spapr_pci: Get rid of duplicate code for node name creation
[qemu/ar7.git] / migration / ram.c
blob1ca9ba77b6a66d241431af6702a49c5b9845ed1b
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
37 #include "xbzrle.h"
38 #include "ram.h"
39 #include "migration.h"
40 #include "socket.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "block.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
89 static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
101 } XBZRLE;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
131 int64_t ret = 0;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
142 return 0;
145 XBZRLE_cache_lock();
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
149 if (!new_cache) {
150 ret = -1;
151 goto out;
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
157 out:
158 XBZRLE_cache_unlock();
159 return ret;
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
181 RAMBlock *block;
182 int ret = 0;
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
191 rcu_read_unlock();
192 return ret;
195 static void ramblock_recv_map_init(void)
197 RAMBlock *rb;
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
284 g_free(le_bitmap);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
295 * and queued
297 struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
306 struct RAMState {
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
387 if (!ram_state) {
388 return;
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
406 /* Current page to search from */
407 unsigned long page;
408 /* Set once we wrap around */
409 bool complete_round;
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
416 bool done;
417 bool quit;
418 bool zero_page;
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
425 /* internally used fields */
426 z_stream stream;
427 uint8_t *originbuf;
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
432 bool done;
433 bool quit;
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
437 uint8_t *compbuf;
438 int len;
439 z_stream stream;
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
466 RAMBlock *block;
467 ram_addr_t offset;
468 bool zero_page;
470 qemu_mutex_lock(&param->mutex);
471 while (!param->quit) {
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
482 param->done = true;
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(&param->mutex);
488 } else {
489 qemu_cond_wait(&param->cond, &param->mutex);
492 qemu_mutex_unlock(&param->mutex);
494 return NULL;
497 static void compress_threads_save_cleanup(void)
499 int i, thread_count;
501 if (!migrate_use_compression() || !comp_param) {
502 return;
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
512 break;
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
531 g_free(comp_param);
532 compress_threads = NULL;
533 comp_param = NULL;
536 static int compress_threads_save_setup(void)
538 int i, thread_count;
540 if (!migrate_use_compression()) {
541 return 0;
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
557 goto exit;
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
572 return 0;
574 exit:
575 compress_threads_save_cleanup();
576 return -1;
579 /* Multiple fd's */
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
589 typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
598 typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
607 uint64_t packet_num;
608 uint64_t unused[4]; /* Reserved for future use */
609 char ramblock[256];
610 uint64_t offset[];
611 } __attribute__((packed)) MultiFDPacket_t;
613 typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625 } MultiFDPages_t;
627 typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
630 uint8_t id;
631 /* channel thread name */
632 char *name;
633 /* channel thread id */
634 QemuThread thread;
635 /* communication channel */
636 QIOChannel *c;
637 /* sem where to wait for more work */
638 QemuSemaphore sem;
639 /* this mutex protects the following parameters */
640 QemuMutex mutex;
641 /* is this channel thread running */
642 bool running;
643 /* should this thread finish */
644 bool quit;
645 /* thread has work to do */
646 int pending_job;
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
666 } MultiFDSendParams;
668 typedef struct {
669 /* this fields are not changed once the thread is created */
670 /* channel number */
671 uint8_t id;
672 /* channel thread name */
673 char *name;
674 /* channel thread id */
675 QemuThread thread;
676 /* communication channel */
677 QIOChannel *c;
678 /* this mutex protects the following parameters */
679 QemuMutex mutex;
680 /* is this channel thread running */
681 bool running;
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
684 /* packet allocated len */
685 uint32_t packet_len;
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
689 uint32_t flags;
690 /* global number of generated multifd packets */
691 uint64_t packet_num;
692 /* thread local variables */
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
698 uint64_t num_pages;
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
701 } MultiFDRecvParams;
703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
705 MultiFDInit_t msg;
706 int ret;
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
710 msg.id = p->id;
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
714 if (ret != 0) {
715 return -1;
717 return 0;
720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
722 MultiFDInit_t msg;
723 int ret;
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
726 if (ret != 0) {
727 return -1;
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
736 return -1;
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
742 return -1;
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
751 g_free(uuid);
752 g_free(msg_uuid);
753 return -1;
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
759 return -1;
762 return msg.id;
765 static MultiFDPages_t *multifd_pages_init(size_t size)
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
773 return pages;
776 static void multifd_pages_clear(MultiFDPages_t *pages)
778 pages->used = 0;
779 pages->allocated = 0;
780 pages->packet_num = 0;
781 pages->block = NULL;
782 g_free(pages->iov);
783 pages->iov = NULL;
784 g_free(pages->offset);
785 pages->offset = NULL;
786 g_free(pages);
789 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 MultiFDPacket_t *packet = p->packet;
792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
793 int i;
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
798 packet->pages_alloc = cpu_to_be32(page_max);
799 packet->pages_used = cpu_to_be32(p->pages->used);
800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
801 packet->packet_num = cpu_to_be64(p->packet_num);
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
814 MultiFDPacket_t *packet = p->packet;
815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
816 RAMBlock *block;
817 int i;
819 packet->magic = be32_to_cpu(packet->magic);
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
824 return -1;
827 packet->version = be32_to_cpu(packet->version);
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
832 return -1;
835 p->flags = be32_to_cpu(packet->flags);
837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
842 if (packet->pages_alloc > pages_max * 100) {
843 error_setg(errp, "multifd: received packet "
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
846 return -1;
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
854 p->pages = multifd_pages_init(packet->pages_alloc);
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
859 error_setg(errp, "multifd: received packet "
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
862 return -1;
865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
866 p->packet_num = be64_to_cpu(packet->packet_num);
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
872 if (!block) {
873 error_setg(errp, "multifd: unknown ram block %s",
874 packet->ramblock);
875 return -1;
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
892 return 0;
895 struct {
896 MultiFDSendParams *params;
897 /* number of created threads */
898 int count;
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
901 /* syncs main thread and channels */
902 QemuSemaphore sem_sync;
903 /* global number of generated multifd packets */
904 uint64_t packet_num;
905 /* send channels ready */
906 QemuSemaphore channels_ready;
907 } *multifd_send_state;
910 * How we use multifd_send_state->pages and channel->pages?
912 * We create a pages for each channel, and a main one. Each time that
913 * we need to send a batch of pages we interchange the ones between
914 * multifd_send_state and the channel that is sending it. There are
915 * two reasons for that:
916 * - to not have to do so many mallocs during migration
917 * - to make easier to know what to free at the end of migration
919 * This way we always know who is the owner of each "pages" struct,
920 * and we don't need any loocking. It belongs to the migration thread
921 * or to the channel thread. Switching is safe because the migration
922 * thread is using the channel mutex when changing it, and the channel
923 * have to had finish with its own, otherwise pending_job can't be
924 * false.
927 static void multifd_send_pages(void)
929 int i;
930 static int next_channel;
931 MultiFDSendParams *p = NULL; /* make happy gcc */
932 MultiFDPages_t *pages = multifd_send_state->pages;
933 uint64_t transferred;
935 qemu_sem_wait(&multifd_send_state->channels_ready);
936 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
937 p = &multifd_send_state->params[i];
939 qemu_mutex_lock(&p->mutex);
940 if (!p->pending_job) {
941 p->pending_job++;
942 next_channel = (i + 1) % migrate_multifd_channels();
943 break;
945 qemu_mutex_unlock(&p->mutex);
947 p->pages->used = 0;
949 p->packet_num = multifd_send_state->packet_num++;
950 p->pages->block = NULL;
951 multifd_send_state->pages = p->pages;
952 p->pages = pages;
953 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
954 ram_counters.multifd_bytes += transferred;
955 ram_counters.transferred += transferred;;
956 qemu_mutex_unlock(&p->mutex);
957 qemu_sem_post(&p->sem);
960 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
962 MultiFDPages_t *pages = multifd_send_state->pages;
964 if (!pages->block) {
965 pages->block = block;
968 if (pages->block == block) {
969 pages->offset[pages->used] = offset;
970 pages->iov[pages->used].iov_base = block->host + offset;
971 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
972 pages->used++;
974 if (pages->used < pages->allocated) {
975 return;
979 multifd_send_pages();
981 if (pages->block != block) {
982 multifd_queue_page(block, offset);
986 static void multifd_send_terminate_threads(Error *err)
988 int i;
990 if (err) {
991 MigrationState *s = migrate_get_current();
992 migrate_set_error(s, err);
993 if (s->state == MIGRATION_STATUS_SETUP ||
994 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
995 s->state == MIGRATION_STATUS_DEVICE ||
996 s->state == MIGRATION_STATUS_ACTIVE) {
997 migrate_set_state(&s->state, s->state,
998 MIGRATION_STATUS_FAILED);
1002 for (i = 0; i < migrate_multifd_channels(); i++) {
1003 MultiFDSendParams *p = &multifd_send_state->params[i];
1005 qemu_mutex_lock(&p->mutex);
1006 p->quit = true;
1007 qemu_sem_post(&p->sem);
1008 qemu_mutex_unlock(&p->mutex);
1012 void multifd_save_cleanup(void)
1014 int i;
1016 if (!migrate_use_multifd()) {
1017 return;
1019 multifd_send_terminate_threads(NULL);
1020 for (i = 0; i < migrate_multifd_channels(); i++) {
1021 MultiFDSendParams *p = &multifd_send_state->params[i];
1023 if (p->running) {
1024 qemu_thread_join(&p->thread);
1026 socket_send_channel_destroy(p->c);
1027 p->c = NULL;
1028 qemu_mutex_destroy(&p->mutex);
1029 qemu_sem_destroy(&p->sem);
1030 qemu_sem_destroy(&p->sem_sync);
1031 g_free(p->name);
1032 p->name = NULL;
1033 multifd_pages_clear(p->pages);
1034 p->pages = NULL;
1035 p->packet_len = 0;
1036 g_free(p->packet);
1037 p->packet = NULL;
1039 qemu_sem_destroy(&multifd_send_state->channels_ready);
1040 qemu_sem_destroy(&multifd_send_state->sem_sync);
1041 g_free(multifd_send_state->params);
1042 multifd_send_state->params = NULL;
1043 multifd_pages_clear(multifd_send_state->pages);
1044 multifd_send_state->pages = NULL;
1045 g_free(multifd_send_state);
1046 multifd_send_state = NULL;
1049 static void multifd_send_sync_main(void)
1051 int i;
1053 if (!migrate_use_multifd()) {
1054 return;
1056 if (multifd_send_state->pages->used) {
1057 multifd_send_pages();
1059 for (i = 0; i < migrate_multifd_channels(); i++) {
1060 MultiFDSendParams *p = &multifd_send_state->params[i];
1062 trace_multifd_send_sync_main_signal(p->id);
1064 qemu_mutex_lock(&p->mutex);
1066 p->packet_num = multifd_send_state->packet_num++;
1067 p->flags |= MULTIFD_FLAG_SYNC;
1068 p->pending_job++;
1069 qemu_mutex_unlock(&p->mutex);
1070 qemu_sem_post(&p->sem);
1072 for (i = 0; i < migrate_multifd_channels(); i++) {
1073 MultiFDSendParams *p = &multifd_send_state->params[i];
1075 trace_multifd_send_sync_main_wait(p->id);
1076 qemu_sem_wait(&multifd_send_state->sem_sync);
1078 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1081 static void *multifd_send_thread(void *opaque)
1083 MultiFDSendParams *p = opaque;
1084 Error *local_err = NULL;
1085 int ret;
1087 trace_multifd_send_thread_start(p->id);
1088 rcu_register_thread();
1090 if (multifd_send_initial_packet(p, &local_err) < 0) {
1091 goto out;
1093 /* initial packet */
1094 p->num_packets = 1;
1096 while (true) {
1097 qemu_sem_wait(&p->sem);
1098 qemu_mutex_lock(&p->mutex);
1100 if (p->pending_job) {
1101 uint32_t used = p->pages->used;
1102 uint64_t packet_num = p->packet_num;
1103 uint32_t flags = p->flags;
1105 p->next_packet_size = used * qemu_target_page_size();
1106 multifd_send_fill_packet(p);
1107 p->flags = 0;
1108 p->num_packets++;
1109 p->num_pages += used;
1110 p->pages->used = 0;
1111 qemu_mutex_unlock(&p->mutex);
1113 trace_multifd_send(p->id, packet_num, used, flags,
1114 p->next_packet_size);
1116 ret = qio_channel_write_all(p->c, (void *)p->packet,
1117 p->packet_len, &local_err);
1118 if (ret != 0) {
1119 break;
1122 if (used) {
1123 ret = qio_channel_writev_all(p->c, p->pages->iov,
1124 used, &local_err);
1125 if (ret != 0) {
1126 break;
1130 qemu_mutex_lock(&p->mutex);
1131 p->pending_job--;
1132 qemu_mutex_unlock(&p->mutex);
1134 if (flags & MULTIFD_FLAG_SYNC) {
1135 qemu_sem_post(&multifd_send_state->sem_sync);
1137 qemu_sem_post(&multifd_send_state->channels_ready);
1138 } else if (p->quit) {
1139 qemu_mutex_unlock(&p->mutex);
1140 break;
1141 } else {
1142 qemu_mutex_unlock(&p->mutex);
1143 /* sometimes there are spurious wakeups */
1147 out:
1148 if (local_err) {
1149 multifd_send_terminate_threads(local_err);
1152 qemu_mutex_lock(&p->mutex);
1153 p->running = false;
1154 qemu_mutex_unlock(&p->mutex);
1156 rcu_unregister_thread();
1157 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1159 return NULL;
1162 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1164 MultiFDSendParams *p = opaque;
1165 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1166 Error *local_err = NULL;
1168 if (qio_task_propagate_error(task, &local_err)) {
1169 migrate_set_error(migrate_get_current(), local_err);
1170 multifd_save_cleanup();
1171 } else {
1172 p->c = QIO_CHANNEL(sioc);
1173 qio_channel_set_delay(p->c, false);
1174 p->running = true;
1175 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1176 QEMU_THREAD_JOINABLE);
1178 atomic_inc(&multifd_send_state->count);
1182 int multifd_save_setup(void)
1184 int thread_count;
1185 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1186 uint8_t i;
1188 if (!migrate_use_multifd()) {
1189 return 0;
1191 thread_count = migrate_multifd_channels();
1192 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1193 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1194 atomic_set(&multifd_send_state->count, 0);
1195 multifd_send_state->pages = multifd_pages_init(page_count);
1196 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1197 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1199 for (i = 0; i < thread_count; i++) {
1200 MultiFDSendParams *p = &multifd_send_state->params[i];
1202 qemu_mutex_init(&p->mutex);
1203 qemu_sem_init(&p->sem, 0);
1204 qemu_sem_init(&p->sem_sync, 0);
1205 p->quit = false;
1206 p->pending_job = 0;
1207 p->id = i;
1208 p->pages = multifd_pages_init(page_count);
1209 p->packet_len = sizeof(MultiFDPacket_t)
1210 + sizeof(ram_addr_t) * page_count;
1211 p->packet = g_malloc0(p->packet_len);
1212 p->name = g_strdup_printf("multifdsend_%d", i);
1213 socket_send_channel_create(multifd_new_send_channel_async, p);
1215 return 0;
1218 struct {
1219 MultiFDRecvParams *params;
1220 /* number of created threads */
1221 int count;
1222 /* syncs main thread and channels */
1223 QemuSemaphore sem_sync;
1224 /* global number of generated multifd packets */
1225 uint64_t packet_num;
1226 } *multifd_recv_state;
1228 static void multifd_recv_terminate_threads(Error *err)
1230 int i;
1232 if (err) {
1233 MigrationState *s = migrate_get_current();
1234 migrate_set_error(s, err);
1235 if (s->state == MIGRATION_STATUS_SETUP ||
1236 s->state == MIGRATION_STATUS_ACTIVE) {
1237 migrate_set_state(&s->state, s->state,
1238 MIGRATION_STATUS_FAILED);
1242 for (i = 0; i < migrate_multifd_channels(); i++) {
1243 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1245 qemu_mutex_lock(&p->mutex);
1246 /* We could arrive here for two reasons:
1247 - normal quit, i.e. everything went fine, just finished
1248 - error quit: We close the channels so the channel threads
1249 finish the qio_channel_read_all_eof() */
1250 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1251 qemu_mutex_unlock(&p->mutex);
1255 int multifd_load_cleanup(Error **errp)
1257 int i;
1258 int ret = 0;
1260 if (!migrate_use_multifd()) {
1261 return 0;
1263 multifd_recv_terminate_threads(NULL);
1264 for (i = 0; i < migrate_multifd_channels(); i++) {
1265 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1267 if (p->running) {
1268 qemu_thread_join(&p->thread);
1270 object_unref(OBJECT(p->c));
1271 p->c = NULL;
1272 qemu_mutex_destroy(&p->mutex);
1273 qemu_sem_destroy(&p->sem_sync);
1274 g_free(p->name);
1275 p->name = NULL;
1276 multifd_pages_clear(p->pages);
1277 p->pages = NULL;
1278 p->packet_len = 0;
1279 g_free(p->packet);
1280 p->packet = NULL;
1282 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1283 g_free(multifd_recv_state->params);
1284 multifd_recv_state->params = NULL;
1285 g_free(multifd_recv_state);
1286 multifd_recv_state = NULL;
1288 return ret;
1291 static void multifd_recv_sync_main(void)
1293 int i;
1295 if (!migrate_use_multifd()) {
1296 return;
1298 for (i = 0; i < migrate_multifd_channels(); i++) {
1299 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1301 trace_multifd_recv_sync_main_wait(p->id);
1302 qemu_sem_wait(&multifd_recv_state->sem_sync);
1303 qemu_mutex_lock(&p->mutex);
1304 if (multifd_recv_state->packet_num < p->packet_num) {
1305 multifd_recv_state->packet_num = p->packet_num;
1307 qemu_mutex_unlock(&p->mutex);
1309 for (i = 0; i < migrate_multifd_channels(); i++) {
1310 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1312 trace_multifd_recv_sync_main_signal(p->id);
1313 qemu_sem_post(&p->sem_sync);
1315 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1318 static void *multifd_recv_thread(void *opaque)
1320 MultiFDRecvParams *p = opaque;
1321 Error *local_err = NULL;
1322 int ret;
1324 trace_multifd_recv_thread_start(p->id);
1325 rcu_register_thread();
1327 while (true) {
1328 uint32_t used;
1329 uint32_t flags;
1331 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1332 p->packet_len, &local_err);
1333 if (ret == 0) { /* EOF */
1334 break;
1336 if (ret == -1) { /* Error */
1337 break;
1340 qemu_mutex_lock(&p->mutex);
1341 ret = multifd_recv_unfill_packet(p, &local_err);
1342 if (ret) {
1343 qemu_mutex_unlock(&p->mutex);
1344 break;
1347 used = p->pages->used;
1348 flags = p->flags;
1349 trace_multifd_recv(p->id, p->packet_num, used, flags,
1350 p->next_packet_size);
1351 p->num_packets++;
1352 p->num_pages += used;
1353 qemu_mutex_unlock(&p->mutex);
1355 if (used) {
1356 ret = qio_channel_readv_all(p->c, p->pages->iov,
1357 used, &local_err);
1358 if (ret != 0) {
1359 break;
1363 if (flags & MULTIFD_FLAG_SYNC) {
1364 qemu_sem_post(&multifd_recv_state->sem_sync);
1365 qemu_sem_wait(&p->sem_sync);
1369 if (local_err) {
1370 multifd_recv_terminate_threads(local_err);
1372 qemu_mutex_lock(&p->mutex);
1373 p->running = false;
1374 qemu_mutex_unlock(&p->mutex);
1376 rcu_unregister_thread();
1377 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1379 return NULL;
1382 int multifd_load_setup(void)
1384 int thread_count;
1385 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1386 uint8_t i;
1388 if (!migrate_use_multifd()) {
1389 return 0;
1391 thread_count = migrate_multifd_channels();
1392 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1393 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1394 atomic_set(&multifd_recv_state->count, 0);
1395 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1397 for (i = 0; i < thread_count; i++) {
1398 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1400 qemu_mutex_init(&p->mutex);
1401 qemu_sem_init(&p->sem_sync, 0);
1402 p->id = i;
1403 p->pages = multifd_pages_init(page_count);
1404 p->packet_len = sizeof(MultiFDPacket_t)
1405 + sizeof(ram_addr_t) * page_count;
1406 p->packet = g_malloc0(p->packet_len);
1407 p->name = g_strdup_printf("multifdrecv_%d", i);
1409 return 0;
1412 bool multifd_recv_all_channels_created(void)
1414 int thread_count = migrate_multifd_channels();
1416 if (!migrate_use_multifd()) {
1417 return true;
1420 return thread_count == atomic_read(&multifd_recv_state->count);
1424 * Try to receive all multifd channels to get ready for the migration.
1425 * - Return true and do not set @errp when correctly receving all channels;
1426 * - Return false and do not set @errp when correctly receiving the current one;
1427 * - Return false and set @errp when failing to receive the current channel.
1429 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1431 MultiFDRecvParams *p;
1432 Error *local_err = NULL;
1433 int id;
1435 id = multifd_recv_initial_packet(ioc, &local_err);
1436 if (id < 0) {
1437 multifd_recv_terminate_threads(local_err);
1438 error_propagate_prepend(errp, local_err,
1439 "failed to receive packet"
1440 " via multifd channel %d: ",
1441 atomic_read(&multifd_recv_state->count));
1442 return false;
1445 p = &multifd_recv_state->params[id];
1446 if (p->c != NULL) {
1447 error_setg(&local_err, "multifd: received id '%d' already setup'",
1448 id);
1449 multifd_recv_terminate_threads(local_err);
1450 error_propagate(errp, local_err);
1451 return false;
1453 p->c = ioc;
1454 object_ref(OBJECT(ioc));
1455 /* initial packet */
1456 p->num_packets = 1;
1458 p->running = true;
1459 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1460 QEMU_THREAD_JOINABLE);
1461 atomic_inc(&multifd_recv_state->count);
1462 return atomic_read(&multifd_recv_state->count) ==
1463 migrate_multifd_channels();
1467 * save_page_header: write page header to wire
1469 * If this is the 1st block, it also writes the block identification
1471 * Returns the number of bytes written
1473 * @f: QEMUFile where to send the data
1474 * @block: block that contains the page we want to send
1475 * @offset: offset inside the block for the page
1476 * in the lower bits, it contains flags
1478 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1479 ram_addr_t offset)
1481 size_t size, len;
1483 if (block == rs->last_sent_block) {
1484 offset |= RAM_SAVE_FLAG_CONTINUE;
1486 qemu_put_be64(f, offset);
1487 size = 8;
1489 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1490 len = strlen(block->idstr);
1491 qemu_put_byte(f, len);
1492 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1493 size += 1 + len;
1494 rs->last_sent_block = block;
1496 return size;
1500 * mig_throttle_guest_down: throotle down the guest
1502 * Reduce amount of guest cpu execution to hopefully slow down memory
1503 * writes. If guest dirty memory rate is reduced below the rate at
1504 * which we can transfer pages to the destination then we should be
1505 * able to complete migration. Some workloads dirty memory way too
1506 * fast and will not effectively converge, even with auto-converge.
1508 static void mig_throttle_guest_down(void)
1510 MigrationState *s = migrate_get_current();
1511 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1512 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1513 int pct_max = s->parameters.max_cpu_throttle;
1515 /* We have not started throttling yet. Let's start it. */
1516 if (!cpu_throttle_active()) {
1517 cpu_throttle_set(pct_initial);
1518 } else {
1519 /* Throttling already on, just increase the rate */
1520 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1521 pct_max));
1526 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1528 * @rs: current RAM state
1529 * @current_addr: address for the zero page
1531 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1532 * The important thing is that a stale (not-yet-0'd) page be replaced
1533 * by the new data.
1534 * As a bonus, if the page wasn't in the cache it gets added so that
1535 * when a small write is made into the 0'd page it gets XBZRLE sent.
1537 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1539 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1540 return;
1543 /* We don't care if this fails to allocate a new cache page
1544 * as long as it updated an old one */
1545 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1546 ram_counters.dirty_sync_count);
1549 #define ENCODING_FLAG_XBZRLE 0x1
1552 * save_xbzrle_page: compress and send current page
1554 * Returns: 1 means that we wrote the page
1555 * 0 means that page is identical to the one already sent
1556 * -1 means that xbzrle would be longer than normal
1558 * @rs: current RAM state
1559 * @current_data: pointer to the address of the page contents
1560 * @current_addr: addr of the page
1561 * @block: block that contains the page we want to send
1562 * @offset: offset inside the block for the page
1563 * @last_stage: if we are at the completion stage
1565 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1566 ram_addr_t current_addr, RAMBlock *block,
1567 ram_addr_t offset, bool last_stage)
1569 int encoded_len = 0, bytes_xbzrle;
1570 uint8_t *prev_cached_page;
1572 if (!cache_is_cached(XBZRLE.cache, current_addr,
1573 ram_counters.dirty_sync_count)) {
1574 xbzrle_counters.cache_miss++;
1575 if (!last_stage) {
1576 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1577 ram_counters.dirty_sync_count) == -1) {
1578 return -1;
1579 } else {
1580 /* update *current_data when the page has been
1581 inserted into cache */
1582 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1585 return -1;
1588 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1590 /* save current buffer into memory */
1591 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1593 /* XBZRLE encoding (if there is no overflow) */
1594 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1595 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1596 TARGET_PAGE_SIZE);
1597 if (encoded_len == 0) {
1598 trace_save_xbzrle_page_skipping();
1599 return 0;
1600 } else if (encoded_len == -1) {
1601 trace_save_xbzrle_page_overflow();
1602 xbzrle_counters.overflow++;
1603 /* update data in the cache */
1604 if (!last_stage) {
1605 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1606 *current_data = prev_cached_page;
1608 return -1;
1611 /* we need to update the data in the cache, in order to get the same data */
1612 if (!last_stage) {
1613 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1616 /* Send XBZRLE based compressed page */
1617 bytes_xbzrle = save_page_header(rs, rs->f, block,
1618 offset | RAM_SAVE_FLAG_XBZRLE);
1619 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1620 qemu_put_be16(rs->f, encoded_len);
1621 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1622 bytes_xbzrle += encoded_len + 1 + 2;
1623 xbzrle_counters.pages++;
1624 xbzrle_counters.bytes += bytes_xbzrle;
1625 ram_counters.transferred += bytes_xbzrle;
1627 return 1;
1631 * migration_bitmap_find_dirty: find the next dirty page from start
1633 * Called with rcu_read_lock() to protect migration_bitmap
1635 * Returns the byte offset within memory region of the start of a dirty page
1637 * @rs: current RAM state
1638 * @rb: RAMBlock where to search for dirty pages
1639 * @start: page where we start the search
1641 static inline
1642 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1643 unsigned long start)
1645 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1646 unsigned long *bitmap = rb->bmap;
1647 unsigned long next;
1649 if (ramblock_is_ignored(rb)) {
1650 return size;
1654 * When the free page optimization is enabled, we need to check the bitmap
1655 * to send the non-free pages rather than all the pages in the bulk stage.
1657 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1658 next = start + 1;
1659 } else {
1660 next = find_next_bit(bitmap, size, start);
1663 return next;
1666 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1667 RAMBlock *rb,
1668 unsigned long page)
1670 bool ret;
1672 qemu_mutex_lock(&rs->bitmap_mutex);
1673 ret = test_and_clear_bit(page, rb->bmap);
1675 if (ret) {
1676 rs->migration_dirty_pages--;
1678 qemu_mutex_unlock(&rs->bitmap_mutex);
1680 return ret;
1683 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1684 ram_addr_t start, ram_addr_t length)
1686 rs->migration_dirty_pages +=
1687 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1688 &rs->num_dirty_pages_period);
1692 * ram_pagesize_summary: calculate all the pagesizes of a VM
1694 * Returns a summary bitmap of the page sizes of all RAMBlocks
1696 * For VMs with just normal pages this is equivalent to the host page
1697 * size. If it's got some huge pages then it's the OR of all the
1698 * different page sizes.
1700 uint64_t ram_pagesize_summary(void)
1702 RAMBlock *block;
1703 uint64_t summary = 0;
1705 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1706 summary |= block->page_size;
1709 return summary;
1712 uint64_t ram_get_total_transferred_pages(void)
1714 return ram_counters.normal + ram_counters.duplicate +
1715 compression_counters.pages + xbzrle_counters.pages;
1718 static void migration_update_rates(RAMState *rs, int64_t end_time)
1720 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1721 double compressed_size;
1723 /* calculate period counters */
1724 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1725 / (end_time - rs->time_last_bitmap_sync);
1727 if (!page_count) {
1728 return;
1731 if (migrate_use_xbzrle()) {
1732 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1733 rs->xbzrle_cache_miss_prev) / page_count;
1734 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1737 if (migrate_use_compression()) {
1738 compression_counters.busy_rate = (double)(compression_counters.busy -
1739 rs->compress_thread_busy_prev) / page_count;
1740 rs->compress_thread_busy_prev = compression_counters.busy;
1742 compressed_size = compression_counters.compressed_size -
1743 rs->compressed_size_prev;
1744 if (compressed_size) {
1745 double uncompressed_size = (compression_counters.pages -
1746 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1748 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1749 compression_counters.compression_rate =
1750 uncompressed_size / compressed_size;
1752 rs->compress_pages_prev = compression_counters.pages;
1753 rs->compressed_size_prev = compression_counters.compressed_size;
1758 static void migration_bitmap_sync(RAMState *rs)
1760 RAMBlock *block;
1761 int64_t end_time;
1762 uint64_t bytes_xfer_now;
1764 ram_counters.dirty_sync_count++;
1766 if (!rs->time_last_bitmap_sync) {
1767 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1770 trace_migration_bitmap_sync_start();
1771 memory_global_dirty_log_sync();
1773 qemu_mutex_lock(&rs->bitmap_mutex);
1774 rcu_read_lock();
1775 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1776 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1778 ram_counters.remaining = ram_bytes_remaining();
1779 rcu_read_unlock();
1780 qemu_mutex_unlock(&rs->bitmap_mutex);
1782 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1784 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1786 /* more than 1 second = 1000 millisecons */
1787 if (end_time > rs->time_last_bitmap_sync + 1000) {
1788 bytes_xfer_now = ram_counters.transferred;
1790 /* During block migration the auto-converge logic incorrectly detects
1791 * that ram migration makes no progress. Avoid this by disabling the
1792 * throttling logic during the bulk phase of block migration. */
1793 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1794 /* The following detection logic can be refined later. For now:
1795 Check to see if the dirtied bytes is 50% more than the approx.
1796 amount of bytes that just got transferred since the last time we
1797 were in this routine. If that happens twice, start or increase
1798 throttling */
1800 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1801 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1802 (++rs->dirty_rate_high_cnt >= 2)) {
1803 trace_migration_throttle();
1804 rs->dirty_rate_high_cnt = 0;
1805 mig_throttle_guest_down();
1809 migration_update_rates(rs, end_time);
1811 rs->target_page_count_prev = rs->target_page_count;
1813 /* reset period counters */
1814 rs->time_last_bitmap_sync = end_time;
1815 rs->num_dirty_pages_period = 0;
1816 rs->bytes_xfer_prev = bytes_xfer_now;
1818 if (migrate_use_events()) {
1819 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1823 static void migration_bitmap_sync_precopy(RAMState *rs)
1825 Error *local_err = NULL;
1828 * The current notifier usage is just an optimization to migration, so we
1829 * don't stop the normal migration process in the error case.
1831 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1832 error_report_err(local_err);
1835 migration_bitmap_sync(rs);
1837 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1838 error_report_err(local_err);
1843 * save_zero_page_to_file: send the zero page to the file
1845 * Returns the size of data written to the file, 0 means the page is not
1846 * a zero page
1848 * @rs: current RAM state
1849 * @file: the file where the data is saved
1850 * @block: block that contains the page we want to send
1851 * @offset: offset inside the block for the page
1853 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1854 RAMBlock *block, ram_addr_t offset)
1856 uint8_t *p = block->host + offset;
1857 int len = 0;
1859 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1860 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1861 qemu_put_byte(file, 0);
1862 len += 1;
1864 return len;
1868 * save_zero_page: send the zero page to the stream
1870 * Returns the number of pages written.
1872 * @rs: current RAM state
1873 * @block: block that contains the page we want to send
1874 * @offset: offset inside the block for the page
1876 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1878 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1880 if (len) {
1881 ram_counters.duplicate++;
1882 ram_counters.transferred += len;
1883 return 1;
1885 return -1;
1888 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1890 if (!migrate_release_ram() || !migration_in_postcopy()) {
1891 return;
1894 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1898 * @pages: the number of pages written by the control path,
1899 * < 0 - error
1900 * > 0 - number of pages written
1902 * Return true if the pages has been saved, otherwise false is returned.
1904 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1905 int *pages)
1907 uint64_t bytes_xmit = 0;
1908 int ret;
1910 *pages = -1;
1911 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1912 &bytes_xmit);
1913 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1914 return false;
1917 if (bytes_xmit) {
1918 ram_counters.transferred += bytes_xmit;
1919 *pages = 1;
1922 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1923 return true;
1926 if (bytes_xmit > 0) {
1927 ram_counters.normal++;
1928 } else if (bytes_xmit == 0) {
1929 ram_counters.duplicate++;
1932 return true;
1936 * directly send the page to the stream
1938 * Returns the number of pages written.
1940 * @rs: current RAM state
1941 * @block: block that contains the page we want to send
1942 * @offset: offset inside the block for the page
1943 * @buf: the page to be sent
1944 * @async: send to page asyncly
1946 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1947 uint8_t *buf, bool async)
1949 ram_counters.transferred += save_page_header(rs, rs->f, block,
1950 offset | RAM_SAVE_FLAG_PAGE);
1951 if (async) {
1952 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1953 migrate_release_ram() &
1954 migration_in_postcopy());
1955 } else {
1956 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1958 ram_counters.transferred += TARGET_PAGE_SIZE;
1959 ram_counters.normal++;
1960 return 1;
1964 * ram_save_page: send the given page to the stream
1966 * Returns the number of pages written.
1967 * < 0 - error
1968 * >=0 - Number of pages written - this might legally be 0
1969 * if xbzrle noticed the page was the same.
1971 * @rs: current RAM state
1972 * @block: block that contains the page we want to send
1973 * @offset: offset inside the block for the page
1974 * @last_stage: if we are at the completion stage
1976 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1978 int pages = -1;
1979 uint8_t *p;
1980 bool send_async = true;
1981 RAMBlock *block = pss->block;
1982 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1983 ram_addr_t current_addr = block->offset + offset;
1985 p = block->host + offset;
1986 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1988 XBZRLE_cache_lock();
1989 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1990 migrate_use_xbzrle()) {
1991 pages = save_xbzrle_page(rs, &p, current_addr, block,
1992 offset, last_stage);
1993 if (!last_stage) {
1994 /* Can't send this cached data async, since the cache page
1995 * might get updated before it gets to the wire
1997 send_async = false;
2001 /* XBZRLE overflow or normal page */
2002 if (pages == -1) {
2003 pages = save_normal_page(rs, block, offset, p, send_async);
2006 XBZRLE_cache_unlock();
2008 return pages;
2011 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2012 ram_addr_t offset)
2014 multifd_queue_page(block, offset);
2015 ram_counters.normal++;
2017 return 1;
2020 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2021 ram_addr_t offset, uint8_t *source_buf)
2023 RAMState *rs = ram_state;
2024 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2025 bool zero_page = false;
2026 int ret;
2028 if (save_zero_page_to_file(rs, f, block, offset)) {
2029 zero_page = true;
2030 goto exit;
2033 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2036 * copy it to a internal buffer to avoid it being modified by VM
2037 * so that we can catch up the error during compression and
2038 * decompression
2040 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2041 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2042 if (ret < 0) {
2043 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2044 error_report("compressed data failed!");
2045 return false;
2048 exit:
2049 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2050 return zero_page;
2053 static void
2054 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2056 ram_counters.transferred += bytes_xmit;
2058 if (param->zero_page) {
2059 ram_counters.duplicate++;
2060 return;
2063 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2064 compression_counters.compressed_size += bytes_xmit - 8;
2065 compression_counters.pages++;
2068 static bool save_page_use_compression(RAMState *rs);
2070 static void flush_compressed_data(RAMState *rs)
2072 int idx, len, thread_count;
2074 if (!save_page_use_compression(rs)) {
2075 return;
2077 thread_count = migrate_compress_threads();
2079 qemu_mutex_lock(&comp_done_lock);
2080 for (idx = 0; idx < thread_count; idx++) {
2081 while (!comp_param[idx].done) {
2082 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2085 qemu_mutex_unlock(&comp_done_lock);
2087 for (idx = 0; idx < thread_count; idx++) {
2088 qemu_mutex_lock(&comp_param[idx].mutex);
2089 if (!comp_param[idx].quit) {
2090 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2092 * it's safe to fetch zero_page without holding comp_done_lock
2093 * as there is no further request submitted to the thread,
2094 * i.e, the thread should be waiting for a request at this point.
2096 update_compress_thread_counts(&comp_param[idx], len);
2098 qemu_mutex_unlock(&comp_param[idx].mutex);
2102 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2103 ram_addr_t offset)
2105 param->block = block;
2106 param->offset = offset;
2109 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2110 ram_addr_t offset)
2112 int idx, thread_count, bytes_xmit = -1, pages = -1;
2113 bool wait = migrate_compress_wait_thread();
2115 thread_count = migrate_compress_threads();
2116 qemu_mutex_lock(&comp_done_lock);
2117 retry:
2118 for (idx = 0; idx < thread_count; idx++) {
2119 if (comp_param[idx].done) {
2120 comp_param[idx].done = false;
2121 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2122 qemu_mutex_lock(&comp_param[idx].mutex);
2123 set_compress_params(&comp_param[idx], block, offset);
2124 qemu_cond_signal(&comp_param[idx].cond);
2125 qemu_mutex_unlock(&comp_param[idx].mutex);
2126 pages = 1;
2127 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2128 break;
2133 * wait for the free thread if the user specifies 'compress-wait-thread',
2134 * otherwise we will post the page out in the main thread as normal page.
2136 if (pages < 0 && wait) {
2137 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2138 goto retry;
2140 qemu_mutex_unlock(&comp_done_lock);
2142 return pages;
2146 * find_dirty_block: find the next dirty page and update any state
2147 * associated with the search process.
2149 * Returns if a page is found
2151 * @rs: current RAM state
2152 * @pss: data about the state of the current dirty page scan
2153 * @again: set to false if the search has scanned the whole of RAM
2155 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2157 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2158 if (pss->complete_round && pss->block == rs->last_seen_block &&
2159 pss->page >= rs->last_page) {
2161 * We've been once around the RAM and haven't found anything.
2162 * Give up.
2164 *again = false;
2165 return false;
2167 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2168 /* Didn't find anything in this RAM Block */
2169 pss->page = 0;
2170 pss->block = QLIST_NEXT_RCU(pss->block, next);
2171 if (!pss->block) {
2173 * If memory migration starts over, we will meet a dirtied page
2174 * which may still exists in compression threads's ring, so we
2175 * should flush the compressed data to make sure the new page
2176 * is not overwritten by the old one in the destination.
2178 * Also If xbzrle is on, stop using the data compression at this
2179 * point. In theory, xbzrle can do better than compression.
2181 flush_compressed_data(rs);
2183 /* Hit the end of the list */
2184 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2185 /* Flag that we've looped */
2186 pss->complete_round = true;
2187 rs->ram_bulk_stage = false;
2189 /* Didn't find anything this time, but try again on the new block */
2190 *again = true;
2191 return false;
2192 } else {
2193 /* Can go around again, but... */
2194 *again = true;
2195 /* We've found something so probably don't need to */
2196 return true;
2201 * unqueue_page: gets a page of the queue
2203 * Helper for 'get_queued_page' - gets a page off the queue
2205 * Returns the block of the page (or NULL if none available)
2207 * @rs: current RAM state
2208 * @offset: used to return the offset within the RAMBlock
2210 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2212 RAMBlock *block = NULL;
2214 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2215 return NULL;
2218 qemu_mutex_lock(&rs->src_page_req_mutex);
2219 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2220 struct RAMSrcPageRequest *entry =
2221 QSIMPLEQ_FIRST(&rs->src_page_requests);
2222 block = entry->rb;
2223 *offset = entry->offset;
2225 if (entry->len > TARGET_PAGE_SIZE) {
2226 entry->len -= TARGET_PAGE_SIZE;
2227 entry->offset += TARGET_PAGE_SIZE;
2228 } else {
2229 memory_region_unref(block->mr);
2230 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2231 g_free(entry);
2232 migration_consume_urgent_request();
2235 qemu_mutex_unlock(&rs->src_page_req_mutex);
2237 return block;
2241 * get_queued_page: unqueue a page from the postocpy requests
2243 * Skips pages that are already sent (!dirty)
2245 * Returns if a queued page is found
2247 * @rs: current RAM state
2248 * @pss: data about the state of the current dirty page scan
2250 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2252 RAMBlock *block;
2253 ram_addr_t offset;
2254 bool dirty;
2256 do {
2257 block = unqueue_page(rs, &offset);
2259 * We're sending this page, and since it's postcopy nothing else
2260 * will dirty it, and we must make sure it doesn't get sent again
2261 * even if this queue request was received after the background
2262 * search already sent it.
2264 if (block) {
2265 unsigned long page;
2267 page = offset >> TARGET_PAGE_BITS;
2268 dirty = test_bit(page, block->bmap);
2269 if (!dirty) {
2270 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2271 page, test_bit(page, block->unsentmap));
2272 } else {
2273 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2277 } while (block && !dirty);
2279 if (block) {
2281 * As soon as we start servicing pages out of order, then we have
2282 * to kill the bulk stage, since the bulk stage assumes
2283 * in (migration_bitmap_find_and_reset_dirty) that every page is
2284 * dirty, that's no longer true.
2286 rs->ram_bulk_stage = false;
2289 * We want the background search to continue from the queued page
2290 * since the guest is likely to want other pages near to the page
2291 * it just requested.
2293 pss->block = block;
2294 pss->page = offset >> TARGET_PAGE_BITS;
2297 return !!block;
2301 * migration_page_queue_free: drop any remaining pages in the ram
2302 * request queue
2304 * It should be empty at the end anyway, but in error cases there may
2305 * be some left. in case that there is any page left, we drop it.
2308 static void migration_page_queue_free(RAMState *rs)
2310 struct RAMSrcPageRequest *mspr, *next_mspr;
2311 /* This queue generally should be empty - but in the case of a failed
2312 * migration might have some droppings in.
2314 rcu_read_lock();
2315 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2316 memory_region_unref(mspr->rb->mr);
2317 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2318 g_free(mspr);
2320 rcu_read_unlock();
2324 * ram_save_queue_pages: queue the page for transmission
2326 * A request from postcopy destination for example.
2328 * Returns zero on success or negative on error
2330 * @rbname: Name of the RAMBLock of the request. NULL means the
2331 * same that last one.
2332 * @start: starting address from the start of the RAMBlock
2333 * @len: length (in bytes) to send
2335 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2337 RAMBlock *ramblock;
2338 RAMState *rs = ram_state;
2340 ram_counters.postcopy_requests++;
2341 rcu_read_lock();
2342 if (!rbname) {
2343 /* Reuse last RAMBlock */
2344 ramblock = rs->last_req_rb;
2346 if (!ramblock) {
2348 * Shouldn't happen, we can't reuse the last RAMBlock if
2349 * it's the 1st request.
2351 error_report("ram_save_queue_pages no previous block");
2352 goto err;
2354 } else {
2355 ramblock = qemu_ram_block_by_name(rbname);
2357 if (!ramblock) {
2358 /* We shouldn't be asked for a non-existent RAMBlock */
2359 error_report("ram_save_queue_pages no block '%s'", rbname);
2360 goto err;
2362 rs->last_req_rb = ramblock;
2364 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2365 if (start+len > ramblock->used_length) {
2366 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2367 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2368 __func__, start, len, ramblock->used_length);
2369 goto err;
2372 struct RAMSrcPageRequest *new_entry =
2373 g_malloc0(sizeof(struct RAMSrcPageRequest));
2374 new_entry->rb = ramblock;
2375 new_entry->offset = start;
2376 new_entry->len = len;
2378 memory_region_ref(ramblock->mr);
2379 qemu_mutex_lock(&rs->src_page_req_mutex);
2380 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2381 migration_make_urgent_request();
2382 qemu_mutex_unlock(&rs->src_page_req_mutex);
2383 rcu_read_unlock();
2385 return 0;
2387 err:
2388 rcu_read_unlock();
2389 return -1;
2392 static bool save_page_use_compression(RAMState *rs)
2394 if (!migrate_use_compression()) {
2395 return false;
2399 * If xbzrle is on, stop using the data compression after first
2400 * round of migration even if compression is enabled. In theory,
2401 * xbzrle can do better than compression.
2403 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2404 return true;
2407 return false;
2411 * try to compress the page before posting it out, return true if the page
2412 * has been properly handled by compression, otherwise needs other
2413 * paths to handle it
2415 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2417 if (!save_page_use_compression(rs)) {
2418 return false;
2422 * When starting the process of a new block, the first page of
2423 * the block should be sent out before other pages in the same
2424 * block, and all the pages in last block should have been sent
2425 * out, keeping this order is important, because the 'cont' flag
2426 * is used to avoid resending the block name.
2428 * We post the fist page as normal page as compression will take
2429 * much CPU resource.
2431 if (block != rs->last_sent_block) {
2432 flush_compressed_data(rs);
2433 return false;
2436 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2437 return true;
2440 compression_counters.busy++;
2441 return false;
2445 * ram_save_target_page: save one target page
2447 * Returns the number of pages written
2449 * @rs: current RAM state
2450 * @pss: data about the page we want to send
2451 * @last_stage: if we are at the completion stage
2453 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2454 bool last_stage)
2456 RAMBlock *block = pss->block;
2457 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2458 int res;
2460 if (control_save_page(rs, block, offset, &res)) {
2461 return res;
2464 if (save_compress_page(rs, block, offset)) {
2465 return 1;
2468 res = save_zero_page(rs, block, offset);
2469 if (res > 0) {
2470 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2471 * page would be stale
2473 if (!save_page_use_compression(rs)) {
2474 XBZRLE_cache_lock();
2475 xbzrle_cache_zero_page(rs, block->offset + offset);
2476 XBZRLE_cache_unlock();
2478 ram_release_pages(block->idstr, offset, res);
2479 return res;
2483 * do not use multifd for compression as the first page in the new
2484 * block should be posted out before sending the compressed page
2486 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2487 return ram_save_multifd_page(rs, block, offset);
2490 return ram_save_page(rs, pss, last_stage);
2494 * ram_save_host_page: save a whole host page
2496 * Starting at *offset send pages up to the end of the current host
2497 * page. It's valid for the initial offset to point into the middle of
2498 * a host page in which case the remainder of the hostpage is sent.
2499 * Only dirty target pages are sent. Note that the host page size may
2500 * be a huge page for this block.
2501 * The saving stops at the boundary of the used_length of the block
2502 * if the RAMBlock isn't a multiple of the host page size.
2504 * Returns the number of pages written or negative on error
2506 * @rs: current RAM state
2507 * @ms: current migration state
2508 * @pss: data about the page we want to send
2509 * @last_stage: if we are at the completion stage
2511 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2512 bool last_stage)
2514 int tmppages, pages = 0;
2515 size_t pagesize_bits =
2516 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2518 if (ramblock_is_ignored(pss->block)) {
2519 error_report("block %s should not be migrated !", pss->block->idstr);
2520 return 0;
2523 do {
2524 /* Check the pages is dirty and if it is send it */
2525 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2526 pss->page++;
2527 continue;
2530 tmppages = ram_save_target_page(rs, pss, last_stage);
2531 if (tmppages < 0) {
2532 return tmppages;
2535 pages += tmppages;
2536 if (pss->block->unsentmap) {
2537 clear_bit(pss->page, pss->block->unsentmap);
2540 pss->page++;
2541 } while ((pss->page & (pagesize_bits - 1)) &&
2542 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2544 /* The offset we leave with is the last one we looked at */
2545 pss->page--;
2546 return pages;
2550 * ram_find_and_save_block: finds a dirty page and sends it to f
2552 * Called within an RCU critical section.
2554 * Returns the number of pages written where zero means no dirty pages,
2555 * or negative on error
2557 * @rs: current RAM state
2558 * @last_stage: if we are at the completion stage
2560 * On systems where host-page-size > target-page-size it will send all the
2561 * pages in a host page that are dirty.
2564 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2566 PageSearchStatus pss;
2567 int pages = 0;
2568 bool again, found;
2570 /* No dirty page as there is zero RAM */
2571 if (!ram_bytes_total()) {
2572 return pages;
2575 pss.block = rs->last_seen_block;
2576 pss.page = rs->last_page;
2577 pss.complete_round = false;
2579 if (!pss.block) {
2580 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2583 do {
2584 again = true;
2585 found = get_queued_page(rs, &pss);
2587 if (!found) {
2588 /* priority queue empty, so just search for something dirty */
2589 found = find_dirty_block(rs, &pss, &again);
2592 if (found) {
2593 pages = ram_save_host_page(rs, &pss, last_stage);
2595 } while (!pages && again);
2597 rs->last_seen_block = pss.block;
2598 rs->last_page = pss.page;
2600 return pages;
2603 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2605 uint64_t pages = size / TARGET_PAGE_SIZE;
2607 if (zero) {
2608 ram_counters.duplicate += pages;
2609 } else {
2610 ram_counters.normal += pages;
2611 ram_counters.transferred += size;
2612 qemu_update_position(f, size);
2616 static uint64_t ram_bytes_total_common(bool count_ignored)
2618 RAMBlock *block;
2619 uint64_t total = 0;
2621 rcu_read_lock();
2622 if (count_ignored) {
2623 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2624 total += block->used_length;
2626 } else {
2627 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2628 total += block->used_length;
2631 rcu_read_unlock();
2632 return total;
2635 uint64_t ram_bytes_total(void)
2637 return ram_bytes_total_common(false);
2640 static void xbzrle_load_setup(void)
2642 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2645 static void xbzrle_load_cleanup(void)
2647 g_free(XBZRLE.decoded_buf);
2648 XBZRLE.decoded_buf = NULL;
2651 static void ram_state_cleanup(RAMState **rsp)
2653 if (*rsp) {
2654 migration_page_queue_free(*rsp);
2655 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2656 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2657 g_free(*rsp);
2658 *rsp = NULL;
2662 static void xbzrle_cleanup(void)
2664 XBZRLE_cache_lock();
2665 if (XBZRLE.cache) {
2666 cache_fini(XBZRLE.cache);
2667 g_free(XBZRLE.encoded_buf);
2668 g_free(XBZRLE.current_buf);
2669 g_free(XBZRLE.zero_target_page);
2670 XBZRLE.cache = NULL;
2671 XBZRLE.encoded_buf = NULL;
2672 XBZRLE.current_buf = NULL;
2673 XBZRLE.zero_target_page = NULL;
2675 XBZRLE_cache_unlock();
2678 static void ram_save_cleanup(void *opaque)
2680 RAMState **rsp = opaque;
2681 RAMBlock *block;
2683 /* caller have hold iothread lock or is in a bh, so there is
2684 * no writing race against this migration_bitmap
2686 memory_global_dirty_log_stop();
2688 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2689 g_free(block->bmap);
2690 block->bmap = NULL;
2691 g_free(block->unsentmap);
2692 block->unsentmap = NULL;
2695 xbzrle_cleanup();
2696 compress_threads_save_cleanup();
2697 ram_state_cleanup(rsp);
2700 static void ram_state_reset(RAMState *rs)
2702 rs->last_seen_block = NULL;
2703 rs->last_sent_block = NULL;
2704 rs->last_page = 0;
2705 rs->last_version = ram_list.version;
2706 rs->ram_bulk_stage = true;
2707 rs->fpo_enabled = false;
2710 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2713 * 'expected' is the value you expect the bitmap mostly to be full
2714 * of; it won't bother printing lines that are all this value.
2715 * If 'todump' is null the migration bitmap is dumped.
2717 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2718 unsigned long pages)
2720 int64_t cur;
2721 int64_t linelen = 128;
2722 char linebuf[129];
2724 for (cur = 0; cur < pages; cur += linelen) {
2725 int64_t curb;
2726 bool found = false;
2728 * Last line; catch the case where the line length
2729 * is longer than remaining ram
2731 if (cur + linelen > pages) {
2732 linelen = pages - cur;
2734 for (curb = 0; curb < linelen; curb++) {
2735 bool thisbit = test_bit(cur + curb, todump);
2736 linebuf[curb] = thisbit ? '1' : '.';
2737 found = found || (thisbit != expected);
2739 if (found) {
2740 linebuf[curb] = '\0';
2741 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2746 /* **** functions for postcopy ***** */
2748 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2750 struct RAMBlock *block;
2752 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2753 unsigned long *bitmap = block->bmap;
2754 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2755 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2757 while (run_start < range) {
2758 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2759 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2760 (run_end - run_start) << TARGET_PAGE_BITS);
2761 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2767 * postcopy_send_discard_bm_ram: discard a RAMBlock
2769 * Returns zero on success
2771 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2772 * Note: At this point the 'unsentmap' is the processed bitmap combined
2773 * with the dirtymap; so a '1' means it's either dirty or unsent.
2775 * @ms: current migration state
2776 * @pds: state for postcopy
2777 * @start: RAMBlock starting page
2778 * @length: RAMBlock size
2780 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2781 PostcopyDiscardState *pds,
2782 RAMBlock *block)
2784 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2785 unsigned long current;
2786 unsigned long *unsentmap = block->unsentmap;
2788 for (current = 0; current < end; ) {
2789 unsigned long one = find_next_bit(unsentmap, end, current);
2791 if (one <= end) {
2792 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2793 unsigned long discard_length;
2795 if (zero >= end) {
2796 discard_length = end - one;
2797 } else {
2798 discard_length = zero - one;
2800 if (discard_length) {
2801 postcopy_discard_send_range(ms, pds, one, discard_length);
2803 current = one + discard_length;
2804 } else {
2805 current = one;
2809 return 0;
2813 * postcopy_each_ram_send_discard: discard all RAMBlocks
2815 * Returns 0 for success or negative for error
2817 * Utility for the outgoing postcopy code.
2818 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2819 * passing it bitmap indexes and name.
2820 * (qemu_ram_foreach_block ends up passing unscaled lengths
2821 * which would mean postcopy code would have to deal with target page)
2823 * @ms: current migration state
2825 static int postcopy_each_ram_send_discard(MigrationState *ms)
2827 struct RAMBlock *block;
2828 int ret;
2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2831 PostcopyDiscardState *pds =
2832 postcopy_discard_send_init(ms, block->idstr);
2835 * Postcopy sends chunks of bitmap over the wire, but it
2836 * just needs indexes at this point, avoids it having
2837 * target page specific code.
2839 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2840 postcopy_discard_send_finish(ms, pds);
2841 if (ret) {
2842 return ret;
2846 return 0;
2850 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2852 * Helper for postcopy_chunk_hostpages; it's called twice to
2853 * canonicalize the two bitmaps, that are similar, but one is
2854 * inverted.
2856 * Postcopy requires that all target pages in a hostpage are dirty or
2857 * clean, not a mix. This function canonicalizes the bitmaps.
2859 * @ms: current migration state
2860 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2861 * otherwise we need to canonicalize partially dirty host pages
2862 * @block: block that contains the page we want to canonicalize
2863 * @pds: state for postcopy
2865 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2866 RAMBlock *block,
2867 PostcopyDiscardState *pds)
2869 RAMState *rs = ram_state;
2870 unsigned long *bitmap = block->bmap;
2871 unsigned long *unsentmap = block->unsentmap;
2872 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2873 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2874 unsigned long run_start;
2876 if (block->page_size == TARGET_PAGE_SIZE) {
2877 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2878 return;
2881 if (unsent_pass) {
2882 /* Find a sent page */
2883 run_start = find_next_zero_bit(unsentmap, pages, 0);
2884 } else {
2885 /* Find a dirty page */
2886 run_start = find_next_bit(bitmap, pages, 0);
2889 while (run_start < pages) {
2890 bool do_fixup = false;
2891 unsigned long fixup_start_addr;
2892 unsigned long host_offset;
2895 * If the start of this run of pages is in the middle of a host
2896 * page, then we need to fixup this host page.
2898 host_offset = run_start % host_ratio;
2899 if (host_offset) {
2900 do_fixup = true;
2901 run_start -= host_offset;
2902 fixup_start_addr = run_start;
2903 /* For the next pass */
2904 run_start = run_start + host_ratio;
2905 } else {
2906 /* Find the end of this run */
2907 unsigned long run_end;
2908 if (unsent_pass) {
2909 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2910 } else {
2911 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2914 * If the end isn't at the start of a host page, then the
2915 * run doesn't finish at the end of a host page
2916 * and we need to discard.
2918 host_offset = run_end % host_ratio;
2919 if (host_offset) {
2920 do_fixup = true;
2921 fixup_start_addr = run_end - host_offset;
2923 * This host page has gone, the next loop iteration starts
2924 * from after the fixup
2926 run_start = fixup_start_addr + host_ratio;
2927 } else {
2929 * No discards on this iteration, next loop starts from
2930 * next sent/dirty page
2932 run_start = run_end + 1;
2936 if (do_fixup) {
2937 unsigned long page;
2939 /* Tell the destination to discard this page */
2940 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2941 /* For the unsent_pass we:
2942 * discard partially sent pages
2943 * For the !unsent_pass (dirty) we:
2944 * discard partially dirty pages that were sent
2945 * (any partially sent pages were already discarded
2946 * by the previous unsent_pass)
2948 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2949 host_ratio);
2952 /* Clean up the bitmap */
2953 for (page = fixup_start_addr;
2954 page < fixup_start_addr + host_ratio; page++) {
2955 /* All pages in this host page are now not sent */
2956 set_bit(page, unsentmap);
2959 * Remark them as dirty, updating the count for any pages
2960 * that weren't previously dirty.
2962 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2966 if (unsent_pass) {
2967 /* Find the next sent page for the next iteration */
2968 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2969 } else {
2970 /* Find the next dirty page for the next iteration */
2971 run_start = find_next_bit(bitmap, pages, run_start);
2977 * postcopy_chuck_hostpages: discrad any partially sent host page
2979 * Utility for the outgoing postcopy code.
2981 * Discard any partially sent host-page size chunks, mark any partially
2982 * dirty host-page size chunks as all dirty. In this case the host-page
2983 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2985 * Returns zero on success
2987 * @ms: current migration state
2988 * @block: block we want to work with
2990 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2992 PostcopyDiscardState *pds =
2993 postcopy_discard_send_init(ms, block->idstr);
2995 /* First pass: Discard all partially sent host pages */
2996 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2998 * Second pass: Ensure that all partially dirty host pages are made
2999 * fully dirty.
3001 postcopy_chunk_hostpages_pass(ms, false, block, pds);
3003 postcopy_discard_send_finish(ms, pds);
3004 return 0;
3008 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3010 * Returns zero on success
3012 * Transmit the set of pages to be discarded after precopy to the target
3013 * these are pages that:
3014 * a) Have been previously transmitted but are now dirty again
3015 * b) Pages that have never been transmitted, this ensures that
3016 * any pages on the destination that have been mapped by background
3017 * tasks get discarded (transparent huge pages is the specific concern)
3018 * Hopefully this is pretty sparse
3020 * @ms: current migration state
3022 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3024 RAMState *rs = ram_state;
3025 RAMBlock *block;
3026 int ret;
3028 rcu_read_lock();
3030 /* This should be our last sync, the src is now paused */
3031 migration_bitmap_sync(rs);
3033 /* Easiest way to make sure we don't resume in the middle of a host-page */
3034 rs->last_seen_block = NULL;
3035 rs->last_sent_block = NULL;
3036 rs->last_page = 0;
3038 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3039 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3040 unsigned long *bitmap = block->bmap;
3041 unsigned long *unsentmap = block->unsentmap;
3043 if (!unsentmap) {
3044 /* We don't have a safe way to resize the sentmap, so
3045 * if the bitmap was resized it will be NULL at this
3046 * point.
3048 error_report("migration ram resized during precopy phase");
3049 rcu_read_unlock();
3050 return -EINVAL;
3052 /* Deal with TPS != HPS and huge pages */
3053 ret = postcopy_chunk_hostpages(ms, block);
3054 if (ret) {
3055 rcu_read_unlock();
3056 return ret;
3060 * Update the unsentmap to be unsentmap = unsentmap | dirty
3062 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3063 #ifdef DEBUG_POSTCOPY
3064 ram_debug_dump_bitmap(unsentmap, true, pages);
3065 #endif
3067 trace_ram_postcopy_send_discard_bitmap();
3069 ret = postcopy_each_ram_send_discard(ms);
3070 rcu_read_unlock();
3072 return ret;
3076 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3078 * Returns zero on success
3080 * @rbname: name of the RAMBlock of the request. NULL means the
3081 * same that last one.
3082 * @start: RAMBlock starting page
3083 * @length: RAMBlock size
3085 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3087 int ret = -1;
3089 trace_ram_discard_range(rbname, start, length);
3091 rcu_read_lock();
3092 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3094 if (!rb) {
3095 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3096 goto err;
3100 * On source VM, we don't need to update the received bitmap since
3101 * we don't even have one.
3103 if (rb->receivedmap) {
3104 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3105 length >> qemu_target_page_bits());
3108 ret = ram_block_discard_range(rb, start, length);
3110 err:
3111 rcu_read_unlock();
3113 return ret;
3117 * For every allocation, we will try not to crash the VM if the
3118 * allocation failed.
3120 static int xbzrle_init(void)
3122 Error *local_err = NULL;
3124 if (!migrate_use_xbzrle()) {
3125 return 0;
3128 XBZRLE_cache_lock();
3130 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3131 if (!XBZRLE.zero_target_page) {
3132 error_report("%s: Error allocating zero page", __func__);
3133 goto err_out;
3136 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3137 TARGET_PAGE_SIZE, &local_err);
3138 if (!XBZRLE.cache) {
3139 error_report_err(local_err);
3140 goto free_zero_page;
3143 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3144 if (!XBZRLE.encoded_buf) {
3145 error_report("%s: Error allocating encoded_buf", __func__);
3146 goto free_cache;
3149 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3150 if (!XBZRLE.current_buf) {
3151 error_report("%s: Error allocating current_buf", __func__);
3152 goto free_encoded_buf;
3155 /* We are all good */
3156 XBZRLE_cache_unlock();
3157 return 0;
3159 free_encoded_buf:
3160 g_free(XBZRLE.encoded_buf);
3161 XBZRLE.encoded_buf = NULL;
3162 free_cache:
3163 cache_fini(XBZRLE.cache);
3164 XBZRLE.cache = NULL;
3165 free_zero_page:
3166 g_free(XBZRLE.zero_target_page);
3167 XBZRLE.zero_target_page = NULL;
3168 err_out:
3169 XBZRLE_cache_unlock();
3170 return -ENOMEM;
3173 static int ram_state_init(RAMState **rsp)
3175 *rsp = g_try_new0(RAMState, 1);
3177 if (!*rsp) {
3178 error_report("%s: Init ramstate fail", __func__);
3179 return -1;
3182 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3183 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3184 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3187 * Count the total number of pages used by ram blocks not including any
3188 * gaps due to alignment or unplugs.
3190 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3192 ram_state_reset(*rsp);
3194 return 0;
3197 static void ram_list_init_bitmaps(void)
3199 RAMBlock *block;
3200 unsigned long pages;
3202 /* Skip setting bitmap if there is no RAM */
3203 if (ram_bytes_total()) {
3204 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3205 pages = block->max_length >> TARGET_PAGE_BITS;
3206 block->bmap = bitmap_new(pages);
3207 bitmap_set(block->bmap, 0, pages);
3208 if (migrate_postcopy_ram()) {
3209 block->unsentmap = bitmap_new(pages);
3210 bitmap_set(block->unsentmap, 0, pages);
3216 static void ram_init_bitmaps(RAMState *rs)
3218 /* For memory_global_dirty_log_start below. */
3219 qemu_mutex_lock_iothread();
3220 qemu_mutex_lock_ramlist();
3221 rcu_read_lock();
3223 ram_list_init_bitmaps();
3224 memory_global_dirty_log_start();
3225 migration_bitmap_sync_precopy(rs);
3227 rcu_read_unlock();
3228 qemu_mutex_unlock_ramlist();
3229 qemu_mutex_unlock_iothread();
3232 static int ram_init_all(RAMState **rsp)
3234 if (ram_state_init(rsp)) {
3235 return -1;
3238 if (xbzrle_init()) {
3239 ram_state_cleanup(rsp);
3240 return -1;
3243 ram_init_bitmaps(*rsp);
3245 return 0;
3248 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3250 RAMBlock *block;
3251 uint64_t pages = 0;
3254 * Postcopy is not using xbzrle/compression, so no need for that.
3255 * Also, since source are already halted, we don't need to care
3256 * about dirty page logging as well.
3259 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3260 pages += bitmap_count_one(block->bmap,
3261 block->used_length >> TARGET_PAGE_BITS);
3264 /* This may not be aligned with current bitmaps. Recalculate. */
3265 rs->migration_dirty_pages = pages;
3267 rs->last_seen_block = NULL;
3268 rs->last_sent_block = NULL;
3269 rs->last_page = 0;
3270 rs->last_version = ram_list.version;
3272 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3273 * matter what we have sent.
3275 rs->ram_bulk_stage = false;
3277 /* Update RAMState cache of output QEMUFile */
3278 rs->f = out;
3280 trace_ram_state_resume_prepare(pages);
3284 * This function clears bits of the free pages reported by the caller from the
3285 * migration dirty bitmap. @addr is the host address corresponding to the
3286 * start of the continuous guest free pages, and @len is the total bytes of
3287 * those pages.
3289 void qemu_guest_free_page_hint(void *addr, size_t len)
3291 RAMBlock *block;
3292 ram_addr_t offset;
3293 size_t used_len, start, npages;
3294 MigrationState *s = migrate_get_current();
3296 /* This function is currently expected to be used during live migration */
3297 if (!migration_is_setup_or_active(s->state)) {
3298 return;
3301 for (; len > 0; len -= used_len, addr += used_len) {
3302 block = qemu_ram_block_from_host(addr, false, &offset);
3303 if (unlikely(!block || offset >= block->used_length)) {
3305 * The implementation might not support RAMBlock resize during
3306 * live migration, but it could happen in theory with future
3307 * updates. So we add a check here to capture that case.
3309 error_report_once("%s unexpected error", __func__);
3310 return;
3313 if (len <= block->used_length - offset) {
3314 used_len = len;
3315 } else {
3316 used_len = block->used_length - offset;
3319 start = offset >> TARGET_PAGE_BITS;
3320 npages = used_len >> TARGET_PAGE_BITS;
3322 qemu_mutex_lock(&ram_state->bitmap_mutex);
3323 ram_state->migration_dirty_pages -=
3324 bitmap_count_one_with_offset(block->bmap, start, npages);
3325 bitmap_clear(block->bmap, start, npages);
3326 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3331 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3332 * long-running RCU critical section. When rcu-reclaims in the code
3333 * start to become numerous it will be necessary to reduce the
3334 * granularity of these critical sections.
3338 * ram_save_setup: Setup RAM for migration
3340 * Returns zero to indicate success and negative for error
3342 * @f: QEMUFile where to send the data
3343 * @opaque: RAMState pointer
3345 static int ram_save_setup(QEMUFile *f, void *opaque)
3347 RAMState **rsp = opaque;
3348 RAMBlock *block;
3350 if (compress_threads_save_setup()) {
3351 return -1;
3354 /* migration has already setup the bitmap, reuse it. */
3355 if (!migration_in_colo_state()) {
3356 if (ram_init_all(rsp) != 0) {
3357 compress_threads_save_cleanup();
3358 return -1;
3361 (*rsp)->f = f;
3363 rcu_read_lock();
3365 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3367 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3368 qemu_put_byte(f, strlen(block->idstr));
3369 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3370 qemu_put_be64(f, block->used_length);
3371 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3372 qemu_put_be64(f, block->page_size);
3374 if (migrate_ignore_shared()) {
3375 qemu_put_be64(f, block->mr->addr);
3376 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3380 rcu_read_unlock();
3382 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3383 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3385 multifd_send_sync_main();
3386 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3387 qemu_fflush(f);
3389 return 0;
3393 * ram_save_iterate: iterative stage for migration
3395 * Returns zero to indicate success and negative for error
3397 * @f: QEMUFile where to send the data
3398 * @opaque: RAMState pointer
3400 static int ram_save_iterate(QEMUFile *f, void *opaque)
3402 RAMState **temp = opaque;
3403 RAMState *rs = *temp;
3404 int ret;
3405 int i;
3406 int64_t t0;
3407 int done = 0;
3409 if (blk_mig_bulk_active()) {
3410 /* Avoid transferring ram during bulk phase of block migration as
3411 * the bulk phase will usually take a long time and transferring
3412 * ram updates during that time is pointless. */
3413 goto out;
3416 rcu_read_lock();
3417 if (ram_list.version != rs->last_version) {
3418 ram_state_reset(rs);
3421 /* Read version before ram_list.blocks */
3422 smp_rmb();
3424 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3426 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3427 i = 0;
3428 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3429 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3430 int pages;
3432 if (qemu_file_get_error(f)) {
3433 break;
3436 pages = ram_find_and_save_block(rs, false);
3437 /* no more pages to sent */
3438 if (pages == 0) {
3439 done = 1;
3440 break;
3443 if (pages < 0) {
3444 qemu_file_set_error(f, pages);
3445 break;
3448 rs->target_page_count += pages;
3450 /* we want to check in the 1st loop, just in case it was the 1st time
3451 and we had to sync the dirty bitmap.
3452 qemu_get_clock_ns() is a bit expensive, so we only check each some
3453 iterations
3455 if ((i & 63) == 0) {
3456 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3457 if (t1 > MAX_WAIT) {
3458 trace_ram_save_iterate_big_wait(t1, i);
3459 break;
3462 i++;
3464 rcu_read_unlock();
3467 * Must occur before EOS (or any QEMUFile operation)
3468 * because of RDMA protocol.
3470 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3472 multifd_send_sync_main();
3473 out:
3474 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3475 qemu_fflush(f);
3476 ram_counters.transferred += 8;
3478 ret = qemu_file_get_error(f);
3479 if (ret < 0) {
3480 return ret;
3483 return done;
3487 * ram_save_complete: function called to send the remaining amount of ram
3489 * Returns zero to indicate success or negative on error
3491 * Called with iothread lock
3493 * @f: QEMUFile where to send the data
3494 * @opaque: RAMState pointer
3496 static int ram_save_complete(QEMUFile *f, void *opaque)
3498 RAMState **temp = opaque;
3499 RAMState *rs = *temp;
3500 int ret = 0;
3502 rcu_read_lock();
3504 if (!migration_in_postcopy()) {
3505 migration_bitmap_sync_precopy(rs);
3508 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3510 /* try transferring iterative blocks of memory */
3512 /* flush all remaining blocks regardless of rate limiting */
3513 while (true) {
3514 int pages;
3516 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3517 /* no more blocks to sent */
3518 if (pages == 0) {
3519 break;
3521 if (pages < 0) {
3522 ret = pages;
3523 break;
3527 flush_compressed_data(rs);
3528 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3530 rcu_read_unlock();
3532 multifd_send_sync_main();
3533 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3534 qemu_fflush(f);
3536 return ret;
3539 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3540 uint64_t *res_precopy_only,
3541 uint64_t *res_compatible,
3542 uint64_t *res_postcopy_only)
3544 RAMState **temp = opaque;
3545 RAMState *rs = *temp;
3546 uint64_t remaining_size;
3548 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3550 if (!migration_in_postcopy() &&
3551 remaining_size < max_size) {
3552 qemu_mutex_lock_iothread();
3553 rcu_read_lock();
3554 migration_bitmap_sync_precopy(rs);
3555 rcu_read_unlock();
3556 qemu_mutex_unlock_iothread();
3557 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3560 if (migrate_postcopy_ram()) {
3561 /* We can do postcopy, and all the data is postcopiable */
3562 *res_compatible += remaining_size;
3563 } else {
3564 *res_precopy_only += remaining_size;
3568 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3570 unsigned int xh_len;
3571 int xh_flags;
3572 uint8_t *loaded_data;
3574 /* extract RLE header */
3575 xh_flags = qemu_get_byte(f);
3576 xh_len = qemu_get_be16(f);
3578 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3579 error_report("Failed to load XBZRLE page - wrong compression!");
3580 return -1;
3583 if (xh_len > TARGET_PAGE_SIZE) {
3584 error_report("Failed to load XBZRLE page - len overflow!");
3585 return -1;
3587 loaded_data = XBZRLE.decoded_buf;
3588 /* load data and decode */
3589 /* it can change loaded_data to point to an internal buffer */
3590 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3592 /* decode RLE */
3593 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3594 TARGET_PAGE_SIZE) == -1) {
3595 error_report("Failed to load XBZRLE page - decode error!");
3596 return -1;
3599 return 0;
3603 * ram_block_from_stream: read a RAMBlock id from the migration stream
3605 * Must be called from within a rcu critical section.
3607 * Returns a pointer from within the RCU-protected ram_list.
3609 * @f: QEMUFile where to read the data from
3610 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3612 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3614 static RAMBlock *block = NULL;
3615 char id[256];
3616 uint8_t len;
3618 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3619 if (!block) {
3620 error_report("Ack, bad migration stream!");
3621 return NULL;
3623 return block;
3626 len = qemu_get_byte(f);
3627 qemu_get_buffer(f, (uint8_t *)id, len);
3628 id[len] = 0;
3630 block = qemu_ram_block_by_name(id);
3631 if (!block) {
3632 error_report("Can't find block %s", id);
3633 return NULL;
3636 if (ramblock_is_ignored(block)) {
3637 error_report("block %s should not be migrated !", id);
3638 return NULL;
3641 return block;
3644 static inline void *host_from_ram_block_offset(RAMBlock *block,
3645 ram_addr_t offset)
3647 if (!offset_in_ramblock(block, offset)) {
3648 return NULL;
3651 return block->host + offset;
3654 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3655 ram_addr_t offset)
3657 if (!offset_in_ramblock(block, offset)) {
3658 return NULL;
3660 if (!block->colo_cache) {
3661 error_report("%s: colo_cache is NULL in block :%s",
3662 __func__, block->idstr);
3663 return NULL;
3667 * During colo checkpoint, we need bitmap of these migrated pages.
3668 * It help us to decide which pages in ram cache should be flushed
3669 * into VM's RAM later.
3671 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3672 ram_state->migration_dirty_pages++;
3674 return block->colo_cache + offset;
3678 * ram_handle_compressed: handle the zero page case
3680 * If a page (or a whole RDMA chunk) has been
3681 * determined to be zero, then zap it.
3683 * @host: host address for the zero page
3684 * @ch: what the page is filled from. We only support zero
3685 * @size: size of the zero page
3687 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3689 if (ch != 0 || !is_zero_range(host, size)) {
3690 memset(host, ch, size);
3694 /* return the size after decompression, or negative value on error */
3695 static int
3696 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3697 const uint8_t *source, size_t source_len)
3699 int err;
3701 err = inflateReset(stream);
3702 if (err != Z_OK) {
3703 return -1;
3706 stream->avail_in = source_len;
3707 stream->next_in = (uint8_t *)source;
3708 stream->avail_out = dest_len;
3709 stream->next_out = dest;
3711 err = inflate(stream, Z_NO_FLUSH);
3712 if (err != Z_STREAM_END) {
3713 return -1;
3716 return stream->total_out;
3719 static void *do_data_decompress(void *opaque)
3721 DecompressParam *param = opaque;
3722 unsigned long pagesize;
3723 uint8_t *des;
3724 int len, ret;
3726 qemu_mutex_lock(&param->mutex);
3727 while (!param->quit) {
3728 if (param->des) {
3729 des = param->des;
3730 len = param->len;
3731 param->des = 0;
3732 qemu_mutex_unlock(&param->mutex);
3734 pagesize = TARGET_PAGE_SIZE;
3736 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3737 param->compbuf, len);
3738 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3739 error_report("decompress data failed");
3740 qemu_file_set_error(decomp_file, ret);
3743 qemu_mutex_lock(&decomp_done_lock);
3744 param->done = true;
3745 qemu_cond_signal(&decomp_done_cond);
3746 qemu_mutex_unlock(&decomp_done_lock);
3748 qemu_mutex_lock(&param->mutex);
3749 } else {
3750 qemu_cond_wait(&param->cond, &param->mutex);
3753 qemu_mutex_unlock(&param->mutex);
3755 return NULL;
3758 static int wait_for_decompress_done(void)
3760 int idx, thread_count;
3762 if (!migrate_use_compression()) {
3763 return 0;
3766 thread_count = migrate_decompress_threads();
3767 qemu_mutex_lock(&decomp_done_lock);
3768 for (idx = 0; idx < thread_count; idx++) {
3769 while (!decomp_param[idx].done) {
3770 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3773 qemu_mutex_unlock(&decomp_done_lock);
3774 return qemu_file_get_error(decomp_file);
3777 static void compress_threads_load_cleanup(void)
3779 int i, thread_count;
3781 if (!migrate_use_compression()) {
3782 return;
3784 thread_count = migrate_decompress_threads();
3785 for (i = 0; i < thread_count; i++) {
3787 * we use it as a indicator which shows if the thread is
3788 * properly init'd or not
3790 if (!decomp_param[i].compbuf) {
3791 break;
3794 qemu_mutex_lock(&decomp_param[i].mutex);
3795 decomp_param[i].quit = true;
3796 qemu_cond_signal(&decomp_param[i].cond);
3797 qemu_mutex_unlock(&decomp_param[i].mutex);
3799 for (i = 0; i < thread_count; i++) {
3800 if (!decomp_param[i].compbuf) {
3801 break;
3804 qemu_thread_join(decompress_threads + i);
3805 qemu_mutex_destroy(&decomp_param[i].mutex);
3806 qemu_cond_destroy(&decomp_param[i].cond);
3807 inflateEnd(&decomp_param[i].stream);
3808 g_free(decomp_param[i].compbuf);
3809 decomp_param[i].compbuf = NULL;
3811 g_free(decompress_threads);
3812 g_free(decomp_param);
3813 decompress_threads = NULL;
3814 decomp_param = NULL;
3815 decomp_file = NULL;
3818 static int compress_threads_load_setup(QEMUFile *f)
3820 int i, thread_count;
3822 if (!migrate_use_compression()) {
3823 return 0;
3826 thread_count = migrate_decompress_threads();
3827 decompress_threads = g_new0(QemuThread, thread_count);
3828 decomp_param = g_new0(DecompressParam, thread_count);
3829 qemu_mutex_init(&decomp_done_lock);
3830 qemu_cond_init(&decomp_done_cond);
3831 decomp_file = f;
3832 for (i = 0; i < thread_count; i++) {
3833 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3834 goto exit;
3837 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3838 qemu_mutex_init(&decomp_param[i].mutex);
3839 qemu_cond_init(&decomp_param[i].cond);
3840 decomp_param[i].done = true;
3841 decomp_param[i].quit = false;
3842 qemu_thread_create(decompress_threads + i, "decompress",
3843 do_data_decompress, decomp_param + i,
3844 QEMU_THREAD_JOINABLE);
3846 return 0;
3847 exit:
3848 compress_threads_load_cleanup();
3849 return -1;
3852 static void decompress_data_with_multi_threads(QEMUFile *f,
3853 void *host, int len)
3855 int idx, thread_count;
3857 thread_count = migrate_decompress_threads();
3858 qemu_mutex_lock(&decomp_done_lock);
3859 while (true) {
3860 for (idx = 0; idx < thread_count; idx++) {
3861 if (decomp_param[idx].done) {
3862 decomp_param[idx].done = false;
3863 qemu_mutex_lock(&decomp_param[idx].mutex);
3864 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3865 decomp_param[idx].des = host;
3866 decomp_param[idx].len = len;
3867 qemu_cond_signal(&decomp_param[idx].cond);
3868 qemu_mutex_unlock(&decomp_param[idx].mutex);
3869 break;
3872 if (idx < thread_count) {
3873 break;
3874 } else {
3875 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3878 qemu_mutex_unlock(&decomp_done_lock);
3882 * colo cache: this is for secondary VM, we cache the whole
3883 * memory of the secondary VM, it is need to hold the global lock
3884 * to call this helper.
3886 int colo_init_ram_cache(void)
3888 RAMBlock *block;
3890 rcu_read_lock();
3891 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3892 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3893 NULL,
3894 false);
3895 if (!block->colo_cache) {
3896 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3897 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3898 block->used_length);
3899 goto out_locked;
3901 memcpy(block->colo_cache, block->host, block->used_length);
3903 rcu_read_unlock();
3905 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3906 * with to decide which page in cache should be flushed into SVM's RAM. Here
3907 * we use the same name 'ram_bitmap' as for migration.
3909 if (ram_bytes_total()) {
3910 RAMBlock *block;
3912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3913 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3915 block->bmap = bitmap_new(pages);
3916 bitmap_set(block->bmap, 0, pages);
3919 ram_state = g_new0(RAMState, 1);
3920 ram_state->migration_dirty_pages = 0;
3921 qemu_mutex_init(&ram_state->bitmap_mutex);
3922 memory_global_dirty_log_start();
3924 return 0;
3926 out_locked:
3928 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3929 if (block->colo_cache) {
3930 qemu_anon_ram_free(block->colo_cache, block->used_length);
3931 block->colo_cache = NULL;
3935 rcu_read_unlock();
3936 return -errno;
3939 /* It is need to hold the global lock to call this helper */
3940 void colo_release_ram_cache(void)
3942 RAMBlock *block;
3944 memory_global_dirty_log_stop();
3945 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3946 g_free(block->bmap);
3947 block->bmap = NULL;
3950 rcu_read_lock();
3952 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3953 if (block->colo_cache) {
3954 qemu_anon_ram_free(block->colo_cache, block->used_length);
3955 block->colo_cache = NULL;
3959 rcu_read_unlock();
3960 qemu_mutex_destroy(&ram_state->bitmap_mutex);
3961 g_free(ram_state);
3962 ram_state = NULL;
3966 * ram_load_setup: Setup RAM for migration incoming side
3968 * Returns zero to indicate success and negative for error
3970 * @f: QEMUFile where to receive the data
3971 * @opaque: RAMState pointer
3973 static int ram_load_setup(QEMUFile *f, void *opaque)
3975 if (compress_threads_load_setup(f)) {
3976 return -1;
3979 xbzrle_load_setup();
3980 ramblock_recv_map_init();
3982 return 0;
3985 static int ram_load_cleanup(void *opaque)
3987 RAMBlock *rb;
3989 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3990 if (ramblock_is_pmem(rb)) {
3991 pmem_persist(rb->host, rb->used_length);
3995 xbzrle_load_cleanup();
3996 compress_threads_load_cleanup();
3998 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3999 g_free(rb->receivedmap);
4000 rb->receivedmap = NULL;
4003 return 0;
4007 * ram_postcopy_incoming_init: allocate postcopy data structures
4009 * Returns 0 for success and negative if there was one error
4011 * @mis: current migration incoming state
4013 * Allocate data structures etc needed by incoming migration with
4014 * postcopy-ram. postcopy-ram's similarly names
4015 * postcopy_ram_incoming_init does the work.
4017 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4019 return postcopy_ram_incoming_init(mis);
4023 * ram_load_postcopy: load a page in postcopy case
4025 * Returns 0 for success or -errno in case of error
4027 * Called in postcopy mode by ram_load().
4028 * rcu_read_lock is taken prior to this being called.
4030 * @f: QEMUFile where to send the data
4032 static int ram_load_postcopy(QEMUFile *f)
4034 int flags = 0, ret = 0;
4035 bool place_needed = false;
4036 bool matches_target_page_size = false;
4037 MigrationIncomingState *mis = migration_incoming_get_current();
4038 /* Temporary page that is later 'placed' */
4039 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4040 void *last_host = NULL;
4041 bool all_zero = false;
4043 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4044 ram_addr_t addr;
4045 void *host = NULL;
4046 void *page_buffer = NULL;
4047 void *place_source = NULL;
4048 RAMBlock *block = NULL;
4049 uint8_t ch;
4051 addr = qemu_get_be64(f);
4054 * If qemu file error, we should stop here, and then "addr"
4055 * may be invalid
4057 ret = qemu_file_get_error(f);
4058 if (ret) {
4059 break;
4062 flags = addr & ~TARGET_PAGE_MASK;
4063 addr &= TARGET_PAGE_MASK;
4065 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4066 place_needed = false;
4067 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4068 block = ram_block_from_stream(f, flags);
4070 host = host_from_ram_block_offset(block, addr);
4071 if (!host) {
4072 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4073 ret = -EINVAL;
4074 break;
4076 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4078 * Postcopy requires that we place whole host pages atomically;
4079 * these may be huge pages for RAMBlocks that are backed by
4080 * hugetlbfs.
4081 * To make it atomic, the data is read into a temporary page
4082 * that's moved into place later.
4083 * The migration protocol uses, possibly smaller, target-pages
4084 * however the source ensures it always sends all the components
4085 * of a host page in order.
4087 page_buffer = postcopy_host_page +
4088 ((uintptr_t)host & (block->page_size - 1));
4089 /* If all TP are zero then we can optimise the place */
4090 if (!((uintptr_t)host & (block->page_size - 1))) {
4091 all_zero = true;
4092 } else {
4093 /* not the 1st TP within the HP */
4094 if (host != (last_host + TARGET_PAGE_SIZE)) {
4095 error_report("Non-sequential target page %p/%p",
4096 host, last_host);
4097 ret = -EINVAL;
4098 break;
4104 * If it's the last part of a host page then we place the host
4105 * page
4107 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4108 (block->page_size - 1)) == 0;
4109 place_source = postcopy_host_page;
4111 last_host = host;
4113 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4114 case RAM_SAVE_FLAG_ZERO:
4115 ch = qemu_get_byte(f);
4116 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4117 if (ch) {
4118 all_zero = false;
4120 break;
4122 case RAM_SAVE_FLAG_PAGE:
4123 all_zero = false;
4124 if (!matches_target_page_size) {
4125 /* For huge pages, we always use temporary buffer */
4126 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4127 } else {
4129 * For small pages that matches target page size, we
4130 * avoid the qemu_file copy. Instead we directly use
4131 * the buffer of QEMUFile to place the page. Note: we
4132 * cannot do any QEMUFile operation before using that
4133 * buffer to make sure the buffer is valid when
4134 * placing the page.
4136 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4137 TARGET_PAGE_SIZE);
4139 break;
4140 case RAM_SAVE_FLAG_EOS:
4141 /* normal exit */
4142 multifd_recv_sync_main();
4143 break;
4144 default:
4145 error_report("Unknown combination of migration flags: %#x"
4146 " (postcopy mode)", flags);
4147 ret = -EINVAL;
4148 break;
4151 /* Detect for any possible file errors */
4152 if (!ret && qemu_file_get_error(f)) {
4153 ret = qemu_file_get_error(f);
4156 if (!ret && place_needed) {
4157 /* This gets called at the last target page in the host page */
4158 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4160 if (all_zero) {
4161 ret = postcopy_place_page_zero(mis, place_dest,
4162 block);
4163 } else {
4164 ret = postcopy_place_page(mis, place_dest,
4165 place_source, block);
4170 return ret;
4173 static bool postcopy_is_advised(void)
4175 PostcopyState ps = postcopy_state_get();
4176 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4179 static bool postcopy_is_running(void)
4181 PostcopyState ps = postcopy_state_get();
4182 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4186 * Flush content of RAM cache into SVM's memory.
4187 * Only flush the pages that be dirtied by PVM or SVM or both.
4189 static void colo_flush_ram_cache(void)
4191 RAMBlock *block = NULL;
4192 void *dst_host;
4193 void *src_host;
4194 unsigned long offset = 0;
4196 memory_global_dirty_log_sync();
4197 rcu_read_lock();
4198 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4199 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4201 rcu_read_unlock();
4203 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4204 rcu_read_lock();
4205 block = QLIST_FIRST_RCU(&ram_list.blocks);
4207 while (block) {
4208 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4210 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4211 offset = 0;
4212 block = QLIST_NEXT_RCU(block, next);
4213 } else {
4214 migration_bitmap_clear_dirty(ram_state, block, offset);
4215 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4216 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4217 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4221 rcu_read_unlock();
4222 trace_colo_flush_ram_cache_end();
4225 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4227 int flags = 0, ret = 0, invalid_flags = 0;
4228 static uint64_t seq_iter;
4229 int len = 0;
4231 * If system is running in postcopy mode, page inserts to host memory must
4232 * be atomic
4234 bool postcopy_running = postcopy_is_running();
4235 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4236 bool postcopy_advised = postcopy_is_advised();
4238 seq_iter++;
4240 if (version_id != 4) {
4241 ret = -EINVAL;
4244 if (!migrate_use_compression()) {
4245 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4247 /* This RCU critical section can be very long running.
4248 * When RCU reclaims in the code start to become numerous,
4249 * it will be necessary to reduce the granularity of this
4250 * critical section.
4252 rcu_read_lock();
4254 if (postcopy_running) {
4255 ret = ram_load_postcopy(f);
4258 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4259 ram_addr_t addr, total_ram_bytes;
4260 void *host = NULL;
4261 uint8_t ch;
4263 addr = qemu_get_be64(f);
4264 flags = addr & ~TARGET_PAGE_MASK;
4265 addr &= TARGET_PAGE_MASK;
4267 if (flags & invalid_flags) {
4268 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4269 error_report("Received an unexpected compressed page");
4272 ret = -EINVAL;
4273 break;
4276 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4277 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4278 RAMBlock *block = ram_block_from_stream(f, flags);
4281 * After going into COLO, we should load the Page into colo_cache.
4283 if (migration_incoming_in_colo_state()) {
4284 host = colo_cache_from_block_offset(block, addr);
4285 } else {
4286 host = host_from_ram_block_offset(block, addr);
4288 if (!host) {
4289 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4290 ret = -EINVAL;
4291 break;
4294 if (!migration_incoming_in_colo_state()) {
4295 ramblock_recv_bitmap_set(block, host);
4298 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4301 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4302 case RAM_SAVE_FLAG_MEM_SIZE:
4303 /* Synchronize RAM block list */
4304 total_ram_bytes = addr;
4305 while (!ret && total_ram_bytes) {
4306 RAMBlock *block;
4307 char id[256];
4308 ram_addr_t length;
4310 len = qemu_get_byte(f);
4311 qemu_get_buffer(f, (uint8_t *)id, len);
4312 id[len] = 0;
4313 length = qemu_get_be64(f);
4315 block = qemu_ram_block_by_name(id);
4316 if (block && !qemu_ram_is_migratable(block)) {
4317 error_report("block %s should not be migrated !", id);
4318 ret = -EINVAL;
4319 } else if (block) {
4320 if (length != block->used_length) {
4321 Error *local_err = NULL;
4323 ret = qemu_ram_resize(block, length,
4324 &local_err);
4325 if (local_err) {
4326 error_report_err(local_err);
4329 /* For postcopy we need to check hugepage sizes match */
4330 if (postcopy_advised &&
4331 block->page_size != qemu_host_page_size) {
4332 uint64_t remote_page_size = qemu_get_be64(f);
4333 if (remote_page_size != block->page_size) {
4334 error_report("Mismatched RAM page size %s "
4335 "(local) %zd != %" PRId64,
4336 id, block->page_size,
4337 remote_page_size);
4338 ret = -EINVAL;
4341 if (migrate_ignore_shared()) {
4342 hwaddr addr = qemu_get_be64(f);
4343 bool ignored = qemu_get_byte(f);
4344 if (ignored != ramblock_is_ignored(block)) {
4345 error_report("RAM block %s should %s be migrated",
4346 id, ignored ? "" : "not");
4347 ret = -EINVAL;
4349 if (ramblock_is_ignored(block) &&
4350 block->mr->addr != addr) {
4351 error_report("Mismatched GPAs for block %s "
4352 "%" PRId64 "!= %" PRId64,
4353 id, (uint64_t)addr,
4354 (uint64_t)block->mr->addr);
4355 ret = -EINVAL;
4358 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4359 block->idstr);
4360 } else {
4361 error_report("Unknown ramblock \"%s\", cannot "
4362 "accept migration", id);
4363 ret = -EINVAL;
4366 total_ram_bytes -= length;
4368 break;
4370 case RAM_SAVE_FLAG_ZERO:
4371 ch = qemu_get_byte(f);
4372 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4373 break;
4375 case RAM_SAVE_FLAG_PAGE:
4376 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4377 break;
4379 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4380 len = qemu_get_be32(f);
4381 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4382 error_report("Invalid compressed data length: %d", len);
4383 ret = -EINVAL;
4384 break;
4386 decompress_data_with_multi_threads(f, host, len);
4387 break;
4389 case RAM_SAVE_FLAG_XBZRLE:
4390 if (load_xbzrle(f, addr, host) < 0) {
4391 error_report("Failed to decompress XBZRLE page at "
4392 RAM_ADDR_FMT, addr);
4393 ret = -EINVAL;
4394 break;
4396 break;
4397 case RAM_SAVE_FLAG_EOS:
4398 /* normal exit */
4399 multifd_recv_sync_main();
4400 break;
4401 default:
4402 if (flags & RAM_SAVE_FLAG_HOOK) {
4403 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4404 } else {
4405 error_report("Unknown combination of migration flags: %#x",
4406 flags);
4407 ret = -EINVAL;
4410 if (!ret) {
4411 ret = qemu_file_get_error(f);
4415 ret |= wait_for_decompress_done();
4416 rcu_read_unlock();
4417 trace_ram_load_complete(ret, seq_iter);
4419 if (!ret && migration_incoming_in_colo_state()) {
4420 colo_flush_ram_cache();
4422 return ret;
4425 static bool ram_has_postcopy(void *opaque)
4427 RAMBlock *rb;
4428 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4429 if (ramblock_is_pmem(rb)) {
4430 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4431 "is not supported now!", rb->idstr, rb->host);
4432 return false;
4436 return migrate_postcopy_ram();
4439 /* Sync all the dirty bitmap with destination VM. */
4440 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4442 RAMBlock *block;
4443 QEMUFile *file = s->to_dst_file;
4444 int ramblock_count = 0;
4446 trace_ram_dirty_bitmap_sync_start();
4448 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4449 qemu_savevm_send_recv_bitmap(file, block->idstr);
4450 trace_ram_dirty_bitmap_request(block->idstr);
4451 ramblock_count++;
4454 trace_ram_dirty_bitmap_sync_wait();
4456 /* Wait until all the ramblocks' dirty bitmap synced */
4457 while (ramblock_count--) {
4458 qemu_sem_wait(&s->rp_state.rp_sem);
4461 trace_ram_dirty_bitmap_sync_complete();
4463 return 0;
4466 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4468 qemu_sem_post(&s->rp_state.rp_sem);
4472 * Read the received bitmap, revert it as the initial dirty bitmap.
4473 * This is only used when the postcopy migration is paused but wants
4474 * to resume from a middle point.
4476 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4478 int ret = -EINVAL;
4479 QEMUFile *file = s->rp_state.from_dst_file;
4480 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4481 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4482 uint64_t size, end_mark;
4484 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4486 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4487 error_report("%s: incorrect state %s", __func__,
4488 MigrationStatus_str(s->state));
4489 return -EINVAL;
4493 * Note: see comments in ramblock_recv_bitmap_send() on why we
4494 * need the endianess convertion, and the paddings.
4496 local_size = ROUND_UP(local_size, 8);
4498 /* Add paddings */
4499 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4501 size = qemu_get_be64(file);
4503 /* The size of the bitmap should match with our ramblock */
4504 if (size != local_size) {
4505 error_report("%s: ramblock '%s' bitmap size mismatch "
4506 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4507 block->idstr, size, local_size);
4508 ret = -EINVAL;
4509 goto out;
4512 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4513 end_mark = qemu_get_be64(file);
4515 ret = qemu_file_get_error(file);
4516 if (ret || size != local_size) {
4517 error_report("%s: read bitmap failed for ramblock '%s': %d"
4518 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4519 __func__, block->idstr, ret, local_size, size);
4520 ret = -EIO;
4521 goto out;
4524 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4525 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4526 __func__, block->idstr, end_mark);
4527 ret = -EINVAL;
4528 goto out;
4532 * Endianess convertion. We are during postcopy (though paused).
4533 * The dirty bitmap won't change. We can directly modify it.
4535 bitmap_from_le(block->bmap, le_bitmap, nbits);
4538 * What we received is "received bitmap". Revert it as the initial
4539 * dirty bitmap for this ramblock.
4541 bitmap_complement(block->bmap, block->bmap, nbits);
4543 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4546 * We succeeded to sync bitmap for current ramblock. If this is
4547 * the last one to sync, we need to notify the main send thread.
4549 ram_dirty_bitmap_reload_notify(s);
4551 ret = 0;
4552 out:
4553 g_free(le_bitmap);
4554 return ret;
4557 static int ram_resume_prepare(MigrationState *s, void *opaque)
4559 RAMState *rs = *(RAMState **)opaque;
4560 int ret;
4562 ret = ram_dirty_bitmap_sync_all(s, rs);
4563 if (ret) {
4564 return ret;
4567 ram_state_resume_prepare(rs, s->to_dst_file);
4569 return 0;
4572 static SaveVMHandlers savevm_ram_handlers = {
4573 .save_setup = ram_save_setup,
4574 .save_live_iterate = ram_save_iterate,
4575 .save_live_complete_postcopy = ram_save_complete,
4576 .save_live_complete_precopy = ram_save_complete,
4577 .has_postcopy = ram_has_postcopy,
4578 .save_live_pending = ram_save_pending,
4579 .load_state = ram_load,
4580 .save_cleanup = ram_save_cleanup,
4581 .load_setup = ram_load_setup,
4582 .load_cleanup = ram_load_cleanup,
4583 .resume_prepare = ram_resume_prepare,
4586 void ram_mig_init(void)
4588 qemu_mutex_init(&XBZRLE.lock);
4589 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);