hw/audio/virtio-snd-pci: fix the PCI class code
[qemu/ar7.git] / accel / tcg / cpu-exec.c
blobc938eb96f8fd654c7325595806a5084f0b9e0c79
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto-common.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal-common.h"
46 #include "internal-target.h"
48 /* -icount align implementation. */
50 typedef struct SyncClocks {
51 int64_t diff_clk;
52 int64_t last_cpu_icount;
53 int64_t realtime_clock;
54 } SyncClocks;
56 #if !defined(CONFIG_USER_ONLY)
57 /* Allow the guest to have a max 3ms advance.
58 * The difference between the 2 clocks could therefore
59 * oscillate around 0.
61 #define VM_CLOCK_ADVANCE 3000000
62 #define THRESHOLD_REDUCE 1.5
63 #define MAX_DELAY_PRINT_RATE 2000000000LL
64 #define MAX_NB_PRINTS 100
66 int64_t max_delay;
67 int64_t max_advance;
69 static void align_clocks(SyncClocks *sc, CPUState *cpu)
71 int64_t cpu_icount;
73 if (!icount_align_option) {
74 return;
77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
79 sc->last_cpu_icount = cpu_icount;
81 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
82 #ifndef _WIN32
83 struct timespec sleep_delay, rem_delay;
84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
86 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
88 } else {
89 sc->diff_clk = 0;
91 #else
92 Sleep(sc->diff_clk / SCALE_MS);
93 sc->diff_clk = 0;
94 #endif
98 static void print_delay(const SyncClocks *sc)
100 static float threshold_delay;
101 static int64_t last_realtime_clock;
102 static int nb_prints;
104 if (icount_align_option &&
105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
106 nb_prints < MAX_NB_PRINTS) {
107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
108 (-sc->diff_clk / (float)1000000000LL <
109 (threshold_delay - THRESHOLD_REDUCE))) {
110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
112 threshold_delay - 1,
113 threshold_delay);
114 nb_prints++;
115 last_realtime_clock = sc->realtime_clock;
120 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
122 if (!icount_align_option) {
123 return;
125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
127 sc->last_cpu_icount
128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
129 if (sc->diff_clk < max_delay) {
130 max_delay = sc->diff_clk;
132 if (sc->diff_clk > max_advance) {
133 max_advance = sc->diff_clk;
136 /* Print every 2s max if the guest is late. We limit the number
137 of printed messages to NB_PRINT_MAX(currently 100) */
138 print_delay(sc);
140 #else
141 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 #endif /* CONFIG USER ONLY */
150 uint32_t curr_cflags(CPUState *cpu)
152 uint32_t cflags = cpu->tcg_cflags;
155 * Record gdb single-step. We should be exiting the TB by raising
156 * EXCP_DEBUG, but to simplify other tests, disable chaining too.
158 * For singlestep and -d nochain, suppress goto_tb so that
159 * we can log -d cpu,exec after every TB.
161 if (unlikely(cpu->singlestep_enabled)) {
162 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
163 } else if (qatomic_read(&one_insn_per_tb)) {
164 cflags |= CF_NO_GOTO_TB | 1;
165 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
166 cflags |= CF_NO_GOTO_TB;
169 return cflags;
172 struct tb_desc {
173 vaddr pc;
174 uint64_t cs_base;
175 CPUArchState *env;
176 tb_page_addr_t page_addr0;
177 uint32_t flags;
178 uint32_t cflags;
181 static bool tb_lookup_cmp(const void *p, const void *d)
183 const TranslationBlock *tb = p;
184 const struct tb_desc *desc = d;
186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187 tb_page_addr0(tb) == desc->page_addr0 &&
188 tb->cs_base == desc->cs_base &&
189 tb->flags == desc->flags &&
190 tb_cflags(tb) == desc->cflags) {
191 /* check next page if needed */
192 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
193 if (tb_phys_page1 == -1) {
194 return true;
195 } else {
196 tb_page_addr_t phys_page1;
197 vaddr virt_page1;
200 * We know that the first page matched, and an otherwise valid TB
201 * encountered an incomplete instruction at the end of that page,
202 * therefore we know that generating a new TB from the current PC
203 * must also require reading from the next page -- even if the
204 * second pages do not match, and therefore the resulting insn
205 * is different for the new TB. Therefore any exception raised
206 * here by the faulting lookup is not premature.
208 virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
209 phys_page1 = get_page_addr_code(desc->env, virt_page1);
210 if (tb_phys_page1 == phys_page1) {
211 return true;
215 return false;
218 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
219 uint64_t cs_base, uint32_t flags,
220 uint32_t cflags)
222 tb_page_addr_t phys_pc;
223 struct tb_desc desc;
224 uint32_t h;
226 desc.env = cpu_env(cpu);
227 desc.cs_base = cs_base;
228 desc.flags = flags;
229 desc.cflags = cflags;
230 desc.pc = pc;
231 phys_pc = get_page_addr_code(desc.env, pc);
232 if (phys_pc == -1) {
233 return NULL;
235 desc.page_addr0 = phys_pc;
236 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
237 flags, cs_base, cflags);
238 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 /* Might cause an exception, so have a longjmp destination ready */
242 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
243 uint64_t cs_base, uint32_t flags,
244 uint32_t cflags)
246 TranslationBlock *tb;
247 CPUJumpCache *jc;
248 uint32_t hash;
250 /* we should never be trying to look up an INVALID tb */
251 tcg_debug_assert(!(cflags & CF_INVALID));
253 hash = tb_jmp_cache_hash_func(pc);
254 jc = cpu->tb_jmp_cache;
256 if (cflags & CF_PCREL) {
257 /* Use acquire to ensure current load of pc from jc. */
258 tb = qatomic_load_acquire(&jc->array[hash].tb);
260 if (likely(tb &&
261 jc->array[hash].pc == pc &&
262 tb->cs_base == cs_base &&
263 tb->flags == flags &&
264 tb_cflags(tb) == cflags)) {
265 return tb;
267 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
268 if (tb == NULL) {
269 return NULL;
271 jc->array[hash].pc = pc;
272 /* Ensure pc is written first. */
273 qatomic_store_release(&jc->array[hash].tb, tb);
274 } else {
275 /* Use rcu_read to ensure current load of pc from *tb. */
276 tb = qatomic_rcu_read(&jc->array[hash].tb);
278 if (likely(tb &&
279 tb->pc == pc &&
280 tb->cs_base == cs_base &&
281 tb->flags == flags &&
282 tb_cflags(tb) == cflags)) {
283 return tb;
285 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
286 if (tb == NULL) {
287 return NULL;
289 /* Use the pc value already stored in tb->pc. */
290 qatomic_set(&jc->array[hash].tb, tb);
293 return tb;
296 static void log_cpu_exec(vaddr pc, CPUState *cpu,
297 const TranslationBlock *tb)
299 if (qemu_log_in_addr_range(pc)) {
300 qemu_log_mask(CPU_LOG_EXEC,
301 "Trace %d: %p [%08" PRIx64
302 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
303 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
304 tb->flags, tb->cflags, lookup_symbol(pc));
306 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
307 FILE *logfile = qemu_log_trylock();
308 if (logfile) {
309 int flags = 0;
311 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
312 flags |= CPU_DUMP_FPU;
314 #if defined(TARGET_I386)
315 flags |= CPU_DUMP_CCOP;
316 #endif
317 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
318 flags |= CPU_DUMP_VPU;
320 cpu_dump_state(cpu, logfile, flags);
321 qemu_log_unlock(logfile);
327 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
328 uint32_t *cflags)
330 CPUBreakpoint *bp;
331 bool match_page = false;
334 * Singlestep overrides breakpoints.
335 * This requirement is visible in the record-replay tests, where
336 * we would fail to make forward progress in reverse-continue.
338 * TODO: gdb singlestep should only override gdb breakpoints,
339 * so that one could (gdb) singlestep into the guest kernel's
340 * architectural breakpoint handler.
342 if (cpu->singlestep_enabled) {
343 return false;
346 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
348 * If we have an exact pc match, trigger the breakpoint.
349 * Otherwise, note matches within the page.
351 if (pc == bp->pc) {
352 bool match_bp = false;
354 if (bp->flags & BP_GDB) {
355 match_bp = true;
356 } else if (bp->flags & BP_CPU) {
357 #ifdef CONFIG_USER_ONLY
358 g_assert_not_reached();
359 #else
360 CPUClass *cc = CPU_GET_CLASS(cpu);
361 assert(cc->tcg_ops->debug_check_breakpoint);
362 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
363 #endif
366 if (match_bp) {
367 cpu->exception_index = EXCP_DEBUG;
368 return true;
370 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
371 match_page = true;
376 * Within the same page as a breakpoint, single-step,
377 * returning to helper_lookup_tb_ptr after each insn looking
378 * for the actual breakpoint.
380 * TODO: Perhaps better to record all of the TBs associated
381 * with a given virtual page that contains a breakpoint, and
382 * then invalidate them when a new overlapping breakpoint is
383 * set on the page. Non-overlapping TBs would not be
384 * invalidated, nor would any TB need to be invalidated as
385 * breakpoints are removed.
387 if (match_page) {
388 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
390 return false;
393 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
394 uint32_t *cflags)
396 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
397 check_for_breakpoints_slow(cpu, pc, cflags);
401 * helper_lookup_tb_ptr: quick check for next tb
402 * @env: current cpu state
404 * Look for an existing TB matching the current cpu state.
405 * If found, return the code pointer. If not found, return
406 * the tcg epilogue so that we return into cpu_tb_exec.
408 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
410 CPUState *cpu = env_cpu(env);
411 TranslationBlock *tb;
412 vaddr pc;
413 uint64_t cs_base;
414 uint32_t flags, cflags;
416 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
418 cflags = curr_cflags(cpu);
419 if (check_for_breakpoints(cpu, pc, &cflags)) {
420 cpu_loop_exit(cpu);
423 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
424 if (tb == NULL) {
425 return tcg_code_gen_epilogue;
428 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
429 log_cpu_exec(pc, cpu, tb);
432 return tb->tc.ptr;
435 /* Execute a TB, and fix up the CPU state afterwards if necessary */
437 * Disable CFI checks.
438 * TCG creates binary blobs at runtime, with the transformed code.
439 * A TB is a blob of binary code, created at runtime and called with an
440 * indirect function call. Since such function did not exist at compile time,
441 * the CFI runtime has no way to verify its signature and would fail.
442 * TCG is not considered a security-sensitive part of QEMU so this does not
443 * affect the impact of CFI in environment with high security requirements
445 static inline TranslationBlock * QEMU_DISABLE_CFI
446 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
448 CPUArchState *env = cpu_env(cpu);
449 uintptr_t ret;
450 TranslationBlock *last_tb;
451 const void *tb_ptr = itb->tc.ptr;
453 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
454 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
457 qemu_thread_jit_execute();
458 ret = tcg_qemu_tb_exec(env, tb_ptr);
459 cpu->neg.can_do_io = true;
460 qemu_plugin_disable_mem_helpers(cpu);
462 * TODO: Delay swapping back to the read-write region of the TB
463 * until we actually need to modify the TB. The read-only copy,
464 * coming from the rx region, shares the same host TLB entry as
465 * the code that executed the exit_tb opcode that arrived here.
466 * If we insist on touching both the RX and the RW pages, we
467 * double the host TLB pressure.
469 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
470 *tb_exit = ret & TB_EXIT_MASK;
472 trace_exec_tb_exit(last_tb, *tb_exit);
474 if (*tb_exit > TB_EXIT_IDX1) {
475 /* We didn't start executing this TB (eg because the instruction
476 * counter hit zero); we must restore the guest PC to the address
477 * of the start of the TB.
479 CPUClass *cc = CPU_GET_CLASS(cpu);
481 if (cc->tcg_ops->synchronize_from_tb) {
482 cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
483 } else {
484 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
485 assert(cc->set_pc);
486 cc->set_pc(cpu, last_tb->pc);
488 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
489 vaddr pc = log_pc(cpu, last_tb);
490 if (qemu_log_in_addr_range(pc)) {
491 qemu_log("Stopped execution of TB chain before %p [%016"
492 VADDR_PRIx "] %s\n",
493 last_tb->tc.ptr, pc, lookup_symbol(pc));
499 * If gdb single-step, and we haven't raised another exception,
500 * raise a debug exception. Single-step with another exception
501 * is handled in cpu_handle_exception.
503 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
504 cpu->exception_index = EXCP_DEBUG;
505 cpu_loop_exit(cpu);
508 return last_tb;
512 static void cpu_exec_enter(CPUState *cpu)
514 CPUClass *cc = CPU_GET_CLASS(cpu);
516 if (cc->tcg_ops->cpu_exec_enter) {
517 cc->tcg_ops->cpu_exec_enter(cpu);
521 static void cpu_exec_exit(CPUState *cpu)
523 CPUClass *cc = CPU_GET_CLASS(cpu);
525 if (cc->tcg_ops->cpu_exec_exit) {
526 cc->tcg_ops->cpu_exec_exit(cpu);
530 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
532 /* Non-buggy compilers preserve this; assert the correct value. */
533 g_assert(cpu == current_cpu);
535 #ifdef CONFIG_USER_ONLY
536 clear_helper_retaddr();
537 if (have_mmap_lock()) {
538 mmap_unlock();
540 #else
542 * For softmmu, a tlb_fill fault during translation will land here,
543 * and we need to release any page locks held. In system mode we
544 * have one tcg_ctx per thread, so we know it was this cpu doing
545 * the translation.
547 * Alternative 1: Install a cleanup to be called via an exception
548 * handling safe longjmp. It seems plausible that all our hosts
549 * support such a thing. We'd have to properly register unwind info
550 * for the JIT for EH, rather that just for GDB.
552 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
553 * capture the cpu_loop_exit longjmp, perform the cleanup, and
554 * jump again to arrive here.
556 if (tcg_ctx->gen_tb) {
557 tb_unlock_pages(tcg_ctx->gen_tb);
558 tcg_ctx->gen_tb = NULL;
560 #endif
561 if (qemu_mutex_iothread_locked()) {
562 qemu_mutex_unlock_iothread();
564 assert_no_pages_locked();
567 void cpu_exec_step_atomic(CPUState *cpu)
569 CPUArchState *env = cpu_env(cpu);
570 TranslationBlock *tb;
571 vaddr pc;
572 uint64_t cs_base;
573 uint32_t flags, cflags;
574 int tb_exit;
576 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
577 start_exclusive();
578 g_assert(cpu == current_cpu);
579 g_assert(!cpu->running);
580 cpu->running = true;
582 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
584 cflags = curr_cflags(cpu);
585 /* Execute in a serial context. */
586 cflags &= ~CF_PARALLEL;
587 /* After 1 insn, return and release the exclusive lock. */
588 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
590 * No need to check_for_breakpoints here.
591 * We only arrive in cpu_exec_step_atomic after beginning execution
592 * of an insn that includes an atomic operation we can't handle.
593 * Any breakpoint for this insn will have been recognized earlier.
596 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
597 if (tb == NULL) {
598 mmap_lock();
599 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
600 mmap_unlock();
603 cpu_exec_enter(cpu);
604 /* execute the generated code */
605 trace_exec_tb(tb, pc);
606 cpu_tb_exec(cpu, tb, &tb_exit);
607 cpu_exec_exit(cpu);
608 } else {
609 cpu_exec_longjmp_cleanup(cpu);
613 * As we start the exclusive region before codegen we must still
614 * be in the region if we longjump out of either the codegen or
615 * the execution.
617 g_assert(cpu_in_exclusive_context(cpu));
618 cpu->running = false;
619 end_exclusive();
622 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
625 * Get the rx view of the structure, from which we find the
626 * executable code address, and tb_target_set_jmp_target can
627 * produce a pc-relative displacement to jmp_target_addr[n].
629 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
630 uintptr_t offset = tb->jmp_insn_offset[n];
631 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
632 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
634 tb->jmp_target_addr[n] = addr;
635 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
638 static inline void tb_add_jump(TranslationBlock *tb, int n,
639 TranslationBlock *tb_next)
641 uintptr_t old;
643 qemu_thread_jit_write();
644 assert(n < ARRAY_SIZE(tb->jmp_list_next));
645 qemu_spin_lock(&tb_next->jmp_lock);
647 /* make sure the destination TB is valid */
648 if (tb_next->cflags & CF_INVALID) {
649 goto out_unlock_next;
651 /* Atomically claim the jump destination slot only if it was NULL */
652 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
653 (uintptr_t)tb_next);
654 if (old) {
655 goto out_unlock_next;
658 /* patch the native jump address */
659 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
661 /* add in TB jmp list */
662 tb->jmp_list_next[n] = tb_next->jmp_list_head;
663 tb_next->jmp_list_head = (uintptr_t)tb | n;
665 qemu_spin_unlock(&tb_next->jmp_lock);
667 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
668 tb->tc.ptr, n, tb_next->tc.ptr);
669 return;
671 out_unlock_next:
672 qemu_spin_unlock(&tb_next->jmp_lock);
673 return;
676 static inline bool cpu_handle_halt(CPUState *cpu)
678 #ifndef CONFIG_USER_ONLY
679 if (cpu->halted) {
680 #if defined(TARGET_I386)
681 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
682 X86CPU *x86_cpu = X86_CPU(cpu);
683 qemu_mutex_lock_iothread();
684 apic_poll_irq(x86_cpu->apic_state);
685 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
686 qemu_mutex_unlock_iothread();
688 #endif /* TARGET_I386 */
689 if (!cpu_has_work(cpu)) {
690 return true;
693 cpu->halted = 0;
695 #endif /* !CONFIG_USER_ONLY */
697 return false;
700 static inline void cpu_handle_debug_exception(CPUState *cpu)
702 CPUClass *cc = CPU_GET_CLASS(cpu);
703 CPUWatchpoint *wp;
705 if (!cpu->watchpoint_hit) {
706 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
707 wp->flags &= ~BP_WATCHPOINT_HIT;
711 if (cc->tcg_ops->debug_excp_handler) {
712 cc->tcg_ops->debug_excp_handler(cpu);
716 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
718 if (cpu->exception_index < 0) {
719 #ifndef CONFIG_USER_ONLY
720 if (replay_has_exception()
721 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
722 /* Execute just one insn to trigger exception pending in the log */
723 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
724 | CF_NOIRQ | 1;
726 #endif
727 return false;
729 if (cpu->exception_index >= EXCP_INTERRUPT) {
730 /* exit request from the cpu execution loop */
731 *ret = cpu->exception_index;
732 if (*ret == EXCP_DEBUG) {
733 cpu_handle_debug_exception(cpu);
735 cpu->exception_index = -1;
736 return true;
737 } else {
738 #if defined(CONFIG_USER_ONLY)
739 /* if user mode only, we simulate a fake exception
740 which will be handled outside the cpu execution
741 loop */
742 #if defined(TARGET_I386)
743 CPUClass *cc = CPU_GET_CLASS(cpu);
744 cc->tcg_ops->fake_user_interrupt(cpu);
745 #endif /* TARGET_I386 */
746 *ret = cpu->exception_index;
747 cpu->exception_index = -1;
748 return true;
749 #else
750 if (replay_exception()) {
751 CPUClass *cc = CPU_GET_CLASS(cpu);
752 qemu_mutex_lock_iothread();
753 cc->tcg_ops->do_interrupt(cpu);
754 qemu_mutex_unlock_iothread();
755 cpu->exception_index = -1;
757 if (unlikely(cpu->singlestep_enabled)) {
759 * After processing the exception, ensure an EXCP_DEBUG is
760 * raised when single-stepping so that GDB doesn't miss the
761 * next instruction.
763 *ret = EXCP_DEBUG;
764 cpu_handle_debug_exception(cpu);
765 return true;
767 } else if (!replay_has_interrupt()) {
768 /* give a chance to iothread in replay mode */
769 *ret = EXCP_INTERRUPT;
770 return true;
772 #endif
775 return false;
778 #ifndef CONFIG_USER_ONLY
780 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
781 * "real" interrupt event later. It does not need to be recorded for
782 * replay purposes.
784 static inline bool need_replay_interrupt(int interrupt_request)
786 #if defined(TARGET_I386)
787 return !(interrupt_request & CPU_INTERRUPT_POLL);
788 #else
789 return true;
790 #endif
792 #endif /* !CONFIG_USER_ONLY */
794 static inline bool cpu_handle_interrupt(CPUState *cpu,
795 TranslationBlock **last_tb)
798 * If we have requested custom cflags with CF_NOIRQ we should
799 * skip checking here. Any pending interrupts will get picked up
800 * by the next TB we execute under normal cflags.
802 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
803 return false;
806 /* Clear the interrupt flag now since we're processing
807 * cpu->interrupt_request and cpu->exit_request.
808 * Ensure zeroing happens before reading cpu->exit_request or
809 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
811 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
813 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
814 int interrupt_request;
815 qemu_mutex_lock_iothread();
816 interrupt_request = cpu->interrupt_request;
817 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
818 /* Mask out external interrupts for this step. */
819 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
821 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
822 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
823 cpu->exception_index = EXCP_DEBUG;
824 qemu_mutex_unlock_iothread();
825 return true;
827 #if !defined(CONFIG_USER_ONLY)
828 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
829 /* Do nothing */
830 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
831 replay_interrupt();
832 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
833 cpu->halted = 1;
834 cpu->exception_index = EXCP_HLT;
835 qemu_mutex_unlock_iothread();
836 return true;
838 #if defined(TARGET_I386)
839 else if (interrupt_request & CPU_INTERRUPT_INIT) {
840 X86CPU *x86_cpu = X86_CPU(cpu);
841 CPUArchState *env = &x86_cpu->env;
842 replay_interrupt();
843 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
844 do_cpu_init(x86_cpu);
845 cpu->exception_index = EXCP_HALTED;
846 qemu_mutex_unlock_iothread();
847 return true;
849 #else
850 else if (interrupt_request & CPU_INTERRUPT_RESET) {
851 replay_interrupt();
852 cpu_reset(cpu);
853 qemu_mutex_unlock_iothread();
854 return true;
856 #endif /* !TARGET_I386 */
857 /* The target hook has 3 exit conditions:
858 False when the interrupt isn't processed,
859 True when it is, and we should restart on a new TB,
860 and via longjmp via cpu_loop_exit. */
861 else {
862 CPUClass *cc = CPU_GET_CLASS(cpu);
864 if (cc->tcg_ops->cpu_exec_interrupt &&
865 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
866 if (need_replay_interrupt(interrupt_request)) {
867 replay_interrupt();
870 * After processing the interrupt, ensure an EXCP_DEBUG is
871 * raised when single-stepping so that GDB doesn't miss the
872 * next instruction.
874 if (unlikely(cpu->singlestep_enabled)) {
875 cpu->exception_index = EXCP_DEBUG;
876 qemu_mutex_unlock_iothread();
877 return true;
879 cpu->exception_index = -1;
880 *last_tb = NULL;
882 /* The target hook may have updated the 'cpu->interrupt_request';
883 * reload the 'interrupt_request' value */
884 interrupt_request = cpu->interrupt_request;
886 #endif /* !CONFIG_USER_ONLY */
887 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
888 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
889 /* ensure that no TB jump will be modified as
890 the program flow was changed */
891 *last_tb = NULL;
894 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
895 qemu_mutex_unlock_iothread();
898 /* Finally, check if we need to exit to the main loop. */
899 if (unlikely(qatomic_read(&cpu->exit_request))
900 || (icount_enabled()
901 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
902 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0)) {
903 qatomic_set(&cpu->exit_request, 0);
904 if (cpu->exception_index == -1) {
905 cpu->exception_index = EXCP_INTERRUPT;
907 return true;
910 return false;
913 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
914 vaddr pc, TranslationBlock **last_tb,
915 int *tb_exit)
917 int32_t insns_left;
919 trace_exec_tb(tb, pc);
920 tb = cpu_tb_exec(cpu, tb, tb_exit);
921 if (*tb_exit != TB_EXIT_REQUESTED) {
922 *last_tb = tb;
923 return;
926 *last_tb = NULL;
927 insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
928 if (insns_left < 0) {
929 /* Something asked us to stop executing chained TBs; just
930 * continue round the main loop. Whatever requested the exit
931 * will also have set something else (eg exit_request or
932 * interrupt_request) which will be handled by
933 * cpu_handle_interrupt. cpu_handle_interrupt will also
934 * clear cpu->icount_decr.u16.high.
936 return;
939 /* Instruction counter expired. */
940 assert(icount_enabled());
941 #ifndef CONFIG_USER_ONLY
942 /* Ensure global icount has gone forward */
943 icount_update(cpu);
944 /* Refill decrementer and continue execution. */
945 insns_left = MIN(0xffff, cpu->icount_budget);
946 cpu->neg.icount_decr.u16.low = insns_left;
947 cpu->icount_extra = cpu->icount_budget - insns_left;
950 * If the next tb has more instructions than we have left to
951 * execute we need to ensure we find/generate a TB with exactly
952 * insns_left instructions in it.
954 if (insns_left > 0 && insns_left < tb->icount) {
955 assert(insns_left <= CF_COUNT_MASK);
956 assert(cpu->icount_extra == 0);
957 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
959 #endif
962 /* main execution loop */
964 static int __attribute__((noinline))
965 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
967 int ret;
969 /* if an exception is pending, we execute it here */
970 while (!cpu_handle_exception(cpu, &ret)) {
971 TranslationBlock *last_tb = NULL;
972 int tb_exit = 0;
974 while (!cpu_handle_interrupt(cpu, &last_tb)) {
975 TranslationBlock *tb;
976 vaddr pc;
977 uint64_t cs_base;
978 uint32_t flags, cflags;
980 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
983 * When requested, use an exact setting for cflags for the next
984 * execution. This is used for icount, precise smc, and stop-
985 * after-access watchpoints. Since this request should never
986 * have CF_INVALID set, -1 is a convenient invalid value that
987 * does not require tcg headers for cpu_common_reset.
989 cflags = cpu->cflags_next_tb;
990 if (cflags == -1) {
991 cflags = curr_cflags(cpu);
992 } else {
993 cpu->cflags_next_tb = -1;
996 if (check_for_breakpoints(cpu, pc, &cflags)) {
997 break;
1000 tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
1001 if (tb == NULL) {
1002 CPUJumpCache *jc;
1003 uint32_t h;
1005 mmap_lock();
1006 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
1007 mmap_unlock();
1010 * We add the TB in the virtual pc hash table
1011 * for the fast lookup
1013 h = tb_jmp_cache_hash_func(pc);
1014 jc = cpu->tb_jmp_cache;
1015 if (cflags & CF_PCREL) {
1016 jc->array[h].pc = pc;
1017 /* Ensure pc is written first. */
1018 qatomic_store_release(&jc->array[h].tb, tb);
1019 } else {
1020 /* Use the pc value already stored in tb->pc. */
1021 qatomic_set(&jc->array[h].tb, tb);
1025 #ifndef CONFIG_USER_ONLY
1027 * We don't take care of direct jumps when address mapping
1028 * changes in system emulation. So it's not safe to make a
1029 * direct jump to a TB spanning two pages because the mapping
1030 * for the second page can change.
1032 if (tb_page_addr1(tb) != -1) {
1033 last_tb = NULL;
1035 #endif
1036 /* See if we can patch the calling TB. */
1037 if (last_tb) {
1038 tb_add_jump(last_tb, tb_exit, tb);
1041 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1043 /* Try to align the host and virtual clocks
1044 if the guest is in advance */
1045 align_clocks(sc, cpu);
1048 return ret;
1051 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1053 /* Prepare setjmp context for exception handling. */
1054 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1055 cpu_exec_longjmp_cleanup(cpu);
1058 return cpu_exec_loop(cpu, sc);
1061 int cpu_exec(CPUState *cpu)
1063 int ret;
1064 SyncClocks sc = { 0 };
1066 /* replay_interrupt may need current_cpu */
1067 current_cpu = cpu;
1069 if (cpu_handle_halt(cpu)) {
1070 return EXCP_HALTED;
1073 rcu_read_lock();
1074 cpu_exec_enter(cpu);
1077 * Calculate difference between guest clock and host clock.
1078 * This delay includes the delay of the last cycle, so
1079 * what we have to do is sleep until it is 0. As for the
1080 * advance/delay we gain here, we try to fix it next time.
1082 init_delay_params(&sc, cpu);
1084 ret = cpu_exec_setjmp(cpu, &sc);
1086 cpu_exec_exit(cpu);
1087 rcu_read_unlock();
1089 return ret;
1092 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1094 static bool tcg_target_initialized;
1095 CPUClass *cc = CPU_GET_CLASS(cpu);
1097 if (!tcg_target_initialized) {
1098 cc->tcg_ops->initialize();
1099 tcg_target_initialized = true;
1102 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1103 tlb_init(cpu);
1104 #ifndef CONFIG_USER_ONLY
1105 tcg_iommu_init_notifier_list(cpu);
1106 #endif /* !CONFIG_USER_ONLY */
1107 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1109 return true;
1112 /* undo the initializations in reverse order */
1113 void tcg_exec_unrealizefn(CPUState *cpu)
1115 #ifndef CONFIG_USER_ONLY
1116 tcg_iommu_free_notifier_list(cpu);
1117 #endif /* !CONFIG_USER_ONLY */
1119 tlb_destroy(cpu);
1120 g_free_rcu(cpu->tb_jmp_cache, rcu);