2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
21 static bool name_threads
;
23 void qemu_thread_naming(bool enable
)
25 /* But note we don't actually name them on Windows yet */
26 name_threads
= enable
;
28 fprintf(stderr
, "qemu: thread naming not supported on this host\n");
31 static void error_exit(int err
, const char *msg
)
35 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
36 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
37 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
42 void qemu_mutex_init(QemuMutex
*mutex
)
44 InitializeSRWLock(&mutex
->lock
);
45 qemu_mutex_post_init(mutex
);
48 void qemu_mutex_destroy(QemuMutex
*mutex
)
50 assert(mutex
->initialized
);
51 mutex
->initialized
= false;
52 InitializeSRWLock(&mutex
->lock
);
55 void qemu_mutex_lock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
57 assert(mutex
->initialized
);
58 qemu_mutex_pre_lock(mutex
, file
, line
);
59 AcquireSRWLockExclusive(&mutex
->lock
);
60 qemu_mutex_post_lock(mutex
, file
, line
);
63 int qemu_mutex_trylock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
67 assert(mutex
->initialized
);
68 owned
= TryAcquireSRWLockExclusive(&mutex
->lock
);
70 qemu_mutex_post_lock(mutex
, file
, line
);
76 void qemu_mutex_unlock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
78 assert(mutex
->initialized
);
79 qemu_mutex_pre_unlock(mutex
, file
, line
);
80 ReleaseSRWLockExclusive(&mutex
->lock
);
83 void qemu_rec_mutex_init(QemuRecMutex
*mutex
)
85 InitializeCriticalSection(&mutex
->lock
);
86 mutex
->initialized
= true;
89 void qemu_rec_mutex_destroy(QemuRecMutex
*mutex
)
91 assert(mutex
->initialized
);
92 mutex
->initialized
= false;
93 DeleteCriticalSection(&mutex
->lock
);
96 void qemu_rec_mutex_lock_impl(QemuRecMutex
*mutex
, const char *file
, int line
)
98 assert(mutex
->initialized
);
99 EnterCriticalSection(&mutex
->lock
);
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex
*mutex
, const char *file
, int line
)
104 assert(mutex
->initialized
);
105 return !TryEnterCriticalSection(&mutex
->lock
);
108 void qemu_rec_mutex_unlock(QemuRecMutex
*mutex
)
110 assert(mutex
->initialized
);
111 LeaveCriticalSection(&mutex
->lock
);
114 void qemu_cond_init(QemuCond
*cond
)
116 memset(cond
, 0, sizeof(*cond
));
117 InitializeConditionVariable(&cond
->var
);
118 cond
->initialized
= true;
121 void qemu_cond_destroy(QemuCond
*cond
)
123 assert(cond
->initialized
);
124 cond
->initialized
= false;
125 InitializeConditionVariable(&cond
->var
);
128 void qemu_cond_signal(QemuCond
*cond
)
130 assert(cond
->initialized
);
131 WakeConditionVariable(&cond
->var
);
134 void qemu_cond_broadcast(QemuCond
*cond
)
136 assert(cond
->initialized
);
137 WakeAllConditionVariable(&cond
->var
);
140 void qemu_cond_wait_impl(QemuCond
*cond
, QemuMutex
*mutex
, const char *file
, const int line
)
142 assert(cond
->initialized
);
143 qemu_mutex_pre_unlock(mutex
, file
, line
);
144 SleepConditionVariableSRW(&cond
->var
, &mutex
->lock
, INFINITE
, 0);
145 qemu_mutex_post_lock(mutex
, file
, line
);
148 bool qemu_cond_timedwait_impl(QemuCond
*cond
, QemuMutex
*mutex
, int ms
,
149 const char *file
, const int line
)
153 assert(cond
->initialized
);
154 trace_qemu_mutex_unlock(mutex
, file
, line
);
155 if (!SleepConditionVariableSRW(&cond
->var
, &mutex
->lock
, ms
, 0)) {
158 trace_qemu_mutex_locked(mutex
, file
, line
);
159 if (rc
&& rc
!= ERROR_TIMEOUT
) {
160 error_exit(rc
, __func__
);
162 return rc
!= ERROR_TIMEOUT
;
165 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
168 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
169 sem
->initialized
= true;
172 void qemu_sem_destroy(QemuSemaphore
*sem
)
174 assert(sem
->initialized
);
175 sem
->initialized
= false;
176 CloseHandle(sem
->sema
);
179 void qemu_sem_post(QemuSemaphore
*sem
)
181 assert(sem
->initialized
);
182 ReleaseSemaphore(sem
->sema
, 1, NULL
);
185 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
189 assert(sem
->initialized
);
190 rc
= WaitForSingleObject(sem
->sema
, ms
);
191 if (rc
== WAIT_OBJECT_0
) {
194 if (rc
!= WAIT_TIMEOUT
) {
195 error_exit(GetLastError(), __func__
);
200 void qemu_sem_wait(QemuSemaphore
*sem
)
202 assert(sem
->initialized
);
203 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
204 error_exit(GetLastError(), __func__
);
208 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
209 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
210 * sequence. Such a sequence is, indeed, how QemuEvents are used by
211 * RCU and other subsystems!
214 * - free->set, when setting the event
215 * - busy->set, when setting the event, followed by SetEvent
216 * - set->free, when resetting the event
217 * - free->busy, when waiting
219 * set->busy does not happen (it can be observed from the outside but
220 * it really is set->free->busy).
222 * busy->free provably cannot happen; to enforce it, the set->free transition
223 * is done with an OR, which becomes a no-op if the event has concurrently
224 * transitioned to free or busy (and is faster than cmpxchg).
231 void qemu_event_init(QemuEvent
*ev
, bool init
)
234 ev
->event
= CreateEvent(NULL
, TRUE
, TRUE
, NULL
);
235 ev
->value
= (init
? EV_SET
: EV_FREE
);
236 ev
->initialized
= true;
239 void qemu_event_destroy(QemuEvent
*ev
)
241 assert(ev
->initialized
);
242 ev
->initialized
= false;
243 CloseHandle(ev
->event
);
246 void qemu_event_set(QemuEvent
*ev
)
248 assert(ev
->initialized
);
249 /* qemu_event_set has release semantics, but because it *loads*
250 * ev->value we need a full memory barrier here.
253 if (qatomic_read(&ev
->value
) != EV_SET
) {
254 if (qatomic_xchg(&ev
->value
, EV_SET
) == EV_BUSY
) {
255 /* There were waiters, wake them up. */
261 void qemu_event_reset(QemuEvent
*ev
)
265 assert(ev
->initialized
);
266 value
= qatomic_read(&ev
->value
);
268 if (value
== EV_SET
) {
269 /* If there was a concurrent reset (or even reset+wait),
270 * do nothing. Otherwise change EV_SET->EV_FREE.
272 qatomic_or(&ev
->value
, EV_FREE
);
276 void qemu_event_wait(QemuEvent
*ev
)
280 assert(ev
->initialized
);
281 value
= qatomic_read(&ev
->value
);
283 if (value
!= EV_SET
) {
284 if (value
== EV_FREE
) {
285 /* qemu_event_set is not yet going to call SetEvent, but we are
286 * going to do another check for EV_SET below when setting EV_BUSY.
287 * At that point it is safe to call WaitForSingleObject.
289 ResetEvent(ev
->event
);
291 /* Tell qemu_event_set that there are waiters. No need to retry
292 * because there cannot be a concurrent busy->free transition.
293 * After the CAS, the event will be either set or busy.
295 if (qatomic_cmpxchg(&ev
->value
, EV_FREE
, EV_BUSY
) == EV_SET
) {
301 if (value
== EV_BUSY
) {
302 WaitForSingleObject(ev
->event
, INFINITE
);
307 struct QemuThreadData
{
308 /* Passed to win32_start_routine. */
309 void *(*start_routine
)(void *);
314 /* Only used for joinable threads. */
320 static bool atexit_registered
;
321 static NotifierList main_thread_exit
;
323 static __thread QemuThreadData
*qemu_thread_data
;
325 static void run_main_thread_exit(void)
327 notifier_list_notify(&main_thread_exit
, NULL
);
330 void qemu_thread_atexit_add(Notifier
*notifier
)
332 if (!qemu_thread_data
) {
333 if (!atexit_registered
) {
334 atexit_registered
= true;
335 atexit(run_main_thread_exit
);
337 notifier_list_add(&main_thread_exit
, notifier
);
339 notifier_list_add(&qemu_thread_data
->exit
, notifier
);
343 void qemu_thread_atexit_remove(Notifier
*notifier
)
345 notifier_remove(notifier
);
348 static unsigned __stdcall
win32_start_routine(void *arg
)
350 QemuThreadData
*data
= (QemuThreadData
*) arg
;
351 void *(*start_routine
)(void *) = data
->start_routine
;
352 void *thread_arg
= data
->arg
;
354 qemu_thread_data
= data
;
355 qemu_thread_exit(start_routine(thread_arg
));
359 void qemu_thread_exit(void *arg
)
361 QemuThreadData
*data
= qemu_thread_data
;
363 notifier_list_notify(&data
->exit
, NULL
);
364 if (data
->mode
== QEMU_THREAD_JOINABLE
) {
366 EnterCriticalSection(&data
->cs
);
368 LeaveCriticalSection(&data
->cs
);
375 void *qemu_thread_join(QemuThread
*thread
)
377 QemuThreadData
*data
;
382 if (data
->mode
== QEMU_THREAD_DETACHED
) {
387 * Because multiple copies of the QemuThread can exist via
388 * qemu_thread_get_self, we need to store a value that cannot
389 * leak there. The simplest, non racy way is to store the TID,
390 * discard the handle that _beginthreadex gives back, and
391 * get another copy of the handle here.
393 handle
= qemu_thread_get_handle(thread
);
395 WaitForSingleObject(handle
, INFINITE
);
399 DeleteCriticalSection(&data
->cs
);
404 void qemu_thread_create(QemuThread
*thread
, const char *name
,
405 void *(*start_routine
)(void *),
409 struct QemuThreadData
*data
;
411 data
= g_malloc(sizeof *data
);
412 data
->start_routine
= start_routine
;
415 data
->exited
= false;
416 notifier_list_init(&data
->exit
);
418 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
419 InitializeCriticalSection(&data
->cs
);
422 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
423 data
, 0, &thread
->tid
);
425 error_exit(GetLastError(), __func__
);
427 CloseHandle(hThread
);
431 void qemu_thread_get_self(QemuThread
*thread
)
433 thread
->data
= qemu_thread_data
;
434 thread
->tid
= GetCurrentThreadId();
437 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
439 QemuThreadData
*data
;
443 if (data
->mode
== QEMU_THREAD_DETACHED
) {
447 EnterCriticalSection(&data
->cs
);
449 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
|
450 THREAD_SET_CONTEXT
, FALSE
, thread
->tid
);
454 LeaveCriticalSection(&data
->cs
);
458 bool qemu_thread_is_self(QemuThread
*thread
)
460 return GetCurrentThreadId() == thread
->tid
;