication
50 of ABI-specific return type promotion and always return a value extended
51 to the register size of the host. This is tcg_target_long, except in the
52 case of a 32-bit host and 64-bit data, and for that we always have
53 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
54 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
55 # define WORD_TYPE DATA_TYPE
56 # define USUFFIX SUFFIX
57 #else
58 # define WORD_TYPE tcg_target_ulong
59 # define USUFFIX glue(u, SUFFIX)
60 # define SSUFFIX glue(s, SUFFIX)
61 #endif
63 #ifdef SOFTMMU_CODE_ACCESS
64 #define READ_ACCESS_TYPE MMU_INST_FETCH
65 #define ADDR_READ addr_code
66 #else
67 #define READ_ACCESS_TYPE MMU_DATA_LOAD
68 #define ADDR_READ addr_read
69 #endif
71 #if DATA_SIZE == 8
72 # define BSWAP(X) bswap64(X)
73 #elif DATA_SIZE == 4
74 # define BSWAP(X) bswap32(X)
75 #elif DATA_SIZE == 2
76 # define BSWAP(X) bswap16(X)
77 #else
78 # define BSWAP(X) (X)
79 #endif
81 #if DATA_SIZE == 1
82 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
83 # define helper_be_ld_name helper_le_ld_name
84 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
85 # define helper_be_lds_name helper_le_lds_name
86 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
87 # define helper_be_st_name helper_le_st_name
88 #else
89 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
90 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
91 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
92 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
93 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
94 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
95 #endif
97 #ifndef SOFTMMU_CODE_ACCESS
98 static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
99 size_t mmu_idx, size_t index,
100 target_ulong addr,
101 uintptr_t retaddr,
102 bool recheck,
103 MMUAccessType access_type)
105 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
106 return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
107 access_type, DATA_SIZE);
109 #endif
111 WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
112 TCGMemOpIdx oi, uintptr_t retaddr)
114 uintptr_t mmu_idx = get_mmuidx(oi);
115 uintptr_t index = tlb_index(env, mmu_idx, addr);
116 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
117 target_ulong tlb_addr = entry->ADDR_READ;
118 unsigned a_bits = get_alignment_bits(get_memop(oi));
119 uintptr_t haddr;
120 DATA_TYPE res;
122 if (addr & ((1 << a_bits) - 1)) {
123 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
124 mmu_idx, retaddr);
127 /* If the TLB entry is for a different page, reload and try again. */
128 if (!tlb_hit(tlb_addr, addr)) {
129 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
130 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
131 mmu_idx, retaddr);
132 index = tlb_index(env, mmu_idx, addr);
133 entry = tlb_entry(env, mmu_idx, addr);
135 tlb_addr = entry->ADDR_READ;
138 /* Handle an IO access. */
139 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
140 if ((addr & (DATA_SIZE - 1)) != 0) {
141 goto do_unaligned_access;
144 /* ??? Note that the io helpers always read data in the target
145 byte ordering. We should push the LE/BE request down into io. */
146 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
147 tlb_addr & TLB_RECHECK,
148 READ_ACCESS_TYPE);
149 res = TGT_LE(res);
150 return res;
153 /* Handle slow unaligned access (it spans two pages or IO). */
154 if (DATA_SIZE > 1
155 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
156 >= TARGET_PAGE_SIZE)) {
157 target_ulong addr1, addr2;
158 DATA_TYPE res1, res2;
159 unsigned shift;
160 do_unaligned_access:
161 addr1 = addr & ~(DATA_SIZE - 1);
162 addr2 = addr1 + DATA_SIZE;
163 res1 = helper_le_ld_name(env, addr1, oi, retaddr);
164 res2 = helper_le_ld_name(env, addr2, oi, retaddr);
165 shift = (addr & (DATA_SIZE - 1)) * 8;
167 /* Little-endian combine. */
168 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
169 return res;
172 haddr = addr + entry->addend;
173 #if DATA_SIZE == 1
174 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
175 #else
176 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
177 #endif
178 return res;
181 #if DATA_SIZE > 1
182 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
183 TCGMemOpIdx oi, uintptr_t retaddr)
185 uintptr_t mmu_idx = get_mmuidx(oi);
186 uintptr_t index = tlb_index(env, mmu_idx, addr);
187 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
188 target_ulong tlb_addr = entry->ADDR_READ;
189 unsigned a_bits = get_alignment_bits(get_memop(oi));
190 uintptr_t haddr;
191 DATA_TYPE res;
193 if (addr & ((1 << a_bits) - 1)) {
194 cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
195 mmu_idx, retaddr);
198 /* If the TLB entry is for a different page, reload and try again. */
199 if (!tlb_hit(tlb_addr, addr)) {
200 if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
201 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE,
202 mmu_idx, retaddr);
203 index = tlb_index(env, mmu_idx, addr);
204 entry = tlb_entry(env, mmu_idx, addr);
206 tlb_addr = entry->ADDR_READ;
209 /* Handle an IO access. */
210 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
211 if ((addr & (DATA_SIZE - 1)) != 0) {
212 goto do_unaligned_access;
215 /* ??? Note that the io helpers always read data in the target
216 byte ordering. We should push the LE/BE request down into io. */
217 res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
218 tlb_addr & TLB_RECHECK,
219 READ_ACCESS_TYPE);
220 res = TGT_BE(res);
221 return res;
224 /* Handle slow unaligned access (it spans two pages or IO). */
225 if (DATA_SIZE > 1
226 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
227 >= TARGET_PAGE_SIZE)) {
228 target_ulong addr1, addr2;
229 DATA_TYPE res1, res2;
230 unsigned shift;
231 do_unaligned_access:
232 addr1 = addr & ~(DATA_SIZE - 1);
233 addr2 = addr1 + DATA_SIZE;
234 res1 = helper_be_ld_name(env, addr1, oi, retaddr);
235 res2 = helper_be_ld_name(env, addr2, oi, retaddr);
236 shift = (addr & (DATA_SIZE - 1)) * 8;
238 /* Big-endian combine. */
239 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
240 return res;
243 haddr = addr + entry->addend;
244 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
245 return res;
247 #endif /* DATA_SIZE > 1 */
249 #ifndef SOFTMMU_CODE_ACCESS
251 /* Provide signed versions of the load routines as well. We can of course
252 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
253 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
254 WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
255 TCGMemOpIdx oi, uintptr_t retaddr)
257 return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
260 # if DATA_SIZE > 1
261 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
262 TCGMemOpIdx oi, uintptr_t retaddr)
264 return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
266 # endif
267 #endif
269 static inline void glue(io_write, SUFFIX)(CPUArchState *env,
270 size_t mmu_idx, size_t index,
271 DATA_TYPE val,
272 target_ulong addr,
273 uintptr_t retaddr,
274 bool recheck)
276 CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
277 return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
278 recheck, DATA_SIZE);
281 void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
282 TCGMemOpIdx oi, uintptr_t retaddr)
284 uintptr_t mmu_idx = get_mmuidx(oi);
285 uintptr_t index = tlb_index(env, mmu_idx, addr);
286 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
287 target_ulong tlb_addr = tlb_addr_write(entry);
288 unsigned a_bits = get_alignment_bits(get_memop(oi));
289 uintptr_t haddr;
291 if (addr & ((1 << a_bits) - 1)) {
292 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
293 mmu_idx, retaddr);
296 /* If the TLB entry is for a different page, reload and try again. */
297 if (!tlb_hit(tlb_addr, addr)) {
298 if (!VICTIM_TLB_HIT(addr_write, addr)) {
299 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
300 mmu_idx, retaddr);
301 index = tlb_index(env, mmu_idx, addr);
302 entry = tlb_entry(env, mmu_idx, addr);
304 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
307 /* Handle an IO access. */
308 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
309 if ((addr & (DATA_SIZE - 1)) != 0) {
310 goto do_unaligned_access;
313 /* ??? Note that the io helpers always read data in the target
314 byte ordering. We should push the LE/BE request down into io. */
315 val = TGT_LE(val);
316 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr,
317 retaddr, tlb_addr & TLB_RECHECK);
318 return;
321 /* Handle slow unaligned access (it spans two pages or IO). */
322 if (DATA_SIZE > 1
323 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
324 >= TARGET_PAGE_SIZE)) {
325 int i;
326 target_ulong page2;
327 CPUTLBEntry *entry2;
328 do_unaligned_access:
329 /* Ensure the second page is in the TLB. Note that the first page
330 is already guaranteed to be filled, and that the second page
331 cannot evict the first. */
332 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
333 entry2 = tlb_entry(env, mmu_idx, page2);
334 if (!tlb_hit_page(tlb_addr_write(entry2), page2)
335 && !VICTIM_TLB_HIT(addr_write, page2)) {
336 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
337 mmu_idx, retaddr);
340 /* XXX: not efficient, but simple. */
341 /* This loop must go in the forward direction to avoid issues
342 with self-modifying code in Windows 64-bit. */
343 for (i = 0; i < DATA_SIZE; ++i) {
344 /* Little-endian extract. */
345 uint8_t val8 = val >> (i * 8);
346 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
347 oi, retaddr);
349 return;
352 haddr = addr + entry->addend;
353 #if DATA_SIZE == 1
354 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
355 #else
356 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
357 #endif
360 #if DATA_SIZE > 1
361 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
362 TCGMemOpIdx oi, uintptr_t retaddr)
364 uintptr_t mmu_idx = get_mmuidx(oi);
365 uintptr_t index = tlb_index(env, mmu_idx, addr);
366 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
367 target_ulong tlb_addr = tlb_addr_write(entry);
368 unsigned a_bits = get_alignment_bits(get_memop(oi));
369 uintptr_t haddr;
371 if (addr & ((1 << a_bits) - 1)) {
372 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
373 mmu_idx, retaddr);
376 /* If the TLB entry is for a different page, reload and try again. */
377 if (!tlb_hit(tlb_addr, addr)) {
378 if (!VICTIM_TLB_HIT(addr_write, addr)) {
379 tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE,
380 mmu_idx, retaddr);
381 index = tlb_index(env, mmu_idx, addr);
382 entry = tlb_entry(env, mmu_idx, addr);
384 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
387 /* Handle an IO access. */
388 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
389 if ((addr & (DATA_SIZE - 1)) != 0) {
390 goto do_unaligned_access;
393 /* ??? Note that the io helpers always read data in the target
394 byte ordering. We should push the LE/BE request down into io. */
395 val = TGT_BE(val);
396 glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr,
397 tlb_addr & TLB_RECHECK);
398 return;
401 /* Handle slow unaligned access (it spans two pages or IO). */
402 if (DATA_SIZE > 1
403 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
404 >= TARGET_PAGE_SIZE)) {
405 int i;
406 target_ulong page2;
407 CPUTLBEntry *entry2;
408 do_unaligned_access:
409 /* Ensure the second page is in the TLB. Note that the first page
410 is already guaranteed to be filled, and that the second page
411 cannot evict the first. */
412 page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
413 entry2 = tlb_entry(env, mmu_idx, page2);
414 if (!tlb_hit_page(tlb_addr_write(entry2), page2)
415 && !VICTIM_TLB_HIT(addr_write, page2)) {
416 tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE,
417 mmu_idx, retaddr);
420 /* XXX: not efficient, but simple */
421 /* This loop must go in the forward direction to avoid issues
422 with self-modifying code. */
423 for (i = 0; i < DATA_SIZE; ++i) {
424 /* Big-endian extract. */
425 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
426 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
427 oi, retaddr);
429 return;
432 haddr = addr + entry->addend;
433 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
435 #endif /* DATA_SIZE > 1 */
436 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
438 #undef READ_ACCESS_TYPE
439 #undef DATA_TYPE
440 #undef SUFFIX
441 #undef LSUFFIX
442 #undef DATA_SIZE
443 #undef ADDR_READ
444 #undef WORD_TYPE
445 #undef SDATA_TYPE
446 #undef USUFFIX
447 #undef SSUFFIX
448 #undef BSWAP
449 #undef helper_le_ld_name
450 #undef helper_be_ld_name
451 #undef helper_le_lds_name
452 #undef helper_be_lds_name
453 #undef helper_le_st_name
454 #undef helper_be_st_name